CN103915599B - 带注入功能的非水电解质二次电池 - Google Patents

带注入功能的非水电解质二次电池 Download PDF

Info

Publication number
CN103915599B
CN103915599B CN201410130668.8A CN201410130668A CN103915599B CN 103915599 B CN103915599 B CN 103915599B CN 201410130668 A CN201410130668 A CN 201410130668A CN 103915599 B CN103915599 B CN 103915599B
Authority
CN
China
Prior art keywords
reception room
key
opening portion
nonaqueous electrolyte
injecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201410130668.8A
Other languages
English (en)
Other versions
CN103915599A (zh
Inventor
西村直人
坂下和也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2009254748A external-priority patent/JP5083838B2/ja
Priority claimed from JP2009258952A external-priority patent/JP4987944B2/ja
Application filed by Sharp Corp filed Critical Sharp Corp
Publication of CN103915599A publication Critical patent/CN103915599A/zh
Application granted granted Critical
Publication of CN103915599B publication Critical patent/CN103915599B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/609Arrangements or processes for filling with liquid, e.g. electrolytes
    • H01M50/627Filling ports
    • H01M50/636Closing or sealing filling ports, e.g. using lids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/4673Plural tanks or compartments with parallel flow
    • Y10T137/4757Battery or electrolytic cell replenishment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Filling, Topping-Up Batteries (AREA)

Abstract

本发明提供一种带注入功能的非水电解质二次电池,其具备收容体和栓体,收容体具有用于收容具有正极、负极、隔板及非水电解质的发电部的收容室、与收容室连通的开口部、以及通过开口部与收容室连通并用于收容补充用的非水电解质的副收容室,栓体构成为能够从收容体的外侧在开口部上自由地装卸,在收容体中划分副收容室的部分形成有副开口部,副开口部用于使副收容室与收容体的外部连通,栓体和构成开口部的开口壁部具有能够相互装卸并紧密连接嵌合的形状,且栓体和构成副开口部的副开口壁部具有能够相互装卸并紧密连接嵌合的形状。

Description

带注入功能的非水电解质二次电池
本申请为2010年11月8日提交的、申请号为201010541810.X的、发明名称为“带注入功能的非水电解质二次电池、以及其使用的非水电解质二次电池和非水电解质注入装置”的申请的分案申请。
技术领域
本发明涉及一种带注入功能的非水电解质二次电池(以下称为“带注入功能的二次电池”)、以及其使用的非水电解质二次电池(以下称为“对应二次电池”)和非水电解质注入装置(以下称为“注入装置”),尤其涉及能够在低湿度环境下补充非水电解质的带注入功能的二次电池、以及其使用的对应二次电池和注入装置。
背景技术
锂离子二次电池等非水电解质二次电池具有高电压、高能量密度,而且贮存性、耐泄露性等可靠性良好。因此,非水电解质二次电池已经作为手机和笔记本电脑等的小型电源得到实际应用,另外也在尝试在汽车用途和电力贮存用途等大中型用途方面的应用。
关于锂离子二次电池的正极活性物质,可以列举以二硫化钛、五氧化钒和三氧化钼为代表的锂钴复合氧化物、锂镍复合氧化物及尖晶石型锂锰氧化物等、利用通式LixMO2(其中,M为一种以上的过渡金属)表示的各种化合物。
关于锂离子二次电池的负极活性物质,可以列举以金属锂和含锂合金为代表的能够吸收并放出锂的碳材料等各种物质。尤其在使用碳材料作为负极活性物质时,具有能够获得循环寿命长的电池、而且安全性高的优点。
锂离子二次电池的非水电解质通常采用在混合溶剂中溶解了LiPF6、LiBF4等支撑盐的电解液,所述混合溶剂是指碳酸乙烯酯和碳酸丙烯酯等高介电常数的溶剂、与碳酸二乙酯等低粘度的溶剂的混合溶剂。
以前,锂离子二次电池是密闭式的,充电放电循环寿命也长,所以在使用预定次数后其放电容量明显下降的情况下,判定为电池的寿命已尽,对其进行废弃处理。并且,被废弃处理的锂离子二次电池被回收,提取能够利用的材料进行再次利用。
但是,将构成电池的材料100%再次利用是很困难的事情,要求发明寿命已尽的电池的有效利用方法。并且,对于上述的大中型用途的锂离子二次电池,存在需要10~20年单位的寿命和数千~数万循环的充电放电循环寿命的情况,而利用现有的电池结构很难实现这种长寿命。
与此对应,例如在日本特开2001-210309号公报中提出了一种锂离子二次电池,在电池容器上设置注入口栓,以便对由于充电放电循环的反复而使得放电容量下降的锂离子二次电池补充新的非水电解质,由此恢复放电容量。
但是,非水电解质需要在低湿度环境下进行处理,例如在进行湿度管理的手套式操作箱等设备内进行处理。因此,通常在对锂离子二次电池补充非水电解质时,需要使锂离子二次电池移动到所述设备内,存在操作烦杂的问题。
另外,在电力贮存用途和汽车用途中采用的锂离子二次电池是大型电池,存在手套式操作箱等设备内的作业困难的情况、或者向手套式操作箱内的搬入困难的情况。因此,存在非水电解质在低湿度环境下向大中型锂离子二次电池注入困难的问题。
另外,与以前的便携式和个人电脑中使用的小型锂离子二次电池相比,以长寿命为目标的电力贮存用和汽车用等大中型锂离子二次电池中,由于液体枯竭而导致的容量保持率下降是重大问题,不可忽视。发明内容
本发明的目的在于,提供一种能够容易在低湿度环境下补充非水电解质的带注入功能的二次电池、以及其使用的对应二次电池和注入装置。
本发明的一种带注入功能的二次电池,具有对应二次电池和注入装置,对应二次电池具有:收容体,划分有用于收容具有正极、负极、隔板及非水电解质的发电部的收容室;开口部,形成于收容体;栓体,堵塞开口部;以及连接部,形成于收容体的外表面侧且开口部周围,注入装置具有:盖体,通过与连接部连接,从收容体的外表面侧覆盖开口部及堵塞开口部的栓体,在开口部周围形成密闭空间;装卸部,通过使栓体在密闭空间中从开口部移动,将开口部打开,并且通过使栓体在密闭空间中向开口部移动,将开口部堵塞;以及注入部,用于从打开的开口部向收容体内注入非水电解质。
在本发明的带注入功能的二次电池中,优选装卸部具有自由滑动地贯通盖体的支轴部,支轴部的一端位于划分密闭空间的盖体的内表面侧,并具有能够与栓体连接的结构,支轴部的另一端位于盖体的外表面侧。
在本发明的带注入功能的二次电池中,也可以是注入部兼作能够切换密闭空间内的气体的排气部,还可以具有能够切换密闭空间内的气体的排气部。
在本发明的带注入功能的二次电池中,优选连接部与盖体旋合连接,连接部与所述盖体也可以一体形成。
在本发明的带注入功能的二次电池中,优选收容体中划分有开口部的部分与栓体旋合连接。
另外,本发明的一种对应二次电池,具有:收容体,划分有用于收容具有正极、负极、隔板及非水电解质的发电部的收容室;开口部,形成于收容体;栓体,堵塞开口部;以及连接部,形成于收容体的外表面侧且开口部周围,通过与盖体连接而在开口部的周围形成密闭空间,盖体从收容体的外表面侧覆盖开口部及堵塞开口部的栓体。
另外,本发明的一种注入装置,用于对应二次电池,该对应二次电池具有:收容体,划分有用于收容具有正极、负极、隔板及非水电解质的发电部的收容室;开口部,形成于收容体;栓体,堵塞开口部;以及连接部,形成于收容体的外表面侧且开口部周围,注入装置具有:盖体,与连接部连接,以从收容体的外侧覆盖开口部及堵塞开口部的栓体,在开口部周围形成密闭空间;装卸部,通过使栓体在密闭空间中从开口部移动,将开口部打开,并且通过使栓体在密闭空间中向开口部移动,将开口部堵塞;以及注入部,用于向密闭空间注入非水电解质。
在本发明的注入装置中,优选装卸部具有自由滑动地贯通盖体的支轴部,支轴部的一端位于划分密闭空间的盖体的内表面侧,并具有能够与栓体连接的结构,支轴部的另一端位于盖体的外表面侧。
另外,本发明的一种带注入功能的二次电池,具有:收容体,具有用于收容具有正极、负极、隔板及非水电解质的发电部的收容室、与收容室连通的开口部、以及通过开口部与收容室连通并用于收容补充用的非水电解质的副收容室;和栓体,能够从收容体的外侧在开口部上自由地装卸。
本发明的带注入功能的二次电池优选在收容体中划分有副收容室的部分形成有副开口部,用于使副收容室与收容体的外部连通,栓体的一部分能够自由装卸地与开口部嵌合,栓体的另一部分贯通副开口部而露出于收容体的外侧。
在本发明的带注入功能的二次电池中,优选开口部与副开口部相对。
在本发明的带注入功能的二次电池中,优选收容体中划分有开口部的部分与栓体旋合连接,还优选收容体中划分有副开口部的部分与栓体旋合连接。
在本发明的带注入功能的二次电池中,优选在收容体中划分有副收容室的部分形成有补给部,用于从收容体的外侧向副收容室注入补充用的非水电解质。
在本发明的带注入功能的二次电池中,优选补给部包括:补给口部,与副收容室连通而使副收容室与收容体的外侧连通;和补给口用的栓体,可自由装卸地与补给口部嵌合。
在本发明的带注入功能的二次电池中,优选收容体中划分有补给口部的部分与补给口用的栓体旋合连接。
根据本发明,能够容易地在低湿度环境下补充非水电解质。
本发明的上述及其他目的、特征和优点,根据表示作为本发明示例的优选实施方式的附图及以下相关说明将更加明确。
附图说明
图1是第1实施方式的带注入功能的二次电池的简要剖视图。
图2是从上表面侧观察第1实施方式的对应二次电池时的简要图。
图3是表示连接部及盖体的连接结构的一例的简要图。
图4是表示在盖体上设置有排气部时的带注入功能的二次电池的结构的简要图。
图5A是用于说明第1实施方式的带注入功能的二次电池中的补充用非水电解质的注入动作的图。
图5B是用于说明第1实施方式的带注入功能的二次电池中的补充用非水电解质的注入动作的图。
图5C是用于说明第1实施方式的带注入功能的二次电池中的补充用非水电解质的注入动作的图。
图6A是用于说明具有栓体的密封部件的形状的图。
图6B是用于说明具有栓体的密封部件的形状的图。
图7是第2实施方式的对应二次电池的简要剖视图。
图8A是用于说明第2实施方式的对应二次电池中的补充用非水电解质的注入动作的图。
图8B是用于说明第2实施方式的对应二次电池中的补充用非水电解质的注入动作的图。
图9是第3实施方式的注入装置的简要剖视图。
图10是表示对应二次电池中的端子的配置位置的一例的简要剖视图。
图11是第4实施方式的带注入功能的二次电池的简要剖视图。
图12A是用于说明具有栓体的密封部件的形状的图。
图12B是用于说明具有栓体的密封部件的形状的图。
图13A是表示制造第4实施方式的带注入功能的二次电池的工序的简要图。
图13B是表示制造第4实施方式的带注入功能的二次电池的工序的简要图。
图13C是表示制造第4实施方式的带注入功能的二次电池的工序的简要图。
图14是用于说明第4实施方式的带注入功能的二次电池中的补充用非水电解质的注入动作的图。
图15是具有补给部的带注入功能的二次电池的简要剖视图。
具体实施方式
下面,参照附图详细说明本发明的实施方式。另外,在下面示出的实施方式中,对相同或者对应的部分标注相同的标号,不进行重复说明。
<第1实施方式>
第1实施方式涉及由对应二次电池和注入装置构成的带注入功能的二次电池。
《带注入功能的二次电池的结构》
使用图1说明本实施方式的带注入功能的二次电池。在本实施方式中采用层叠方型的带注入功能锂离子二次电池。图1是第1实施方式的带注入功能的二次电池的剖视图。
在图1中,带非水电解质注入功能锂离子二次电池(以下称为“带注入功能的二次电池”)10具有锂离子二次电池(以下称为“对应二次电池”)100和非水电解质注入装置(以下称为“注入装置”)200。下面,详细说明对应二次电池100和注入装置200各自的结构。
1.对应二次电池
对应二次电池100具有收容体101,将多个正极105、隔板104及负极103按照该顺序进行层叠,并收容在该收容体101内的收容室102中。并且,在收容室102内填充有非水电解质106。由正极105、隔板104、负极103及非水电解质106构成发电部107。
并且,在收容体101设有贯通收容体101内外的正极端子120和负极端子121,绝缘部件122、123被设置成为分别夹在正极端子120与收容体101之间、以及负极端子121与收容体101之间。各正极105通过图中虚线示出的正极集电导线与正极端子120连接,各负极103通过图中实线示出的负极集电导线与负极端子121连接。
正极105具有在集电体表面形成有正极活性物质材料的结构。关于正极活性物质材料,可以采用通常在锂离子二次电池中使用的锂与过渡金属的复合氧化物。关于锂与过渡金属的复合氧化物的类型有尖晶石型、NASICON型及橄榄石型等。其中,具有橄榄石型结构的利用LixMPO4(其中,X为正数,M为一种以上的过渡金属)表示的锂过渡金属氧化物,在进行锂离子二次电池的充电时的热稳定性比较高。
因此,在采用需要特别高的稳定性的大容量的锂离子二次电池的情况下,正极105的材料优选具有橄榄石型结构的化合物。更具体地讲,优选采用非水电解质的分解比较少、稳定性比较高的磷酸铁锂。
隔板104具有如下作用:将正极105和负极103隔离以防止内部短路,并保持电解液即非水电解质106,保持正极负极之间的离子传导性。关于隔板104的材料,可以采用聚乙烯、聚丙烯等聚烯烃类的微多孔膜。并且,也可以采用由玻璃纤维、芳香族聚酰胺纤维、纤维素纤维等构成的无纺布。这种无纺布的热稳定性高,能够提高电池的安全性。
负极103具有在集电体表面形成有负极活性物质材料的结构。关于负极活性物质材料,可以采用通常在锂离子二次电池中使用的材料。尤其优选采用可逆性良好的石墨等碳类材料。
非水电解质106是由锂离子导电体即非水类有机溶剂和锂盐构成的电解液,可以采用在例如碳酸乙烯酯、碳酸二乙酯等中溶解了LiPF6的电解液。电解液也可以具有粘度。
在收容上述的发电部107的收容体101形成有开口部108,用于使收容室102与收容体101的外部相连通,开口部108被栓体109堵塞。
在后面叙述的补充用非水电解质的注入动作中,需要将栓体109从收容体101中划分开口部108的部分(以下称为“开口壁部”)卸下,并将栓体109插入开口壁部中。因此,优选收容体101的形成有开口部108的面的面积为8cm2以上。在收容体101的形成有开口部108的面的面积为8cm2以上的情况下,不需要怎末减小开口部108及堵塞开口部108的栓体109,从成本方面以及注入动作的作业性方面讲都是优选方式。在形成有开口部108的面的面积小于8cm2的情况下,认为形成用于与后面叙述的盖体201相连接的连接部110的面积将不足,收容体101不能保持足够的强度。更优选形成有开口部108的面的面积为10cm2以上。
更具体地讲,在收容体101为方型的情况下,优选收容体101的形成有开口部108的面的两条边至少都在1cm以上。在收容体101为圆筒型的情况下,优选收容体101的形成有开口部108的面的直径至少在1cm以上。收容体101的形成有开口部108的位置没有特别限定,但优选形成于收容体101的平坦的部分。收容体101的材料没有特别限定,例如可以采用铁、对铁实施镀镍的镀镍铁、不锈钢、铝。
构成开口部108的开口壁部的形状及栓体109的形状没有特别限定,只要是将收容室102内部与外部隔绝的连接的结构即可。例如,如图1所示,优选在开口壁部及栓体109的相互连接的位置都形成有螺旋形状的槽。通过使开口壁部及栓体109都具有螺旋形状的槽,能够相互旋合连接,能够容易将收容室102与收容体101的外部隔绝。并且,开口壁部及栓体109也可以具有倾斜的槽来取代螺旋形状的槽,只要是能够相互装卸地嵌合的形状即可。
在开口壁部与栓体109相互旋合连接的情况下,优选开口壁部的厚度为1.5mm以上。在开口壁部的厚度为1.5mm以上的情况下,能够将螺旋形状的栓体109牢靠地旋合连接在开口壁部上,能够容易保持收容室102的气密状态。
并且,通常在锂离子二次电池中设有安全阀,以便当电池内压在过度充电时和高温状态下上升的情况下,将电池内压释放,以避免电池爆炸等危险。在对应二次电池100具有安全阀的情况下,需要使栓体109不能在安全阀动作之前从开口壁部脱出。因此,在设置安全阀的情况下,堵塞开口部108的栓体109构成为使其耐压达到安全阀的动作压力以上。另外,此处所说的耐压是指栓体109不能从开口壁部脱出的压力。
并且,对应二次电池100还具有形成于收容体101的外表面侧的连接部110。图2是从上面观察第1实施方式的对应二次电池时的简要图。
在图2中,连接部110形成于收容体101的外表面侧,并且包围开口部108(栓体109)的周围。连接部110通过与后面叙述的盖体201连接,能够在开口部108及堵塞开口部108的栓体109的周围形成与外部环境隔绝的密闭空间202(参照图1)。
连接部110也可以不设于栓体109的全周,只要通过连接部110与后面叙述的盖体201连接,能够在栓体109的周围形成密闭空间202即可。另外,在图2中,在栓体109的顶部形成有一个槽,但栓体109的顶部没有特别限定,例如也可以是六边形状。
2.注入装置
在图1中,带注入功能的二次电池10的注入装置200具有一端封闭的筒形状的盖体201,形成盖体201的开口的另一端的缘部与对应二次电池100的连接部110连接。盖体201的形状不限于图1所示的筒形状,只要是如下结构即可,即通过与连接部110连接,能够在盖体201的内表面侧与对应二次电池100之间、且开口部108和封闭开口部108的栓体109周围形成密闭空间202。
盖体201及连接部110的连接结构没有特别限定,只要是连接部110和盖体201以紧密粘接的状态连接的结构即可。尤其优选在连接部110和盖体201的相互接触的位置都形成有螺旋形状的槽。通过使连接部110和盖体201分别形成螺旋形状的槽,连接部110和盖体201能够相互旋合连接,能够容易形成密闭空间202。连接部110和盖体201也可以形成倾斜的槽形状来取代螺旋形状的槽。
在图1中形成为连接部110的外周面与盖体201的内周面相连接的结构,但也可以构成为连接部110的内周面与盖体201的外周面相连接。并且,还可以如图3所示,盖体201与形成于收容体101的外表面侧的连接部111相连接。另外,连接部110和盖体201也可以一体形成。
返回图1,注入装置200还具有用于从开口壁部装卸栓体109的装卸部203。装卸部203能够在通过盖体201与连接部110相连接而形成的密闭空间202中与栓体109连接。装卸部203使所连接的栓体109向图中上方移动,并从开口壁部将栓体109卸下,能够将开口部108打开。并且,装卸部203使所连接的栓体109从图中上方向下方移动,并将栓体109插入到开口壁部中,能够堵塞开口部108。
装卸部203的结构只要是能够与栓体109连接、并从开口壁部装卸栓体109的结构即可。例如,如图1所示,优选装卸部203的支轴203a沿图中的上下方向滑动自如地贯通盖体201,并且位于盖体201的内表面侧的一端具有能够与栓体109连接的形状,另一端具有位于盖体201的外表面侧的形状。根据这种结构,能够使与装卸部203连接的栓体109容易沿图中上下方向移动,因而能够容易从开口壁部卸下栓体109,或者容易将栓体109插入到开口壁部中,容易实现开口部108的打开、堵塞。
装卸部203与栓体109的连接结构例如能够采用嵌入结构等。并且,也可以是如下结构,栓体109为磁性体,装卸部203借助磁力作用来抽拉或者排斥栓体109,由此从开口部108卸下栓体109,或者将栓体109插入到开口部108中。在这种情况下,能够简化装卸部203及栓体109彼此的连接部分的结构。
并且,注入装置200还具有注入部204。注入部204只要是能够将非水电解质从打开的开口部108注入到收容体101内的结构即可。例如,注入部204也可以是使形成于注入装置200的内表面侧的密闭空间202和非水电解质注入装置200的外部连通的诸如孔那样的结构。在这种情况下,例如将注入管205的一端插入注入部204,并从另一端注入非水电解质,由此能够向密闭空间202中注入非水电解质,结果,能够将非水电解质从打开的开口部108注入到收容体101内。
在不需要使密闭空间202与外部连通时,可以使用栓等堵塞注入部204。并且,注入部204也可以是带盖的孔,还可以是带盖的管。并且,也可以在注入部204连接排气装置、除湿装置等,进行密闭空间202内的除湿。在这种情况下,注入部204能够兼做排气部。
并且,注入装置200还可以如图4所示具有排气部206。排气部206可以构成为能够切换密闭空间202内的气体,例如可以是与注入部204相同地、使形成于注入装置200的内表面侧的密闭空间202和注入装置200的外部连通的诸如孔那样的结构。在这种情况下,在不需要使密闭空间202与外部连通时,可以使用栓等堵塞排气部206。并且,排气部206也可以是带盖的孔,还可以是带盖的管。将排气管207的一端插入到排气部206中,将排气管207的另一端与具有除湿功能的除湿装置连接,由此能够进行密闭空间内的气体的除湿。
《补充用非水电解质的注入动作》
下面,使用图5A~5C说明使用了上述的带注入功能的二次电池10的补充用非水电解质的注入动作。
图5A~5C是用于说明第1实施方式的带注入功能的二次电池中的补充用非水电解质的注入动作的图。
首先,从图5A所示的状态下,使装卸部203沿图中箭头方向移动。装卸部203沿图中箭头方向移动,装卸部203的与栓体109连接的部分到达栓体109,如图5B所示,装卸部203与栓体109相连接。
然后,从图5B所示的状态下,在装卸部203与栓体109相连接的状态下,使装卸部203沿图中箭头方向旋转并移动。由此,按照图5C所示的状态所示,栓体109被从开口壁部卸下,开口部108打开,收容室102与密闭空间202连通。
然后,从注入管205的未图示的另一端注入补充用非水电解质,由此能够将非水电解质注入到密闭空间202内。并且,该非水电解质经过开口部108被注入到收容室102内,并补充给发电部107。
在非水电解质的注入完成后,从图5C所示的状态下,使装卸部203旋转并沿图中箭头方向移动,将栓体109插入到开口壁部中,由此将开口部108堵塞,将密闭空间202和收容室102隔绝。通过以上动作,不会使非水电解质暴露在外部环境下,即能够在低湿度环境下将非水电解质补充给带注入功能的二次电池10。
在普通的非水电解质二次电池中,不存在从外部补充新的非水电解质的概念,在由于非水电解质减少即所谓液体枯竭而使得放电容量下降时,不能从外部补充非水电解质。并且,电池制造需要在露点(Dew point)温度-40℃以下、水分量0.013%以下的环境下进行,在补充非水电解质时也需要低湿度环境,而普通的非水电解质二次电池当然也是如此,即使是日本特开2001-210309号公报公开的锂离子二次电池的结构,也不能满足这种要求。
而根据第1实施方式,能够将开口部108的周围设为与外部环境隔绝的状态,开口部108能够使收容室102内外连通。因此,不会将补充用非水电解质暴露在高湿度(外部环境)下,因而能够容易在低湿度环境下补充非水电解质。
并且,即使带注入功能的二次电池10在注入装置200被卸下的状态下使用,通过在补充用非水电解质的注入动作时安装注入装置200并使其动作,也能够容易在低湿度环境下补充非水电解质。因为通过在安装注入装置200后进行上述的注入动作,能够避免在注入补充用非水电解质的动作过程中补充用非水电解质被暴露在高湿度下的状态。
并且,在第1实施方式中,当进行补充动作时成为图5A所示的状态之后,通过在一端被插入到注入口204中的注入管205的另一端连接除湿装置,能够进行密闭空间202内的气体的除湿。另外,该动作可以在图5A所示的状态时进行,也可以在图5B所示的状态时进行。
并且,在第1实施方式中,优选对应二次电池100具有用于填埋栓体109与开口壁部的间隙的密封部件,以便提高收容室102的气密性。例如,如图6A及6B所示,能够在栓体109的顶部109a与轴部109b相连接的部分设置O环形状或者矩形状的密封部件112。并且,也可以在收容体101的外表面侧的表面且开口部108的附近设置密封部件112。
关于密封部件112优选能够承受有机电解液即非水电解质的材料,例如聚丙烯(PP)、聚乙烯(PE)、PP与PE的共聚物、丁苯橡胶、三元乙丙单体、丁基橡胶、硅酮橡胶、含氟树脂橡胶、聚四氟乙烯制特氟龙(注册商标)密封带等。
<第2实施方式>
第2实施方式涉及能够安装注入装置的对应二次电池。
《对应二次电池的结构》
图7是第2实施方式的对应二次电池的简要剖视图。另外,在图7中没有图示各绝缘部件、各端子及各集电导线。图7所示的对应二次电池20的结构与图1所示的带注入功能的二次电池10的对应二次电池100相同,所以不再重复说明。
《补充用非水电解质的注入动作》
下面,使用图8A和8B以及图5A~5C说明使用了上述的对应二次电池20的补充用非水电解质的注入动作。
图8A和8B是用于说明第2实施方式的对应二次电池中的补充用非水电解质的注入动作的图。
首先,如图8A所示,在对应二次电池20上安装注入装置30,以使对应二次电池20的连接部110与后面叙述的注入装置30的盖体201连接。在图8A中,通过使盖体201旋转并沿图中箭头方向移动,盖体201的螺旋形状的槽与连接部110的螺旋形状的槽旋合连接,但盖体201与连接部110的连接结构不限于此。
然后,如图8B所示,盖体201与连接部110完全旋合连接,由此注入装置30被安装在对应二次电池20上,并在盖体201的内侧形成密闭空间202。并且,注入管205被插入到注入部204中,然后进行与图5A~5C相同的动作,由此能够将补充用的非水电解质注入到对应二次电池20中。
根据第2实施方式,在从开口壁部去除栓体109之前,能够在盖体201的内表面侧且开口部108及栓体109的周围形成密闭空间202。由此,能够在密闭空间202内从开口壁部卸下栓体109,能够将补充用的非水电解质注入到收容室102内,而且不会暴露在外部环境下。因此,能够避免在注入补充用非水电解质的动作过程中补充用非水电解质被暴露在高湿度下的状态,因而能够在低湿度环境下补充非水电解质。
<第3实施方式>
第3实施方式涉及能够被安装在对应二次电池上的注入装置。
《注入装置的结构》
图9是第3实施方式的注入装置的简要剖视图。图9所示的注入装置30的结构与图1所示的注入装置200相同,所以不再重复说明。注入装置30是用于向对应二次电池20注入补充用的非水电解质的注入装置。
《向对应二次电池注入补充用非水电解质的动作》
通过注入装置30向对应二次电池注入补充用非水电解质的动作,与在上述第2实施方式中说明的注入动作相同,所以不再重复说明。
根据第3实施方式,能够在盖体201的内表面侧且对应二次电池20的开口部108及栓体109的周围形成密闭空间202。由此,能够在密闭空间202内从开口壁部卸下栓体109,能够将补充用的非水电解质注入到对应二次电池20中,而且不会暴露在外部环境下。因此,能够在注入补充用非水电解质的动作过程中始终避免补充用非水电解质被暴露在高湿度下的状态,因而能够在低湿度环境下补充非水电解质。
并且,也可以在向注入部204连接注入管205之前,向注入部204连接除湿装置。由此,能够进行密闭空间202内的空气的除湿,能够在低湿度环境下补充非水电解质。并且,盖体201也可以具有用于连接除湿装置的排气部。
在以上的第1~第3实施方式中使用方型的锂离子二次电池进行了说明,但在本发明中采用的带注入功能的二次电池及对应二次电池不限于上述方型的二次电池。例如,在第1~第3实施方式中,说明了用于注入补充用非水电解质的开口部108与由正极105、负极103及隔板104构成的层叠体的边缘方向相对的情况,但层叠体的边缘方向也可以朝向图1中的横方向。并且,正极105、负极103及隔板104可以卷绕,也可以使用圆筒型的带注入功能的二次电池及对应二次电池。
但是,如图1所示,开口部108与层叠体及卷绕体的边缘部分相对时,从开口部108注入的补充用非水电解质容易渗透,所以从这一点讲是优选方式。并且,从具有更多适合于形成开口部108的平坦部分的角度考虑,相比圆筒型的带注入功能的二次电池及对应二次电池,更优选方型的带注入功能的二次电池及对应二次电池。
并且,在第1及第2实施方式中,采用了正极端子和负极端子被设置在收容体101中形成有开口部108的面上的对应二次电池100、20,但正极端子和负极端子也可以被设置在收容体101的其他面上。例如,如图10所示,各端子及集电导线也可以设置在收容体101的与形成有开口部108的面相对的面上。在这种情况下,不会由于端子的存在而限制开口部108、连接部110、注入装置30等的结构。并且,关于注入动作也能够获得比较高的自由度。
<第4实施方式>
第4实施方式涉及一体型的带注入功能的二次电池。
《非水电解质二次电池的结构》
使用图11来说明本实施方式的带注入功能的二次电池。在本实施方式中采用层叠方型锂离子二次电池。图11是本实施方式的带注入功能的二次电池的简要剖视图。
在图11中,带注入功能的二次电池300具有作为框体的收容体301。在收容体301内划分有收容室302、与该收容室302连通的开口部308、通过该开口部308与收容室302连通的副收容室309。用于使收容室302和副收容室309连通的开口部308被栓体310堵塞,在与收容室302隔绝的副收容室309中收容有补充用非水电解质311。
将多个正极303、隔板304及负极305按照该顺序进行层叠,并收容在收容室302中。并且,在收容室302内填充了非水电解质306。由正极303、隔板304、负极305及非水电解质306构成发电部307。
各正极303和各负极305分别与收容室302内的未图示的正极集电导线及负极集电导线连接。各正极集电导线及负极集电导线的一部分形成为向收容体301的外侧突出,该突出的部分分别成为带注入功能的二次电池300的正极端子和负极端子。
正极303具有在集电体表面形成有正极活性物质材料的结构。正极活性物质材料可以采用在锂离子二次电池中通常采用的锂与过渡金属的复合氧化物。在本实施方式中,在采用尤其需要提高稳定性的大容量的锂离子二次电池的情况下,关于正极303的材料,优选采用具有橄榄石型结构的化合物。更具体地讲,优选采用非水电解质的分解比较少、稳定性高的磷酸铁锂。
隔板304具有如下作用,将正极303和负极305隔离以防止内部短路,并保持电解液即非电解质,保持正极负极之间的离子传导性。关于隔板304的材料,可以采用聚乙烯、聚丙烯等聚烯烃类的微多孔膜。并且,也可以采用由玻璃纤维、芳香族聚酰胺纤维、纤维素纤维等构成的无纺布。这种无纺布的热稳定性高,能够提高电池的安全性。
负极305具有在集电体表面形成有负极活性物质材料的结构。关于负极活性物质材料,可以采用通常在锂离子二次电池中使用的材料。尤其优选采用可逆性良好的石墨等碳类材料。
非水电解质306、311是由锂离子导电体即非水类有机溶剂和锂盐构成的电解液,可以采用在例如碳酸乙烯酯、碳酸二乙酯等中溶解了LiPF6的电解液。电解液也可以具有粘度。
堵塞开口部308的栓体310只要是能够从收容体301的外侧向开口部308装卸自如的结构即可。例如,如图11所示,可以构成为栓体310的一部分即轴部310a堵塞开口部308,栓体310的另一部分即顶部310b露出于收容体301的外侧。在这种情况下,通过使栓体310的顶部310b向图中上方移动,能够容易从开口部308卸下栓体310,通过使所卸下的栓体310向图中下方移动,能够容易将栓体310插入到开口部308中。
并且,如图11所示,在使顶部310b露出于收容体301的外部的情况下,在收容体301的划分副收容室309的部分形成副开口部312,但优选副开口部312与开口部308相对。例如,在副开口部312位于划分副收容室309的收容体301的侧面,即副开口部312与开口部308不相对的情况下,栓体310的形状变复杂。
收容体301的划分开口部308的部分(以下称为“开口壁部”)的形状、以及栓体310的与开口壁部连接的部分的形状没有特别限制,只要是能够将收容室302与副收容室309隔绝地连接的形状即可。例如,如图11所示,优选在开口壁部及栓体310的相互连接的位置都形成有螺旋形状的槽。通过使开口壁部及栓体310都具有螺旋形状的槽,能够将开口壁部及栓体310旋合连接,能够容易将收容室302与副收容室309隔绝。并且,开口壁部及栓体310也可以具有倾斜的槽来取代螺旋形状的槽,只要是能够相互装卸并紧密连接嵌合的形状即可。
并且,在栓体310的一部分贯通副开口部312并露出于收容体301的外侧的情况下,收容体301的划分副开口部312的部分(以下称为“副开口壁部”)的形状、以及栓体310的与副开口壁部连接的部分的形状没有特别限制,只要是能够将副收容室309与外部隔绝地连接的形状即可。例如,如图11所示,优选在副开口壁部及栓体310的相互连接的位置都形成有螺旋形状的槽,由此能够将副开口壁部及栓体310旋合连接,能够容易将副收容室309与外部隔绝。并且,副开口壁部也可以具有倾斜的槽来取代螺旋形状的槽,只要是能够相互装卸并紧密连接嵌合的形状即可。
并且,优选具有用于填埋栓体310与副开口壁部312的间隙的密封部件,以便提高副收容室309的气密性。例如,如图12A及12B所示,能够在栓体310的顶部310b与轴部310a相连接的部分设置O环形状或者矩形状的密封部件400。并且,也可以在收容体301的外表面侧的表面且副开口部312的附近设置密封部件400。另外,也可以具有用于填埋栓体310与开口部308的间隙的密封部件400。
关于密封部件400优选能够承受有机电解液的材料,例如聚丙烯(PP)、聚乙烯(PE)、PP与PE的共聚物、丁苯橡胶、三元乙丙单体、丁基橡胶、硅酮橡胶、含氟树脂橡胶、聚四氟乙烯制特氟龙(注册商标)密封带等。
优选将收容体301的形成有开口部308及/或副开口部312的各面的面积设为8cm2以上。在收容体301的形成有开口部308及/或副开口部312的各面的面积为8cm2以上的情况下,不需要怎么减小开口部308、副开口部312及栓体310,从成本方面及注入动作的作业性方面讲都是优选方式。在形成有开口部308及/或副开口部312的面的面积小于8cm2的情况下,认为收容体301不能保持足够的强度。更优选形成有开口部308及/或副开口部312的面的面积为10cm2以上。
更具体地讲,在收容体301为方型的情况下,优选收容体301的形成有开口部308及/或副开口部312的面的两条边至少都在1cm以上。在收容体31为圆筒型的情况下,优选收容体301的形成有开口部308及/或副开口部312的面的直径至少都在1cm以上。收容体301的材料没有特别限定,例如可以采用铁、对铁实施镀镍的镀镍铁、不锈钢、铝。
在开口部308及/或副开口部312与栓体310相互旋合连接的情况下,优选收容体301的形成开口部308及/或副开口部312的部分的部件厚度、即开口壁部及/或副开口壁部的厚度为1.5mm以上。在开口壁部及/或副开口壁部的厚度为1.5mm以上的情况下,能够将螺旋形状的栓体310牢靠地旋合连接在开口部308及/或副开口部312上,能够容易保持收容室302的气密状态、副收容室309的气密状态。
并且,在带注入功能的二次电池300具有安全阀的情况下,需要使栓体310不能在安全阀动作之前从开口部308脱出。因此,在设置安全阀的情况下,堵塞开口部308的栓体310构成为使其耐压达到安全阀的动作压力以上。另外,此处所说的耐压是指栓体310不能从开口部308脱出的压力。
《制作带注入功能的二次电池》
下面,说明上述的带注入功能的二次电池300的制作方法的一例。
图13A~13C是表示制造第4实施方式的带注入功能的二次电池的工序的一例的简要图。
首先,准备如图13A所示的在收容室302收容了发电部307的收容体301。在此时的收容体301中,除了开口部308及副开口部312之外,还形成有用于向副收容室309注入补充用非水电解质的注入部500。
关于将发电部307收容在收容室302中的方法,可以按照通常的层叠型锂离子二次电池的制造方法。例如,首先把将正极303、隔板304及负极305按照该顺序进行层叠得到的层叠体,收容在底面敞开的收容室302中。此处的底面是指收容体301的划分收容室302的部分,即图11中的带注入功能的二次电池300的最下面。
并且,被收容在收容室302中的各正极303和各负极305,分别通过未图示的正极集电导线及负极集电导线与正极端子及负极端子连接。该正极端子及负极端子被设置成为贯通构成收容室302的底面的部件。并且,对该部件和底面敞开的收容体301实施激光焊接,由此形成收容室302。
采用这种收容方法,形成划分在底面具有正极端子及负极端子的收容室302的收容体301。然后,非水电解质306通过副开口部312及开口部308被注入到收容室302内,由此制作如图13A所示的具有收容了发电部307的收容室302和空的副收容室309的收容体301。
然后,如图13B所示,使栓体310从图中上方向下方旋转并移动,由此将栓体310嵌合在副开口壁部上并且嵌合在开口壁部上。由此,开口部308被堵塞,收容室302与副收容室309隔绝。然后,从注入部500向副收容室309内注入补充用的非水电解质311。
然后,如图13C所示,对注入部500实施激光密封。由此,制作副收容室309与外部隔绝的图11所示的带注入功能的二次电池300。
《带注入功能的二次电池的补充用非水电解质的注入动作》
下面,说明使用了上述的带注入功能的二次电池300的补充用非水电解质的注入动作。
首先,在图11所示的带注入功能的二次电池300中,使栓体310向图中上方旋转并移动,如图14所示,将开口部308打开。通过开口部308被打开,在副收容室309中收容的非水电解质311被注入到收容室302中。此时,如图11所示,在开口壁部与栓体310旋合连接的情况下,能够将开口部308逐渐打开,所以非水电解质311向收容室302中的移动能够顺利进行。另外,在图14中没有图示非水电解质。
并且,在完成非水电解质311向收容室302内的补充后,使栓体310向图中下方旋转并移动,将开口部308堵塞。通过以上动作,能够将非水电解质311补充到收容室302内,而且不会暴露在外部环境下。
如以上说明的那样,根据本实施方式,能够将在与外部隔绝的副收容室309中预先收容的非水电解质311不暴露在外部环境下,即在低湿度环境下经过开口部308注入到收容室302中。另外,将收容室302与副收容室309隔绝的结构、以及将副收容室309与外部隔绝的结构比较简单,不存在成本上升、所占区域(Footprint)增加等问题。
并且,在副收容室309中预先收容的非水电解质311的量可以是一次的补充量,也可以是多次的补充量。在收容多次的补充量的情况下,预先测定注入一次非水电解质时所需要的时间等,并需要测定补充时的开口部308的打开时间等。
并且,副收容室309也可以是多个。例如,在图11所示的带注入功能的二次电池300中,收容体301可以具有通过副开口部312与副收容室309连通的另一个副收容室。在这种情况下,栓体310能够构成为贯通开口部308及副开口部312,再贯通划分另一个副收容室的收容体的部分,并露出于收容体301的外侧。根据这种结构,通过将开口部308打开,在完成将副收容室309内的非水电解质向收容室302的注入后,通过将副开口部312打开,能够将在另一个副收容室中收容的非水电解质依次通过副开口部312、副收容室309及开口部308注入到收容室302中。
并且,本实施方式的带注入功能的二次电池300也可以具有用于向副收容室309注入补充用的非水电解质的补给部。下面,使用图15来表示其一个示例。
图15是具有补给部的非水电解质二次电池的简要剖视图。如图15所示,补给部600具有:补给口部601,其形成于收容体301的划分副收容室309的部分,用于使副收容室309与收容体301的外侧连通;和补给口用栓体602,其装卸自如地堵塞该补给口部601。根据这种结构,能够在副收容室309内注入补充用的非水电解质,所以能够延长带注入功能的二次电池300的寿命。补给部600不限于图15的结构,只要是能够向副收容室309补给非水电解质的结构即可。
在不具有副收容室的普通的非水电解质二次电池中,不存在从外部补充新的非水电解质的概念,在由于非水电解质减少即所谓液体枯竭而使得放电容量下降时,不能从外部补充非水电解质。并且,电池制造需要在露点温度-40℃以下、水分量0.013%以下的环境下进行,在补充非水电解质时也需要低湿度环境,而普通的非水电解质二次电池当然也是如此,即使是日本特开2001-210309号公报公开的锂离子二次电池的结构也不能满足这种要求。
而根据图15所示的带注入功能的二次电池,由于能够预先在副收容室309内收容非水电解质,所以在从外部向副收容室309注入非水电解质时,能够在保持电池内部的环境的状态下进行注入作业,而不受外部环境的影响。因此,例如不仅在制造带注入功能的二次电池300时将收容在副收容室309中的非水电解质注入到收容室302中的作业中,而且在从第2次以后的向副收容室309注入非水电解质的作业中,都能够在低湿度环境下进行补充。
在第4实施方式中使用方型的锂离子二次电池进行了说明,但在本发明中采用的带注入功能的二次电池不限于上述方型的二次电池。例如,在第4实施方式中,说明了用于注入补充用非水电解质的开口部308与由正极303、负极305及隔板304构成的层叠体的边缘方向相对的情况,但层叠体的边缘方向也可以朝向图11中的横方向。并且,正极303、负极305及隔板304可以卷绕,也可以使用圆筒型的带注入功能的二次电池。
但是,如图11所示,开口部308与层叠体及卷绕体的边缘部分相对时,从开口部308注入的补充用非水电解质容易渗透,所以从这一点讲是优选方式。并且,从具有更多适合于形成开口部308的平坦部分的角度考虑,相比圆筒型的带注入功能的二次电池,更优选方型的带注入功能电池。
根据以上使用第1~第4实施方式说明的本发明,例如,在使用非水电解质二次电池的电动汽车(HEV、EV等)进行车检时,能够容易在低湿度环境下补充非水电解质,所以在车检现场能够实现电池的再生利用。并且,例如对于在太阳能发电和风力发电的蓄电系统中使用的非水电解质二次电池,不需在工厂内回收该非水电解质二次电池,能够在现场实现该非水电解质二次电池的再生利用。另外,在补充非水电解质时,不需要诸如手套式操作箱(Glove box)和干燥室这种特殊的设备和装置,能够在车检现场、太阳能发电厂和风力发电厂利用施工方等通常使用的夹具、工具等进行作业。
示例
(实施例1)
使用图1所示的带注入功能的二次电池10进行了研究。
<制作对应二次电池>
1.制作正极
将90重量份的作为活性物质的LiFePO4、5重量份的作为导电部件的乙炔黑、以及5重量份的作为粘接剂的聚偏氟乙烯进行混合,并添加适当的N-甲基-2-吡咯烷酮作为溶剂,将各材料进行分散,调制了料浆。把该料浆均匀地涂敷在20μm厚的铝集电体的两面上并干燥。并且,利用辊式冲压机对干燥后的铝集电体进行压缩,切断成为长140mm×宽250mm,制作了32个板状正极105。正极105的厚度是230μm。并且,在各正极105焊接铝集电导线。
2.制作负极
将90重量份的作为活性物质的天然石墨和10重量份的作为粘接剂的聚偏氟乙烯进行混合,并添加适当的N-甲基-2-吡咯烷酮作为溶剂,将各材料进行分散,调制了料浆。把该料浆均匀地涂敷在16μm厚的铜集电体的两面上并干燥。并且,利用辊式冲压机对干燥后的铜集电体进行压缩,切断成为长142mm×宽250mm,制作了33个板状负极103。负极103的厚度是146μm。并且,在各负极103焊接镍集电导线。
3.制作隔板
将25μm厚的微多孔性聚乙烯薄膜切断成为长145mm×宽255mm,制作了64个隔板104。
4.制作非水电解质
按照容积比30:70将碳酸乙烯酯和碳酸二乙酯进行混合,在该混合溶液中溶解LiPF6并使LiPF6的浓度达到1mol/L,由此调制了250ml的非水电解质106。
5.制作对应二次电池20
把将各正极105、隔板104、负极103全部按照该顺序进行层叠得到的层叠体收容在上表面开口的收容体中,再注入200ml的非水电解质106。并且,将具有开口部108、连接部110及栓体109的上表面部件配置在收容体的上表面上,对收容体和上表面部件进行激光密封,由此制作了如图1所示的、具有在收容室102中收容了发电部107的收容体101的对应二次电池20。另外,对应二次电池20的制造方法是按照普通的层叠方型锂离子二次电池的制造方法的方法。
在按照上面所述制作的对应二次电池20中,收容体101的箱型形状的部分的外形尺寸为长20mm×宽150mm×高300mm。收容体101的上表面即形成有开口部108的面的尺寸为长20mm×宽150mm,栓体109的轴部的直径为3mm。并且,收容体101的上表面的厚度为0.5mm,在上表面上层叠1.0mm厚的加强板,并进行调节使上表面部分的厚度达到1.5mm。
<初期的电池性能>
测定所制作的对应二次电池20的初期电池性能,公称电压为3.2V,内部电阻为3mΩ。并且,在氛围温度25℃的条件下,以10A/3.8V的恒定电流/恒定电压进行充电6小时,再以10A进行放电到2.25V,此时的放电容量是50Ah。
<充电放电循环试验>
使用所制作的对应二次电池20,在氛围温度25℃的条件下,按照与上述放电容量测定时的充电放电条件相同的条件进行了循环试验。在循环次数为1500次时,放电容量低于初期放电容量的70%。
<补充非水电解质>
在放电容量低于初期放电容量的70%的对应二次电池20上为了安装注入装置30,连接对应二次电池20的连接部110和注入装置30的盖体201。另外,通过在对应二次电池20上安装注入装置30,构成第1实施方式的带注入功能的二次电池10。并且,在注入部204上连接旋转泵,对形成于盖体201内的密闭空间202进行抽真空以达到0.1kPa,然后导入氮气以恢复到大气压。
然后,使装卸部203按照图5A~5C所示进行动作,将栓体109从开口部108卸下。并且,将取代旋转泵的注入管205插入到注入部204中,从注入管205朝向密闭空间202注入20ml补充用非水电解质。补充用非水电解质采用按照上面所述制作的非水电解质。
然后,装卸部203使栓体109移动并插入到开口壁部中,然后将注入装置30从对应二次电池20卸下。另外,在本实施例中,连接部110与盖体201、以及栓体109与开口壁部都通过旋合连接而连接。
<补充后的电池性能>
将按照上面所述补充了非水电解质后的对应二次电池20在常温下放置24小时,然后在25℃的氛围温度下,进行两次与上述放电容量测定时的充电放电条件相同的条件的循环试验。并且,利用上述的方法测定对应二次电池20的放电容量,得知补充后的放电容量是47Ah,恢复到了第一次循环的94%。
(实施例2)
把进行补充的补充用非水电解质的量设为10ml,进行与实施例1相同的研究,得知相对于初期放电容量50Ah,补充后的放电容量是45Ah,恢复到了第一次循环的90%。
(实施例3)
把进行补充的补充用非水电解质的量设为50ml,进行与实施例1相同的研究,得知相对于初期放电容量50Ah,补充后的放电容量是48Ah,恢复到了第一次循环的96%。
(实施例4)
并且,将尺寸较长的正极、负极和隔板一并卷绕制作了圆筒型的对应二次电池,并进行与实施例1相同的研究,得到了相同的效果。
(实施例5)
使用图11所示的带注入功能的二次电池300进行了研究。
<制作带注入功能的二次电池>
1.制作正极
利用与正极105的制作方法相同的方法制作了32个正极303。
2.制作负极
利用与负极103的制作方法相同的方法制作了33个负极305。
3.制作隔板
利用与隔板104的制作方法相同的方法制作了64个隔板304。
4.制作非水电解质
利用与非水电解质106的制作方法相同的方法制作了250ml的非水电解质306。
5.制作带注入功能的二次电池300
把所制作的各正极303、隔板304、负极305全部按照该顺序进行层叠,并使最外层为负极305而得到的层叠体,收容在底面敞开的收容室302中。并且,按照现有的收容方法,对构成收容室302的底面的部件和收容体301进行激光焊接,由此形成划分有底面具有正极端子和负极端子的收容室302的收容体301。然后,将200ml的非水电解质306通过副开口部312和开口部308注入到收容室302内,制作了如图13A所示的、具有收容了发电部307的收容室302和空的副收容室309的收容体301。
然后,如图13B所示,将栓体310嵌合在副开口部312和开口部308中,将收容室302与副收容室309隔绝,然后通过注入部500向副收容室309注入30ml的所制作的非水电解质306作为非水电解质311。然后,对注入部500进行激光密封,由此将副收容室309与收容体311的外侧隔绝。
在按照上面所述制作的带注入功能的二次电池300中,箱形状的收容体301的外形尺寸为长20mm×宽150mm×高320mm。收容体301的上表面即形成有副开口部312的面的尺寸为长20mm×宽150mm,栓体310的轴部的直径为3mm。并且,收容体301的上表面的厚度为0.5mm,在上表面上层叠加强板,并进行调节使上表面部分的厚度达到1.0mm。并且,将收容室302和副收容室309隔绝的部分、即形成有开口部308的面的尺寸为长20mm×宽150mm,厚度为1.5mm。
<初期的电池性能>
测定所制作的带注入功能的二次电池300的初期电池性能,公称电压为3.2V,内部电阻为3mΩ。并且,在氛围温度25℃的条件下,以10A/3.8V的恒定电流/恒定电压进行充电6小时,再以10A进行放电到2.25V,此时的放电容量是50Ah。
<充电放电循环试验>
使用所制作的带注入功能的二次电池300,在氛围温度25℃的条件下,按照与上述放电容量测定时的充电放电条件相同的条件进行了循环试验。在循环次数为1500次时,放电容量低于初期放电容量的70%。
<补充非水电解质>
在放电容量低于初期放电容量的70%的带注入功能的二次电池300中,使栓体310移动,由此将开口部308打开,将收容在副收容室309中的30ml的非水电解质311通过开口部308注入到收容室302内。由此,对发电部307补充了30ml的非水电解质311。在完成补充后,将栓体310恢复到原来的位置,将开口部308堵塞。
<补充后的电池性能>
将按照上面所述补充了非水电解质后的带注入功能的二次电池300在常温下放置24小时,然后在25℃的氛围温度下,进行两次与上述放电容量测定时的充电放电条件相同的条件的循环试验。并且,利用上述的方法测定带注入功能的二次电池300的放电容量,得知补充后的放电容量是47Ah,恢复到了第一次循环的94%。
(实施例6)
把进行补充的补充用非水电解质的量设为10ml,进行与实施例5相同的研究,得知相对于初期放电容量50Ah,补充后的放电容量是44.9Ah,恢复到了第一次循环的89.8%。
(实施例7)
把进行补充的补充用非水电解质的量设为50ml,进行与实施例5相同的研究,得知相对于初期放电容量50Ah,补充后的放电容量是48.1Ah,恢复到了第一次循环的96.2%。
(实施例8)
并且,将尺寸较长的正极、负极和隔板一并卷绕制作了圆筒型的带注入功能的二次电池,并进行与实施例5相同的研究,得到了相同的效果。
根据以上结果得知,通过对放电容量降低到初期放电容量的70%以下的锂离子二次电池,补充初期非水电解质的量(200ml)的5~25%的量的非水电解质,能够使放电容量恢复到89.8%以上,结果,能够延长锂离子二次电池的寿命。
此次公开的实施方式及实施例从各方面讲都只是示例,不能认为限定于这些实施方式及实施例。本发明的范围不是上述说明的范围,而是通过权利要求书进行公开,可以理解为包含与权利要求书同等意义及范围内的全部变更。
本发明适合应用于非水电解质的补充。尤其适合对难以移动到手套式操作箱中的大中型非水电解质二次电池补充非水电解质。

Claims (5)

1.一种带注入功能的非水电解质二次电池,具备收容体和栓体,
所述收容体包括用于收容具有正极、负极、隔板及非水电解质的发电部的收容室、与所述收容室连通的开口部、以及通过所述开口部与所述收容室连通并用于收容补充用的非水电解质的副收容室,
所述栓体构成为能够从所述收容体的外侧在所述开口部上自由地装卸,
在所述收容体中划分出所述副收容室的部分形成有副开口部,所述副开口部用于使所述副收容室与所述收容体的外部连通,
所述栓体和构成所述开口部的开口壁部具有能够相互装卸并紧密连接嵌合的形状,且所述栓体和构成所述副开口部的副开口壁部具有能够相互装卸并紧密连接嵌合的形状,
所述栓体通过分别与所述副开口壁部以及所述开口壁部嵌合,能够将所述副收容室以及所述收容室与外部隔绝,并且将所述副收容室与所述收容室隔绝,并且,在所述栓体与所述副开口壁部嵌合的状态下,通过打开所述开口部,在将所述副收容室以及所述收容室与外部隔绝的状态下,将所述副收容室与所述收容室连通。
2.根据权利要求1所述的带注入功能的非水电解质二次电池,其中,
在所述栓体和所述副开口壁部之间,具有用于提高所述副收容室的气密性的密封部件。
3.根据权利要求1或2所述的带注入功能的非水电解质二次电池,其中,
所述开口部与由所述正极、所述负极及所述隔板形成的层叠体或卷绕体的边缘方向相对。
4.根据权利要求1所述的带注入功能的非水电解质二次电池,其中,
所述带注入功能的非水电解质二次电池的补充非水电解质后的放电容量为44.9Ah以上。
5.根据权利要求4所述的带注入功能的非水电解质二次电池,其用于电动汽车。
CN201410130668.8A 2009-11-06 2010-11-08 带注入功能的非水电解质二次电池 Expired - Fee Related CN103915599B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2009-254748 2009-11-06
JP2009254748A JP5083838B2 (ja) 2009-11-06 2009-11-06 非水電解質注入機能付非水電解質二次電池、ならびにこれに用いる非水電解質二次電池および非水電解質注入装置
JP2009-258952 2009-11-12
JP2009258952A JP4987944B2 (ja) 2009-11-12 2009-11-12 非水電解質二次電池
CN201010541810.XA CN102055010B (zh) 2009-11-06 2010-11-08 带注入功能的非水电解质二次电池、以及其使用的非水电解质二次电池和非水电解质注入装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201010541810.XA Division CN102055010B (zh) 2009-11-06 2010-11-08 带注入功能的非水电解质二次电池、以及其使用的非水电解质二次电池和非水电解质注入装置

Publications (2)

Publication Number Publication Date
CN103915599A CN103915599A (zh) 2014-07-09
CN103915599B true CN103915599B (zh) 2017-01-18

Family

ID=43959125

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201410130668.8A Expired - Fee Related CN103915599B (zh) 2009-11-06 2010-11-08 带注入功能的非水电解质二次电池
CN201010541810.XA Expired - Fee Related CN102055010B (zh) 2009-11-06 2010-11-08 带注入功能的非水电解质二次电池、以及其使用的非水电解质二次电池和非水电解质注入装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201010541810.XA Expired - Fee Related CN102055010B (zh) 2009-11-06 2010-11-08 带注入功能的非水电解质二次电池、以及其使用的非水电解质二次电池和非水电解质注入装置

Country Status (2)

Country Link
US (1) US8752573B2 (zh)
CN (2) CN103915599B (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102163735B (zh) * 2010-02-15 2014-03-12 夏普株式会社 二次电池;太阳能发电系统、风力发电系统和车辆;以及二次电池的制造方法
US20210124312A1 (en) * 2014-03-13 2021-04-29 Mark Allen Bedol Liquid Powered Device
WO2016097129A1 (en) * 2014-12-18 2016-06-23 Solvay Sa Electrolyte composition comprising fluorinated carbonate, and battery comprising the same
JP6288065B2 (ja) * 2015-12-24 2018-03-07 トヨタ自動車株式会社 二次電池の製造方法
KR102145492B1 (ko) * 2016-06-14 2020-08-18 주식회사 엘지화학 수명 특성이 향상된 전지시스템 및 전지시스템의 가동 방법
KR102031276B1 (ko) 2016-08-26 2019-10-11 주식회사 엘지화학 이차전지 및 이차전지의 전해액 보충 방법
CN109411690B (zh) * 2017-08-18 2020-08-28 北京好风光储能技术有限公司 一种用于锂浆料电池和锂浆料电池维护再生设备的对接装置
WO2018184566A1 (zh) 2017-04-07 2018-10-11 北京好风光储能技术有限公司 一种锂浆料电池系统
KR102038562B1 (ko) * 2017-06-15 2019-10-30 주식회사 엘지화학 이차 전지
CN109411638B (zh) * 2017-08-18 2021-08-13 北京好风光储能技术有限公司 一种锂浆料电池、模块及其制备方法
CN109802090B (zh) * 2018-12-29 2022-03-04 合肥国轩高科动力能源有限公司 一种方形壳体电池手动注液夹具
JP7202532B2 (ja) 2019-11-27 2023-01-12 トヨタ自動車株式会社 非水電解質二次電池

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3684581A (en) * 1969-02-24 1972-08-15 Sic Soc Ind Du Caoutchouc Sa Dry-charged storage battery having an electrolyte reservoir and the battery case combined in a unit
US3744516A (en) * 1970-03-04 1973-07-10 R Rowe Combined filling device and vent cut-off valve for electric storage cells

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0290455A (ja) 1988-09-27 1990-03-29 Hitachi Maxell Ltd 筒形密閉電池
US5718989A (en) * 1995-12-29 1998-02-17 Japan Storage Battery Co., Ltd. Positive electrode active material for lithium secondary battery
JPH11149937A (ja) 1997-11-13 1999-06-02 Toyota Motor Corp 密閉式二次電池
CN2315659Y (zh) * 1997-11-18 1999-04-21 卢镔 一种蓄电池帽头装置
JPH11213985A (ja) 1997-11-21 1999-08-06 Sony Corp 電解液注入装置及び電解液注入方法
CN2316659Y (zh) 1997-11-22 1999-04-28 台湾东六有限公司 柴油废气自动检测机
JP2000208133A (ja) 1999-01-19 2000-07-28 Toshiba Electronic Engineering Corp 密閉電池の注液口封止方法と装置
US6248138B1 (en) * 1999-06-09 2001-06-19 Delphi Technologies, Inc. Activation and sealing of storage batteries
JP2001210309A (ja) 2000-01-31 2001-08-03 Japan Storage Battery Co Ltd 非水電解質二次電池およびその使用方法
US7004207B2 (en) * 2004-01-16 2006-02-28 More Energy Ltd. Refilling system for a fuel cell and method of refilling a fuel cell
JP4963550B2 (ja) * 2006-01-31 2012-06-27 本田技研工業株式会社 燃料電池
US8047241B2 (en) * 2008-03-26 2011-11-01 Hibar Systems, Ltd. Method for filling electrolyte into battery cell and apparatus for carrying out the method
CN101552356A (zh) 2009-05-14 2009-10-07 林道勇 可维护锂离子电池及其维护方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3684581A (en) * 1969-02-24 1972-08-15 Sic Soc Ind Du Caoutchouc Sa Dry-charged storage battery having an electrolyte reservoir and the battery case combined in a unit
US3744516A (en) * 1970-03-04 1973-07-10 R Rowe Combined filling device and vent cut-off valve for electric storage cells

Also Published As

Publication number Publication date
US8752573B2 (en) 2014-06-17
US20110108134A1 (en) 2011-05-12
CN103915599A (zh) 2014-07-09
CN102055010A (zh) 2011-05-11
CN102055010B (zh) 2014-04-16

Similar Documents

Publication Publication Date Title
CN103915599B (zh) 带注入功能的非水电解质二次电池
Goodenough et al. A perspective on electrical energy storage
CN106816626B (zh) 具有离子阱的锂离子电池
US9350022B2 (en) Cathode active material, cathode and nonaqueous secondary battery
CN103050290B (zh) 一种内结合超级电容器
CN109478685B (zh) 固体电解质组合物、以及含固体电解质的片材、全固态二次电池、电极片及它们的制造方法
CN104538207B (zh) TiNb2O7/碳纳米管复合材料的制备方法及以该材料为负极的锂离子电容器
US20140377621A1 (en) Secondary battery
CN103078081B (zh) 表面包覆的锂离子电池正极活性材料颗粒及其制备方法
KR20010082181A (ko) 리튬 2차전지 및 기기
CN110121804A (zh) 负极活性物质及其制造方法、负极、电池、电池组、电子设备、电动车辆、蓄电装置以及电力系统
CN110383555A (zh) 正极、电池、电池包、电子设备、电动车辆、蓄电装置和电力系统
CN102456916A (zh) 锂离子二次电池
EP2503634A1 (en) Method for manufacturing lithium ion secondary battery
JP5083838B2 (ja) 非水電解質注入機能付非水電解質二次電池、ならびにこれに用いる非水電解質二次電池および非水電解質注入装置
CN107949927A (zh) 电池、电池壳、电池组、电子装置、电动车辆、蓄电装置以及电力系统
CN107204442A (zh) 非水电解质电池、电池包及车辆
CN103094567A (zh) 一种锂快离子导体复合的锂电池正极材料及其制备方法
JP4987944B2 (ja) 非水電解質二次電池
CN107492635A (zh) 一种复合钠离子电池正极材料Na3V2(PO4)3/C及其制备方法
KR101394743B1 (ko) 리튬이온 커패시터 및 그 제조방법
US20220407151A1 (en) Electrochemical element, as well as modules and batteries containing same
US12113211B2 (en) High energy density molten lithium-selenium batteries with solid electrolyte
CN107482181A (zh) 一种复合锂离子电池正极材料Li3V2(PO4)3/C及其制备方法
WO2017168330A1 (en) Lithium-ion cell

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170118

Termination date: 20191108

CF01 Termination of patent right due to non-payment of annual fee