CN103831074B - 逆流混合反应器 - Google Patents

逆流混合反应器 Download PDF

Info

Publication number
CN103831074B
CN103831074B CN201310588991.5A CN201310588991A CN103831074B CN 103831074 B CN103831074 B CN 103831074B CN 201310588991 A CN201310588991 A CN 201310588991A CN 103831074 B CN103831074 B CN 103831074B
Authority
CN
China
Prior art keywords
metal
reactor
mixing
fluid
import
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310588991.5A
Other languages
English (en)
Other versions
CN103831074A (zh
Inventor
爱德华·亨利·莱斯特
巴里·詹姆斯·阿佐帕尔迪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PROMETHEAN PARTICLES Ltd
Original Assignee
PROMETHEAN PARTICLES Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PROMETHEAN PARTICLES Ltd filed Critical PROMETHEAN PARTICLES Ltd
Publication of CN103831074A publication Critical patent/CN103831074A/zh
Application granted granted Critical
Publication of CN103831074B publication Critical patent/CN103831074B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/008Processes carried out under supercritical conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/45Mixing liquids with liquids; Emulsifying using flow mixing
    • B01F23/453Mixing liquids with liquids; Emulsifying using flow mixing by moving the liquids in countercurrent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/313Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/2415Tubular reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • C01B13/36Methods for preparing oxides or hydroxides in general by precipitation reactions in aqueous solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • C01B13/36Methods for preparing oxides or hydroxides in general by precipitation reactions in aqueous solutions
    • C01B13/363Mixtures of oxides or hydroxides by precipitation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • C01F17/224Oxides or hydroxides of lanthanides
    • C01F17/235Cerium oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G1/00Methods of preparing compounds of metals not covered by subclasses C01B, C01C, C01D, or C01F, in general
    • C01G1/02Oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G11/00Compounds of cadmium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/02Oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G3/00Compounds of copper
    • C01G3/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G5/00Compounds of silver
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G55/00Compounds of ruthenium, rhodium, palladium, osmium, iridium, or platinum
    • C01G55/004Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • C01G9/02Oxides; Hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F2025/91Direction of flow or arrangement of feed and discharge openings
    • B01F2025/918Counter current flow, i.e. flows moving in opposite direction and colliding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/04Specific aggregation state of one or more of the phases to be mixed
    • B01F23/043Mixing fluids or with fluids in a supercritical state, in supercritical conditions or variable density fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00087Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor
    • B01J2219/00094Jackets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/773Nanoparticle, i.e. structure having three dimensions of 100 nm or less
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/81Of specified metal or metal alloy composition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/811Of specified metal oxide composition, e.g. conducting or semiconducting compositions such as ITO, ZnOx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/813Of specified inorganic semiconductor composition, e.g. periodic table group IV-VI compositions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/895Manufacture, treatment, or detection of nanostructure having step or means utilizing chemical property
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/90Manufacture, treatment, or detection of nanostructure having step or means utilizing mechanical or thermal property, e.g. pressure, heat
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/932Specified use of nanostructure for electronic or optoelectronic application
    • Y10S977/94Specified use of nanostructure for electronic or optoelectronic application in a logic circuit

Abstract

一种用于有效混合不同密度的流体流的混合反应器。在优选实施方案中,所述流体中的一种是超临界水,另一种是盐的水溶液。因而,该反应器使得金属氧化物纳米颗粒的生产能够成为连续过程,而没有任何现有反应器设计中固有的混合不充分所导致的反应器堵塞的风险。

Description

逆流混合反应器
本申请是名为“逆流混合反应器”、申请号为200580004767.0之中国专利申请的分案申请,申请200580004767.0是根据专利合作条约于2005年2月11日提交的国际申请(PCT/GB2005/000483)进入中国国家阶段的国家申请。
技术领域
本发明涉及使得能够有效混合流体流的逆流混合反应器。更具体而言,一种流可以为加热、加压或超临界的流体,而另一种为较高密度的流体。更优选的是,一种流可以为超临界水(scH2O),另一种为含金属的溶液。最优选的是,本发明可用于在高温水中连续合成金属或金属氧化物纳米颗粒,而不堵塞输送管线,并且与现有的反应器设计相比改善了对颗粒尺寸与形状的控制。
背景技术
纳米级尺寸的金属和金属氧化物颗粒具有广泛的用途,包括(但不限于)用于催化剂、颜料、抛光剂、紫外吸收剂和陶瓷中。众所周知,此类颗粒可通过金属盐水溶液与加热、加压或超临界的水的化学反应而形成。原理上,由于该方法允许反应作为连续过程实施,因此其在成本和可行性方面具有超过其它纳米颗粒生成方法的显著优点。然而,难以使用该方法在商业规模上实施反应,这是因为现有反应器构造不允许有效控制沉淀反应,导致频繁堵塞反应器以及不能充分控制颗粒尺寸和形状。因此,在该过程中,水和盐溶液混合的反应器的设计对于所生产的纳米颗粒的尺寸和性质极其重要。
本发明详细描述了一种生产一系列可具有催化活性的金属和金属氧化物纳米颗粒的更有效和通用的方法,因而该方法显然具备工业应用性。
颗粒尺寸对催化过程和其它用途会是重要的,并且颗粒尺寸取决于金属性质以及所希望的应用。例如,商业上有用的氧化铈(来自于Johnson Matthey)具有250m2/g的表面积,而具有60-100m2/g的较低表面积的银颗粒也是商业上有用的。并非最优的是,本发明的反应器生产表面积为100m2/g的CeO2。原则上,这可以利用关注于通过调节操作条件和金属盐浓度而降低颗粒尺寸的附加工作而得以明显改善。
虽然催化剂的表面积非常重要,但是颗粒的物理性质液可以决定其在所希望的应用上的成功。例如,氧化锆纳米颗粒通常在结构上是无定形的,此种形态不适用于许多催化应用。本发明的反应器已经制备出有用得多的结晶ZrO2
超临界流体、尤其是超临界水已经用于生产金属纳米颗粒(Adschiri,Kanazawaet a1.1992;Adschiri,Hakuta et a1.2000;Galkin,Kostyuk et a1.2000:Adschiri,Hakuta et a1.2001;Cabanas,Darr et a1.2001;Cote,Teja et a1.2002;Hao andTeja2003;Viswanathan and Gupta2003;Viswanathan,Lilly et a1.2003),然而,现有方法均使用基于T-或Y-形反应器的变体(图1)。
这些方法的主要局限性在于颗粒沉淀的位置不可控。已知颗粒很容易在反应器输送管线中沉淀,尤其是在进口管处。已经发现T形构件反应器在较高密度流体进口处频繁发生堵塞,导致需要清洗和重装反应器的时间成本和不便。这些堵塞可发生在较高密度流体进料到达T形构件处的几分钟之内。此外,如果系统处于压力下,则存在与频繁堵塞相关的明显的健康和安全隐患(即爆炸风险增加)。本发明由基本消除上述问题的新型反应器设计组成。
发明内容
因而,根据本发明第一方面,提供用于连续混合两种或更多种不同密度流体的逆流混合反应器,包括第一进口和出口,其特征在于一个或多个其它进口与第一进口完全相反,并位于出口内。
本发明的原理优点在于混合反应器利用流体之间密度的不同以避免预混合或停滞,从而使输送管线或反应器的堵塞最小化。这是其它反应器构造的主要问题并由在进口向混合器的反混所引起。这导致混合点的颗粒形成上升流并随后引起流动受限,最后堵塞反应器。本发明通过消除在反应器进口内发生混合的潜在可能而解决该问题。
应该理解,提及“不同密度”包括大约大于5%、10%、20%、50%、100%、500%或这些值中任意值之间的范围的差值。
在本发明的一个实施方案中,提供用于连续混合两种流体的逆流混合反应器,包括第一进口和出口,其特征在于另一进口正好与第一进口相对并位于出口内。
优选的是,一个或多个其它进口共轴位于出口内。
在本发明的另一实施方案中,提供适合容纳以第一方向流动的反应流体的第一导管和适合容纳第二反应流体的第二导管的出口,所述出口具有至少是朝向通常与第一方向相反方向的部件,并且所述出口位于所述第一导管内。
应该理解,提及“通常相反”是指从旁侧(45°)至正好相反(180°)的角度。
在本发明的又一实施方案中,逆流混合反应器排列为垂直构型。在该构型中,较低密度流体可被引入到上部进口,因而可与引入到下部进口的较高密度流体混合。
优选的是,所述流体中至少有一种处于亚临界、近临界或超临界状态。应该理解,提及超临界流体包括烃(例如丙酮)、水或致密相气体。更优选的是,所述流体中至少有一种例如较低密度流体是加热、加压或超临界的水。
优选的是,利用环绕出口的加热器使较低密度流体例如加热、加压或超临界的水保持为热的。这是有利的,因为它使得反应可以在初始混合点之外继续,由此改善产物颗粒的质量或数量。
优选所述流体中至少有一种是金属盐或化合物的溶液,更优选金属盐或化合物的水溶液;最优选过渡金属盐溶液。特别优选的是,所述流体中至少有一种例如较高密度流体是金属的金属盐水溶液,所述金属选自包括钌、镉、铑、钯、铁、铈、钛、锆、铜和银的过渡金属,尤其优选的是所述金属盐是氧化物。
较高密度流体优选比较低密度流体温度低。为此,较高密度流体在引入到混合反应器之前冷却和/或较低密度流体在引入到混合反应器之前加温。
冷却较高密度流体例如金属盐溶液的优点在于它使得金属盐可以在发生混合之前保持相对低温。因而,不发生金属盐溶液的预热。二者都节省能量并消除提高盐流温度将导致金属盐过早沉淀的可能性。已知对于特定金属盐例如铜盐来说碰巧如果金属盐溶液的本体温度超过50-60℃就会从溶液中沉淀出来。过早沉淀的趋势部分取决于金属盐及其在溶液中的浓度。此外,当与热得多的超临界H2O流接触时金属盐溶液的快速加热瞬时导致颗粒形成。而且,本发明解决了设计为保持盐的水溶液流低温并防止水溶液流混合或相互作用直至其到达化学反应发生区域的现有反应器遇到的堵塞问题。这令人惊奇地控制沉淀并使其位于化学反应点处。其它好处在于冷的盐溶液还可作为有效的散热器,以移除来自放热反应的热。
优选的是,较高密度流体例如金属盐溶液利用散热器冷却。利用金属盐进口周围的散热器的优点在于确保热从反应中有效耗散-这并未在大多数现有反应器设计中实施,这些现有的反应器设计没有阻止两种流的混合因而不能被冷却。
应该理解,无论是较高密度流体被冷却还是较低密度流体被加热,优选在两种流体流之间存在温度差。理想的是,该温度差将大致大于50、100、200、300、400或500℃或处于这些值中任意值之间的范围。最优选的是,温度差为380℃。
在本发明的另一实施方案中,一个或多个其它进口包括异型喷嘴,例如圆锥形漏斗。
该漏斗构造允许控制和对称混合两种流。这是与现有技术的明显区别,在现有技术中通常使用T形构件混合两种流。应该注意到漏斗不是该设计的基本部件,这是因为反应器可仅使用管道运行。然而,漏斗有助于两溶液的混合并允许得到比进口仅为管道的情况下更为一致的颗粒尺寸和形态。在现有技术中有利的T形构件没有产生穿过进口进入混合区的均匀混合,导致频繁的反应器堵塞以及随后的停工时间。
优选的是,两种或更多种流体流在压力下混合。更优选的是,使两种或更多种流体流加压至约50、100、200、300或400巴或在任意这些值之间的范围。最优选的是,将两种或更多种流体流加压至225巴。
至于本发明的第二方面,提供包括串联排列的一个或多个本发明的混合反应器的混合室。该布置的优点在于允许连续混合两种或更多种流体以进一步细化颗粒尺寸。
至于本发明的第三方面,提供一种制备金属纳米颗粒的方法,包括输送金属盐溶液通过根据本发明的混合反应器的第一进口,并输送处于亚临界、近临界或超临界状态的流体(例如超临界水)通过与第一进口完全相反的另一进口,其中所述另一进口位于出口内,使得混合溶液一旦混合就离开反应器。
通过本发明提供的更有效混合允许生产表面积明显高于现有技术中所观察到的金属氧化物纳米颗粒。例如,已经通过本发明方法生产了具有200m2/g的较高表面积的ZrO2纳米颗粒,所述较高表面积可潜在地提高其催化活性。已经在显著降低堵塞的本发明反应器中制备了以前难以生产的金属和金属氧化物,例如约60m2/g的银。这表明在本发明的混合反应器中可以生产比现有设计的设备更宽范围的潜在纳米颗粒金属基催化剂。
至于本发明的第四方面,提供一种制备金属纳米颗粒的方法,包括将超临界水的溶液与金属(例如过渡金属)盐的水溶液混合,其特征在于所述金属盐的水溶液在混合之前冷却。
至于本发明的第五方面,提供可通过本文所限定的方法得到的金属纳米颗粒。优选的是,所得颗粒是两种或更多种金属的混合物。
附图说明
图1:公知的(现有的)T形和Y形反应器的示意图。
图2:本发明的逆流混合反应器的示意图(漏斗反应器几何示意图)。
图3:在通过CFD模拟产生的本发明逆流混合反应器内的漏斗装置的示意图(漏斗形超临界出口图)。
图4:引入本发明的逆流混合反应器(引入本发明的混合反应器)而允许连续生产颗粒的装置的示意图。
图5:示出增加流速对所得颗粒表面积的影响的图(表面积与金属盐流量之间的关系)。
图6:示出增加温度对所得颗粒表面积的影响的图(表面积与反应器内部温度之间的关系)。
具体实施方式
首先参考图2,将水溶液流引入到反应器底部,在此优选通过散热器冷却。沿向上的方向对溶液施加压力。沿相反的方向即向下引入超临界水至反应器中。超临界水的密度低于水溶液流,因而在反应室中上升,这样与盐的水溶液密切混合。这种混合是高效率的,使得产生金属氧化物纳米颗粒,该纳米颗粒可通过向下流从流出的水溶液中分离出来。
该设计利用两种反应物流(即超临界水和冷盐水溶液)之间的密度差。该密度差在反应器中产生强的、所希望的混合环境,并在混合点处引起强的下向流漩涡。这些漩涡合乎期望地帮助分散金属氧化物颗粒并将其带走,使其不堵塞反应器。
在优选实施方案中,反应器引入如图3所示的漏斗。这有助于反应物的混合并避免与混合下向流相关的脉冲现象。由于超临界水密度较低,因此比冷的溶液更有浮力,其流入并在漏斗表面上形成超临界水膜。该膜非常有效地与流经的更冷的水溶液混合,并且这对于超临界水和水溶液之间反应的动力学具有有益的影响。
图4是引入本发明反应混合器的装置的流程图,该装置通常示为1。该装置包含将水加热至400℃的预热炉。随后,利用Gilson HPLC泵将水流从压力为225巴的装水的第一容器泵送至上部进口。同时,在室温下利用另外的Gilson HPLC泵将金属盐水溶液流从压力为225巴的装金属盐水溶液的第二容器经下部进口泵入。混合之后,混合流经过用来冷却流体流的水冷却器,接着通过由Tescom背压调节器调节的压力传感器2在压力下过滤。在压力下过滤之后,可以收集纳米颗粒3。
参考以下非限制性实施例说明本发明:
实施例1:生产纳米颗粒CeO2
反应式:
利用引入到图4所示装置构造的本发明混合反应器进行以下反应。
水解:Ce(NO3)4+4H2O→Ce(OH)4(x)+4HNO3
脱水:Ce(OH)4→CeO2+2H2O
系统压力设定为228巴。使金属盐溶液(Ce(NO3)4,(0.2M))以5ml/min流经反应器。在50分钟的运行过程中总共使用250ml金属盐溶液。在400℃温度下,使超临界水以10ml/min流经反应器。反应器利用带式加热器保持在370℃,以维持反应。
高压泵和背压调节器系统允许整个装置内保持压力,随后在末端处减压,以使液体产物在常温和常压下释放。根据本发明的装置可不堵塞运行数小时,每小时生产2-5g金属氧化物。
利用上述相似的流动和浓度条件,由本发明的混合反应器得到的其它结果选择示于下表1中:
表1
实施例2:表面积与反应器内流量的对比
图5示出增加向上经过反应器的硝酸铈流量的效果。此处可见随着金属盐流量增加至值8ml/min,表面积增加(从65m2/g至多达到100m2/g)的有趣趋势,而且粒径开始下降。所述增加可能是由于流速与反应动力学之间的关系所引起,而所述降低是由于“过量”金属盐导致产生较大颗粒所引起。
实施例3:表面积与反应器内温度的对比
一个有趣方面是反应器内操作温度对表面积的影响。反应器可通过外部加热至任意给定的亚临界、近临界或超临界温度,可以建立表面积(间接为粒径)与操作温度之间的关系。即使反应器中的加热水进口可亚临界操作,金属盐和加热水之间的温度差也依然存在,并且这将使得进口流变得向上进入管道的下向流出口,如图2所示。
图6是示出表面积如何明显随操作温度而增加的图。这表明粒径(也可能是形态)可通过调节反应器操作调节而得以调整。
本发明还涉及如下技术方案
1.一种用于连续混合两种或更多种不同密度的流体的逆流混合反应器,包括第一进口和出口,其特征在于一个或多个其它进口与第一进口完全相反并位于所述出口内。
2.项目1的混合反应器,包括第一进口和出口,其特征在于另一进口与第一进口完全相反并位于所述出口内。
3.项目1或2的混合反应器,以垂直构型布置。
4.项目1-3中任一项的混合反应器,其中所述流体中至少有一种处于亚临界、近临界或超临界状态。
5.项目4的混合反应器,其中所述流体中至少有一种是加热、加压或超临界的水。
6.项目5的混合反应器,其中较低密度流体例如超临界水利用环绕出口的加热器保持为热的。
7.项目1-6中任一项的混合反应器,其中所述流体中至少有一种是金属盐或化合物的溶液。
8.项目7的混合反应器,其中所述流体中至少有一种是金属盐或化合物的水溶液。
9.项目8的混合反应器,其中所述水溶液是金属的金属盐水溶液,所述金属选自包括钌、镉、铑、钯、铁、铈、钛、锆、铜和银的过渡金属。
10.项目1-9中任一项的混合反应器,其中较高密度流体比较低密度流体温度低。
11.项目10的混合反应器,其中较高密度流体例如金属盐溶液利用散热器冷却。
12.项目1-11中任一项的混合反应器,其中所述一个或多个其它进口包括异型喷嘴,例如圆锥形漏斗。
13.混合室,包括一个或多个串联排列的项目1-12中任一项的混合反应器。
14.用于制备金属或金属氧化物纳米颗粒的方法,包括将金属盐溶液输送经过项目1-12中任一项的混合反应器的第一进口,并将亚临界、近临界或超临界状态的流体输送通过与第一进口完全相反的另一进口,其中所述另一进口位于所述出口内,使得经混合的溶液一旦混合就离开所述反应器。
15.用于制备金属或金属氧化物纳米颗粒的方法,包括混合超临界水溶液与金属(例如过渡金属)盐的水溶液,其特征在于金属盐的水溶液在混合之前冷却。
16.可通过项目14或15的方法得到的金属或金属氧化物纳米颗粒。
17.能够混合两种不同密度流体的装置,其中较低密度流体以相对于较高密度流体的上向流向下的方向引入到装置中。
18.项目17的装置,其特征在于较低密度流体的进口具有圆锥形喷嘴,以帮助流体混合。
19.项目17或18的装置,其中两溶液中密度较高的溶液在进入反应器之前冷却。
20.一种装置,其中串联使用两个或更多个项目17-19中任一项的装置。
21.在项目17-20中任一项的装置中混合两种不同密度的流体的方法,使得所述混合既高效又位于所述装置内。
22.项目21的方法,其中一种或两种流体处于近临界或超临界状态。
23.项目21或项目22的方法,其中所述流体中有一种是近临界或超临界水。
24.项目21-23中任一项的方法,其中所述流体中有一种是盐的水溶液。
25.项目21-24中任一项的方法,其中项目17-20的装置用于合成金属纳米颗粒。
26.项目25的方法,其中项目17-20的装置用于生产纳米颗粒氧化铈。
27.项目25的方法,其中项目17-20的装置用于生产纳米颗粒氧化钛。
28.项目25的方法,其中项目17-20的装置用于生产纳米颗粒氧化锆。
29.项目25的方法,其中项目17-20的装置用于生产纳米颗粒氧化铜。
30.项目25的方法,其中项目17-20的装置用于生产纳米颗粒氧化银。
31.项目25的方法,其中项目17-20的装置用于生产混合的金属氧化物,具体是混合的铜和锌氧化物。
参考文献
Adschiri,T.,Y.Hakuta,et al.(2000).″Hydrothermal synthesis of metaloxide fine particles at supercritical conditions.″Industrial&Engineering Chemistry Research39(12):4901-4907。
Adschiri,T.,Y.Hakuta,et al,(2001).″Hydrothermalsynthesis of metaloxide nanoparticlesatsupercritical conditions.″Journal of Nanoparticle Research3(2-3):227-235
Adschiri,T.,K.Kanazawa,et al.(1992).″Rapid and ContinuousHydrothermal Crystallization of Metal-Oxide Particles in SupercriticalWater.″Journal of the AmericanCeramic Society75(4):1019-1022.
Cabanas,A-,J.A.Darr.et al.(2001).″Continuous hydrothermal synthesisof inorganic materials in a near-critical water flow reaetor;the one-stepsynthesis of nano-particulate Cel-xZrxO2(x=0-1)solid solutions.″Journal of Materials Chemistry11(2):561-568.
Cote,L.J.,A.S.Teja,et al.(2002).″Continuous hydrothermal synthesisand crystallizationof magnetic oxode nanoparticles.″Journal of MaterialsResearch17(9):2410-2416
Galkin,A.A.,B.G.Kostyuk,etal.(2000).″Continuous reactionsinsupercriticel water:Anew route to La2CuO4with a high surface area andenhanced oxygen mobility.″Angewandte Chemie-International Edition39(15):2738-2740
Hao,Y-L-and A.S.Teja(2003).″Continuous hydrothermal crystallizationofalPha-Fe2O3and Co3O4nanoparticles.″Journal of Materials Research18(2):415-422
Viswanathan,R.aud R.B.Gupta(2003)."Formation of zinc oxidenanoparticles in supercridcal water.″Journal of Supercritical Fluids27(2):187-193.
Viswanathan,R.,G.D.Lilly,et al.(2003)."Formation of zinc oxide-titanium dioxide composite nanoparticles in supercritical water.″Industrial&EngineeringChemistryResearch42(22):5535-5540.

Claims (4)

1.一种用于制备金属或金属氧化物纳米颗粒的方法,包括将金属盐溶液输送经过混合反应器的第一进口,并将亚临界、近临界或超临界状态的流体输送通过与第一进口完全相反的另一进口,其中所述另一进口位于出口内,使得经混合的溶液一旦混合就离开所述反应器,所述方法还包括在所述盐溶液与所述流体之间建立温度差,所述混合反应器以垂直构型布置,
其中所述混合反应器是用于连续混合两种或更多种不同密度的流体的逆流混合反应器,包括第一进口、出口、与第一进口完全相反并位于所述出口内的一个或多个其它进口,以及使较低密度流体保持为热的、环绕所述出口的加热器,或用于冷却较高密度流体的散热器,使得在使用时较冷的流体通过所述第一进口而引入,其中较高密度流体比较低密度流体温度低。
2.根据权利要求1所述的用于制备金属或金属氧化物纳米颗粒的方法,其中所述一个或多个其它进口包括异型喷嘴。
3.根据权利要求1所述的用于制备金属或金属氧化物纳米颗粒的方法,包括混合超临界水溶液与金属盐的水溶液,其特征在于金属盐的水溶液在混合之前冷却。
4.根据权利要求1所述的用于制备金属或金属氧化物纳米颗粒的方法,其中所述金属或金属氧化物纳米颗粒包括纳米颗粒氧化铈、纳米颗粒氧化钛、纳米颗粒氧化锆、纳米颗粒氧化铜、纳米颗粒氧化银或混合的铜和锌氧化物中的之一。
CN201310588991.5A 2004-02-11 2005-02-11 逆流混合反应器 Active CN103831074B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GBGB0402963.3A GB0402963D0 (en) 2004-02-11 2004-02-11 Counter current mixing device for two different fluids
GB0402963.3 2005-02-11
CNA2005800047670A CN1917936A (zh) 2004-02-11 2005-02-11 逆流混合反应器

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CNA2005800047670A Division CN1917936A (zh) 2004-02-11 2005-02-11 逆流混合反应器

Publications (2)

Publication Number Publication Date
CN103831074A CN103831074A (zh) 2014-06-04
CN103831074B true CN103831074B (zh) 2019-10-25

Family

ID=32011683

Family Applications (2)

Application Number Title Priority Date Filing Date
CNA2005800047670A Pending CN1917936A (zh) 2004-02-11 2005-02-11 逆流混合反应器
CN201310588991.5A Active CN103831074B (zh) 2004-02-11 2005-02-11 逆流混合反应器

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CNA2005800047670A Pending CN1917936A (zh) 2004-02-11 2005-02-11 逆流混合反应器

Country Status (13)

Country Link
US (1) US7566436B2 (zh)
EP (1) EP1713569B1 (zh)
JP (1) JP5084266B2 (zh)
KR (1) KR101153043B1 (zh)
CN (2) CN1917936A (zh)
AT (1) ATE432761T1 (zh)
AU (1) AU2005211990B2 (zh)
CA (1) CA2597480C (zh)
DE (1) DE602005014740D1 (zh)
DK (1) DK1713569T3 (zh)
ES (1) ES2327755T3 (zh)
GB (1) GB0402963D0 (zh)
WO (1) WO2005077505A2 (zh)

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4461900B2 (ja) 2004-05-10 2010-05-12 富士ゼロックス株式会社 微粒子分散液の送液方法、及び微粒子分散液の送液装置
JP4461941B2 (ja) * 2004-07-21 2010-05-12 富士ゼロックス株式会社 微粒子分散液の送液方法、及び微粒子分散液の送液装置
WO2007065446A2 (en) 2005-12-11 2007-06-14 Scf Technologies A/S Production of nanosized materials
WO2007098111A2 (en) 2006-02-16 2007-08-30 Brigham Young University Preparation of uniform nanoparticles of ultra-high purity metal oxides, mixed metal oxides, metals, and metal alloys
JP5223065B2 (ja) * 2007-03-16 2013-06-26 国立大学法人 岡山大学 マイクロミキサー
JP5232983B2 (ja) * 2007-03-16 2013-07-10 国立大学法人 岡山大学 マイクロミキサー
EP2140930A1 (en) * 2007-03-16 2010-01-06 National University Corporation Okayama University Micromixer
FR2915405B1 (fr) * 2007-04-30 2011-09-09 Areva Np Preparation de particules minerales en milieu co2 supercritique
US9310076B2 (en) 2007-09-07 2016-04-12 Turbulent Energy Llc Emulsion, apparatus, system and method for dynamic preparation
US9144774B2 (en) * 2009-09-22 2015-09-29 Turbulent Energy, Llc Fluid mixer with internal vortex
US9708185B2 (en) * 2007-09-07 2017-07-18 Turbulent Energy, Llc Device for producing a gaseous fuel composite and system of production thereof
EP2185274A4 (en) * 2007-09-07 2012-12-05 Turbulent Energy Inc DYNAMIC MIXTURE OF LIQUIDS
US8715378B2 (en) 2008-09-05 2014-05-06 Turbulent Energy, Llc Fluid composite, device for producing thereof and system of use
US8871090B2 (en) 2007-09-25 2014-10-28 Turbulent Energy, Llc Foaming of liquids
JP2009081301A (ja) * 2007-09-26 2009-04-16 Toyo Tanso Kk 太陽電池ユニット
FR2948034B1 (fr) 2009-07-20 2011-08-19 Centre Nat Rech Scient Synthese de particules par thermohydrolyse de precurseurs mineraux
US8844495B2 (en) 2009-08-21 2014-09-30 Tubulent Energy, LLC Engine with integrated mixing technology
EP2576036B1 (en) * 2010-05-25 2016-01-20 UCL Business Plc. Co-current mixer and method for precipitating nanoparticles
CN103025419B (zh) * 2010-08-11 2016-08-03 株式会社Lg化学 用于制备无机化合物的装置和使用其制备无机化合物的方法
FR2979842B1 (fr) * 2011-09-09 2013-10-04 Commissariat Energie Atomique Procede de synthese en continu de nanoparticules en oxyde metallique par reaction hydrothermale en milieu supercritique
KR101643428B1 (ko) * 2011-11-07 2016-07-28 주식회사 엘지화학 양극 활물질의 제조장치 및 이에 구비되는 교반장치
KR101655921B1 (ko) * 2011-11-07 2016-09-09 주식회사 엘지화학 양극 활물질의 제조장치 및 이에 구비되는 교반장치
JP2015513780A (ja) * 2012-01-04 2015-05-14 ヴァージニア コモンウェルス ユニバーシティ 非レアアース磁性ナノ粒子
US9114378B2 (en) 2012-03-26 2015-08-25 Brigham Young University Iron and cobalt based fischer-tropsch pre-catalysts and catalysts
US9079164B2 (en) 2012-03-26 2015-07-14 Brigham Young University Single reaction synthesis of texturized catalysts
KR101471433B1 (ko) * 2012-05-31 2014-12-10 주식회사 엘지화학 무기 입자의 제조방법
CN102897823B (zh) * 2012-07-26 2014-01-15 北京科技大学 一种超临界水体系氧化制备纳米CeO2粉末装置及工艺
RU2538585C2 (ru) * 2012-08-31 2015-01-10 Общество с ограниченной ответственностью "Инновационные Технологии Синтеза" Способ получения нанодисперсных оксидов металлов
JP5884708B2 (ja) * 2012-10-23 2016-03-15 住友金属鉱山株式会社 銀粉の製造方法及びその製造装置
KR101565303B1 (ko) 2012-11-27 2015-11-03 주식회사 엘지화학 수열 합성 장치 및 이를 사용한 양극 활물질의 제조방법
KR101565298B1 (ko) * 2012-11-27 2015-11-03 주식회사 엘지화학 무기화합물의 제조장치 및 이를 사용한 무기화합물의 제조방법
KR102255664B1 (ko) 2013-01-15 2021-05-24 더 유니버시티 오브 노팅햄 혼합 반응기 및 관련된 공정
US9289750B2 (en) 2013-03-09 2016-03-22 Brigham Young University Method of making highly porous, stable aluminum oxides doped with silicon
CN103331455B (zh) * 2013-07-19 2016-04-13 四川大学 一种放电微等离子体辅助的金属纳米材料连续制备方法
GB201320417D0 (en) 2013-11-19 2014-01-01 Univ Nottingham Mixing reactors
FR3027822A1 (fr) * 2014-11-03 2016-05-06 Guy Baret Preparation de nanoparticules par traitement d'une solution en milieu hydrothermal
JP6080317B2 (ja) * 2015-01-30 2017-02-15 関東電化工業株式会社 無機微粒子の製造方法
JP6488152B2 (ja) * 2015-02-27 2019-03-20 富士フイルム株式会社 酸化第二銅微粒子の製造方法及び酸化第二銅微粒子
US9802176B2 (en) 2015-03-24 2017-10-31 Saudi Arabian Oil Company Method for mixing in a hydrocarbon conversion process
CN107683131B (zh) 2015-06-04 2021-09-28 克里蒂泰克公司 紫杉烷颗粒及其用途
GB201602552D0 (en) * 2016-02-12 2016-03-30 Univ Nottingham Enhanced fabric
AU2017246316B2 (en) 2016-04-04 2022-09-29 Crititech, Inc. Methods for solid tumor treatment
JP6726745B2 (ja) * 2016-07-22 2020-07-22 富士フイルム株式会社 酸化銅微粒子の製造方法及び分散液
US10626021B2 (en) 2017-03-31 2020-04-21 Honda Motor Co., Ltd. Method of making metal and metal oxide nanoparticles
KR20200014279A (ko) 2017-06-09 2020-02-10 크리티테크, 인크. 항신생물 입자의 낭내 주사에 의한 상피낭종의 치료
BR112019022720A2 (pt) 2017-06-14 2020-05-12 Crititech, Inc. Métodos para tratar distúrbios pulmonares
RU2020110399A (ru) 2017-10-03 2021-11-09 Крититек, Инк. Местная доставка противоопухолевых частиц в комбинации с системной доставкой иммунотерапевтических агентов для лечения рака
GB201721808D0 (en) * 2017-12-22 2018-02-07 Sensient Colors Uk Ltd Nanaoparticle dispersions
GB201811076D0 (en) * 2018-07-05 2018-08-22 Sensient Colors Uk Ltd Nanoparticle dispersions
CN109928417B (zh) * 2019-02-28 2022-03-22 昆明理工大学 一种白色纯氧化铈的制备方法
DE102019120020A1 (de) * 2019-07-24 2021-01-28 Analytik Jena Ag Herstellung von Nanopartikeln
CN113750926B (zh) * 2021-09-18 2023-01-10 浙江工业大学 一种适用于强放热体系的反应装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2692764A (en) * 1951-01-19 1954-10-26 Howe Baker Corp Mixing apparatus
US2768123A (en) * 1953-04-01 1956-10-23 Exxon Research Engineering Co Process and apparatus for treating hydrocarbon oils with immiscible reagents
US3726297A (en) * 1971-04-14 1973-04-10 Technicon Instr Method and device for introducing for mixing a first liquid into a second liquid
JPS61238330A (ja) * 1985-04-12 1986-10-23 Mitsui Petrochem Ind Ltd 乳化装置
US4963329A (en) * 1987-03-02 1990-10-16 Turbotak Inc. Gas reacting apparatus and method
JP3051945B2 (ja) * 1991-07-22 2000-06-12 大阪瓦斯株式会社 無機質均一微小球体、及びその製造方法
GB9703673D0 (en) * 1997-02-21 1997-04-09 Bradford Particle Design Ltd Method and apparatus for the formation of particles
JPH11128707A (ja) * 1997-10-29 1999-05-18 Shimizu Corp 大量の液体に少量の液体を混合する装置
GB0117696D0 (en) 2001-07-20 2001-09-12 Bradford Particle Design Plc Particle information
US7718099B2 (en) 2002-04-25 2010-05-18 Tosoh Corporation Fine channel device, fine particle producing method and solvent extraction method
DE20306915U1 (de) 2003-05-05 2003-08-07 Haagen & Rinau Mischtechnik Gm Dispergiervorrichtung

Also Published As

Publication number Publication date
EP1713569B1 (en) 2009-06-03
KR101153043B1 (ko) 2012-06-04
JP2007526113A (ja) 2007-09-13
AU2005211990A1 (en) 2005-08-25
DK1713569T3 (da) 2009-10-12
CN103831074A (zh) 2014-06-04
WO2005077505A3 (en) 2005-11-10
EP1713569A2 (en) 2006-10-25
CA2597480C (en) 2012-08-07
GB0402963D0 (en) 2004-03-17
ES2327755T3 (es) 2009-11-03
WO2005077505A2 (en) 2005-08-25
CA2597480A1 (en) 2005-08-25
AU2005211990B2 (en) 2010-07-29
US7566436B2 (en) 2009-07-28
JP5084266B2 (ja) 2012-11-28
ATE432761T1 (de) 2009-06-15
KR20070001999A (ko) 2007-01-04
DE602005014740D1 (de) 2009-07-16
CN1917936A (zh) 2007-02-21
US20070206435A1 (en) 2007-09-06

Similar Documents

Publication Publication Date Title
CN103831074B (zh) 逆流混合反应器
WO2005077505B1 (en) Counter current mixing reactor
Kawasaki et al. Engineering study of continuous supercritical hydrothermal method using a T-shaped mixer: Experimental synthesis of NiO nanoparticles and CFD simulation
JP3663408B2 (ja) 高温高圧水を用いる微粒子製造方法および微粒子製造装置
US10195671B2 (en) System for preparing nanoparticles by supercritical hydrothermal synthesis
EP2576036B1 (en) Co-current mixer and method for precipitating nanoparticles
CN101939087B (zh) 涡流混合器和获得过饱和溶液或浆液的方法
JP2018508440A (ja) 超臨界溶媒熱合成により表面変性金属酸化物ナノ粒子を製造するための連続フロー式プロセス
KR20080077680A (ko) 나노 크기 재료의 제조 방법
JP2005104830A (ja) 金属酸化物ナノ粒子のプラズマ合成
Panatarani et al. Synthesis of single crystalline ZnO nanoparticles by salt-assisted spray pyrolysis
WO2011131008A1 (zh) 一种利用微通道反应器制备纳米镍粉的方法
TW200401750A (en) Process for preparing fine metal oxide particles
EP3071320B1 (en) Mixing reactor and method
CN103193309A (zh) 废水的混合除盐方法及装置
JP2010075914A (ja) 高温高圧マイクロ混合デバイス
CN108751960A (zh) 一种高温熔体水雾法制备氧化铝基固溶体陶瓷微米粉的方法
RU2736287C1 (ru) Микрореактор с закрученными потоками растворов реагентов
KR20080032432A (ko) 규질이암으로부터 실리카 나노분말 제조 방법
RU2793562C2 (ru) Микрореактор для синтеза наноразмерных частиц из растворов
Ghaddaffi et al. Scaling Up of Continuous Mineral Carbonation Reactor for the Production of High Value PCC Products
JP2024007020A (ja) 流通式水熱合成装置、流通式水熱合成装置に使用する配管構造およびナノ粒子の製造方法
KR100500732B1 (ko) 노즐 스파우팅법에 의한 고기능성 침강성 탄산칼슘 제조 장치 및 그 방법
US20180065073A1 (en) Process for making solid particles
KR20130057504A (ko) 슬러리 환원법을 이용한 코발트 분말 제조 방법 및 그 방법으로 제조된 코발트 분말

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant