CN104383954B - 一种纳米棒状非金属掺杂BiPO4光催化剂及其制备方法和应用 - Google Patents

一种纳米棒状非金属掺杂BiPO4光催化剂及其制备方法和应用 Download PDF

Info

Publication number
CN104383954B
CN104383954B CN201410712863.1A CN201410712863A CN104383954B CN 104383954 B CN104383954 B CN 104383954B CN 201410712863 A CN201410712863 A CN 201410712863A CN 104383954 B CN104383954 B CN 104383954B
Authority
CN
China
Prior art keywords
photocatalyst
bipo
doping
microwave
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410712863.1A
Other languages
English (en)
Other versions
CN104383954A (zh
Inventor
谈国强
折辽娜
任慧君
夏傲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi University of Science and Technology
Original Assignee
Shaanxi University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi University of Science and Technology filed Critical Shaanxi University of Science and Technology
Priority to CN201410712863.1A priority Critical patent/CN104383954B/zh
Publication of CN104383954A publication Critical patent/CN104383954A/zh
Application granted granted Critical
Publication of CN104383954B publication Critical patent/CN104383954B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Catalysts (AREA)

Abstract

本发明提供一种纳米棒状非金属掺杂BiPO4光催化剂及其制备方法和应用,将Bi源、P源和掺杂物质溶于水中,搅拌均匀并调节pH值呈弱酸性,形成前驱体;将前驱体放入微波水热反应釜中,将微波水热反应釜放到微波水热仪中,采用微波水热法进行反应,直至反应完全,反应完成后将生成的沉淀取出,洗涤、干燥,得到纳米棒状非金属掺杂BiPO4光催化剂。本发明采用微波水热法一步合成纳米棒状非金属掺杂BiPO4光催化剂,其流程少,操作简单,反应时间短,反应条件温和,合成的纳米棒状非金属掺杂BiPO4光催化剂具有较高的光催化活性,达到了对BiPO4进行改性的目的,能够应用于降解环境污染物。

Description

一种纳米棒状非金属掺杂BiPO4光催化剂及其制备方法和应用
技术领域
本发明属于功能材料领域,具体涉及一种纳米棒状非金属掺杂BiPO4光催化剂及其制备方法和应用。
背景技术
当今社会快速发展造成的环境污染已成为人们日益关注的问题,如何解决人类社会所面临的各类污染问题已成为一项重要问题。近年来,光催化氧化技术处理有机污染物由于具备能力强、效率高、无二次污染等优点,在环境研究领域得到学者们的广泛研究。目前,铋系半导体及其无机化合物因其具有很好的光电转换效率和稳定的光化学性能,并有较强的光吸收能力以及对有毒有机污染物显著的氧化能力而受到广泛地关注。
BiPO4作为一种含氧酸盐新型光催化剂具有以下特点:(1)磷酸根离子结构稳定性好,容易结晶而不易产生氧空位缺陷;(2)磷酸根离子很难被化学还原,不易被光腐蚀;(3)磷酸根离子拥有较大的负电荷,会产生很大的诱导效应;(4)紫外光照射下具有较高的光催化活性;(5)成本相对较低,环境友好;以上这些优势均预示BiPO4光催化剂是拥有潜力的一类光催化剂。但由于其带隙较宽,对可见光的利用率还不够理想。为此,人们采用多种手段对BiPO4进行改性,例如Huang等人研究了Eu3+和Gd3+掺杂的BiPO4粉体的光催化性能,实验表明Eu3+和Gd3+的掺杂较大地提高了BiPO4粉体的光催化活性,[Huang,H.W.,et al.Journalof Materials Research,2013,28:2977-2984]。Liu等人采用水热法合成了F-BiPO4光催化剂,实验结果表明F掺杂后取代O离子,导致BiPO4的诱导偶极 矩增大,引起光生载流子的分离率提高,光催化活性增强,[Liu,Y.F.,et al.Applied Catalysis B:Environmental,2014,145:851-857]。
迄今为止,尚无文献和专利报道过以葡萄糖(C6H12O6)为碳源,迭氮钠(NaN3)为氮源,采用微波水热法制备C/BiPO4和N/BiPO4光催化剂。
发明内容
本发明的目的在于提供一种纳米棒状非金属掺杂BiPO4光催化剂及其制备方法和应用,该方法流程少、操作简单、反应时间短、反应条件温和,合成的纳米棒状非金属掺杂BiPO4光催化剂具有较高的光催化活性。
为了达到上述目的,本发明采用如下技术方案:
一种纳米棒状非金属掺杂BiPO4光催化剂的制备方法,包括以下步骤:
步骤1:将Bi源、P源和掺杂物质溶于水中,搅拌均匀并调节pH值呈弱酸性,形成前驱体;其中掺杂物质为C源或N源,Bi元素的物质的量与C元素或N元素的物质的量之和等于P元素的物质的量;
步骤2:将前驱体放入微波水热反应釜中,将微波水热反应釜放到微波水热仪中,采用微波水热法进行反应,直至反应完全,反应完成后将生成的沉淀取出,洗涤、干燥,得到纳米棒状非金属掺杂BiPO4光催化剂。
所述的Bi源为Bi(NO3)3·5H2O,P源为Na3PO4·12H2O,C源为C6H12O6,N源为NaN3
当掺杂NaN3时,加入的N元素与Bi元素的摩尔比为(3.1~26.6):100;
当掺杂C6H12O6时,加入的C元素与Bi元素的摩尔比为(7.5~58.7):100。
当掺杂NaN3时,加入的N元素与Bi元素的摩尔比为3.1:100、5.3:100、9.9:100、17.6:100或26.6:100;
当掺杂C6H12O6时,加入的C元素与Bi元素的摩尔比为7.5:100、17.6:100、37:100、47.1:100或58.7:100。
所述步骤1中用浓度为0.5~1.5mol/L的稀硝酸调节pH值,前驱体中稀硝酸与水的体积比为(2~5):(45~48)。
所述前驱体中Na3PO4·12H2O的浓度为0.03~0.08mol/L。
所述微波水热法的具体操作为:选择微波控温模式,微波功率为300W,压力为1.8~2MPa,从室温升温至90~110℃,保温8~10min;继续升温至140~160℃,保温8~10min;继续升温至190~210℃,保温50~70min后停止反应。
所述步骤1中搅拌均匀所需的时间为20~40min;
所述步骤2中微波水热反应釜的填充比为40%-60%,微波水热反应釜的内衬为聚四氟乙烯材质;
所述步骤2中的干燥为在70~80℃下干燥10~12h。
制得的纳米棒状非金属掺杂BiPO4光催化剂为C掺杂BiPO4光催化剂或N掺杂BiPO4光催化剂,其形貌均为纳米棒状结构,晶型均为单斜相独居石结构。
制得的纳米棒状非金属掺杂BiPO4光催化剂在降解环境污染物和有机物方面的应用。
相对于现有技术,本发明具有以下有益效果:
本发明提供的纳米棒状非金属掺杂BiPO4光催化剂的制备方法,将Bi源、P源和掺杂物质溶于水中,水热合成BiPO4,并在水热合成的过程中直接对BiPO4进行非金属元素掺杂,将非金属元素引入BiPO4中,制备出纳米棒状非金属掺杂BiPO4光催化剂,提高了纯BiPO4在紫外光下光催化降解有机物的效率。本发明采用的微波水热法结合了微波独特的加热特性和水热法的优点,不需要添加 其它添加剂,一步合成目标产物,流程少、操作简单、反应速度快、合成时间短、反应条件温和、反应效率高、环境友好、工艺简单易控、制备周期短、节省能源,合成的纳米棒状非金属掺杂BiPO4光催化剂具有较高的光催化活性,达到了对BiPO4进行改性的目的。
本发明提供的纳米棒状非金属掺杂BiPO4光催化剂,其主要成分为BiPO4,且BiPO4中部分Bi被N或C取代,从而形成非金属掺杂BiPO4光催化剂。本发明提供的纳米棒状非金属掺杂BiPO4光催化剂的形貌为纳米棒状结构,晶型为单斜相独居石结构,形貌规整、纯度较高,具有较高的光催化活性,其紫外光下的光催化活性明显高于相同条件下未掺杂的BiPO4的光催化活性,改善了纯相BiPO4催化效率低的问题,能够应用于降解环境污染物及有机物,具有良好的应用前景。
附图说明
图1是本发明实施例3制备的C掺杂BiPO4光催化剂的FE-SEM图;
图2是本发明实施例9制备的N掺杂BiPO4光催化剂的FE-SEM图;
图3是本发明制备的C掺杂BiPO4光催化剂的XRD图;其中a为未掺杂的BiPO4粉体的XRD图,b~f分别为实施例1~5制得的C掺杂BiPO4光催化剂的XRD图;
图4是本发明制备的N掺杂BiPO4光催化剂的XRD图;其中g为未掺杂的BiPO4粉体的XRD图,h~l分别为实施例6~10制得的N掺杂BiPO4光催化剂的XRD图;
图5是本发明制备的C掺杂BiPO4光催化剂的紫外光光催化性能图;其中a为未掺杂的BiPO4粉体的紫外光光催化性能图,b~f分别为实施例1~5制得的C 掺杂BiPO4光催化剂的紫外光光催化性能图,RhB为不加催化剂时罗丹明B自身的降解曲线;
图6是本发明制备的N掺杂BiPO4光催化剂的紫外光光催化性能图;其中g为未掺杂的BiPO4粉体的紫外光光催化性能图,h~l分别为实施例6~10制得的N掺杂BiPO4光催化剂的紫外光光催化性能图,RhB为不加催化剂时罗丹明B自身的降解曲线。
具体实施方式
下面结合附图及实施例对本发明作进一步详细说明。
本发明提供的纳米棒状非金属掺杂BiPO4光催化剂,其主要成分为BiPO4,且BiPO4中部分Bi被N或C取代,从而形成非金属掺杂BiPO4光催化剂,即C掺杂BiPO4光催化剂或N掺杂BiPO4光催化剂,其中C掺杂BiPO4光催化剂中C与Bi的摩尔比为(7.5~58.7):100,N掺杂BiPO4光催化剂中N与Bi的摩尔比为(3.1~26.6):100。本发明提供的纳米棒状非金属掺杂BiPO4光催化剂的形貌为纳米棒状结构,晶型为单斜相独居石结构,形貌规整、纯度较高,具有较高的光催化活性,其紫外光下的光催化活性明显高于相同条件下未掺杂的BiPO4的光催化活性,能够应用于降解环境污染物及有机物,具有良好的应用前景。
下面结合本发明优选的实施例对本发明提供的纳米棒状非金属掺杂BiPO4光催化剂的制备方法作进一步详细说明。
实施例1:
步骤1:将Na3PO4·12H2O溶于水中,然后按照C和Bi的摩尔比为7.5:100加入C6H12O6和Bi(NO3)3·5H2O,再加入浓度为1mol/L的稀硝酸,磁力搅拌30min至混合均匀,形成前驱体,其中nC+nBi=nP(Bi元素的物质的量与C元素的物质 的量之和等于P元素的物质的量),水与稀硝酸的体积比为46.5:3.5;前驱体中Na3PO4·12H2O的浓度为0.06mol/L;
步骤2:将前驱体放入聚四氟乙烯内衬的微波水热反应釜中,控制微波水热反应釜的填充比为50%,将微波水热反应釜放到微波水热仪中,选择微波控温模式:设定微波功率为300W,从室温升温至100℃,在100℃保温8min;继续升温至150℃,在150℃保温8min;继续升温至200℃,在200℃保温60min,200℃保温时的压力为1.8MPa;反应完成后将生成的沉淀取出,用去离子水和无水乙醇各洗涤3次,在70℃下干燥10h,得到C掺杂BiPO4光催化剂(C/BiPO4光催化剂)。
实施例2:
步骤1:将Na3PO4·12H2O溶于水中,然后按照C和Bi的摩尔比为17.6:100加入C6H12O6和Bi(NO3)3·5H2O,再加入浓度为1mol/L的稀硝酸,磁力搅拌30min至混合均匀,形成前驱体,其中nC+nBi=nP(Bi元素的物质的量与C元素的物质的量之和等于P元素的物质的量),水与稀硝酸的体积比为46.5:3.5;前驱体中Na3PO4·12H2O的浓度为0.06mol/L;
步骤2:将前驱体放入聚四氟乙烯内衬的微波水热反应釜中,控制微波水热反应釜的填充比为50%,将微波水热反应釜放到微波水热仪中,选择微波控温模式:设定微波功率为300W,从室温升温至100℃,在100℃保温8min;继续升温至150℃,在150℃保温8min;继续升温至200℃,在200℃保温60min,200℃保温时的压力为1.8MPa;反应完成后将生成的沉淀取出,用去离子水和无水乙醇各洗涤3次,在70℃下干燥10h,得到C掺杂BiPO4光催化剂(C/BiPO4光催化剂)。
实施例3:
步骤1:将Na3PO4·12H2O溶于水中,然后按照C和Bi的摩尔比为37:100加入C6H12O6和Bi(NO3)3·5H2O,再加入浓度为1mol/L的稀硝酸,磁力搅拌30min至混合均匀,形成前驱体,其中nC+nBi=nP(Bi元素的物质的量与C元素的物质的量之和等于P元素的物质的量),水与稀硝酸的体积比为46.5:3.5;前驱体中Na3PO4·12H2O的浓度为0.06mol/L;
步骤2:将前驱体放入聚四氟乙烯内衬的微波水热反应釜中,控制微波水热反应釜的填充比为50%,将微波水热反应釜放到微波水热仪中,选择微波控温模式:设定微波功率为300W,从室温升温至100℃,在100℃保温8min;继续升温至150℃,在150℃保温8min;继续升温至200℃,在200℃保温60min,200℃保温时的压力为1.8MPa;反应完成后将生成的沉淀取出,用去离子水和无水乙醇各洗涤3次,在70℃下干燥10h,得到C掺杂BiPO4光催化剂(C/BiPO4光催化剂)。
实施例4:
步骤1:将Na3PO4·12H2O溶于水中,然后按照C和Bi的摩尔比为47.1:100加入C6H12O6和Bi(NO3)3·5H2O,再加入浓度为1mol/L的稀硝酸,磁力搅拌30min至混合均匀,形成前驱体,其中nC+nBi=nP(Bi元素的物质的量与C元素的物质的量之和等于P元素的物质的量),水与稀硝酸的体积比为46.5:3.5;前驱体中Na3PO4·12H2O的浓度为0.06mol/L;
步骤2:将前驱体放入聚四氟乙烯内衬的微波水热反应釜中,控制微波水热反应釜的填充比为50%,将微波水热反应釜放到微波水热仪中,选择微波控温模式:设定微波功率为300W,从室温升温至100℃,在100℃保温8min;继续 升温至150℃,在150℃保温8min;继续升温至200℃,在200℃保温60min,200℃保温时的压力为1.8MPa;反应完成后将生成的沉淀取出,用去离子水和无水乙醇各洗涤3次,在70℃下干燥10h,得到C掺杂BiPO4光催化剂(C/BiPO4光催化剂)。
实施例5:
步骤1:将Na3PO4·12H2O溶于水中,然后按照C和Bi的摩尔比为58.7:100加入C6H12O6和Bi(NO3)3·5H2O,再加入浓度为1mol/L的稀硝酸,磁力搅拌30min至混合均匀,形成前驱体,其中nC+nBi=nP(Bi元素的物质的量与C元素的物质的量之和等于P元素的物质的量),水与稀硝酸的体积比为46.5:3.5;前驱体中Na3PO4·12H2O的浓度为0.06mol/L;
步骤2:将前驱体放入聚四氟乙烯内衬的微波水热反应釜中,控制微波水热反应釜的填充比为50%,将微波水热反应釜放到微波水热仪中,选择微波控温模式:设定微波功率为300W,从室温升温至100℃,在100℃保温8min;继续升温至150℃,在150℃保温8min;继续升温至200℃,在200℃保温60min,200℃保温时的压力为1.8MPa;反应完成后将生成的沉淀取出,用去离子水和无水乙醇各洗涤3次,在70℃下干燥10h,得到C掺杂BiPO4光催化剂(C/BiPO4光催化剂)。
实施例6:
步骤1:将Na3PO4·12H2O溶于水中,然后按照N和Bi的摩尔比为3.1:100加入NaN3和Bi(NO3)3·5H2O,再加入浓度为1mol/L的稀硝酸,磁力搅拌30min至混合均匀,形成前驱体,其中nN+nBi=nP(Bi元素的物质的量与C元素的物质的量之和等于P元素的物质的量),水与稀硝酸的体积比为46.5:3.5;前驱体中 Na3PO4·12H2O的浓度为0.06mol/L;
步骤2:将前驱体放入聚四氟乙烯内衬的微波水热反应釜中,控制微波水热反应釜的填充比为50%,将微波水热反应釜放到微波水热仪中,选择微波控温模式:设定微波功率为300W,从室温升温至100℃,在100℃保温8min;继续升温至150℃,在150℃保温8min;继续升温至200℃,在200℃保温60min,200℃保温时的压力为1.8MPa;反应完成后将生成的沉淀取出,用去离子水和无水乙醇各洗涤3次,在70℃下干燥10h,得到N掺杂BiPO4光催化剂(N/BiPO4光催化剂)。
实施例7:
步骤1:将Na3PO4·12H2O溶于水中,然后按照N和Bi的摩尔比为5.3:100加入NaN3和Bi(NO3)3·5H2O,再加入浓度为1mol/L的稀硝酸,磁力搅拌30min至混合均匀,形成前驱体,其中nN+nBi=nP(Bi元素的物质的量与C元素的物质的量之和等于P元素的物质的量),水与稀硝酸的体积比为46.5:3.5;前驱体中Na3PO4·12H2O的浓度为0.06mol/L;
步骤2:将前驱体放入聚四氟乙烯内衬的微波水热反应釜中,控制微波水热反应釜的填充比为50%,将微波水热反应釜放到微波水热仪中,选择微波控温模式:设定微波功率为300W,从室温升温至100℃,在100℃保温8min;继续升温至150℃,在150℃保温8min;继续升温至200℃,在200℃保温60min,200℃保温时的压力为1.8MPa;反应完成后将生成的沉淀取出,用去离子水和无水乙醇各洗涤3次,在70℃下干燥10h,得到N掺杂BiPO4光催化剂(N/BiPO4光催化剂)。
实施例8:
步骤1:将Na3PO4·12H2O溶于水中,然后按照N和Bi的摩尔比为9.9:100加入NaN3和Bi(NO3)3·5H2O,再加入浓度为1mol/L的稀硝酸,磁力搅拌30min至混合均匀,形成前驱体,其中nN+nBi=nP(Bi元素的物质的量与C元素的物质的量之和等于P元素的物质的量),水与稀硝酸的体积比为46.5:3.5;前驱体中Na3PO4·12H2O的浓度为0.06mol/L;
步骤2:将前驱体放入聚四氟乙烯内衬的微波水热反应釜中,控制微波水热反应釜的填充比为50%,将微波水热反应釜放到微波水热仪中,选择微波控温模式:设定微波功率为300W,从室温升温至100℃,在100℃保温8min;继续升温至150℃,在150℃保温8min;继续升温至200℃,在200℃保温60min,200℃保温时的压力为1.8MPa;反应完成后将生成的沉淀取出,用去离子水和无水乙醇各洗涤3次,在70℃下干燥10h,得到N掺杂BiPO4光催化剂(N/BiPO4光催化剂)。
实施例9:
步骤1:将Na3PO4·12H2O溶于水中,然后按照N和Bi的摩尔比为17.6:100加入NaN3和Bi(NO3)3·5H2O,再加入浓度为1mol/L的稀硝酸,磁力搅拌30min至混合均匀,形成前驱体,其中nN+nBi=nP(Bi元素的物质的量与C元素的物质的量之和等于P元素的物质的量),水与稀硝酸的体积比为46.5:3.5;前驱体中Na3PO4·12H2O的浓度为0.06mol/L;
步骤2:将前驱体放入聚四氟乙烯内衬的微波水热反应釜中,控制微波水热反应釜的填充比为50%,将微波水热反应釜放到微波水热仪中,选择微波控温模式:设定微波功率为300W,从室温升温至100℃,在100℃保温8min;继续升温至150℃,在150℃保温8min;继续升温至200℃,在200℃保温60min, 200℃保温时的压力为1.8MPa;反应完成后将生成的沉淀取出,用去离子水和无水乙醇各洗涤3次,在70℃下干燥10h,得到N掺杂BiPO4光催化剂(N/BiPO4光催化剂)。
实施例10:
步骤1:将Na3PO4·12H2O溶于水中,然后按照N和Bi的摩尔比为26.6:100加入NaN3和Bi(NO3)3·5H2O,再加入浓度为1mol/L的稀硝酸,磁力搅拌30min至混合均匀,形成前驱体,其中nN+nBi=nP(Bi元素的物质的量与C元素的物质的量之和等于P元素的物质的量),水与稀硝酸的体积比为46.5:3.5;前驱体中Na3PO4·12H2O的浓度为0.06mol/L;
步骤2:将前驱体放入聚四氟乙烯内衬的微波水热反应釜中,控制微波水热反应釜的填充比为50%,将微波水热反应釜放到微波水热仪中,选择微波控温模式:设定微波功率为300W,从室温升温至100℃,在100℃保温8min;继续升温至150℃,在150℃保温8min;继续升温至200℃,在200℃保温60min,200℃保温时的压力为1.8MPa;反应完成后将生成的沉淀取出,用去离子水和无水乙醇各洗涤3次,在70℃下干燥10h,得到N掺杂BiPO4光催化剂(N/BiPO4光催化剂)。
实施例11:
步骤1:将Na3PO4·12H2O溶于水中,然后按照C和Bi的摩尔比为25:100加入C6H12O6和Bi(NO3)3·5H2O,再加入浓度为0.5mol/L的稀硝酸,磁力搅拌20min至混合均匀,形成前驱体,其中nC+nBi=nP(Bi元素的物质的量与C元素的物质的量之和等于P元素的物质的量),水与稀硝酸的体积比为48:2;前驱体中Na3PO4·12H2O的浓度为0.03mol/L;
步骤2:将前驱体放入聚四氟乙烯内衬的微波水热反应釜中,控制微波水热反应釜的填充比为40%,将微波水热反应釜放到微波水热仪中,选择微波控温模式:设定微波功率为300W,从室温升温至90℃,在90℃保温9min;继续升温至140℃,在140℃保温9min;继续升温至190℃,在190℃保温50min,190℃保温时的压力为1.9MPa;反应完成后将生成的沉淀取出,用去离子水和无水乙醇各洗涤3次,在75℃下干燥12h,得到C掺杂BiPO4光催化剂(C/BiPO4光催化剂)。
实施例12:
步骤1:将Na3PO4·12H2O溶于水中,然后按照C和Bi的摩尔比为52:100加入C6H12O6和Bi(NO3)3·5H2O,再加入浓度为1.2mol/L的稀硝酸,磁力搅拌35min至混合均匀,形成前驱体,其中nC+nBi=nP(Bi元素的物质的量与C元素的物质的量之和等于P元素的物质的量),水与稀硝酸的体积比为46:4;前驱体中Na3PO4·12H2O的浓度为0.07mol/L;
步骤2:将前驱体放入聚四氟乙烯内衬的微波水热反应釜中,控制微波水热反应釜的填充比为55%,将微波水热反应釜放到微波水热仪中,选择微波控温模式:设定微波功率为300W,从室温升温至105℃,在105℃保温10min;继续升温至155℃,在155℃保温10min;继续升温至205℃,在205℃保温65min,205℃保温时的压力为2MPa;反应完成后将生成的沉淀取出,用去离子水和无水乙醇各洗涤3次,在80℃下干燥11h,得到C掺杂BiPO4光催化剂(C/BiPO4光催化剂)。
实施例13:
步骤1:将Na3PO4·12H2O溶于水中,然后按照N和Bi的摩尔比为13:100 加入NaN3和Bi(NO3)3·5H2O,再加入浓度为0.8mol/L的稀硝酸,磁力搅拌25min至混合均匀,形成前驱体,其中nN+nBi=nP(Bi元素的物质的量与C元素的物质的量之和等于P元素的物质的量),水与稀硝酸的体积比为45:5;前驱体中Na3PO4·12H2O的浓度为0.04mol/L;
步骤2:将前驱体放入聚四氟乙烯内衬的微波水热反应釜中,控制微波水热反应釜的填充比为45%,将微波水热反应釜放到微波水热仪中,选择微波控温模式:设定微波功率为300W,从室温升温至95℃,在95℃保温9min;继续升温至145℃,在145℃保温9min;继续升温至195℃,在195℃保温55min,195℃保温时的压力为1.9MPa;反应完成后将生成的沉淀取出,用去离子水和无水乙醇各洗涤3次,在75℃下干燥12h,得到N掺杂BiPO4光催化剂(N/BiPO4光催化剂)。
实施例14:
步骤1:将Na3PO4·12H2O溶于水中,然后按照N和Bi的摩尔比为22:100加入NaN3和Bi(NO3)3·5H2O,再加入浓度为1.5mol/L的稀硝酸,磁力搅拌40min至混合均匀,形成前驱体,其中nN+nBi=nP(Bi元素的物质的量与C元素的物质的量之和等于P元素的物质的量),水与稀硝酸的体积比为47:3;前驱体中Na3PO4·12H2O的浓度为0.08mol/L;
步骤2:将前驱体放入聚四氟乙烯内衬的微波水热反应釜中,控制微波水热反应釜的填充比为60%,将微波水热反应釜放到微波水热仪中,选择微波控温模式:设定微波功率为300W,从室温升温至110℃,在110℃保温10min;继续升温至160℃,在160℃保温10min;继续升温至210℃,在210℃保温70min,210℃保温时的压力为2MPa;反应完成后将生成的沉淀取出,用去离子水和无 水乙醇各洗涤3次,在80℃下干燥11h,得到N掺杂BiPO4光催化剂(N/BiPO4光催化剂)。
图1是本发明实施例3制备的C掺杂BiPO4光催化剂的FE-SEM图谱,从图中可以看出其形貌为纳米棒状结构。
图2是本发明实施例9制备的N掺杂BiPO4光催化剂的FE-SEM图谱,从图中可以看出其形貌为纳米棒状结构。
采用XRD测定本发明制备的非金属掺杂BiPO4光催化剂的物相组成。图3是本发明制备的C掺杂BiPO4光催化剂的XRD图谱,图3中a为未掺杂的BiPO4粉体的XRD图谱,b、c、d、e和f分别为按照实例1、实例2、实例3、实例4和实例5的方法制备出的C/BiPO4光催化剂的XRD图谱。从图3中可以看出C掺杂量(制备过程中加入的葡萄糖量)对磷酸铋的晶体结构没有影响,得到的产物均为单斜相独居石结构(空间群P21/n,JCPDS 80-0209)。
图4是本发明制备的N掺杂BiPO4光催化剂的XRD图谱,图4中g为未掺杂的BiPO4粉体的XRD图谱,h、i、j、k和l分别为按照实例6、实例7、实例8、实例9和实例10的方法制备出的N掺杂BiPO4光催化剂的XRD图谱。从图4中可以看出N掺杂量(制备过程中加入的迭氮钠量)对磷酸铋的晶体结构没有影响,得到的产物均为单斜相独居石结构(空间群P21/n,JCPDS 80-0209)。
图5是本发明制备的C掺杂BiPO4光催化剂的紫外光光催化性能图,其中a为未掺杂的BiPO4粉体的紫外光光催化性能图,RhB为不加催化剂时罗丹明B自身的降解曲线,b、c、d、e和f分别为实例1、实例2、实例3、实例4和实例5制备出的C掺杂BiPO4光催化剂的紫外光光催化性能图,纵坐标C/C0为某时刻罗丹明B降解后的浓度与其初始浓度的比值。从图5中可以看出,未掺杂 的BiPO4粉体的光催化活性明显高于不添加催化剂时的光催化活性。实施例1、实例2、实例3、实例4和实例5制备出的C掺杂BiPO4光催化剂的光催化活性均明显高于未掺杂的BiPO4粉体的光催化活性,其中按照实施例3制备的C掺杂BiPO4粉体对罗丹明B溶液的降解率最高,紫外光照射15min后罗丹明B的降解率可达98%。
图6是本发明制备的N掺杂BiPO4光催化剂的紫外光光催化性能图,其中g为未掺杂的BiPO4粉体的紫外光光催化性能图,RhB为不加催化剂时罗丹明B自身的降解曲线,h、i、j、k和l分别为实例6、实例7、实例8、实例9和实例10制备出的N掺杂BiPO4光催化剂的紫外光光催化性能图,纵坐标C/C0为某时刻罗丹明B降解后的浓度与其初始浓度的比值。从图6中可以看出,未掺杂的BiPO4粉体的光催化活性明显高于不添加催化剂时的光催化活性。实施例6、实例7、实例8、实例9和实例10制备出的N掺杂BiPO4光催化剂的光催化活性均明显高于未掺杂的BiPO4粉体的光催化活性,其中按照实施例9制备的N掺杂BiPO4粉体对罗丹明B溶液的降解率最高,紫外光照射30min后罗丹明B降解率可达98%。
以上所述仅为本发明的一种实施方式,不是全部或唯一的实施方式,本领域普通技术人员通过阅读本发明说明书而对本发明技术方案采取的任何等效的变换,均为本发明的权利要求所涵盖。

Claims (6)

1.一种纳米棒状非金属掺杂BiPO4光催化剂的制备方法,其特征在于,包括以下步骤:
步骤1:将Bi源、P源和掺杂物质溶于水中,搅拌均匀,并用浓度为0.5~1.5mol/L的稀硝酸调节pH值呈弱酸性,形成前驱体,前驱体中稀硝酸与水的体积比为(2~5):(45~48);其中掺杂物质为C源或N源,Bi元素的物质的量与C元素或N元素的物质的量之和等于P元素的物质的量;所述的Bi源为Bi(NO3)3·5H2O,P源为Na3PO4·12H2O,C源为C6H12O6,N源为NaN3;当掺杂NaN3时,加入的N元素与Bi元素的摩尔比为(3.1~26.6):100;当掺杂C6H12O6时,加入的C元素与Bi元素的摩尔比为(7.5~58.7):100;
步骤2:将前驱体放入微波水热反应釜中,将微波水热反应釜放到微波水热仪中,采用微波水热法进行反应,直至反应完全,反应完成后将生成的沉淀取出,洗涤、干燥,得到纳米棒状非金属掺杂BiPO4光催化剂;其中微波水热法的具体操作为:选择微波控温模式,微波功率为300W,压力为1.8~2MPa,从室温升温至90~110℃,保温8~10min;继续升温至140~160℃,保温8~10min;继续升温至190~210℃,保温50~70min后停止反应。
2.根据权利要求1所述的纳米棒状非金属掺杂BiPO4光催化剂的制备方法,其特征在于:当掺杂NaN3时,加入的N元素与Bi元素的摩尔比为3.1:100、5.3:100、9.9:100、17.6:100或26.6:100;
当掺杂C6H12O6时,加入的C元素与Bi元素的摩尔比为7.5:100、17.6:100、37:100、47.1:100或58.7:100。
3.根据权利要求1或2所述的纳米棒状非金属掺杂BiPO4光催化剂的制备方法,其特征在于:所述前驱体中Na3PO4·12H2O的浓度为0.03~0.08mol/L。
4.根据权利要求1或2所述的纳米棒状非金属掺杂BiPO4光催化剂的制备方法,其特征在于:所述步骤1中搅拌均匀所需的时间为20~40min;
所述步骤2中微波水热反应釜的填充比为40%-60%,微波水热反应釜的内衬为聚四氟乙烯材质;
所述步骤2中的干燥为在70~80℃下干燥10~12h。
5.权利要求1-4中任意一项所述的纳米棒状非金属掺杂BiPO4光催化剂的制备方法制得的纳米棒状非金属掺杂BiPO4光催化剂,其特征在于:该光催化剂为C掺杂BiPO4光催化剂或N掺杂BiPO4光催化剂,其形貌均为纳米棒状结构,晶型均为单斜相独居石结构。
6.权利要求1-4中任意一项所述的纳米棒状非金属掺杂BiPO4光催化剂的制备方法制得的纳米棒状非金属掺杂BiPO4光催化剂在降解有机物方面的应用。
CN201410712863.1A 2014-11-27 2014-11-27 一种纳米棒状非金属掺杂BiPO4光催化剂及其制备方法和应用 Active CN104383954B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410712863.1A CN104383954B (zh) 2014-11-27 2014-11-27 一种纳米棒状非金属掺杂BiPO4光催化剂及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410712863.1A CN104383954B (zh) 2014-11-27 2014-11-27 一种纳米棒状非金属掺杂BiPO4光催化剂及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN104383954A CN104383954A (zh) 2015-03-04
CN104383954B true CN104383954B (zh) 2017-02-22

Family

ID=52601965

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410712863.1A Active CN104383954B (zh) 2014-11-27 2014-11-27 一种纳米棒状非金属掺杂BiPO4光催化剂及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN104383954B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104646042B (zh) * 2015-03-05 2015-10-28 吉首大学 Pt@BiPO4/GR高效可见光催化复合纳米纤维及其制备方法
CN105013471A (zh) * 2015-06-29 2015-11-04 陕西科技大学 一种多面块体和长方形纳米片状结构的稀土掺杂BiPO4粉体的制备方法
CN105195199A (zh) * 2015-09-29 2015-12-30 陕西科技大学 一种mpg-C3N4/非金属掺杂BiPO4复合光催化剂及其制备方法和应用
CN105214707A (zh) * 2015-09-29 2016-01-06 陕西科技大学 一种mpg-C3N4/BiPO4复合光催化剂及其制备方法和应用
CN113912114A (zh) * 2021-07-16 2022-01-11 北京化工大学 用于enrr的电催化材料vs2的制备方法
CN113604835B (zh) * 2021-07-21 2023-10-20 北京化工大学 用于enrr的电催化材料b-vs2的制备方法
CN115155629B (zh) * 2022-06-29 2023-05-02 衢州学院 一种Bi/BiPO4/BiOCl纳米片复合材料的制备方法及其应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103620834A (zh) * 2011-06-24 2014-03-05 旭硝子株式会社 锂离子二次电池用活性物质颗粒的制造方法、电极以及锂离子二次电池
CN104014356B (zh) * 2014-05-30 2016-03-30 扬州天辰精细化工有限公司 一种磷掺杂磷酸铋光催化剂的制备方法

Also Published As

Publication number Publication date
CN104383954A (zh) 2015-03-04

Similar Documents

Publication Publication Date Title
CN104383954B (zh) 一种纳米棒状非金属掺杂BiPO4光催化剂及其制备方法和应用
CN104014326B (zh) 一种钒酸铋纳米棒高效光催化剂及其制备方法
CN103638923B (zh) 一种稀土元素Nd掺杂Bi2WO6复合光催化剂及其制备方法和应用
CN107268021A (zh) 一种NiCoAl‑LDH修饰三氧化二铁复合光阳极材料及其制备方法和应用
CN102718263B (zh) 微波水热法制备氟掺杂钨酸铋粉体的方法
CN103007921B (zh) 一种微波水热法合成碳掺杂BiVO4光催化剂的方法
CN112875755B (zh) 一种钨酸铋纳米粉体的制备方法
CN105056973B (zh) 化学腐蚀法原位生长制备高效的硫化铋‑铁酸铋复合可见光催化剂及其应用
CN109806902A (zh) 一种W18O49/NiWO4/NF自支撑电催化材料的制备方法
CN106807411A (zh) 一种铁酸镧掺杂溴化银复合光催化剂的制备方法
CN103611527B (zh) 一种可见光响应Ce掺杂Bi2WO6微晶及其制备方法和应用
CN102698735B (zh) 花球状Bi4V2O11可见光催化剂的制备方法
CN104148099A (zh) 一种MoS2-BiPO4复合光催化剂的制备方法
CN106564935A (zh) 一种ZnSn(OH)6粉体及其制备方法和应用
CN103623812B (zh) 一种圆片状可见光响应Yb修饰Bi2WO6光催化剂及其制备方法和应用
CN103433023B (zh) 一种Gd掺杂BiVO4光催化剂及其制备方法和应用
CN109231276A (zh) 氨基磺酸还原高锰酸钾制备α-MnO2纳米线的方法及应用
CN105013471A (zh) 一种多面块体和长方形纳米片状结构的稀土掺杂BiPO4粉体的制备方法
CN104851597B (zh) 一种MnO2 /C/Fe2O3层层结构的纳米复合材料的制备方法
CN103351026B (zh) 一种棒状nh4v3o8纳米晶的制备方法
CN104492467A (zh) 一种磷酸铋纳米晶簇及其制备方法和应用
CN103626232B (zh) 一种花型Ho-Bi2WO6纳米粉体及其制备方法和应用
CN103623811B (zh) 一种电子空穴复合率低的In-Bi2WO6光催化剂及其制备方法
CN106745247A (zh) 一种钒酸银纳米管组装球簇
CN107999053B (zh) 一种钛酸镧铅/钒酸铋及制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant