CN104396024B - 具有含宽带隙半导体材料的发射极区域的太阳能电池 - Google Patents

具有含宽带隙半导体材料的发射极区域的太阳能电池 Download PDF

Info

Publication number
CN104396024B
CN104396024B CN201280071731.4A CN201280071731A CN104396024B CN 104396024 B CN104396024 B CN 104396024B CN 201280071731 A CN201280071731 A CN 201280071731A CN 104396024 B CN104396024 B CN 104396024B
Authority
CN
China
Prior art keywords
layer
semiconductor substrate
solaode
semiconductor
band gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201280071731.4A
Other languages
English (en)
Other versions
CN104396024A (zh
Inventor
理查德·M·斯万森
马里乌斯·M·布内亚
大卫·D·史密斯
沈于甄
彼得·J·卡曾斯
蒂姆·丹尼斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maikesheng Solar Energy Co ltd
Original Assignee
SunPower Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SunPower Corp filed Critical SunPower Corp
Publication of CN104396024A publication Critical patent/CN104396024A/zh
Application granted granted Critical
Publication of CN104396024B publication Critical patent/CN104396024B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02363Special surface textures of the semiconductor body itself, e.g. textured active layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0368Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0376Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells back-junction, i.e. rearside emitter, solar cells, e.g. interdigitated base-emitter regions back-junction cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/074Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a heterojunction with an element of Group IV of the Periodic Table, e.g. ITO/Si, GaAs/Si or CdTe/Si solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • H01L31/0747Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

本发明描述了具有由宽带隙半导体材料构成的发射极区域的太阳能电池。在一个实例中,一种方法包括在具有受控气氛的处理设备中,在所述太阳能电池的半导体基板的表面上形成薄电介质层。所述半导体基板具有带隙。在不将所述半导体基板从所述处理设备的受控气氛中移除的情况下,在所述薄电介质层上形成半导体层。所述半导体层具有比所述半导体基板的带隙高至少约0.2电子伏特(eV)的带隙。

Description

具有含宽带隙半导体材料的发射极区域的太阳能电池
技术领域
本发明实施例在可再生能源领域内,并且具体地讲,在具有由宽带隙半导体材料构成的发射极区域的太阳能电池领域内。
背景技术
光伏电池(常被称为太阳能电池)是熟知的用于直接转化太阳辐射为电能的器件。一般来讲,使用半导体加工技术在基板的表面附近形成p-n结而将太阳能电池制造在半导体晶片或基板上。照射在基板表面上并进入基板内的太阳辐射在基板主体中形成电子和空穴对。电子和空穴对迁移至基底中的p掺杂区域和n掺杂区域,从而在掺杂区域之间生成电压差。将掺杂区域连接至太阳能电池上的导电区域,以将电流从电池引导至与其联接的外部电路。
效率是太阳能电池的重要特性,因其直接与太阳能电池发电的能力有关。同样,制备太阳能电池的效率直接与此类太阳能电池的成本效益有关。因此,提高太阳能电池效率的技术或提高制造太阳能电池效率的技术是普遍所需的。本发明的一些实施例涉及通过提供制备太阳能电池结构的新工艺而提高太阳能电池的制造效率。通过提供新型太阳能电池结构,本发明的一些实施例可供提高太阳能电池效率之用。
附图说明
图1示出了针对不具有界面隧道氧化物的常规异质结接触的随能量(E)增加变化的能带图。
图2示出了根据本发明实施例的针对具有界面隧道氧化物的异质结接触的随能量(E)增加变化的能带图。
图3为根据本发明实施例的表示太阳能电池制备方法中的操作的流程图。
图4A示出了根据本发明另一实施例的制备太阳能电池的操作的剖视图,其中提供了一种用于制备太阳能电池的基础结构,并且该基础结构包括硅基板、薄电介质层以及沉积硅层。
图4B示出了根据本发明另一实施例的制备太阳能电池的操作的剖视图,其中在图4A的沉积硅层上沉积一层掺杂材料。
图4C示出了根据本发明另一实施例的制备太阳能电池的操作的剖视图,其中在图4B的掺杂材料层上沉积第一氧化物层410。
图4D示出了根据本发明另一实施例的制备太阳能电池的操作的剖视图,其中对图4C的结构执行材料移除工艺以形成暴露的多晶硅区。
图4E示出了根据本发明另一实施例的制备太阳能电池的操作的剖视图,其中对图4D的结构执行蚀刻工艺以促进蚀刻暴露的多晶硅区以及在太阳能电池的背面上形成第一纹理化硅区。
图4F示出了根据本发明另一实施例的制备太阳能电池的操作的剖视图,其中在掺杂材料层和图4E的第一纹理化硅区上形成氧化物层。
图4G示出了根据本发明另一实施例的制备太阳能电池的操作的剖视图,其中由图4F的结构形成掺杂多晶硅层。
图4H示出了根据本发明另一实施例的制备太阳能电池的操作的剖视图,其中在图4G的结构上形成宽带隙掺杂半导体层。
图4I示出了根据本发明另一实施例的制备太阳能电池的操作的剖视图,其中在图4H的纹理化硅区上沉积宽带隙掺杂半导体。
图4J示出了根据本发明另一实施例的制备太阳能电池的操作的剖视图,其中执行对图4H的宽带隙掺杂半导体的部分移除。
图4K示出了根据本发明另一实施例的制备太阳能电池的操作的剖视图,其中在图4J的结构的背面上形成第一金属格栅或格栅线。
图4L示出了根据本发明另一实施例的制备太阳能电池的操作的剖视图,其中在图4K的结构的背面上形成第二金属格栅或格栅线。
具体实施方式
本文描述了具有由宽带隙半导体材料构成的发射极区域的太阳能电池。在下面的描述中,为了提供对本发明实施例的深入了解,示出了许多具体细节,诸如具体工艺流程操作及材料体系。对本领域的技术人员将显而易见的是在没有这些具体细节的情况下可实施本发明的实施例。在其他例子中,没有详细地描述诸如随后的金属接触形成技术的公知的制造技术,以避免不必要地使本发明的实施例难以理解。此外,应当理解在图中示出的多种实施例是示例性的实例并且未必按比例绘制。
本文公开了制备太阳能电池的方法。在一个实施例中,一种方法包括在具有受控气氛的处理设备中,在太阳能电池的半导体基板的表面上形成薄电介质层。该半导体基板具有带隙。在不将半导体基板从处理设备的受控气氛中移除的情况下,在薄电介质层上形成半导体层。半导体层具有高于半导体基板的带隙至少约0.2电子伏特(eV)的带隙。
本文还公开了具有由宽带隙半导体材料构成的发射极区域的太阳能电池。在一个实施例中,太阳能电池包括硅基板。第一发射极区域设置在硅基板的表面上并且由掺杂成第一导电类型的氮化铝(AlN)层构成。AlN层设置在薄氧化铝(Al2O3)层上。第二发射极区域设置在硅基板的表面上并且由掺杂成相反的第二导电类型的半导体材料构成。第二半导体材料设置在薄电介质层上。第一触点和第二触点分别设置在第一发射极区域和第二发射极区域上并分别导电耦合至第一发射极区域和第二发射极区域。
通常用扩散和氧化来实现太阳能电池表面的钝化以在太阳能电池的一个或多个表面上形成薄电介质材料。形成此类薄电介质材料可为排斥太阳能电池表面处的少数载流子提供结构性方法。此外,氧化工艺可设计来有效地限制可能存在于太阳能电池的最外层表面处的界面缺陷。所形成的电介质材料可具有若干功能,诸如但不限于用作防潮层、用作氢源以及可能用作防反射涂层。
通常在太阳能电池制造期间在两个或更多个工艺操作中实现太阳能电池表面钝化的上述三个方面。然而,使用多个工艺操作可引起一连串新问题,即,处理复杂度及增加的处理成本。另外,通常在一个设备中(例如,在扩散炉中)执行氧化和扩散操作,然后通常在单独的处理设备中执行电介质形成。遗憾的是,在将所形成的氧化物从第一处理设备(例如,炉)中移除时,氧化物可暴露于大气条件和污染物,诸如水分。因此,在本发明的实施例中,形成高质量氧化物,并在执行进一步处理操作之前禁止其暴露于空气和水。
在电介质沉积之后的扩散通常涉及成本相对高的多个工艺工装。因此,在一个实施例中,通过例如,小于约3纳米(且,可能小于约2纳米)的薄氧化硅层的生长在受控气氛炉设备中执行硅钝化操作。在同一设备内(并且具体地讲,在不暴露于外部实验室或工厂大气或环境条件的情况下),接下来在薄氧化物层上沉积掺杂宽带隙半导体。在一个此类实施例中,炉为低压化学气相沉积(CVD)炉或快速热退火或快速热处理(RTP)设备。在具体实施例中,氧化物生长和沉积出现在最终用于形成太阳能电池的基板或晶片的两侧上。在一个实施例中,沉积在氧化物层上的膜为宽带隙半导体材料,例如,具有大于约3电子伏特(eV)的带隙,具有大的价带偏移、防潮层特性、硅上的低应力以及欧姆接触的能力中的一者或多者。多晶硅通常与硅基板耦合,但可能并非最适合用于阻挡少数载流子。相比之下,在一个实施例中,宽带隙半导体材料既阻挡少数载流子,又针对多数载流子为高导电的。
在一个实施例中,宽带隙材料被视为与硅基板有关且可包括但不限于掺杂非晶硅、碳化硅或氮化镓铝,如下文更详细地描述。掺杂多晶硅是先前已公开的另一个选项。掺杂非晶硅可为钝化和欧姆接触的良好选择。在一个实施例中,所使用的掺杂非晶硅被形成得足够薄以使光吸收最小化。在另一实施例中,使用甚至更高带隙的材料来促进在基板的光接收表面上的光透射,如下文更详细地描述。在一个实施例中,使用具有可达到高温(例如,约900摄氏度)的管式低压化学气相沉积(LPCVD)反应器的真空设备配置来既形成氧化物又形成上覆的宽带隙半导体材料。在另一实施例中,使用与等离子体增强CVD(PECVD)设备组合的RTP设备来既形成氧化物又形成上覆的宽带隙半导体材料。其他可能的实施例在下文更详细地描述。
为更好地示出与本文所述的至少一些实施例有关的一些相关概念,图1示出了针对不具有界面隧道氧化物的常规异质结接触的随能量(E)增加变化的能带图。参考图1,常规N型基板和宽带隙钝化/接触的能带图100示出了电子(多数载流子)和空穴(少数载流子)的价带能级(Evalence)、费米能级以及导带能级(Econduction)。可用大的少数载流子带偏移来实现出色的钝化,并且可用小的多数载流子偏移来实现出色的欧姆接触。然而,直接在硅基板上制备高带隙材料通常证明是困难的。
相比之下,图2示出了根据本发明实施例的针对具有界面隧道氧化物的异质结接触的随能量(E)增加变化的能带图。参考图2,提供了其间具有薄界面隧道氧化物的N型基板和宽带隙钝化/接触的能带图200,示出了电子(多数载流子)和空穴(少数载流子)的价带能级(Evalence)、费米能级以及导带能级(Econduction)。在一个实施例中,提供界面氧化物(例如,SiO2的薄层)250以帮助降低表面缺陷密度。即,在一个实施例中,在硅基板与宽带隙半导体界面之间包括薄电介质(例如,隧穿氧化物层)以限制表面状态。在具体实施例中,由电介质250对硅基板的钝化提供具有小于约1012缺陷/cm2。的界面。在一个实施例中,即使在包括此类电介质层的情况下,费米能级仍靠近带边缘,如图2所示。
可能有许多处理方案可适合用于提供在半导体基板的表面上方具有宽带隙半导体材料的太阳能电池,其间设置有界面电介质和/或钝化层。作为此类工艺方案的基本实例,图3为根据本发明的实施例的表示太阳能电池制备方法中的操作的流程图300。参考流程图300的操作302,制备太阳能电池的方法包括在太阳能电池的半导体基板的表面上形成薄电介质层。薄电介质层在具有受控气氛的处理设备中形成。参考流程图300的操作304,该方法然后包括在薄电介质层上形成半导体层而不将半导体基板从处理设备的受控气氛中移除。在一个此类实施例中,半导体层具有比半导体基板的带隙大至少约0.2电子伏特(eV)的带隙。在一个实施例中,该方法还包括由半导体层形成太阳能电池的发射极区域。
可能存在与本发明的一个或多个实施例相关联的处理优点。例如,本文所述的一个或多个实施例提供单操作钝化工艺。本文所述的一个或多个实施例提供使用此类钝化来制备背面N型接触从而使太阳能电池工序比单操作钝化工艺更简化的能力。本文所述的一个或多个实施例提供使所形成的氧化物不暴露于大气的方法。本文所述的一个或多个实施例提供用于形成高光学反射率接触的方法。本文所述的一个或多个实施例提供不需要打开N型接触背面的接触窗口的方法。本文所述的一个或多个实施例提供用于促进全区域金属接触形成的方法。
根据本发明实施例,一种用于制造太阳能电池的改进的技术将在单个处理设备中在硅基板的背面上提供薄电介质层和沉积的宽带隙半导体层。下面提供详细的处理方案,以便示出用于形成宽带隙半导体材料和半导体基板对的许多可能实施例中的一者,所述宽带隙半导体材料和半导体基板对用于形成发射极区域。具体地,图4A-图4L示出了根据本发明另一实施例的制备具有由宽带隙半导体材料构成的发射极区域的太阳能电池的各个阶段的剖视图。
总体而言,在所示的特定实施例中,掺杂多晶硅的区域首先由驱使进入到沉积硅层中的掺杂物形成,或者由掺杂多晶硅区的原位形成而形成。然后在单个处理设备中在太阳能电池的正面和背面上形成氧化物层和一层宽带隙掺杂半导体。一个变型涉及在氧化物形成和宽带隙掺杂半导体形成之前将正面和背面的表面纹理化。然后可穿过上部的层而形成接触孔以露出掺杂多晶硅区。然后可进行金属化工艺以将触点形成在掺杂多晶硅层上。还可通过将金属直接连接至硅基板上的发射极区域而形成第二组触点,所述发射极区域通过设置在太阳能电池背面上的掺杂多晶硅的区域之间的宽带隙半导体层形成。应当理解,本发明实施例不需要包括所示出和所描述的所有操作,实施例也不限于所示出和所描述的那些。
参考图4A,用于制备太阳能电池的基础结构400包括硅基板402(例如,N型单晶基板)、薄电介质层406和沉积硅层404。在一些实施例中,在形成薄电介质层406之前清洁、抛光、平面化和/或减薄或以其他方式处理硅基板402。薄电介质层406和沉积硅层404可通过热工艺生长。
参考图4B和图4C,通过常规沉积工艺来在沉积硅层404上沉积一层掺杂材料408,然后是第一氧化物层410。掺杂材料层408可包括掺杂材料,或掺杂物409,并且可由但不限于一层P型掺杂材料诸如硼或一层N型掺杂材料诸如磷或砷构成。尽管薄电介质层406和沉积硅层404被描述为分别通过热工艺生长或通过常规沉积工艺来沉积,但可使用适当的工艺来形成每个层。例如,可使用化学气相沉积(CVD)工艺、低压CVD(LPCVD)、常压CVD(APCVD)、等离子体增强CVD(PECVD)、热生长或溅镀工艺或另一合适的技术。在一个实施例中,通过沉积技术、溅镀、或者印刷工艺,诸如喷墨印刷或丝网印刷,或通过离子注入,来将掺杂材料408形成在基板402上。
参考图4D,示出了在材料移除工艺施加至图4C的结构之后的太阳能电池400。材料移除工艺形成暴露的多晶硅区424。材料移除工艺的合适例子包括掩模和蚀刻工艺、激光烧蚀工艺以及其他类似技术。暴露的多晶硅区424和掺杂材料层408可经图案化而具有用于最终发射极形成的合适形状和尺寸。合适的图案布局可包括但不限于交叉图案的形成。在使用掩模工艺的情况下,可使用丝网印刷机或喷墨打印机执行,以按照预定的交叉图案施加掩模墨(mask ink)。因此,可使用常规化学湿法蚀刻技术来移除掩模墨,产生暴露的多晶硅区424和掺杂材料层408的交叉图案。在一个实施例中,移除第一氧化物层410的一些部分或全部。此类移除可在移除沉积硅层404和电介质层406的区域的相同蚀刻或烧蚀工艺中实现。
参考图4E,可执行第二蚀刻工艺,以促进对暴露的多晶硅区424进行蚀刻并且以在太阳能电池400的背面上形成第一纹理化硅区430并在太阳能电池400的正面形成第二纹理化硅区432,从而增强太阳辐射收集。纹理化表面可为具有规则或不规则形状的表面,其用于散射入射光、减少从太阳能电池400的光接收表面反射离开的光量。
参考图4F,可加热440太阳能电池400,以驱使来自掺杂材料层408的掺杂材料409进入沉积硅层404中。相同的加热440还可在掺杂材料层408和第一纹理化硅区430上形成硅氧化物或第二氧化物层412。在该工艺中,第三氧化物层414可在第二纹理化硅区432上生长。在一个实施例中,两个氧化物层412、414均由高质量氧化物构成。在具体的此类实施例中,高质量氧化物是通常在大于约900摄氏度的温度下通过热氧化生长的低界面态密度氧化物,并且该低界面态密度氧化物可提供用于对基板402的暴露区域的改善钝化。
因此,在一个实施例中,通过由热氧化来消耗半导体基板402的一部分,来形成第二氧化物层412的至少一部分。在一个此类实施例中,消耗半导体基板402的所述部分包括对单晶N型硅基板的一部分进行热氧化,以在硅基板的暴露表面上形成具有大约3纳米或更小的厚度的二氧化硅(SiO2)层412。在另选实施例中,通过将电介质材料层沉积在第一纹理化硅区430上来在第一纹理化硅区430上形成薄电介质层。在一个此类实施例中,所述沉积涉及在单晶N型硅基板的表面上形成氧化铝(Al2O3)层。在具体的此类实施例中,氧化铝(Al2O3)层为非晶硅氧化铝(Al2O3)层。可由例如原子层沉积(ALD)或其他合适的沉积技术来执行此类实施例。
参考图4G,在一个实施例中,可在氧化物层412、414的形成期间实现形成掺杂多晶硅层,而同时升高温度以驱使来自掺杂材料层408的掺杂物409进入沉积硅层404中。在一个此类实施例中,用来自掺杂材料层408的掺杂物409掺杂沉积硅层404会形成结晶化掺杂多晶硅层或掺杂多晶硅层450。在具体的此类实施例中,如果使用N型掺杂材料,则掺杂多晶硅层450为一层P型掺杂多晶硅。在特定的此类实施例中,硅基板402由块状N型硅基板构成。在另一具体实施例中,如果使用N型掺杂材料,则掺杂多晶硅层450为一层N型掺杂多晶硅。在特定的此类实施例中,硅基板102由块状P型硅基板构成。总体而言,于是,可因此用来自掺杂材料层408的掺杂材料409掺杂沉积硅层404以形成掺杂多晶硅层450。
参考图4H,在不将基板402从用于形成氧化物层412、414的处理设备的受控气氛中移除的情况下,在太阳能电池400的背面上沉积第一宽带隙掺杂半导体层460。在一个实施例中,第一宽带隙半导体层460具有比半导体基板402的带隙高至少约0.2电子伏特(eV)的带隙。例如,第一宽带隙半导体层460可具有比N型单晶硅基板的带隙高至少约0.2电子伏特(eV)的带隙,该N型单晶硅基板具有约1.0eV的带隙。在一个此类实施例中,第一宽带隙半导体层460在可见光谱中是基本上透明的。在具体的此类实施例中,第一宽带隙半导体层460具有大于约3eV的带隙且由如下材料构成,所述材料诸如但不限于氮化铝(AlN)、氮化镓铝(AlxGa1-xN,其中0<x<1)、氮化硼(BN)、4H相碳化硅(SiC)(约3.23eV)或6H相碳化硅(SiC)(约3.05eV)。在另一实施例中,半导体基板402由单晶N型硅构成,且第一宽带隙半导体层460具有大于约1.5eV的带隙且由如下材料构成,所述材料诸如但不限于非晶硅(a-Si,约1.5eV)、碳化硅(SiC,高于约2.0eV的不同相)、氮化铝(AlN)、氮化镓铝(AlxGa1-xN,其中0<x<1)或氮化硼(BN)。
在一个实施例中,在相同的处理设备中形成氧化物层412、414和第一宽带隙半导体层460涉及使用低压化学气相沉积(LPCVD)室、快速热退火(RTA)室、快速热处理(RTP)室、常压化学气相沉积(APCVD)室、或者氢化物气相外延(HVPE)室,或者同时使用RTP室和等离子体增强化学气相沉积(PECVD)室这二者。在一个实施例中,只要气氛为与容纳处理设备的设施的气氛不同的受控气氛,所述“相同”的处理设备便可为单室或多室处理设备。
在一个实施例中,该方法还用浓度大约在1×1017–1×1021个原子/cm3的范围内的电荷载流子掺杂物杂质原子来掺杂第一宽带隙半导体层460。在一个此类实施例中,在第一宽带隙半导体层460的形成期间原位执行所述掺杂。在另选的此类实施例中,在第一宽带隙半导体层460形成之后执行所述掺杂。
参考图4I,可将第二宽带隙掺杂半导体层462沉积在太阳能电池400正面上的第二纹理化硅区432上。在一个实施例中,在相同的工艺操作中形成层460和462。然而,在另一实施例中,在不同的工艺操作中在相同或不同的处理设备中形成层460和462。在一个实施例中,太阳能电池400背面和正面上的宽带隙掺杂半导体层460、462两者均可由宽带隙N型掺杂半导体构成。在一个实施例中,与第一厚宽带隙掺杂半导体层460相比,第二宽带隙掺杂半导体462是相对薄的。在具体的此类实施例中,第二薄宽带隙掺杂半导体层462是第一厚宽带隙掺杂半导体层460的厚度的大约10%到30%。在另一实施例中,太阳能电池400背面和正面上的宽带隙掺杂半导体层460、462两者均可由宽带隙P型掺杂半导体构成。随后,可在第二宽带隙掺杂半导体462上沉积抗反射涂层(ARC)层470,如图4I所示。在一个此类实施例中,ARC层470由氮化硅构成。
参考图4J,执行对太阳能电池400背面上的第一宽带隙掺杂半导体460、第二氧化物层412和掺杂材料层408的部分移除,以形成一系列接触开口480。在一个实施例中,移除技术用烧蚀工艺实现。一种这样的烧蚀工艺为激光烧蚀工艺。在另一实施例中,移除技术为常规图案化工艺,诸如掩模的丝网印刷或喷墨打印,然后续以蚀刻工艺。在一个实施例中,形成第一宽带隙半导体层460包括甚至在掺杂多晶硅层450的图案化之后在掺杂多晶硅层450的至少一部分上形成一部分,如图4J所示。
参考图4K,在太阳能电池400的背面上形成第一金属格栅或格栅线490。第一金属格栅线490可电耦合至接触开口480内的掺杂多晶硅450。在一个实施例中,第一金属格栅线490穿过第一宽带隙掺杂半导体460、第二氧化物层412和掺杂材料层408的接触开口480而形成,以连接由太阳能电池400供电的外部电路的正极电端子。
参考图4L,在太阳能电池400的背面上形成第二金属格栅或格栅线492。第二金属格栅线492可电耦合至第二纹理化硅区432。在一个实施例中,第二金属格栅线492耦合至太阳能电池400的背面区域中充当异质结的第一宽带隙掺杂半导体460、第二氧化物层412以及第一纹理化硅区430,以连接至由太阳能电池400供电的外部电路的负极电端子。在一些实施例中,图4K和图4L中涉及的金属格栅线的形成通过电镀工艺、丝网印刷工艺、喷墨工艺、镀覆在由铝金属纳米颗粒形成的金属上、或其他金属化或金属形成处理操作来执行。
因此,在一个实施例中,第一发射极区域由掺杂的多晶硅形成,而第二发射极区域由宽带隙半导体材料形成。然而,在另一实施例中,代替掺杂多晶硅,第一发射极区域还由如下材料形成,该材料具有比402的带隙,例如比单晶N型硅基板的带隙,高至少约0.2电子伏特(eV)的带隙。
在另一个方面,如上所述,参考图4F,一些实施例包括将更独特的氧化物层用作在基板与宽带隙界面之间的钝化层。在示例性实施例中,一个此类太阳能电池包括硅基板。第一发射极区域设置在硅基板的表面上并且由掺杂成第一导电类型的氮化铝(AlN)层构成。AlN层设置在薄氧化铝(Al2O3)层上。第二发射极区域设置在硅基板的表面上并且由掺杂成相反的第二导电类型的半导体材料构成。第二半导体材料设置在薄电介质层上。第一触点和第二触点分别设置在第一发射极区域和第二发射极区域上并分别导电耦合至第一发射极区域和第二发射极区域。
在一个此类实施例中,半导体材料具有比硅基板的带隙高至少约0.2电子伏特(eV)的带隙。即,两种类型的发射极区域均包括宽带隙材料。然而,在另一此类实施例中,半导体材料由多晶硅构成,例如,类似于关于图4A-图4K所述的结构。在一个实施例中,第一发射极区域设置在硅基板表面的纹理化部分上,且第二发射极区域设置在硅基板表面的平坦部分上。
在一个实施例中,第一发射极区域和第二发射极区域设置在半导体基板的背接触表面上。硅基板还包括与背接触表面相对的光接收表面。光接收表面具有设置于其上的薄氧化铝(Al2O3)层,以及设置在薄氧化铝(Al2O3)层上的氮化铝(AlN)层。在一个实施例中,氮化铝(AlN)层的一部分设置在第二发射极区域的至少一部分上,类似于关于图4J所述的结构。
本文所述的若干实施例包括通过在单个处理设备中在硅基板的背面上提供薄电介质层和沉积的宽带隙半导体层来形成太阳能电池的发射极区域。应当理解,其他实施例不需要限于此。例如,在一个实施例中,通过在单个处理设备中在硅基板的正面和背面上提供薄电介质层和沉积的宽带隙半导体层来形成太阳能电池的钝化层。发射极区域不需要由钝化层形成。
因此,已公开了具有由宽带隙半导体材料构成的发射极区域的太阳能电池以及制备太阳能电池的方法。根据本发明实施例,一种方法包括在具有受控气氛的处理设备中,在太阳能电池的半导体基板的表面上形成薄电介质层。该半导体基板具有带隙。然后在薄电介质层上形成半导体层,而不将半导体基板从处理设备的受控气氛中移除。半导体层具有高于半导体基板的带隙至少约0.2电子伏特(eV)的带隙。在一个此类实施例中,该方法还包括由半导体层形成太阳能电池的发射极区域。在另一此类实施例中,形成半导体层涉及形成在可见光谱中基本上透明的层。

Claims (19)

1.一种制备太阳能电池的方法,所述方法包括:
在具有受控气氛的处理设备中,在所述太阳能电池的半导体基板的表面上形成薄电介质层,所述半导体基板具有带隙;以及,在不将所述半导体基板从所述处理设备的受控气氛中移除的情况下,
在所述薄电介质层上形成半导体层,所述半导体层具有比所述半导体基板的带隙高至少0.2eV的带隙并具有大于3eV的带隙,并且包括选自由以下物质组成的组中的材料:氮化铝、氮化镓铝、氮化硼、4H相碳化硅和6H相碳化硅;以及
掺杂所述半导体层。
2.根据权利要求1所述的方法,还包括:
由所述半导体层形成所述太阳能电池的发射极区域。
3.根据权利要求1所述的方法,其中
用浓度在1×1017–1×1021个原子/cm3的范围内的电荷载流子掺杂物杂质原子来掺杂所述半导体层。
4.根据权利要求3所述的方法,其中在所述半导体层形成期间原位执行所述掺杂。
5.根据权利要求3所述的方法,其中在所述半导体层形成之后执行所述掺杂。
6.根据权利要求1所述的方法,其中所述半导体层在可见光谱中透明。
7.根据权利要求1所述的方法,其中所述半导体基板包括单晶N型硅。
8.根据权利要求1所述的方法,其中在所述半导体基板的表面上形成所述薄电介质层包括通过热氧化来消耗所述半导体基板的一部分。
9.根据权利要求8所述的方法,其中消耗所述半导体基板的一部分包括对单晶N型硅基板的一部分进行热氧化,以形成具有3纳米或更小的厚度的二氧化硅层。
10.根据权利要求1所述的方法,其中在所述半导体基板的表面上形成所述薄电介质层包括在所述半导体基板的表面上沉积电介质材料层。
11.根据权利要求10所述的方法,其中在所述半导体基板的表面上沉积所述电介质材料层包括在单晶N型硅基板的所述表面上形成氧化铝层。
12.根据权利要求1所述的方法,其中在所述处理设备中形成所述薄电介质层和所述半导体层包括使用低压化学气相沉积室、快速热退火室、快速热处理室、常压化学气相沉积室、或者氢化物气相外延室,或者同时使用快速热处理室和等离子体增强化学气相沉积室这二者。
13.根据权利要求1所述的方法,还包括:
在形成所述薄电介质层之前将所述半导体基板的表面纹理化。
14.根据权利要求1所述的方法,其中在所述半导体基板的表面上形成所述薄电介质层和所述半导体层包括:在所述半导体基板的背接触表面上形成所述薄电介质层和所述半导体层,并且还包括:在所述半导体基板的光接收表面上形成所述薄电介质层和所述半导体层。
15.一种根据权利要求1所述的方法制备的太阳能电池。
16.一种制备太阳能电池的方法,所述方法包括:
在所述太阳能电池的半导体基板的表面上形成第一发射极区域,所述第一发射极区域包括掺杂成第一导电类型并且形成在第一薄电介质层上的半导体材料;以及
在所述半导体基板的表面上形成第二发射极区域,其中形成第二发射极区域包括:
在具有受控气氛的处理设备中,在所述半导体基板的表面上形成第二薄电介质层,所述半导体基板具有带隙;以及,在不将所述半导体基板从所述处理设备的受控气氛中移除的情况下,
在所述第二薄电介质层上形成宽带隙半导体层,所述宽带隙半导体层具有比所述半导体基板的带隙高至少0.2eV的带隙并具有大于3eV的带隙,并且包括选自由以下物质组成的组中的材料:氮化铝、氮化镓铝、氮化硼、4H相碳化硅和6H相碳化硅;以及
用相反的第二导电类型的电荷载流子掺杂物杂质原子来掺杂所述宽带隙半导体层。
17.根据权利要求16所述的方法,其中所述半导体基板包括单晶N型硅。
18.根据权利要求16所述的方法,还包括:
在形成所述第二薄电介质层之前将所述半导体基板的表面纹理化。
19.一种根据权利要求16所述的方法制备的太阳能电池。
CN201280071731.4A 2012-03-23 2012-12-19 具有含宽带隙半导体材料的发射极区域的太阳能电池 Active CN104396024B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/429,138 2012-03-23
US13/429,138 US9054255B2 (en) 2012-03-23 2012-03-23 Solar cell having an emitter region with wide bandgap semiconductor material
PCT/US2012/070711 WO2013141917A1 (en) 2012-03-23 2012-12-19 Solar cell having an emitter region with wide bandgap semiconductor material

Publications (2)

Publication Number Publication Date
CN104396024A CN104396024A (zh) 2015-03-04
CN104396024B true CN104396024B (zh) 2017-03-29

Family

ID=49210624

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280071731.4A Active CN104396024B (zh) 2012-03-23 2012-12-19 具有含宽带隙半导体材料的发射极区域的太阳能电池

Country Status (12)

Country Link
US (6) US9054255B2 (zh)
EP (1) EP2828897B1 (zh)
JP (3) JP6178400B2 (zh)
KR (3) KR102100909B1 (zh)
CN (1) CN104396024B (zh)
BR (1) BR112014023047B1 (zh)
MX (1) MX338942B (zh)
MY (2) MY194039A (zh)
PH (1) PH12014502088A1 (zh)
SG (1) SG11201405888PA (zh)
TW (1) TWI575764B (zh)
WO (1) WO2013141917A1 (zh)

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9054255B2 (en) * 2012-03-23 2015-06-09 Sunpower Corporation Solar cell having an emitter region with wide bandgap semiconductor material
EP4092757A1 (en) 2013-04-03 2022-11-23 Lg Electronics Inc. Method for fabricating a solar cell
US9401450B2 (en) * 2013-12-09 2016-07-26 Sunpower Corporation Solar cell emitter region fabrication using ion implantation
US9224783B2 (en) * 2013-12-23 2015-12-29 Intermolecular, Inc. Plasma densification of dielectrics for improved dielectric loss tangent
KR101614190B1 (ko) * 2013-12-24 2016-04-20 엘지전자 주식회사 태양전지 및 이의 제조 방법
KR102173644B1 (ko) * 2014-01-29 2020-11-03 엘지전자 주식회사 태양 전지 및 이의 제조 방법
JP2015156418A (ja) * 2014-02-20 2015-08-27 株式会社ニューフレアテクノロジー 気相成長方法
US11811360B2 (en) 2014-03-28 2023-11-07 Maxeon Solar Pte. Ltd. High voltage solar modules
US9337369B2 (en) * 2014-03-28 2016-05-10 Sunpower Corporation Solar cells with tunnel dielectrics
JP6350858B2 (ja) * 2014-05-26 2018-07-04 パナソニックIpマネジメント株式会社 太陽電池の製造方法及び太陽電池
US9825191B2 (en) * 2014-06-27 2017-11-21 Sunpower Corporation Passivation of light-receiving surfaces of solar cells with high energy gap (EG) materials
US20160072000A1 (en) * 2014-09-05 2016-03-10 David D. Smith Front contact heterojunction process
US9837576B2 (en) * 2014-09-19 2017-12-05 Sunpower Corporation Solar cell emitter region fabrication with differentiated P-type and N-type architectures and incorporating dotted diffusion
KR102219804B1 (ko) 2014-11-04 2021-02-24 엘지전자 주식회사 태양 전지 및 그의 제조 방법
EP3026713B1 (en) 2014-11-28 2019-03-27 LG Electronics Inc. Solar cell and method for manufacturing the same
US9520507B2 (en) 2014-12-22 2016-12-13 Sunpower Corporation Solar cells with improved lifetime, passivation and/or efficiency
US10566483B2 (en) * 2015-03-17 2020-02-18 Lg Electronics Inc. Solar cell
US9559245B2 (en) 2015-03-23 2017-01-31 Sunpower Corporation Blister-free polycrystalline silicon for solar cells
US20160284913A1 (en) * 2015-03-27 2016-09-29 Staffan WESTERBERG Solar cell emitter region fabrication using substrate-level ion implantation
US9525083B2 (en) * 2015-03-27 2016-12-20 Sunpower Corporation Solar cell emitter region fabrication with differentiated P-type and N-type architectures and incorporating a multi-purpose passivation and contact layer
JP2016192499A (ja) * 2015-03-31 2016-11-10 学校法人明治大学 太陽電池及び太陽電池の製造方法
US10854767B2 (en) * 2015-03-31 2020-12-01 Kaneka Corporation Solar cell and method for manufacturing same
KR102272433B1 (ko) * 2015-06-30 2021-07-05 엘지전자 주식회사 태양 전지 및 이의 제조 방법
WO2017018379A1 (ja) * 2015-07-24 2017-02-02 京セラ株式会社 太陽電池素子および太陽電池モジュール
US20170098722A1 (en) * 2015-10-01 2017-04-06 Lg Electronics Inc. Solar cell
US10217878B2 (en) * 2016-04-01 2019-02-26 Sunpower Corporation Tri-layer semiconductor stacks for patterning features on solar cells
USD822890S1 (en) 2016-09-07 2018-07-10 Felxtronics Ap, Llc Lighting apparatus
CN110140223B (zh) * 2016-12-12 2022-08-12 洛桑联邦理工学院 硅异质结太阳能电池以及制造方法
CN106531816B (zh) * 2016-12-30 2019-02-05 中国科学院微电子研究所 一种背结背接触太阳能电池
EP3566249B1 (en) 2017-01-05 2023-11-29 Brilliant Light Power, Inc. Extreme and deep ultraviolet photovoltaic cell
US10775030B2 (en) 2017-05-05 2020-09-15 Flex Ltd. Light fixture device including rotatable light modules
USD877964S1 (en) 2017-08-09 2020-03-10 Flex Ltd. Lighting module
USD846793S1 (en) 2017-08-09 2019-04-23 Flex Ltd. Lighting module locking mechanism
USD862777S1 (en) 2017-08-09 2019-10-08 Flex Ltd. Lighting module wide distribution lens
USD872319S1 (en) 2017-08-09 2020-01-07 Flex Ltd. Lighting module LED light board
USD833061S1 (en) 2017-08-09 2018-11-06 Flex Ltd. Lighting module locking endcap
USD832494S1 (en) 2017-08-09 2018-10-30 Flex Ltd. Lighting module heatsink
USD832495S1 (en) 2017-08-18 2018-10-30 Flex Ltd. Lighting module locking mechanism
USD862778S1 (en) 2017-08-22 2019-10-08 Flex Ltd Lighting module lens
USD888323S1 (en) 2017-09-07 2020-06-23 Flex Ltd Lighting module wire guard
CN110634971A (zh) * 2018-05-31 2019-12-31 福建金石能源有限公司 一种背接触异质结太阳能电池及其制造方法
CN111063761A (zh) * 2018-10-17 2020-04-24 晶澳太阳能有限公司 一种太阳能电池的制备工艺
KR102102823B1 (ko) * 2018-10-30 2020-04-22 성균관대학교산학협력단 표면 구조를 이용한 선택적 에미터의 형성 방법 및 표면 구조를 이용한 선택적 에미터를 포함한 태양전지
US20230006086A1 (en) * 2019-11-20 2023-01-05 Zhejiang Jinko Solar Co., Ltd. Partial tunneling oxide layer passivation contact structure of photovoltaic cell and photovoltaic module
TWI718803B (zh) * 2019-12-09 2021-02-11 財團法人工業技術研究院 電極結構與太陽電池結構
US11824126B2 (en) 2019-12-10 2023-11-21 Maxeon Solar Pte. Ltd. Aligned metallization for solar cells
CN112071951B (zh) * 2020-08-31 2022-06-14 晶澳(扬州)太阳能科技有限公司 一种太阳能电池的制备方法和太阳能电池
US11843071B2 (en) 2021-08-04 2023-12-12 Shanghai Jinko Green Energy Enterprise Management Co., Ltd. Solar cell, manufacturing method thereof, and photovoltaic module
CN115528121A (zh) * 2021-08-04 2022-12-27 上海晶科绿能企业管理有限公司 太阳能电池及光伏组件
CN115312633B (zh) * 2022-10-11 2023-02-17 金阳(泉州)新能源科技有限公司 一种无掩膜层联合钝化背接触电池及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200947725A (en) * 2008-01-24 2009-11-16 Applied Materials Inc Improved HIT solar cell structure
TW201128796A (en) * 2009-12-23 2011-08-16 Applied Materials Inc Enhanced passivation layer for wafer based solar cells, method and system for manufacturing thereof

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2687427B2 (ja) * 1988-05-17 1997-12-08 ソニー株式会社 半導体装置の製造方法
TW237562B (zh) * 1990-11-09 1995-01-01 Semiconductor Energy Res Co Ltd
JP2003298078A (ja) 2002-03-29 2003-10-17 Ebara Corp 光起電力素子
WO2005093856A1 (ja) * 2004-03-26 2005-10-06 Kaneka Corporation 薄膜光電変換装置の製造方法
US20060130891A1 (en) 2004-10-29 2006-06-22 Carlson David E Back-contact photovoltaic cells
US9508886B2 (en) 2007-10-06 2016-11-29 Solexel, Inc. Method for making a crystalline silicon solar cell substrate utilizing flat top laser beam
US8637340B2 (en) 2004-11-30 2014-01-28 Solexel, Inc. Patterning of silicon oxide layers using pulsed laser ablation
US20130164883A1 (en) 2007-10-06 2013-06-27 Solexel, Inc. Laser annealing applications in high-efficiency solar cells
US20120225515A1 (en) 2004-11-30 2012-09-06 Solexel, Inc. Laser doping techniques for high-efficiency crystalline semiconductor solar cells
EP1763086A1 (en) 2005-09-09 2007-03-14 Interuniversitair Micro-Elektronica Centrum Photovoltaic cell with thick silicon oxide and silicon nitride passivation and fabrication method
US7375378B2 (en) 2005-05-12 2008-05-20 General Electric Company Surface passivated photovoltaic devices
US7468485B1 (en) * 2005-08-11 2008-12-23 Sunpower Corporation Back side contact solar cell with doped polysilicon regions
US7737357B2 (en) * 2006-05-04 2010-06-15 Sunpower Corporation Solar cell having doped semiconductor heterojunction contacts
US7786376B2 (en) 2006-08-22 2010-08-31 Solexel, Inc. High efficiency solar cells and manufacturing methods
US20100304521A1 (en) 2006-10-09 2010-12-02 Solexel, Inc. Shadow Mask Methods For Manufacturing Three-Dimensional Thin-Film Solar Cells
KR101362890B1 (ko) * 2007-08-28 2014-02-17 주성엔지니어링(주) 마이크로 웨이브를 이용하는 박막태양전지의 제조방법 및이를 위한 박막 증착 장치
US7851380B2 (en) * 2007-09-26 2010-12-14 Eastman Kodak Company Process for atomic layer deposition
US9455362B2 (en) 2007-10-06 2016-09-27 Solexel, Inc. Laser irradiation aluminum doping for monocrystalline silicon substrates
US20090173373A1 (en) * 2008-01-07 2009-07-09 Wladyslaw Walukiewicz Group III-Nitride Solar Cell with Graded Compositions
KR20100131524A (ko) * 2008-04-09 2010-12-15 어플라이드 머티어리얼스, 인코포레이티드 태양전지용의 니트라이드화된 배리어 층
US7851698B2 (en) * 2008-06-12 2010-12-14 Sunpower Corporation Trench process and structure for backside contact solar cells with polysilicon doped regions
TW201013961A (en) 2008-07-16 2010-04-01 Applied Materials Inc Hybrid heterojunction solar cell fabrication using a metal layer mask
MY159405A (en) 2009-05-29 2016-12-30 Solexel Inc Three-dimensional thin-film semiconductor substrate with through-holes and methods of manufacturing
CN102044579B (zh) * 2009-09-07 2013-12-18 Lg电子株式会社 太阳能电池
KR20110062598A (ko) * 2009-12-03 2011-06-10 삼성전자주식회사 적층막 제조방법, 이를 이용한 태양전지의 제조방법
US20130233378A1 (en) 2009-12-09 2013-09-12 Solexel, Inc. High-efficiency photovoltaic back-contact solar cell structures and manufacturing methods using semiconductor wafers
WO2011084531A2 (en) 2009-12-15 2011-07-14 Solexel, Inc. Mobile vacuum carriers for thin wafer processing
US8686283B2 (en) 2010-05-04 2014-04-01 Silevo, Inc. Solar cell with oxide tunneling junctions
US8932724B2 (en) 2010-06-07 2015-01-13 General Atomics Reflective coating, pigment, colored composition, and process of producing a reflective pigment
US9214576B2 (en) * 2010-06-09 2015-12-15 Solarcity Corporation Transparent conducting oxide for photovoltaic devices
JP2012054424A (ja) 2010-09-01 2012-03-15 Koji Tomita 太陽電池及びその製造方法
JP2012060080A (ja) * 2010-09-13 2012-03-22 Ulvac Japan Ltd 結晶太陽電池及びその製造方法
WO2012132615A1 (ja) 2011-03-25 2012-10-04 三洋電機株式会社 光電変換装置及びその製造方法
US8802486B2 (en) * 2011-04-25 2014-08-12 Sunpower Corporation Method of forming emitters for a back-contact solar cell
US20130130430A1 (en) 2011-05-20 2013-05-23 Solexel, Inc. Spatially selective laser annealing applications in high-efficiency solar cells
US20130228221A1 (en) 2011-08-05 2013-09-05 Solexel, Inc. Manufacturing methods and structures for large-area thin-film solar cells and other semiconductor devices
US20130213469A1 (en) 2011-08-05 2013-08-22 Solexel, Inc. High efficiency solar cell structures and manufacturing methods
US9018517B2 (en) * 2011-11-07 2015-04-28 International Business Machines Corporation Silicon heterojunction photovoltaic device with wide band gap emitter
US8597970B2 (en) 2011-12-21 2013-12-03 Sunpower Corporation Hybrid polysilicon heterojunction back contact cell
US8679889B2 (en) 2011-12-21 2014-03-25 Sunpower Corporation Hybrid polysilicon heterojunction back contact cell
TWI685984B (zh) 2011-12-21 2020-02-21 美商太陽電子公司 混合式多晶矽異質接面背接觸電池
KR101654548B1 (ko) 2011-12-26 2016-09-06 솔렉셀, 인크. 태양 전지에서 향상된 광 포획을 위한 시스템 및 방법
US9054255B2 (en) * 2012-03-23 2015-06-09 Sunpower Corporation Solar cell having an emitter region with wide bandgap semiconductor material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200947725A (en) * 2008-01-24 2009-11-16 Applied Materials Inc Improved HIT solar cell structure
TW201128796A (en) * 2009-12-23 2011-08-16 Applied Materials Inc Enhanced passivation layer for wafer based solar cells, method and system for manufacturing thereof

Also Published As

Publication number Publication date
WO2013141917A1 (en) 2013-09-26
MX2014011246A (es) 2015-03-09
US10957809B2 (en) 2021-03-23
PH12014502088B1 (en) 2014-11-24
TW201340351A (zh) 2013-10-01
US20230197877A1 (en) 2023-06-22
US9219173B2 (en) 2015-12-22
MY171189A (en) 2019-09-30
EP2828897B1 (en) 2022-02-23
US20200091366A1 (en) 2020-03-19
US9054255B2 (en) 2015-06-09
US10490685B2 (en) 2019-11-26
US20190131477A1 (en) 2019-05-02
JP6321861B2 (ja) 2018-05-09
TWI575764B (zh) 2017-03-21
BR112014023047A8 (pt) 2021-03-16
KR20140139001A (ko) 2014-12-04
US20210249551A1 (en) 2021-08-12
SG11201405888PA (en) 2014-10-30
MY194039A (en) 2022-11-09
EP2828897A4 (en) 2015-05-06
EP2828897A1 (en) 2015-01-28
KR101991767B1 (ko) 2019-06-21
KR102221380B1 (ko) 2021-03-02
KR20190077099A (ko) 2019-07-02
US11605750B2 (en) 2023-03-14
JP6746854B2 (ja) 2020-08-26
BR112014023047B1 (pt) 2023-01-10
US20160071996A1 (en) 2016-03-10
JP2018107480A (ja) 2018-07-05
JP2017195391A (ja) 2017-10-26
KR102100909B1 (ko) 2020-04-16
PH12014502088A1 (en) 2014-11-24
MX338942B (es) 2016-05-06
KR20200039839A (ko) 2020-04-16
CN104396024A (zh) 2015-03-04
US20150243803A1 (en) 2015-08-27
JP2015514314A (ja) 2015-05-18
US10170657B2 (en) 2019-01-01
JP6178400B2 (ja) 2017-08-09
US20130247965A1 (en) 2013-09-26

Similar Documents

Publication Publication Date Title
CN104396024B (zh) 具有含宽带隙半导体材料的发射极区域的太阳能电池
CN105655427B (zh) 太阳能电池及其制造方法
CN105304749B (zh) 太阳能电池及其制造方法
TW201924073A (zh) 具p-型導電性的指叉式背接觸式太陽能電池
KR20190073594A (ko) 하이브리드 폴리실리콘 이종접합 배면 접점 전지
US20210057597A1 (en) Method for manufacturing solar cell, and holder used for same
US11211519B2 (en) Method for manufacturing solar cell
CN105826409A (zh) 一种局部背场n型太阳能电池及其制备方法和组件、系统
JP2011061020A (ja) 裏面コンタクト型太陽電池素子およびその製造方法
CN106252449A (zh) 局部掺杂前表面场背接触电池及其制备方法和组件、系统
CN105826408A (zh) 局部背表面场n型太阳能电池及制备方法和组件、系统
CN115440839A (zh) 一种太阳电池及其制备方法
CN111739984A (zh) 太阳能电池及其制作方法
CN104167460A (zh) 太阳能电池制造方法
US12009449B2 (en) Solar cell having an emitter region with wide bandgap semiconductor material

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20220901

Address after: Singapore, Singapore City

Patentee after: Maikesheng solar energy Co.,Ltd.

Address before: California, USA

Patentee before: SUNPOWER Corp.

TR01 Transfer of patent right