TW200947725A - Improved HIT solar cell structure - Google Patents

Improved HIT solar cell structure Download PDF

Info

Publication number
TW200947725A
TW200947725A TW98102895A TW98102895A TW200947725A TW 200947725 A TW200947725 A TW 200947725A TW 98102895 A TW98102895 A TW 98102895A TW 98102895 A TW98102895 A TW 98102895A TW 200947725 A TW200947725 A TW 200947725A
Authority
TW
Taiwan
Prior art keywords
layer
solar cell
substrate
amorphous
semiconductor layer
Prior art date
Application number
TW98102895A
Other languages
Chinese (zh)
Inventor
Peter Borden
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Publication of TW200947725A publication Critical patent/TW200947725A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • H01L31/0747Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

The present invention relates to improved HIT type or polysilicon emitter solar cells. According to certain aspects, the invention includes forming a masking oxide layer on the front and back of the cell and then patterning holes in the masking oxide. A HIT cell structure or polysilicon emitter solar cell structure is then formed over the patterned oxide, creating the cell junction only in the areas where holes have been cut. Benefits of the invention include that it provides a controlled interface for the HIT cell through insertion of a thin tunnel oxide. Moreover, the tunnel oxide prevents epitaxial growth of amorphous silicon, allowing it to remain amorphous for the optimum band structure. Still further, it provides a layer to protect the surface from plasma damage during deposition of the a-Si layer. Further, it may be used in conjunction with a point contact structure to further increase efficiency.

Description

200947725 六、發明說明: 【發明所屬之技術領域】 本發明與光伏裝置有關,且特別是與用於提供式 或多晶碎射極太陽能電池之改良結構的方法與設備有 關。 【先前技術】 HIT式太陽能電池是結構相對簡單的高效率裝置。曰 本三洋公司已經提出其實驗室效率為215〇/〇,且製造效 率為中等19。/。範圍内。有許多其他團隊也已研究此裝 置,然仍未見其有高效率。 第1A與1B圖中繪示了典型的HIT太陽能電池結構。 該裝置是對稱的,其η型基板106前部與背部都塗佈有 各別的塗層102、110以及各別的金屬格線1〇4、1〇8。 ❹ 如第1Β圖中分解圖部分所示,前部上的塗層1〇2是由兩 層非晶質矽層所組成(一 ρ型層124與其下方之本質層 126) ’其皆約50Α厚。在背部上,非晶質矽層是由一 η 型層與其下方之一本質層(i)所組成。如第1Β圖所示, - 塗層102還包括一層透明傳導氧化物(transparent conductive oxide, TCO) 122。 薄α-Si層用於保護表面並提供與一寬能帶隙窗層之異 質接面以增進開啟電路電壓,如第1C圖所示。更特別 地’第ic圖說明了這種裝置的能帶結構。如第ic圖所 200947725 示’在前表面處具有大位能階,產生了一種與p型和” 型摻質間階部處之接面十分相似的接面'然而,因為此 -接面是由沉積-非晶質_層所形成,因此其非常不連 貫且近乎空想。 儘管具有其優勢,這些非晶質矽層在HIT電池之製造 中也會產生可觀的複雜度。舉例而言,這些層必須形成 於一個悉心製備的表面上,其製備細節並未公開說明。 〇 &外’ ^必須不結晶化,然這將發生在結晶石夕基板對非 晶質矽進行種晶時,而這會消除有利之保護與異質接面 效應。 因此,需要一種可受良好控制與理解、並易於製造的 改良界面’且不會種晶成長。 【發明内容】 本發明係關於改良式HIT型或多晶矽射極太陽能電 © 池。根據特定態樣’本發明包括在電池的前部與背部上 形成一掩蔽氧化物層,並接著在該掩蔽氧化物中囷案化 孔洞,然後在該經圖案化氧化物上形成一 Hit電池結構 或多晶矽射極太陽能電池結構,僅於孔洞已被切割的區 域中產生電池接面。本發明的優勢包括其藉由薄穿随氧 化物的插置而提供了一種HIT電池之受控制界面。此 外’穿隧氧化物避免非晶矽的磊晶成長,使其保持非晶 質以供最佳能帶結構之用。更甚者,其提供了一層以於 5 200947725 非晶質矽層(α-Si)沉積期間保護該表面不受電漿破壞。 此外,也可結合點狀接觸結構的使用來進—步提昇效率。 進一步就這些與其他態樣而言,根據本發明實施例之 - 太陽能電池包括了一非晶質半導體層,其形成於一基板 上;以及一介電層’其插置在該基板與該非晶質半導體 層之間’其中該介電層係足夠薄以支撐通過其間之一穿 隧電流。 Ο 更進一步就這些與其他態樣而言,根據本發明實施例 之用於製造一太陽能電池的方法包括於一基板上形成一 介電層,其中該介電層係足夠薄以支撐通過其間之一穿 隧電流;以及於該介電層上形成一非晶質半導體層。 【實施方式】 以下將參照圖式詳細說明本發明,其係用以描述本發 〇 明之示例,以使該領域技術人士能夠實施本發明。可理 解的是,以下圖式與示例並不表示其將本發明之範脅限 制於單一實施例,而是藉由替換部分或所有的描述元件 亦使其他實施例變為可行。此外,本發明之特定元件可 部分或完全以習知組件予以實施,在此僅描述這些習知 組件中需用於瞭解本發明的部分,至於這些習知組件的 詳細描述與其他部分則予以省略,以避免混淆本發明。 在說明書中’說明單一組件之實施例不應被認為是限 6 200947725 制’相反的’本發明意欲涵蓋包括複數個相同組件的其 他實施例(且反之亦然)’除非另行指明。同時,申請人 於說明書或申請專利範圍中所使用之任何用語並不具非 常見或特疋含意’除非另行指明。此外,本發明涵蓋了 與用於說明之習知組件相當的現有及未來可見的等效方 式。 一般而言,本發明認同可於太陽能電池中使用薄穿隧 ❹ 氧化物層;舉例而言,可以利用穿隧氧化物上之鋁來製 造某些MIS電池。本發明也認同可於重摻雜或多晶矽絕 緣層與結晶矽基板之間使用穿隧氧化物,而形成一種多 晶矽射極太陽能電池。這種太陽能電池具有與ΗΙΤ電池 (其本質上係以多晶矽取代TC〇與a_Si層)相似的能帶 結構。然而,因a_Si的能帶隙較高,這種電池並不提供 異質接面與其高電池電壓之優勢。 根據本發明實施例之一示例太陽能電池結構與其相關 © 能帶結構係分別繪示於第2A與2B圖中。 如第2A圖所示,其係與第1圓所示者相似之HIT型 太陽能電池前表面的一部分’一薄介電& 228 (例如穿 隨氧化物)係提供於HIT電池中的心層224 226和η 里基板206之間。介電層較佳為薄至8_ΐ5Α之等級,以 支撐基板與a-Si層之間的穿隧電流。如以下將更詳細說 月者,可使料統方法(例如快速熱氧化、爐管氧化或 mox處理(於臭氧化H2〇2浴中形成))來形成層 在某二清況中,該層可經氮化或利用其他材料(如氮化 7 200947725 石夕或氮氧化石夕)來加以形成。 如第2B圖所示,在界面處之附加介電層提供了一個 、導體能帶隙更大的能帶隙,載子無法跨越此能量阻 障’但當該層足夠薄時(<15A),載子將穿隧於其間。 :意氧化物與氮化物具有*肖的阻障高度,因此所示之 該層並不特定代表任何-種材料。氮化物的阻障高度約 且呈對稱,氧化物的阻障高度則非對稱(對電子而 ^ 言較低)〇 〇 介電層228提供之優勢有數種面向。舉例而言,其係 利用傳統表面清潔與製備方式而形成,用於產生積體 電路之MOS閘極者;因此’這種表面製備方式已廣為所 知及理解,並可以高量產製造方式慣f地施行。同時, 由於其係一非晶質層,其使後續的α-Si層與基板分隔開 來,因而避免α-Si層中晶體成長之磊晶種晶。此外,其 提供一干預層以於α-Si層沉積期間保護結晶矽表面不受 ❿ 電漿破壞。 應注意’雖然本發明之優勢係藉由形成於結晶矽基板 上之《-Si層而獲得,但其並非限制,且本發明也可應用 至其他類型基板與薄半導體層。進一步應知許多太陽能 電池都使用異質接面,因此,舉例而言,本發明也可與 在微晶矽上具有非晶矽之薄臈太陽能電池一起使用。本 發明也可用於CdTe、CIGS或A1/GaAs/GaAs電池,其皆 使用異質接面。 亦即,進一步應注意,已知在矽上方之非晶矽可提供 8 200947725 絕佳的保護特性,其幾乎消除了表面再結合。這是因為 在表面處的高能帶彎曲排斥載子之故。因此,這是使用 矽上非晶矽的一項優點。 Ο200947725 VI. INSTRUCTIONS OF THE INVENTION: TECHNICAL FIELD OF THE INVENTION The present invention relates to photovoltaic devices, and more particularly to methods and apparatus for providing improved structures for providing or employing polycrystalline solar cells. [Prior Art] The HIT type solar cell is a highly efficient device having a relatively simple structure.曰 Ben Sanyo has proposed a laboratory efficiency of 215 〇 / 〇, and a manufacturing efficiency of medium 19 . /. Within the scope. There are many other teams that have also studied this device, but still have not seen it to be efficient. A typical HIT solar cell structure is illustrated in Figures 1A and 1B. The apparatus is symmetrical, and the front and back of the n-type substrate 106 are coated with respective coatings 102, 110 and respective metal grid lines 1〇4, 1〇8. ❹ As shown in the exploded view in Figure 1, the coating 1〇2 on the front is composed of two layers of amorphous germanium (a p-type layer 124 and the underlying layer 126). thick. On the back, the amorphous tantalum layer consists of an n-type layer and one of the underlying layers (i) below it. As shown in Figure 1, the coating 102 also includes a layer of transparent conductive oxide (TCO) 122. A thin alpha-Si layer is used to protect the surface and provide a heterojunction to a wide bandgap window layer to enhance the turn-on circuit voltage, as shown in Figure 1C. More specifically, the ic diagram illustrates the energy band structure of such a device. As shown in Figure ic, 200947725, 'has a large energy level at the front surface, resulting in a junction that is very similar to the junction between the p-type and the type of dopant. However, because this junction is It is formed by a deposited-amorphous layer, so it is very incoherent and almost imaginary. Despite its advantages, these amorphous germanium layers can also produce considerable complexity in the manufacture of HIT cells. For example, these The layer must be formed on a carefully prepared surface, the details of which are not disclosed. 〇 & external ' ^ must not be crystallized, but this will occur when the crystalline enamel substrate is seeded with amorphous germanium, and This eliminates the advantageous protection and heterojunction effects. Therefore, there is a need for an improved interface that can be well controlled and understood, and that is easy to manufacture, and that does not grow crystallize. [Invention] The present invention relates to an improved HIT type or polysilicon. Emitter solar power © cell. According to a particular aspect, the invention includes forming a masking oxide layer on the front and back of the cell, and then patterning the hole in the masking oxide, and then Forming a Hit cell structure or a polysilicon emitter solar cell structure on the cased oxide, creating a cell junction only in the region where the hole has been cut. Advantages of the invention include that it is provided by thin insertion of oxides A controlled interface of the HIT battery. In addition, the tunneling oxide prevents the epitaxial growth of the amorphous germanium, keeping it amorphous for the best energy band structure. Moreover, it provides a layer for 5 200947725 Amorphous tantalum layer (α-Si) protects the surface from plasma damage during deposition. In addition, the use of point contact structures can be combined to further improve efficiency. Further, in these and other aspects, According to an embodiment of the present invention, a solar cell includes an amorphous semiconductor layer formed on a substrate, and a dielectric layer 'interposed between the substrate and the amorphous semiconductor layer> wherein the dielectric The layer is sufficiently thin to support tunneling current through one of the layers. Further, in these and other aspects, a method for fabricating a solar cell according to an embodiment of the present invention includes a substrate Forming a dielectric layer on the plate, wherein the dielectric layer is sufficiently thin to support a tunneling current through one of the dielectric layers; and forming an amorphous semiconductor layer on the dielectric layer. [Embodiment] Reference will be made to the following drawings. The present invention is described in detail to illustrate the embodiments of the invention, and the embodiments of the invention are The embodiments, but by the replacement of some or all of the description elements, also make other embodiments possible. Furthermore, the specific elements of the invention may be implemented partially or completely with conventional components, only those of which are described herein. The detailed description and other parts of the conventional components are omitted to avoid obscuring the present invention. In the specification, the description of a single component embodiment should not be considered as a limitation. Conversely, the invention is intended to cover other embodiments (including vice versa) including a plurality of identical components, unless otherwise indicated. In the meantime, any terms used by the applicant in the specification or the scope of the patent application are not uncommon or special meanings unless otherwise indicated. Furthermore, the present invention encompasses both existing and future equivalents equivalent to the conventional components described. In general, the present invention recognizes that a thin tunneling oxide layer can be used in solar cells; for example, some of the MIS cells can be fabricated by tunneling the aluminum on the oxide. The present invention also recognizes that a tunneling oxide can be used between a heavily doped or polycrystalline tantalum insulating layer and a crystalline germanium substrate to form a polycrystalline germanium emitter solar cell. This solar cell has an energy band structure similar to that of a tantalum battery which is essentially a polycrystalline germanium substituted for the TC〇 and a_Si layers. However, due to the high band gap of a_Si, this battery does not provide the advantage of a heterojunction and its high battery voltage. An example solar cell structure and its associated © energy band structure are shown in Figures 2A and 2B, respectively, in accordance with an embodiment of the present invention. As shown in Fig. 2A, a portion of the front surface of a HIT-type solar cell similar to that shown in the first circle, 'a thin dielectric & 228 (e.g., an oxide with an oxide) is provided in the core layer of the HIT cell. Between the 224 226 and the η substrate 206. The dielectric layer is preferably as thin as 8 ΐ 5 , to support the tunneling current between the substrate and the a-Si layer. As will be described in more detail below, the method can be used to form a layer in a certain two conditions, such as rapid thermal oxidation, furnace tube oxidation or mox treatment (formed in ozonated H2〇2 bath). It can be formed by nitriding or by using other materials such as nitriding 7 200947725 or nitrous oxide. As shown in Figure 2B, the additional dielectric layer at the interface provides a band gap with a larger band gap of the conductor, and the carrier cannot cross the energy barrier 'but when the layer is thin enough (<15A) ), the carrier will tunnel through it. The oxides and nitrides have a barrier height of *Sha, so the layer shown is not specifically representative of any material. The barrier height of the nitride is approximately symmetrical, and the barrier height of the oxide is asymmetrical (lower for electrons). 介 The advantages provided by the dielectric layer 228 are several. For example, it is formed by a conventional surface cleaning and preparation method for generating a MOS gate of an integrated circuit; therefore, this surface preparation method is widely known and understood, and can be manufactured in a high-volume manner. Habitually implemented. At the same time, since it is an amorphous layer, it separates the subsequent α-Si layer from the substrate, thereby avoiding epitaxial seed crystal growth in the α-Si layer. In addition, it provides an intervening layer to protect the surface of the crystalline crucible from ruthenium plasma during the deposition of the alpha-Si layer. It should be noted that although the advantages of the present invention are obtained by the "-Si layer formed on the crystalline germanium substrate, it is not limited, and the present invention is also applicable to other types of substrates and thin semiconductor layers. It is further understood that many solar cells use heterojunctions, so that, for example, the invention can also be used with thin tantalum solar cells having amorphous germanium on the microcrystalline germanium. The invention is also applicable to CdTe, CIGS or A1/GaAs/GaAs batteries, all using a heterojunction. That is, it should be further noted that the amorphous germanium above the crucible is known to provide excellent protection properties of 8 200947725, which virtually eliminates surface recombination. This is because the high energy band at the surface bends to repel the carrier. Therefore, this is an advantage of using an amorphous germanium on the crucible. Ο

第3圖係用於形成第2Α圖之結構的一示例流程圖。 首先,在步驟S302中’粗化(texture)n型基板的前表面。 其可利用傳統蝕刻而行,例如異丙基醇與KOH。接著在 步驟S304中,對該表面施以標準m〇S潔淨以移除天然 氧化物、離子污染物與有機物。 在一實施例中’接著於步驟S306中使用快速熱氧化處 理以於前表面上形成一薄穿隧氧化物,其一般為12人 厚。在本發明之另一實施例中,係同時於前部與背部形 成氧化物》接著,在前表面上沉積a_Si層。在一實施例 中’ a-Si層係形成為前表面上的兩層堆疊,其中一層為 在步驟S308中首先形成之20-50A厚的本質a-Si層,其 係藉由例如電漿增強化學氣相沉積(PE-C VD )且通常在 氣的存在下形成,電漿增強化學氣相沉積乃矽烷在電襞 中分解。這些程序都可從文獻中充分獲知。可添加硼以 提供P型摻雜,且可添加磷以提供n型摻雜。其次,在 步驟S312中,藉由例如相同的pE_CVD程序,於本質a_si 層的頂部形成20-50A厚之p型α-Si。在另一實施例中, 僅在步驟S3 10中,於前表面上形成一摻雜p型層,而不 形成1型層。在步驟S304中沉積TCO,其可為氧化錮錫 成的四力波厚層(quarter wave thick layer)。 接著將晶圓反轉’如步驟S316所示,並以相同方式、 9 200947725 以η型a-Si層取代p型a_Si層而在背側上沉積結構。如 圖所示,根據氧化物層是否已經形成,程序係返回步驟 S306或步驟S308。應可進一步理解,當氧化物層已經形 成時’該程序也可返回步驟S31〇。最後,在步驟S3l8 中’藉由例如網印或濺鍍程序而形成接點。 除上述程序以外’也可實施在共同申請案(N0.) _ II» ^ 中所說明之一種形成HIT或多晶矽射極太陽能電池之點 狀接觸的方法’其藉由引用形式而併入本文。 雖然本發明係參照其較佳實施例而加以描述,然該領 域技術人士應可顯然得知可在不背離本發明之精神與範 鳴下改變與修飾其形式和細節。如附申請專利範圍意欲 涵蓋這些變化與修飾。 【圖式簡單說明】 本領域技術人士在結合伴隨圖式而參閱本發明特定實 施例說明後,將可清楚瞭解本發明之上述與其他態樣和 特徵_,其中: 第1A至1C圖繪示了 一傳統HIT電池與其能帶結構; 第2A與2B圖分別繪示了本發明之一示例太陽能電池 結構與其能帶結構;以及 第3圖係根據本發明態樣用於形成第2圖結構之一示 例流程圖。 【主要元件符號說明】 200947725 102塗層 104金屬格線 106 η型基板 108金屬格線 11 0塗層 122透明傳導氧化物(TCO) 124 ρ型層 126本質層 224 α-Si 層 226 a-Si 層 228介電層 S302-S318 步驟 206 η型基板 ❹ ❿ 11Figure 3 is an exemplary flow chart for forming the structure of the second figure. First, the front surface of the n-type substrate is 'textured' in step S302. It can be done using conventional etching, such as isopropyl alcohol and KOH. Next, in step S304, the surface is subjected to standard m〇S clean to remove natural oxides, ionic contaminants and organic matter. In an embodiment, a rapid thermal oxidation treatment is then employed in step S306 to form a thin tunneling oxide on the front surface, which is typically 12 people thick. In another embodiment of the invention, the oxide is formed simultaneously on the front and back. Next, an a-Si layer is deposited on the front surface. In one embodiment, the 'a-Si layer is formed as a two-layer stack on the front surface, one of which is a 20-50 A thick intrinsic a-Si layer first formed in step S308, which is enhanced by, for example, plasma Chemical vapor deposition (PE-C VD ) is usually formed in the presence of gas, and plasma enhanced chemical vapor deposition is the decomposition of decane in electricity. These procedures are fully known from the literature. Boron may be added to provide P-type doping, and phosphorus may be added to provide n-type doping. Next, in step S312, 20-50 A thick p-type ?-Si is formed on top of the essential a_si layer by, for example, the same pE_CVD procedure. In another embodiment, only in step S310, a doped p-type layer is formed on the front surface without forming a type 1 layer. A TCO is deposited in step S304, which may be a quarter wave thick layer of yttrium tin oxide. The wafer is then inverted&apos; as shown in step S316, and in the same manner, 9 200947725 replaces the p-type a-Si layer with an n-type a-Si layer to deposit a structure on the back side. As shown in the figure, depending on whether or not the oxide layer has been formed, the program returns to step S306 or step S308. It should be further understood that the process may also return to step S31 when the oxide layer has been formed. Finally, a contact is formed in step S3108 by, for example, a screen printing or sputtering process. In addition to the above-described procedures, a method of forming a point contact for forming a HIT or a polycrystalline erbium emitter solar cell as described in the co-pending application (N0.) _ II» ^ may also be incorporated herein by reference. Although the present invention has been described with reference to the preferred embodiments thereof, it will be apparent to those skilled in the art that the form and details may be modified and modified without departing from the spirit and scope of the invention. The scope of the patent application is intended to cover such variations and modifications. BRIEF DESCRIPTION OF THE DRAWINGS The above and other aspects and features of the present invention will become apparent to those skilled in the <RTIgt; A conventional HIT battery and its energy band structure; FIGS. 2A and 2B respectively illustrate an exemplary solar cell structure and its energy band structure of the present invention; and FIG. 3 is used to form the structure of FIG. 2 according to the aspect of the present invention. An example flow chart. [Main component symbol description] 200947725 102 coating 104 metal grid 106 n-type substrate 108 metal grid 11 0 coating 122 transparent conductive oxide (TCO) 124 p-type layer 126 essential layer 224 α-Si layer 226 a-Si Layer 228 Dielectric Layer S302-S318 Step 206 η-type Substrate ❹ ❿ 11

Claims (1)

200947725 七、申請專利範圍: 1. 一種太陽能電池,其包括: 一非晶質半導體層,其形成於一基板上;以及 一介電層,其插置在該基板與該非晶質半導體層之 間’其中該介電層係足夠薄以支撐一通過其間之穿隧電 流。 2. 如申請專利範圍第1項所述之太陽能電池,其中該基 板包括矽’且該介電層包括二氧化矽。 3. 如申請專利範圍第1項所述之太陽能電池,其中該基 板包括矽,且該介電層包括氮。 4·如申請專利範圍第1項所述之太陽能電池,其中該非 晶質半導體層包括碎。 5. 如申請專利範圍第1項所述之太陽能電池,其中該非 晶質半導體層包括一本質非晶質矽層與一摻雜非晶質矽 層的一雙層堆疊。 6. 如申請專利範圍第1項所述之太陽能電池,其中該非 晶質半導體層係形成於該基板的一前表面上,其中該太 陽能電池更包括: 12 200947725 另一非晶質半導體層,其形成於該基板的一相對背 側表面上;以及 另一介電層,其插置在該基板與該另一非晶質丰導 體層之間,其中該另一介電層係足夠薄以支撐一通過其 間之穿隧電流。 7·如申請專利範圍第6項所述之太陽能電池,其中該非 ⑩ 晶質半導體層與該另一非晶質半導體層兩者皆包括一本 質非晶質矽層與一摻雜非晶質矽層的一雙層堆疊。 8. —種製造一太陽能電池的方法,其包括: 形成一介電層於一基板上,其中該介電層係足夠薄 以支撐一通過其間之穿隧電流;以及 形成一非晶質半導體層於該介電層上。 ® 9.如申請專利範圍第8項所述之方法,其中形成該非晶 質半導體層之步驟包括形成一本質非晶質矽層與一摻雜 非晶質矽層的一雙層堆疊。 10.如申請專利範圍第8項所述之方法,更包括: 在形成該介電層之前’粗化(texturing)該基板之一表 面0 11·如申請專利範圍第8項所述之方法,其中使用一快 13 200947725 速熱氧化處理來形成該介電層。 12.如申請專利範圍第$項所述之方法,其中該本質與 摻雜非晶質矽層皆為約20-5〇A厚。 13.如申請專利範圍第8項所述之方法,更包括於該非 晶質半導體層上沉積一 TCO層。200947725 VII. Patent application scope: 1. A solar cell comprising: an amorphous semiconductor layer formed on a substrate; and a dielectric layer interposed between the substrate and the amorphous semiconductor layer 'The dielectric layer is thin enough to support a tunneling current therethrough. 2. The solar cell of claim 1, wherein the substrate comprises ruthenium&apos; and the dielectric layer comprises ruthenium dioxide. 3. The solar cell of claim 1, wherein the substrate comprises germanium and the dielectric layer comprises nitrogen. 4. The solar cell of claim 1, wherein the non-crystalline semiconductor layer comprises a chip. 5. The solar cell of claim 1, wherein the non-crystalline semiconductor layer comprises a two-layer stack of an intrinsic amorphous germanium layer and a doped amorphous germanium layer. 6. The solar cell of claim 1, wherein the amorphous semiconductor layer is formed on a front surface of the substrate, wherein the solar cell further comprises: 12 200947725 another amorphous semiconductor layer, Formed on an opposite back side surface of the substrate; and another dielectric layer interposed between the substrate and the another amorphous conductor layer, wherein the other dielectric layer is sufficiently thin to support A tunneling current through it. The solar cell of claim 6, wherein the non-crystalline semiconductor layer and the other amorphous semiconductor layer comprise an intrinsic amorphous germanium layer and a doped amorphous germanium layer. A two-layer stack of layers. 8. A method of fabricating a solar cell, comprising: forming a dielectric layer on a substrate, wherein the dielectric layer is sufficiently thin to support a tunneling current therethrough; and forming an amorphous semiconductor layer On the dielectric layer. The method of claim 8, wherein the step of forming the amorphous semiconductor layer comprises forming a two-layer stack of an intrinsic amorphous germanium layer and a doped amorphous germanium layer. 10. The method of claim 8, further comprising: "texturing" a surface of the substrate before forming the dielectric layer. The method of claim 8 is as described in claim 8 The dielectric layer is formed using a fast 13 200947725 rapid thermal oxidation process. 12. The method of claim 1, wherein the essence and the doped amorphous germanium layer are both about 20-5 Å thick. 13. The method of claim 8, further comprising depositing a TCO layer on the amorphous semiconductor layer. 14.如申請專利範圍第13項所述之方法,其中該 包括一氧化銦錫之四分波厚層(quaver layer)。 TCO thick 15.如申請專利範圍第8項所述之方法 半導體層係、形成於該基板之一前表面上 其中該非晶質 其中該方法更 Φ Φ -έ* a . 上形.成另一介電.層, 申該另一介電層足夠薄以支一 %層 以及 通過其間之穿隧電流 於該另一 介電層上形成另— 非晶質半導體層 〇14. The method of claim 13, wherein the indium oxide is a quart layer of indium tin oxide. TCO thick 15. The method of claim 8, wherein the semiconductor layer is formed on a front surface of the substrate, wherein the amorphous material is more Φ Φ - έ * a . An electric layer is formed to be thin enough to support a % layer and to form a further amorphous semiconductor layer on the other dielectric layer by a tunneling current therebetween.
TW98102895A 2008-01-24 2009-01-23 Improved HIT solar cell structure TW200947725A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US2334208P 2008-01-24 2008-01-24

Publications (1)

Publication Number Publication Date
TW200947725A true TW200947725A (en) 2009-11-16

Family

ID=40901645

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98102895A TW200947725A (en) 2008-01-24 2009-01-23 Improved HIT solar cell structure

Country Status (2)

Country Link
TW (1) TW200947725A (en)
WO (1) WO2009094578A2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102751369A (en) * 2012-06-20 2012-10-24 常州天合光能有限公司 Solar cell with N/P silicon-based heterojunction
TWI452706B (en) * 2011-10-27 2014-09-11 Hon Hai Prec Ind Co Ltd Solar cell
CN104396024A (en) * 2012-03-23 2015-03-04 太阳能公司 Solar cell having an emitter region with wide bandgap semiconductor material
TWI483406B (en) * 2010-05-18 2015-05-01 Au Optronics Corp Photovoltaic cell
CN106252457A (en) * 2011-12-21 2016-12-21 太阳能公司 Mixed type polysilicon hetero-junctions back contact battery

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8222516B2 (en) * 2008-02-20 2012-07-17 Sunpower Corporation Front contact solar cell with formed emitter
DE102008045522A1 (en) * 2008-09-03 2010-03-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Hetero-solar cell and process for the preparation of hetero-solar cells
JP5307688B2 (en) * 2009-10-27 2013-10-02 株式会社カネカ Crystalline silicon solar cell
US9012766B2 (en) 2009-11-12 2015-04-21 Silevo, Inc. Aluminum grid as backside conductor on epitaxial silicon thin film solar cells
FR2955707B1 (en) * 2010-01-27 2012-03-23 Commissariat Energie Atomique METHOD FOR PRODUCING A PHOTOVOLTAIC CELL WITH SURFACE PREPARATION OF A CRYSTALLINE SILICON SUBSTRATE
FR2955702B1 (en) 2010-01-27 2012-01-27 Commissariat Energie Atomique PHOTOVOLTAIC CELL COMPRISING A THIN SILICON CRYSTALLINE OXIDE PASSIVATION FILM AND METHOD OF MAKING SAME
DE102010006204A1 (en) * 2010-01-29 2011-08-04 Sunfilm AG, 01900 Photovoltaic module manufacturing method, involves providing substrate with layer sequence comprising photoactive layer stack, and applying back contact on one of regions of n-doped layer, where one of regions has homogeneous thickness
US8686283B2 (en) * 2010-05-04 2014-04-01 Silevo, Inc. Solar cell with oxide tunneling junctions
US20110277825A1 (en) * 2010-05-14 2011-11-17 Sierra Solar Power, Inc. Solar cell with metal grid fabricated by electroplating
US9214576B2 (en) 2010-06-09 2015-12-15 Solarcity Corporation Transparent conducting oxide for photovoltaic devices
US9773928B2 (en) 2010-09-10 2017-09-26 Tesla, Inc. Solar cell with electroplated metal grid
US20120073650A1 (en) * 2010-09-24 2012-03-29 David Smith Method of fabricating an emitter region of a solar cell
US9800053B2 (en) 2010-10-08 2017-10-24 Tesla, Inc. Solar panels with integrated cell-level MPPT devices
US10011920B2 (en) 2011-02-23 2018-07-03 International Business Machines Corporation Low-temperature selective epitaxial growth of silicon for device integration
US20120211079A1 (en) 2011-02-23 2012-08-23 International Business Machines Corporation Silicon photovoltaic element and fabrication method
US9054256B2 (en) 2011-06-02 2015-06-09 Solarcity Corporation Tunneling-junction solar cell with copper grid for concentrated photovoltaic application
JP5824681B2 (en) 2011-06-30 2015-11-25 パナソニックIpマネジメント株式会社 Photovoltaic device
JP5919559B2 (en) 2011-06-30 2016-05-18 パナソニックIpマネジメント株式会社 Photovoltaic device
US9099596B2 (en) 2011-07-29 2015-08-04 International Business Machines Corporation Heterojunction photovoltaic device and fabrication method
US8679889B2 (en) 2011-12-21 2014-03-25 Sunpower Corporation Hybrid polysilicon heterojunction back contact cell
US8597970B2 (en) 2011-12-21 2013-12-03 Sunpower Corporation Hybrid polysilicon heterojunction back contact cell
US9865754B2 (en) 2012-10-10 2018-01-09 Tesla, Inc. Hole collectors for silicon photovoltaic cells
US9059212B2 (en) 2012-10-31 2015-06-16 International Business Machines Corporation Back-end transistors with highly doped low-temperature contacts
US8912071B2 (en) 2012-12-06 2014-12-16 International Business Machines Corporation Selective emitter photovoltaic device
US8642378B1 (en) 2012-12-18 2014-02-04 International Business Machines Corporation Field-effect inter-digitated back contact photovoltaic device
US9306106B2 (en) 2012-12-18 2016-04-05 International Business Machines Corporation Monolithic integration of heterojunction solar cells
US9018516B2 (en) 2012-12-19 2015-04-28 Sunpower Corporation Solar cell with silicon oxynitride dielectric layer
US9412884B2 (en) 2013-01-11 2016-08-09 Solarcity Corporation Module fabrication of solar cells with low resistivity electrodes
US9219174B2 (en) 2013-01-11 2015-12-22 Solarcity Corporation Module fabrication of solar cells with low resistivity electrodes
US10074755B2 (en) 2013-01-11 2018-09-11 Tesla, Inc. High efficiency solar panel
US9859455B2 (en) 2013-02-08 2018-01-02 International Business Machines Corporation Interdigitated back contact heterojunction photovoltaic device with a floating junction front surface field
US9640699B2 (en) 2013-02-08 2017-05-02 International Business Machines Corporation Interdigitated back contact heterojunction photovoltaic device
DE102013203061A1 (en) * 2013-02-25 2014-08-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Semiconductor component, in particular solar cell and method for producing a metallic contacting structure of a semiconductor device
JP6185304B2 (en) * 2013-06-28 2017-08-23 株式会社カネカ Crystalline silicon photoelectric conversion device and manufacturing method thereof
US9337369B2 (en) 2014-03-28 2016-05-10 Sunpower Corporation Solar cells with tunnel dielectrics
US10309012B2 (en) 2014-07-03 2019-06-04 Tesla, Inc. Wafer carrier for reducing contamination from carbon particles and outgassing
EP3026713B1 (en) 2014-11-28 2019-03-27 LG Electronics Inc. Solar cell and method for manufacturing the same
US9899546B2 (en) 2014-12-05 2018-02-20 Tesla, Inc. Photovoltaic cells with electrodes adapted to house conductive paste
US9947822B2 (en) 2015-02-02 2018-04-17 Tesla, Inc. Bifacial photovoltaic module using heterojunction solar cells
JP6021084B2 (en) * 2015-05-14 2016-11-02 パナソニックIpマネジメント株式会社 Photovoltaic device and manufacturing method thereof
US9761744B2 (en) 2015-10-22 2017-09-12 Tesla, Inc. System and method for manufacturing photovoltaic structures with a metal seed layer
EP3182465B1 (en) * 2015-12-18 2020-03-11 Lg Electronics Inc. Method of manufacturing solar cell
US9842956B2 (en) 2015-12-21 2017-12-12 Tesla, Inc. System and method for mass-production of high-efficiency photovoltaic structures
US10115838B2 (en) 2016-04-19 2018-10-30 Tesla, Inc. Photovoltaic structures with interlocking busbars
US11233162B2 (en) 2017-03-31 2022-01-25 The Boeing Company Method of processing inconsistencies in solar cell devices and devices formed thereby
US10672919B2 (en) 2017-09-19 2020-06-02 Tesla, Inc. Moisture-resistant solar cells for solar roof tiles
US11190128B2 (en) 2018-02-27 2021-11-30 Tesla, Inc. Parallel-connected solar roof tile modules
US10443031B1 (en) 2018-03-29 2019-10-15 Inscripta, Inc. Methods for controlling the growth of prokaryotic and eukaryotic cells
CN112151636B (en) * 2020-08-21 2022-07-15 隆基绿能科技股份有限公司 Silicon-based heterojunction solar cell and preparation method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05175529A (en) * 1991-12-26 1993-07-13 Showa Shell Sekiyu Kk Amorphous silicon solar cell
JP3216754B2 (en) * 1994-03-16 2001-10-09 富士電機株式会社 Manufacturing method of thin film solar cell
KR100413473B1 (en) * 1999-09-08 2003-12-31 엘지.필립스 엘시디 주식회사 Crystallization method for amorphous silicon using hydrogen plasma and electric field
JP2001077382A (en) * 1999-09-08 2001-03-23 Sanyo Electric Co Ltd Photovoltaic device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI483406B (en) * 2010-05-18 2015-05-01 Au Optronics Corp Photovoltaic cell
TWI452706B (en) * 2011-10-27 2014-09-11 Hon Hai Prec Ind Co Ltd Solar cell
US9343598B2 (en) 2011-10-27 2016-05-17 Tsinghua University Solar cell
CN106252457A (en) * 2011-12-21 2016-12-21 太阳能公司 Mixed type polysilicon hetero-junctions back contact battery
CN106252457B (en) * 2011-12-21 2018-10-12 太阳能公司 The silicon heterogenous back contact battery of mixed type polycrystalline
TWI575764B (en) * 2012-03-23 2017-03-21 太陽電子公司 Solar cell having an emitter region with wide bandgap semiconductor material
CN104396024B (en) * 2012-03-23 2017-03-29 太阳能公司 Solaode with the emitter region containing wide bandgap semiconductor materials
CN104396024A (en) * 2012-03-23 2015-03-04 太阳能公司 Solar cell having an emitter region with wide bandgap semiconductor material
US10170657B2 (en) 2012-03-23 2019-01-01 Sunpower Corporation Solar cell having an emitter region with wide bandgap semiconductor material
US10490685B2 (en) 2012-03-23 2019-11-26 Sunpower Corporation Solar cell having an emitter region with wide bandgap semiconductor material
US10957809B2 (en) 2012-03-23 2021-03-23 Sunpower Corporation Solar cell having an emitter region with wide bandgap semiconductor material
US11605750B2 (en) 2012-03-23 2023-03-14 Sunpower Corporation Solar cell having an emitter region with wide bandgap semiconductor material
US12009449B2 (en) 2012-03-23 2024-06-11 Maxeon Solar Pte. Ltd. Solar cell having an emitter region with wide bandgap semiconductor material
CN102751369A (en) * 2012-06-20 2012-10-24 常州天合光能有限公司 Solar cell with N/P silicon-based heterojunction

Also Published As

Publication number Publication date
WO2009094578A3 (en) 2009-10-15
WO2009094578A2 (en) 2009-07-30

Similar Documents

Publication Publication Date Title
TW200947725A (en) Improved HIT solar cell structure
US12009449B2 (en) Solar cell having an emitter region with wide bandgap semiconductor material
US20100186802A1 (en) Hit solar cell structure
CN108963005B (en) Novel composite-structure full-back-face heterojunction solar cell and preparation method
KR20080002657A (en) Photovoltaic device which includes all-back-contact configuration and related processes
KR101886818B1 (en) Method for manufacturing of heterojunction silicon solar cell
US20200098945A1 (en) Process for producing a photovoltaic solar cell having a heterojunction and a diffused-in emitter region
Tao et al. 730 mV implied Voc enabled by tunnel oxide passivated contact with PECVD grown and crystallized n+ polycrystalline Si
TW201242066A (en) Method of fabricating solar cell
CN113875025A (en) Solar cell and method for manufacturing solar cell
KR20040042209A (en) Silicon solar battery of thin film type
US20140373919A1 (en) Photovoltaic cell and manufacturing process
KR20100094224A (en) Solar cell and fabrication method thereof
TW201611309A (en) Passivation of light-receiving surfaces of solar cells
JP2016039246A (en) Photoelectric conversion element
JP5398772B2 (en) Photovoltaic device, manufacturing method thereof, and photovoltaic module
Gordon et al. Processing and characterization of efficient thin-film polycrystalline silicon solar cells
CN118073449A (en) Solar cell and preparation method thereof