CN104428253B - 掺杂的镍酸盐化合物 - Google Patents

掺杂的镍酸盐化合物 Download PDF

Info

Publication number
CN104428253B
CN104428253B CN201380036339.0A CN201380036339A CN104428253B CN 104428253 B CN104428253 B CN 104428253B CN 201380036339 A CN201380036339 A CN 201380036339A CN 104428253 B CN104428253 B CN 104428253B
Authority
CN
China
Prior art keywords
nani
electrode
ion
compound
sodium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201380036339.0A
Other languages
English (en)
Other versions
CN104428253A (zh
Inventor
J·巴克
R·希普
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Faradion Ltd
Original Assignee
Faradion Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Faradion Ltd filed Critical Faradion Ltd
Publication of CN104428253A publication Critical patent/CN104428253A/zh
Application granted granted Critical
Publication of CN104428253B publication Critical patent/CN104428253B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

本发明涉及具有下式Α1‑δNi0.5M1 0.5‑XM2 XO2的新材料,其中,A包括一种或多种选自锂、钠和钾的碱金属;Μ1和M2各自包括+4氧化态的金属,其选自锰、钛和锆中的一种或多种;进一步地,其中0≤δ≤0.1;X的范围为0≤X<0.5;其中当X=0时,则M1≠Mn或Ti。这样的材料是有用的,例如,在钠离子和/或锂离子和/或钾离子电池应用中用作电极材料。

Description

掺杂的镍酸盐化合物
发明领域
本发明涉及新的掺杂的镍酸盐化合物、它们的制备方法,涉及使用包含所述掺杂的镍酸盐化合物的活性材料的新电极,以及涉及这些电极的用途,例如在储能装置中的用途。
发明背景
钠离子电池在许多方面与目前通用的锂离子电池是类似的;它们都是可重复使用的包括阳极(负极)、阴极(正极)和电解质材料的二次电池,二者都能够储存能量,并且它们都通过类似的反应机理充电和放电。当钠离子(或锂离子电池)充电时,Na+(或Li+)离子从阴极脱嵌(de-intercalate)并插入阳极。同时,电荷平衡的电子从阴极流经含有充电器的外电路并进入电池的阳极。在放电期间,发生相同的过程,但是方向相反。
近年来锂离子电池技术已经引起了大量关注并为目前使用的大多数电子器件提供了优选的便携式电池;然而,锂不是来源便宜的金属,并被认为对于在大规模应用中使用而言过于昂贵。与之相比,钠离子电池技术仍处于其相对初期,但被视为有利的;钠比锂更加丰富,并且一些研究者预言,这将给今后的、特别是针对大规模应用储能,例如在电网上储能,提供更便宜且更持久的方式。然而,在钠离子电池成为商业现实之前,还必须要做大量的工作。
NaNi0.5Mn0.5O2是一种已知的钠离子材料,其中,镍作为Ni2+存在,而锰作为Mn4+存在。该材料是以Na和Ni原子存在于结构内的离散位点来排列的。镍离子(Ni2+)是氧化还原元素,其有助于可逆的比容量;锰离子(Mn4+)起到结构稳定剂的作用。化合物NaNi0.5Ti0.5O2与NaNi0.5Mn0.5O2的类似之处在于,Ni2+离子提供活性氧化还原中心,Ti4+离子为了结构稳定而存在。有大量的文献描述了制备NaNi0.5Mn0.5O2(以及较小程度上,NaNi0.5Ti0.5O2)作为用于通过Na→Li离子交换制备针对锂离子应用的LiNi0.5Mn0.5O2和LiNi0.5Ti0.5O2的前体。制备这些Li材料的直接合成方法产生了不期望的无序材料,例如,作为锂和镍原子共享结构位点的结果。
由Komaba等人于Adv.Funct.Mater.2011,21,3859报道的最新电化学研究描述了碳酸丙烯酯电解质溶液中的硬碳和层状NaNi0.5Mn0.5O2电极的钠插入性能。得到的结果表明,虽然NaNi0.5Mn0.5O2显示出一些可逆的充放电能力,但是在仅40次循环后,该材料的容量衰减25%或更多。
本发明的目的是提供新的化合物。进一步地,本发明的目的是提供成本有效的电极,该电极含有制备简单且易于处理和储存的活性材料。本发明的另一目的是提供具有高的初始放电比容量(initial specific dischargecapacity)且能够多次充电而充电容量没有显著损失的电极。
因此,本发明的第一方面提供了化合物,其式为:
Α1-δNi0.5M1 0.5-XM2 XO2
其中,
A包括一种或多种选自锂、钠和钾的碱金属;
Μ1和M2各自包括+4氧化态的金属,其选自锰、钛和锆中的一种或多种;
其中,
0≤δ≤0.1;
X的范围为0≤X<0.5;以及
进一步地,其中当X=0时,则M1≠Mn或Ti。
优选地,本发明提供了一种具有上式的化合物,其中,X的范围为0≤X≤0.45,以及进一步优选地,X的范围为0.05≤X≤0.45。在进一步特别优选的化合物中,δ=0.05。
由以上结构可以确定,本发明化合物的一个显著特征是,镍为+2氧化态。
虽然A被限定为包括选自锂、钠和钾的一种或多种碱金属,但是A为一种或多种包括或单独的或在含有锂作为次要成分的混合物中的钠和/或钾的碱金属的化合物,也是本发明的一部分。
特别优选的具有上式的化合物包括:
NaNi0.5Mn0.25Zr0.25O2
NaNi0.5Ti0.25Zr0.25O2
NaNi0.5Mn0.25Ti0.25O2
NaNi0.5Mn0.45Zr0.05O2
NaNi0.5Mn0.4Zr0.1O2
NaNi0.5Ti0.45Zr0.05O2
NaNi0.5Mn0.4Zr0.1O2
NaNi0.5Mn0.225Ti0.225Zr0.05O2
NaNi0.5Mn0.2Ti0.2Zr0.1O2;和
NaNi0.5Zr0.5O2
在第二方面,本发明提供了包含具有下式的活性化合物的电极:
Α1-δNi0.5M1 0.5-XM2 XO2
其中
A包括一种或多种选自锂、钠和钾的碱金属;
Μ1和M2各自包括+4氧化态的金属,其选自锰、钛和锆中的一种或多种;
进一步地,其中,
0≤δ≤0.1;
X的范围为0≤X<0.5;
其中当X=0时,则M1≠Mn或Ti。
优选地,本发明提供了包含具有上式的活性化合物的电极,其中,X的范围为0≤X≤0.45,以及进一步优选地,X的范围为0.05≤X≤0.45。
由以上结构可以确定,镍为+2氧化态。
申请人已观察到,如果NiO在活性化合物样品中作为杂质相存在,则这对于电化学性能具有不利影响。在电极的充电过程中,可以形成NiO;这时,Ni2+可被氧化,用尽一般用于给活性材料充电的能量。这不仅是不可逆反应,而且也对循环性能具有不利影响,导致电化学循环时容量的降低。由该路径形成的NiO被发现通过减少活性化合物中碱金属的量而最小化,并且这是本发明的化合物具有小于1单位的碱金属的目的。
非常有利的是包含具有上式的活性化合物的电极,其中δ=0.05。
虽然A被限定为包括一种或多种选自锂、钠和钾的碱金属,但是,这样的化合物也是电化学有效的:该化合物中,A为一种或多种包括或单独的或在含有锂作为次要成分的混合物中的钠和/或钾的碱金属。
特别优选的电极包含选自以下一种或多种的活性化合物:
NaNi0.5Mn0.25Zr0.25O2
NaNi0.5Ti0.25Zr0.25O2
NaNi0.5Mn0.25Ti0.25O2
NaNi0.5Mn0.45Zr0.05O2
NaNi0.5Mn0.4Zr0.1O2
NaNi0.5Ti0.45Zr0.05O2
NaNi0.5Mn0.4Zr0.1O2
NaNi0.5Mn0.225Ti0.225Zr0.05O2
NaNi0.5Mn0.2Ti0.2Zr0.1O2;和
NaNi0.5Zr0.5O2
根据本发明的电极适合用于多种不同的应用,例如,储能装置、可充电电池、电化学装置和电致变色装置。
有利地,根据本发明的电极与对电极和一种或多种电解质材料一起使用。所述电解质材料可以为任意常规或已知的材料,并且可以包括一种或多种水性电解质或一种或多种非水性电解质或它们的混合物。
在第三方面,本发明提供了使用包含上述活性材料的电极的储能装置,以及特别是用作以下一种或多种的储能装置:钠离子和/或锂离子和/或钾离子电池、钠金属和/或锂金属和/或钾金属离子电池、非水性电解质钠离子和/或锂离子和/或钾离子电池以及水性电解质钠离子和/或锂离子和/或钾离子电池。
本发明的新化合物可以使用任何已知和/或方便的方法制备。例如,可以在炉中加热前体材料以促进固相反应过程。
本发明的第四方面提供了制备上述化合物的特别有利的方法,所述方法包括以下步骤:
a)将起始材料混合在一起,优选地将起始材料充分混合在一起以及进一步优选地将混合的起始材料压成片(pellet);
b)在400℃至1500℃的温度下,优选地在500℃至1200℃的温度下,于炉中加热混合的起始材料2至20小时;和
c)使反应产物冷却。
优选地,反应是在环境空气的气氛下,以及供选择地在惰性气体下进行的。
也可以如下由钠离子衍生物制备锂离子材料:使用离子交换方法将钠离子材料转化成锂离子材料。
实现Na到Li离子交换的典型方式包括:
1.将富钠离子的材料与过量的锂离子材料如LiNO3混合,加热到LiNO3的熔点(264℃)以上,冷却,然后洗涤以除去过量的LiNO3和副反应产物。
2.使用锂盐的水溶液,例如,1M LiCl水溶液,处理富钠离子的材料;和
3.使用锂盐的非水性溶液,例如,LiBr于一种或多种脂族醇如己醇、丙醇等中的溶液,处理富钠离子的材料。
附图简述
现将参考以下附图描述本发明,其中:
图1是根据实施例1制备的现有技术材料NaNi0.5Mn0.5O2的XRD;
图2是根据实施例2制备的现有技术材料NaNi0.5Ti0.5O2的XRD;
图3是本发明的且根据实施例3制备的NaNi0.5Mn0.25Ti0.25O2的XRD;
图4显示了硬碳//NaNi0.5Mn0.25Ti0.25O2电池的第三循环放电电压曲线(Na离子电池电压[V]对阴极比容量[mAh/g]);
图5显示了硬碳//NaNi0.5Mn0.25Ti0.25O2电池的第三循环微分容量曲线(微分容量[mAh/g/V]对Na离子电池电压[V]);
图6显示了硬碳//NaNi0.5Mn0.25Ti0.25O2电池的前4次循环的充电-放电电压曲线(Na离子电池电压[V]对累积阴极比容量[mAh/g])。
图7显示了硬碳//NaNi0.5Mn0.25Ti0.25O2电池的循环寿命性能(阴极比容量[mAh/g]对循环数)。
详细说明
使用以下一般方法制备根据本发明的材料:
一般合成方法:
将化学计量的前体材料充分混合在一起并压成片。然后将得到的混合物在管式炉或箱式炉中使用环境空气气氛或流动的惰性气氛(例如,氩气或氮气),在400℃至1500℃的炉温下,使用单个或多个加热步骤来加热,直到形成反应产物。当变凉时,将反应产物从炉中移出并研磨成粉末。
使用以上方法制备以下概括于表1中的实施例1至3的多种掺杂的镍酸盐:
表1
使用XRD分析产物
利用西门子D5000粉末衍射仪,通过X射线衍射技术分析所有的产物材料,以确定已制备了所期望的目标材料,确认产物材料的相纯度和确定存在的杂质类型。由该信息有可能确定晶胞晶格参数。
用于得到图1、2和3中所示的XRD谱图的操作条件如下:
狭缝尺寸:1mm、1mm、0.1mm
范围:2θ=5°-60°
速度:0.5秒/步
增量:0.015°
电化学结果
目标材料是或i)使用锂金属阳极测试电池,或ii)使用利用硬碳阳极的钠离子测试电池来测试的。也可使用具有石墨阳极的锂离子电池来测试。可以使用以下步骤制备电池:
制备金属锂电化学测试电池的一般步骤
通过溶剂浇铸活性材料、导电碳、粘合剂和溶剂的浆体来制备正极。使用的导电碳为Super P(Timcal)。PVdF共聚物(例如,Kynar Flex 2801,Elf Atochem Inc.)用作粘合剂,以及丙酮用作溶剂。然后将浆体浇铸在玻璃上,当溶剂蒸发时形成独立的电极膜。然后在约80℃下进一步干燥电极。电极膜含有以重量百分数表示的以下组分:80%的活性材料、8%的Super P碳和12%的Kynar 2801粘合剂。任选地,可以使用铝集电器来接触正极。铜集电器上的金属锂可用作负极。电解质包括以下中的一种:(i)1M的于重量比为1:1的碳酸亚乙酯(EC)和碳酸二甲酯(DMC)中的LiPF6溶液;(ii)1M的于重量比为1:1的碳酸亚乙酯(EC)和碳酸二乙酯(DEC)中的LiPF6溶液;或(iii)1M的于碳酸丙烯酯(PC)中的LiPF6溶液。将电解质润湿的玻璃纤维隔膜(separator)(Whatman,GF/A)或多孔的聚丙烯隔膜(例如,Celgard2400)置于正极和负极之间。
制备硬碳钠离子电池的一般步骤
通过溶剂浇铸活性材料、导电碳、粘合剂和溶剂的浆体来制备正极。使用的导电碳为Super P(Timcal)。PVdF共聚物(例如,Kynar Flex 2801,Elf Atochem Inc.)用作粘合剂,以及丙酮用作溶剂。然后将浆体浇铸在玻璃上,当溶剂蒸发时形成独立的电极膜。然后在约80℃下进一步干燥电极。电极膜含有以重量百分数表示的以下组分:80%的活性材料、8%的Super P碳和12%的Kynar 2801粘合剂。任选地,可以使用铝集电器来接触正极。
通过溶剂浇铸硬碳活性材料(Carbotron P/J,由Kureha提供)、导电碳、粘合剂和溶剂的浆体来制备负极。使用的导电碳为Super P(Timcal)。PVdF共聚物(例如,Kynar Flex 2801,Elf Atochem Inc.)用作粘合剂,以及丙酮用作溶剂。然后将浆体浇铸在玻璃上,当溶剂蒸发时形成独立的电极膜。然后在约80℃下进一步干燥电极。电极膜含有以重量百分数表示的以下组分:84%的活性材料、4%的Super P碳和12%的Kynar 2801粘合剂。任选地,可以使用铜集电器来接触负极。
制备石墨锂离子电池的一般步骤
通过溶剂浇铸活性材料、导电碳、粘合剂和溶剂的浆体来制备正极。使用的导电碳为Super P(Timcal)。PVdF共聚物(例如,Kynar Flex 2801,Elf Atochem Inc.)用作粘合剂,以及丙酮用作溶剂。然后将浆体浇铸在玻璃上,当溶剂蒸发时形成独立的电极膜。然后在约80℃下进一步干燥电极。电极膜含有以重量百分数表示的以下组分:80%的活性材料、8%的Super P碳和12%的Kynar 2801粘合剂。任选地,可以使用铝集电器来接触正极。
通过溶剂浇铸石墨活性材料(结晶石墨,由Conoco Inc.提供)、导电碳、粘合剂和溶剂的浆体来制备负极。使用的导电碳为Super P(Timcal)。PVdF共聚物(例如,Kynar Flex 2801,Elf Atochem Inc.)用作粘合剂,以及丙酮用作溶剂。然后将浆体浇铸在玻璃上,当溶剂蒸发时形成独立的电极膜。然后在约80℃下进一步干燥电极。电极膜含有以重量百分数表示的以下组分:92%的活性材料、2%的Super P碳和6%的Kynar 2801粘合剂。任选地,可以使用铜集电器来接触负极。
电池测试
使用恒流循环技术如下测试电池。
在预置的电压范围、在给定的电流密度下循环电池。使用来自MaccorInc.(Tulsa,OK,美国)的商业电池循环仪。充电时,钠(锂)离子从阴极活性材料中脱出。放电期间,钠(锂)离子重新插入阴极活性材料中。
结果:
图4至7中显示的数据源自钠离子电池中NaNi0.5Mn0.25Ti0.25O2活性材料的恒流循环数据,在该钠离子电池中该阴极材料与硬碳(Carbotron P/J)阳极材料配合。使用的电解质为0.5M的于碳酸丙烯酯中的NaClO4溶液。在1.50至4.00V的电压范围、0.10mA/cm2的近似电流密度下收集恒流数据。为了确保钠离子电池充满,在恒流充电过程结束时,将电池恒电势地保持在4.0V,直到电流密度下降到恒流值的20%。测试在室温下进行。在电池充电过程期间,钠离子从阴极活性材料中脱出,并插入到硬碳阳极中。在随后的放电过程期间,钠离子从硬碳中脱出,并重新插入阴极活性材料中。
详细观察,图4显示了硬碳//NaNi0.5Mn0.25Ti0.25O2电池的第三循环放电电压曲线(Na离子电池电压[V]对阴极比容量[mAh/g])。该循环中的阴极比容量对应为83mAh/g。
图5显示了硬碳//NaNi0.5Mn0.25Ti0.25O2电池的第三循环微分容量曲线(微分容量[mAh/g/V]对Na离子电池电压[V])。这些对称的数据证明了该钠离子电池中离子脱出-插入反应的优异的可逆性。
图6显示了硬碳//NaNi0.5Mn0.25Ti0.25O2电池的前4次充电-放电循环(Na离子电池电压[V]对累积阴极比容量[mAh/g])。这些数据证明,电压滞后水平(即,充电和放电过程之间的电压差)极其小,这表明优异的脱出-插入反应动力学。
最后,图7显示了硬碳//NaNi0.5Mn0.25Ti0.25O2电池的循环寿命性能(阴极比容量[mAh/g]对循环数)。电池显示了优异的可逆性,而得到的阴极比容量在前33次循环时升高。33次循环之后,阴极比容量达到127mAh/g左右。

Claims (16)

1.一种化合物,其式为:
Α1- δNi0.5M1 0.5-XM2 XO2
其中,
A包括一种或多种选自锂、钠和钾的碱金属;
Μ1和M2各自包括+4氧化态的金属,其选自锰、钛和锆中的一种或多种;
其中,
0≤δ≤0.1;
X的范围为0≤X<0.5;以及
进一步地,其中当X=0时,则M1≠Mn或Ti。
2.根据权利要求1所述的化合物,其中,X的范围为0≤X≤0.45。
3.根据权利要求1所述的化合物,其中,X的范围为0.05≤X≤0.45。
4.根据权利要求1所述的化合物,其中,δ=0.05。
5.根据权利要求1所述的化合物,其式为:NaNi0.5Mn0.25Zr0.25O2、NaNi0.5Ti0.25Zr0.25O2、NaNi0.5Mn0.25Ti0.25O2、NaNi0.5Mn0.45Zr0.05O2、NaNi0.5Mn0.4Zr0.1O2、NaNi0.5Ti0.45Zr0.05O2、NaNi0.5Mn0.4Zr0.1O2、NaNi0.5Mn0.225Ti0.225Zr0.05O2、NaNi0.5Mn0.2Ti0.2Zr0.1O2或NaNi0.5Zr0.5O2
6.一种电极,其包含根据权利要求1所述的化合物。
7.根据权利要求6所述的电极,其与对电极和一种或多种电解质材料一起使用。
8.根据权利要求7所述的电极,其中所述电解质材料包括水性电解质材料。
9.根据权利要求7所述的电极,其中所述电解质材料包括非水性电解质。
10.一种储能装置,其包括根据权利要求6所述的电极。
11.根据权利要求10所述的储能装置,其适合用作以下中的一种或多种:钠离子和/或锂离子和/或钾离子电池,以及钠金属和/或锂金属和/或钾金属电池。
12.根据权利要求10所述的储能装置,其适合用作以下中的一种或多 种:非水性电解质钠离子和/或锂离子和/或钾离子电池,以及水性电解质钠离子和/或锂离子和/或钾离子电池。
13.一种可充电电池,其包括根据权利要求6所述的电极。
14.一种电化学装置,其包括根据权利要求6所述的电极。
15.一种电致变色装置,其包括根据权利要求6所述的电极。
16.一种制备根据权利要求1所述的化合物的方法,该方法包括以下步骤:
a)将起始材料混合在一起;
b)在400℃至1500℃的温度下、于炉中加热混合的起始材料2至20小时;和
c)使反应产物冷却。
CN201380036339.0A 2012-07-10 2013-07-10 掺杂的镍酸盐化合物 Active CN104428253B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB1212263.6 2012-07-10
GB1212263.6A GB2503897A (en) 2012-07-10 2012-07-10 Nickel doped compound for use as an electrode material in energy storage devices
PCT/GB2013/051824 WO2014009724A1 (en) 2012-07-10 2013-07-10 Doped nickelate compounds

Publications (2)

Publication Number Publication Date
CN104428253A CN104428253A (zh) 2015-03-18
CN104428253B true CN104428253B (zh) 2016-10-12

Family

ID=46766430

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380036339.0A Active CN104428253B (zh) 2012-07-10 2013-07-10 掺杂的镍酸盐化合物

Country Status (7)

Country Link
US (1) US20150207138A1 (zh)
EP (1) EP2872452B1 (zh)
JP (1) JP2016511730A (zh)
KR (1) KR20150030760A (zh)
CN (1) CN104428253B (zh)
GB (1) GB2503897A (zh)
WO (1) WO2014009724A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150380723A1 (en) * 2013-02-11 2015-12-31 Basf Se Active cathode material and its use in rechargeable electrochemical cells
EP2954576B1 (en) * 2013-02-11 2018-05-30 Basf Se Active cathode material and its use in rechargeable electrochemical cells
KR102144996B1 (ko) * 2013-09-30 2020-08-18 삼성전자주식회사 양극활물질, 및 이를 포함하는 양극 및 나트륨이차전지
GB201400347D0 (en) 2014-01-09 2014-02-26 Faradion Ltd Doped nickelate compounds
GB201409163D0 (en) 2014-05-22 2014-07-09 Faradion Ltd Compositions containing doped nickelate compounds
CN104505507A (zh) * 2014-12-01 2015-04-08 东莞市迈科新能源有限公司 一种钠离子电池正极材料及其制备方法
GB2543831A (en) * 2015-10-30 2017-05-03 Sharp Kk Method of passive voltage control in a sodium-ion battery
US11289700B2 (en) 2016-06-28 2022-03-29 The Research Foundation For The State University Of New York KVOPO4 cathode for sodium ion batteries
CN106252645A (zh) * 2016-08-01 2016-12-21 江苏师范大学 一种钠离子电池用高镍含量三元材料及其制备方法
US10833318B2 (en) 2017-10-03 2020-11-10 California Institute Of Technology Three-dimensional architected pyrolyzed electrodes for use in secondary batteries and methods of making three-dimensional architected electrodes
US20220231284A1 (en) * 2019-05-31 2022-07-21 HYDRO-QUéBEC Electrode materials comprising a layered potassium metal oxide, electrodes comprising them and their use in electrochemistry
EP3758110A1 (en) 2019-06-24 2020-12-30 Centre National de la Recherche Scientifique Layered active material for na-ion batteries
CN113437285B (zh) * 2020-03-23 2022-08-16 中国科学院化学研究所 一种钾离子二次电池正极材料及其制备方法和应用
CN115057485A (zh) * 2022-06-17 2022-09-16 中国科学技术大学 一种非金属硼掺杂的层状氧化物钠离子电池正极材料及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1389941A (zh) * 2001-06-05 2003-01-08 三星Sdi株式会社 制备可充电锂电池的正极活性物质的方法
EP2416411A1 (en) * 2009-03-31 2012-02-08 JX Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8107223B2 (en) * 1999-06-11 2012-01-31 U.S. Nanocorp, Inc. Asymmetric electrochemical supercapacitor and method of manufacture thereof
KR100578877B1 (ko) * 2004-03-12 2006-05-11 삼성에스디아이 주식회사 리튬 이차 전지
JP5085032B2 (ja) * 2004-11-26 2012-11-28 国立大学法人九州大学 非水電解質二次電池用正極活物質
WO2009099061A1 (ja) * 2008-02-04 2009-08-13 Sumitomo Chemical Company, Limited 複合金属酸化物およびナトリウム二次電池
JP5625390B2 (ja) * 2009-03-13 2014-11-19 住友化学株式会社 複合金属酸化物、電極およびナトリウム二次電池
KR20120117822A (ko) * 2010-01-21 2012-10-24 파나소닉 주식회사 비수계 전해질 이차전지용 양극 활물질, 그 제조 방법 및 그것을 이용한 비수계 전해질 이차전지
CN102763245A (zh) * 2010-02-22 2012-10-31 住友化学株式会社 电极合剂、电极及锂二次电池
WO2011129419A1 (ja) * 2010-04-16 2011-10-20 住友化学株式会社 複合金属酸化物、正極活物質、正極およびナトリウム二次電池

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1389941A (zh) * 2001-06-05 2003-01-08 三星Sdi株式会社 制备可充电锂电池的正极活性物质的方法
EP2416411A1 (en) * 2009-03-31 2012-02-08 JX Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery

Also Published As

Publication number Publication date
CN104428253A (zh) 2015-03-18
US20150207138A1 (en) 2015-07-23
GB2503897A (en) 2014-01-15
EP2872452A1 (en) 2015-05-20
KR20150030760A (ko) 2015-03-20
WO2014009724A1 (en) 2014-01-16
JP2016511730A (ja) 2016-04-21
GB201212263D0 (en) 2012-08-22
EP2872452B1 (en) 2016-05-25

Similar Documents

Publication Publication Date Title
CN104428253B (zh) 掺杂的镍酸盐化合物
CN104428255B (zh) 掺杂的镍酸盐化合物
CN104205439B (zh) 金属酸盐电极
CN104428256B (zh) 掺杂的镍酸盐化合物
CN104704654B (zh) 掺杂的镍酸盐化合物
CN108039463A (zh) 一种固态电解质/电极复合材料的制备及应用该材料的固态电池
CN103843178A (zh) 缩聚阴离子电极
CN106458634A (zh) 掺杂的镍酸盐材料
CN101752562B (zh) 一种复合掺杂改性锂离子电池正极材料及其制备方法
CN105189358A (zh) 锂钛硫化物、锂铌硫化物及锂钛铌硫化物
Dong et al. The effect of doping Mg2+ on the structure and electrochemical properties of Li3V2 (PO4) 3 cathode materials for lithium-ion batteries
CN107074579A (zh) 含锡化合物
JP2015507333A (ja) 硫酸塩電極
Mao et al. Nanoparticle-assembled LiMn2O4 hollow microspheres as high-performance lithium-ion battery cathode
JP2015220220A (ja) 非水電解質二次電池用正極活物質粒子粉末及びその製造方法、並びに非水電解質二次電池
CN112103482A (zh) 稀土金属或过渡金属掺杂的磷酸钛锂/碳复合材料及其制备方法和应用
CN104022277B (zh) Li2MnO3纳米线及其制备方法和应用
CN109065879B (zh) 一种钠离子电池负极材料及其制备方法
CN104659348B (zh) 一种锂离子电池负极材料铜铟锡复合氧化物的制备方法
CN114335758B (zh) 基于石榴石固态电解质高温熔融锂碘电池
Kuo et al. Effect of LiI amount to enhance the electrochemical performance of carbon-coated LiFePO4
Petkov et al. Electrochemical behaviour of LiMn2O4 and LiCoO2 in water electrolyte
CN110085857A (zh) 一种锂离子电池富锂锰正极材料的制备方法
CN109546145A (zh) 锂电池正极材料、制备方法、锂电池正极及锂电池
CN109659504A (zh) Cu2PO4OH在锂离子电池正极中的应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant