KR101565303B1 - 수열 합성 장치 및 이를 사용한 양극 활물질의 제조방법 - Google Patents

수열 합성 장치 및 이를 사용한 양극 활물질의 제조방법 Download PDF

Info

Publication number
KR101565303B1
KR101565303B1 KR1020120134968A KR20120134968A KR101565303B1 KR 101565303 B1 KR101565303 B1 KR 101565303B1 KR 1020120134968 A KR1020120134968 A KR 1020120134968A KR 20120134968 A KR20120134968 A KR 20120134968A KR 101565303 B1 KR101565303 B1 KR 101565303B1
Authority
KR
South Korea
Prior art keywords
hydrothermal synthesis
reactor
hydrophobic
synthesis apparatus
mixer
Prior art date
Application number
KR1020120134968A
Other languages
English (en)
Other versions
KR20140067562A (ko
Inventor
노현국
박홍규
조치호
정왕모
오상승
류지훈
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to KR1020120134968A priority Critical patent/KR101565303B1/ko
Priority to TW102143229A priority patent/TWI520777B/zh
Priority to US14/438,300 priority patent/US9843035B2/en
Priority to PCT/KR2013/010820 priority patent/WO2014084583A1/ko
Priority to EP13858721.7A priority patent/EP2886192B1/en
Publication of KR20140067562A publication Critical patent/KR20140067562A/ko
Application granted granted Critical
Publication of KR101565303B1 publication Critical patent/KR101565303B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/008Processes carried out under supercritical conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/02Apparatus characterised by being constructed of material selected for its chemically-resistant properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/02Feed or outlet devices therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J4/00Feed or outlet devices; Feed or outlet control devices
    • B01J4/001Feed or outlet devices as such, e.g. feeding tubes
    • B01J4/002Nozzle-type elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2204/00Aspects relating to feed or outlet devices; Regulating devices for feed or outlet devices
    • B01J2204/007Aspects relating to the heat-exchange of the feed or outlet devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00087Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor
    • B01J2219/00094Jackets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00245Avoiding undesirable reactions or side-effects
    • B01J2219/00247Fouling of the reactor or the process equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00245Avoiding undesirable reactions or side-effects
    • B01J2219/00252Formation of deposits other than coke
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/02Apparatus characterised by their chemically-resistant properties
    • B01J2219/0204Apparatus characterised by their chemically-resistant properties comprising coatings on the surfaces in direct contact with the reactive components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/02Apparatus characterised by their chemically-resistant properties
    • B01J2219/0204Apparatus characterised by their chemically-resistant properties comprising coatings on the surfaces in direct contact with the reactive components
    • B01J2219/0209Apparatus characterised by their chemically-resistant properties comprising coatings on the surfaces in direct contact with the reactive components of glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/02Apparatus characterised by their chemically-resistant properties
    • B01J2219/0204Apparatus characterised by their chemically-resistant properties comprising coatings on the surfaces in direct contact with the reactive components
    • B01J2219/0227Apparatus characterised by their chemically-resistant properties comprising coatings on the surfaces in direct contact with the reactive components of graphite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/02Apparatus characterised by their chemically-resistant properties
    • B01J2219/0204Apparatus characterised by their chemically-resistant properties comprising coatings on the surfaces in direct contact with the reactive components
    • B01J2219/0236Metal based
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/02Apparatus characterised by their chemically-resistant properties
    • B01J2219/0204Apparatus characterised by their chemically-resistant properties comprising coatings on the surfaces in direct contact with the reactive components
    • B01J2219/0245Apparatus characterised by their chemically-resistant properties comprising coatings on the surfaces in direct contact with the reactive components of synthetic organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/02Apparatus characterised by their chemically-resistant properties
    • B01J2219/025Apparatus characterised by their chemically-resistant properties characterised by the construction materials of the reactor vessel proper
    • B01J2219/0277Metal based
    • B01J2219/0286Steel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

본 발명은 수열법에 의해 무기물 슬러리를 연속적으로 제조하는 장치로서, 적어도 하나 이상의 공급관을 통해 투입되는 하나 이상의 무기물 제조용 전구체 용액이 혼합되어 중간체 슬러리를 생성하는 혼합기; 상기 혼합기 의 일측에 위치하여 생성된 중간체 슬러리를 연속적으로 하기 반응기로 배출하며, 반응기에 인접한 부위의 내면에 소수성 코팅이 형성되어 있는 연결관; 및 열 교환기에 의해 초임계 또는 아임계로 가열된 액상 스트림을 공급받아 상기 연결관으로부터 공급된 중간체 슬러리를 수열 반응시키는 반응기로서, 상기 혼합기로부터 생성된 중간체 슬러리가 투입되는 연결관이 연결되어 있고, 가열된 액상 스트림이 주입되는 주입관이 적어도 하나 이상 연결되어 있는 반응기;를 포함하는 것을 특징으로 하는 수열 합성 장치를 제공한다.

Description

수열 합성 장치 및 이를 사용한 양극 활물질의 제조방법 {Hydrothermal Synthesis Apparatus and Method for Manufacturing Cathode Active Materials Using the Same}
본 발명은 초임계수를 이용한 수열 합성 장치 및 이를 사용한 양극 활물질의 제조방법에 관한 것으로, 더욱 상세하게는, 수열법에 의해 무기물 슬러리를 연속적으로 제조하는 장치로서, 적어도 하나 이상의 공급관을 통해 투입되는 하나 이상의 무기물 제조용 전구체 용액이 혼합되어 중간체 슬러리를 생성하는 혼합기; 상기 혼합기 의 일측에 위치하여 생성된 중간체 슬러리를 연속적으로 하기 반응기로 배출하며, 반응기에 인접한 부위의 내면에 소수성 코팅이 형성되어 있는 연결관; 및 열 교환기에 의해 초임계 또는 아임계로 가열된 액상 스트림을 공급받아 상기 연결관으로부터 공급된 중간체 슬러리를 수열 반응시키는 반응기로서, 상기 혼합기로부터 생성된 중간체 슬러리가 투입되는 연결관이 연결되어 있고, 가열된 액상 스트림이 주입되는 주입관이 적어도 하나 이상 연결되어 있는 반응기;를 포함하는 것을 특징으로 하는 수열 합성 장치 및 그것으로 제조되는 양극 활물질에 관한 것이다.
무기화합물은 다양한 분야에서 원료 내지 최종제품으로 사용되며, 최근 사용량이 급격히 증가하고 있는 이차전지에서도 전극 활물질의 재료로 사용되고 있다.
이차전지의 대표적인 예인 리튬 이차전지는, 일반적으로 양극 활물질로 코발트산 리튬(LiCoO2), 음극 활물질로 탄소재(carbon), 전해질로서 육불화인산 리튬(LiPF6) 등을 사용하고 있다. 상기 양극 활물질로는 층상구조를 가지는 코발트산 리튬(LiCoO2), 니켈산 리튬(LiNiO2) 및 스피넬 구조를 가지는 망간산 리튬(LiMn2O4) 등이 알려져 있으나, 실제로 상업적으로 사용되고 있는 것은 코발트산 리튬이 대부분이다.
그러나, 주성분인 코발트의 수급이 불안정할 뿐만 아니라 코발트의 비용이 높은 관계로, 코발트를 Ni, Mn 등 다른 전이금속으로 일부 치환한 물질 또는 코발트가 거의 포함되지 않은 스피넬 구조의 망간산 리튬 등이 상업적으로 사용되기 시작하였다. 고전압하에서도 구조적으로 보다 안정한 신규 화합물 또는 기존 양극 활물질에 다른 금속산화물을 도핑 또는 코팅하여 안정성을 향상시킨 물질 등도 개발되고 있다.
종래 양극 활물질을 제조하는 방법 중 가장 널리 알려진 방법으로는 건식 소성법과 습식 침전법이 있다. 건식소성법은 코발트(Co) 등의 전이금속 산화물 또는 수산화물 및 리튬 공급원인 탄산리튬 또는 수산화리튬을 건조상태에서 혼합한 후, 700℃ 내지 1000℃의 고온에서 5시간 내지 48시간 동안 소성시킴으로써 양극 활물질을 제조하는 것이다.
상기 건식 소성법은 금속산화물을 제조하기 위해 전통적으로 많이 사용해오던 기술이어서 접근이 용이하다는 장점이 있으나, 원료 물질을 균질하게 혼합하기 어려워 단일상(single phase) 제품을 얻기 어려울 뿐만 아니라 2종 이상의 전이금속으로 이루어지는 다성분계 양극 활물질의 경우 원자 레벨 수준까지 2종 이상의 원소를 균질하게 배열시키기 곤란하다는 단점이 있다. 또한, 전기화학적 성능 개선을 위해 특정 금속 성분을 도핑(doping) 또는 치환 방법을 사용하는 경우에도 소량 첨가된 특정 금속 성분이 균일하게 혼합되기도 힘들 뿐만 아니라, 원하는 크기의 입자를 얻기 위한 분쇄 및 분급 과정에서 손실이 필수적으로 발생한다는 문제점 역시 존재한다.
양극 활물질을 제조하기 위한 통상적인 방법들 중 다른 하나는 습식 침전법이다. 습식 침전법은 코발트(Co) 등의 전이금속 함유 염을 물에 용해시키고 알칼리를 가하여 전이금속 수산화물로 침전시킨 후, 상기 침전물을 여과 및 건조하고, 여기에 리튬 공급원인 탄산리튬 또는 수산화리튬을 건조 상태에서 혼합한 후, 700℃ 내지 1000℃의 고온에서 1시간 내지 48시간 동안 소성시킴으로써 양극 활물질을 제조하는 것이다.
상기 습식 침전법은 특히 2성분 이상의 전이금속 원소를 공침시켜 균질한 혼합체를 얻기 용이한 것으로 알려져있으나, 침전반응에 장시간이 필요할 뿐만 아니라 공정이 복잡하고 부산물로서 폐산 등이 발생하는 문제점이 있다. 이 밖에도 졸젤법, 수열법, 분무열분해법, 이온교환법 등의 다양한 방법이 리튬 이차 전지용 양극 활물질의 제조법으로 제시되고 있다.
한편, 상기의 방법 이외에 고온 및 고압의 물을 이용한 수열 합성을 활용하여 양극 활물질용 무기 화합물을 제조하는 방법이 사용되고 있다.
이와 관련하여 도 1을 참조하면, 종래의 수열 합성장치(10)는, 혼합기(20)의 상부 및 측부에서 전구체 용액이 공급관(22, 22a, 22b)으로 공급되고, 혼합된 전구체 용액이 중간체 슬러리(f1)로 혼합되어 반응기(11)와 연결된 연결관(30)을 통해 반응기(11)로 공급되며, 반응기(11)의 양 측면에서 고온 및 고압의 물을 포함하는 초임계 액상 스트림이 주입되면서, 반응기(11) 내에서 짧은 시간 동안 중간체 슬러리(f1)와 초임계 액상 스트림의 반응이 일어나게 된다.
이때, 반응기(11)로 공급되는 중간체 슬러리(f1)는 시간이 지남에 따라, 중간체 슬러리의 점도와 연결관(30) 내부표면의 마찰력으로 인해 전단응력이 증가하여 중간체 슬러리(f1)의 이동이 원활하게 이뤄지지 않게 되며, 슬러리(f1)가 관 내부표면에 적체된다. 더욱이, 반응기 초입부에서 적체된 중간체 슬러리(f1)의 반응이 일어나면서 초입부가 막히는 현상이 발생할 수 있다.
또한, 초임계수의 높은 온도(약 400℃)로 인하여 연결관(30)의 온도가 상승되면, 중간체 슬러리(f1)에 포함된 무기물의 용해도가 감소하여, 연결관(30)의 표면에 무기물이 석출되어 연결관(30)이 막히는 문제가 발생할 수 있다.
결과적으로, 수열 합성 장치의 연속 운전 시간이 1주일 정도에 불과하고, 막혀있는 반응기를 분해하고 내부 청소를 하는 등에 많은 노동력과 시간이 소요되는 문제가 있다.
따라서, 유입구의 막힘을 최소화하여 연속 운전 시간을 늘림으로써 공정 생산성을 크게 증가시키고 투자비용을 절감할 수 있는 연속식 수열 합성 장치에 대한 필요성이 높은 실정이다.
본 발명은 상기와 같은 종래기술의 문제점과 과거로부터 요청되어온 기술적 과제를 해결하는 것을 목적으로 한다.
본 출원의 발명자들은 심도 있는 연구와 다양한 실험을 거듭한 끝에, 이후 설명하는 바와 같이, 반응기에 인접한 부위의 내면에 소수성 코팅이 형성되어 있는 연결관을 포함하는 수열 합성 장치를 개발하기에 이르렀고, 이러한 방법으로 연결관의 막힘을 최소화하거나 완전히 해소할 수 있음을 확인하고, 본 발명을 완성하기에 이르렀다.
따라서, 본 발명에 따른 수열 합성 장치는, 수열법에 의해 무기물 슬러리를 연속적으로 제조하는 장치로서,
적어도 하나 이상의 공급관을 통해 투입되는 하나 이상의 무기물 제조용 전구체 용액이 혼합되어 중간체 슬러리를 생성하는 혼합기;
상기 혼합기 의 일측에 위치하여 생성된 중간체 슬러리를 연속적으로 하기 반응기로 배출하며, 반응기에 인접한 부위의 내면에 소수성 코팅이 형성되어 있는 연결관; 및
열 교환기에 의해 초임계 또는 아임계로 가열된 액상 스트림을 공급받아 상기 연결관으로부터 공급된 중간체 슬러리를 수열 반응시키는 반응기로서, 상기 혼합기로부터 생성된 중간체 슬러리가 투입되는 연결관이 연결되어 있고, 가열된 액상 스트림이 주입되는 주입관이 적어도 하나 이상 연결되어 있는 반응기;
를 포함하는 구조로 이루어져 있다.
즉, 본 발명의 수열 합성 장치는 반응기에 인접한 부위의 내면에 소수성 코팅이 형성되어 있는 연결관을 포함하고 있어서, 수산화기 또는 수분을 포함하는 중간체 슬러리가 소수성 코팅층에 반발하여, 반응기 초입부에 적체되는 중간체 슬러리를 현저히 감소시킬 수 있으며, 중간체 슬러리의 유입속도 변화를 최소화시켜 반응기 내부의 반응속도를 일정하게 유지할 수 있다. 또한, 중간체 슬러리의 적체량이 적어 반응기 초입부의 조기 반응을 방지하며, 초임계 액상 스트림으로부터 유입되는 열에 의해 석출된 무기물이 코팅층에 반발하여 쉽게 탈리되므로 막힘 현상이 현저하게 줄어든다.
본 발명에서 공급관은 둘 이상의 전구체 용액의 신속한 공급을 위해 다수 개 설치될 수 있으며, 상세하게는, 혼합기 상면의 중심부에 위치한 제 1 공급관, 그것의 일측부에 제 1 공급관 기준으로 10 내지 90도의 내각을 형성하며 위치한 제 2 공급관, 및 제 2 공급관에 대향하도록 타측에 위치한 제 3 공급관으로 구성될 수 있다.
구체적으로, 다수의 공급관은, 서로 다른 성분의 무기물 전구체 용액을 각각의 공급관을 통해 공급할 수 있으며, 제 2 공급관 및 제 3 공급관의 내각을 형성시켜, 전구체 용액의 공급속도를 신속히 할 수 있고, 제 1 공급관으로 공급되는 전구체 용액과의 유체 흐름에 의한 혼합 속도를 조절하여 둘 이상의 전구체 용액이 혼합된 중간체 슬러리의 공급을 원활하게 할 수 있다.
한편, 혼합기 내부로 공급되는 전구체 용액량과 합성 장치의 크기를 고려해 전구체 용액의 혼합을 균일하게 하며 혼합 효율을 높일 수 있는 스태틱(static) 또는 스터링(stirring)형태의 교반부재가 혼합기 내부에 추가로 설치될 수 있다.
상기 연결관에 형성되어 있는 소수성 코팅은 초임계수를 이용한 고온 환경에서 장기간에 걸쳐서 연속사용이 가능하도록 내열성 및 내약품성이 우수한 소수성 물질을 포함하는 코팅으로 이루어질 수 있다.
첫 번째 구체적인 예에서, 상기 소수성 물질들은 불소기를 가지는 유기 물질 또는 소수성 기로 치환된 유기 물질일 수 있으며, 상기 유기 물질은, 예를 들어, PTFE, 및/또는 수산기가 소수성기로 치환된 PVA일 수 있으나 이것으로 한정되는 것은 아니다.
상기 PVA는 친수성인 수산기의 다수가, 예를 들어, 알킬기, 불소로 치환된 알킬기 또는 유기규소기 등으로 치환되어, 전체적으로 소수성을 나타낼 수 있다.
두 번째 구체적인 예에서, 상기 소수성 물질은 불소기를 가진 무기 화합물일 수 있다. 일반적으로, 불소기를 가진 무기화합물은 내열성이 매우 뛰어나 고열의 환경에서도 물리적인 변화가 없으며, 반응성이 낮아 내약품성이 우수하다.
이러한 무기화합물은, 예를 들어, MgF2 및/또는 CaF2의 무기 화합물일 수 있으나 이것으로 한정 되는 것은 아니다.
세 번째 구체적인 예에서, 상기 소수성 코팅은 윤활성 코팅 물질일 수 있다. 상세하게는, 상기 윤활성 코팅 물질은 가혹한 작동환경에서 접촉부위의 윤활이 요구되며, 고온에서 내산화성이 있는 이황화텅스텐(WS2) 및/또는 이황화몰리브덴(MoS2)이 적합하나 이것으로 한정 되는 것은 아니다.
네 번째 구체적인 예에서, 상기 소수성 물질은 카본(carbon) 입자일 수 있다. 일반적으로, 연속식 수열 합성 장치는 고온 및 고압의 온도에서 운전되므로, 연속 운전 시간을 연장하기 위해 강한 내구성이 요구되며 상기 카본 입자는 장기간에 걸친 연속 사용시 내마모성이 뛰어나, 코팅층 표면에 크랙(crack)을 방지하여 수열 합성 장치의 내구성을 향상시킬 수 있다.
또 다른 구체적인 예에서, 상기 소수성 코팅은, 연결관 내면의 마찰력을 완화하여 앞서 설명한 막힘 현상을 최소하면서, 전구체 용액의 유동성 확보와 초임계수를 이용한 반응환경에서 수열 합성 장치의 내식성을 향상시킬 수 있도록, 글라스 라이닝(glass lining)으로 이루어질 수도 있다.
이와 같은 소수성 코팅은, 일반적으로 알려져 있는 방법으로 형성될 수 있는 바, 예를 들어, 소수성의 유기 용제와 소수성 물질을 혼합하여 코팅액을 제조하여 연결관의 내면에 도포한 후, 도포면을 열처리하여 형성할 수 있다.
구체적으로, 헥사데칸, 클로로포름 및 사염화 탄소 등의 소수성의 유기 용제와 소수성 물질을 300 내지 1200 : 0.1 내지 50의 혼합비(부피비) 혼합하고, 코팅 성분 및 코팅층의 두께에 따라 100 내지 600℃에서 30분 내지 1시간 동안 열처리하여 형성할 수 있다.
상기 소수성 코팅의 두께는, 상세하게는, 10 내지 50 ㎛일 수 있으며, 10 ㎛ 미만이면 충분한 내열성, 내식성, 내후성을 가질 수 없고, 50 ㎛를 초과하면 후막화로 인한 피막표면의 크랙 발생 비율이 증대될 뿐만 아니라 공정 비용이 상승되므로, 바람직하지 않다.
앞서 설명한 바와 같이, 상기 소수성 코팅은 반응기에 인접한 부위의 내면에 형성되어 있지만, 연결관의 내면 전체에 형성될 수도 있다. 경우에 따라서는, 혼합기, 반응기 및 주입관 중의 적어도 하나 이상의 내면에도 소수성 코팅이 형성되어 내열성, 내약품성 및 내식성등의 물성을 강화시킬 수 있다.
한편, 초임계수가 700℃이상의 고온으로 수열 합성 장치가 운전 되는 경우, 상기 연결관의 외부에는 가열된 액상 스트림에서 유입된 열로 연결관의 표면에 무기물이 석출되는 것을 방지하기 위한 냉각부재가 추가로 설치될 수도 있다. 상기 냉각부재는 전구체 용액이 반응기 초입부에서 전구체 용액이 반응 온도 이하로 냉각하여 반응기 초입부가 막히는 현상을 더욱 억제할 수 있다. 상기 냉각부재로는, 예를 들어, 더블 파이프 튜브 형태의 쿨링 자켓 또는 열 교환기를 수반한 열 전도성 금속파이프 등이 사용될 수 있지만 이것들로 한정되는 것은 아니다.
이상의 조건들은 본 발명의 장치에서 수열 합성을 최적화하기 위한 조건들로서, 전구체, 무기물, 생산율 등 다양한 공정 조건들에 따라 변경될 수 있음은 물론이다.
상기 초임계 액상 스트림은, 예를 들어, 350 내지 800℃ 및 180 내지 550 bar의 환경에서 가열된 초임계수일 수 있다.
초임계수를 사용하는 경우, 온도와 압력을 임의로 설정할 수 있지만, 설비 문제, 반응의 제어 문제 등을 고려하여 700℃, 550 bar 이하의 범위로 설정하는 것이 바람직하다.
반응기에 유입되는 상기 초임계 액상 스트림은 하나 이상이며, 상세하게는, 둘 이상의 초임계 액상 스트림이 각각의 유입 방향으로 반응기 내부로 주입 되며, 소망하는 반응 분위기와 운전 시간을 고려해 자유롭게 유입 방향을 설정할 수 있다.
따라서, 상기 액상 스트림이 반응기로 주입되는 주입관은 입구 위치 각도 등은 각각 독립적으로 자유롭게 선택할 수 있으며 상세하게는 상기 주입관은 서로 반응기의 외면에 2개가 형성될 수 있다. 더욱 상세하게는, 상기 주입구는 소망하는 반응 분위기에 따라 제조된 무기물 슬러리 배출방향의 10도 내지 170도의 각도를 이루도록 위치시킬 수 있으며, 상세하게는 45도 내지 135도의 각도로 형성 될 수 있다.
또한, 본 발명은 상기 수열 합성 장치로 무기물 슬러리를 제조하는 방법으로서,
무기물 제조용 제 1 전구체 용액을 제 1 공급관, 제 2 전구체 용액을 제 2 공급관 및 제 3 공급관을 통해 혼합기로 투입하는 단계;
투입된 전구체 용액이 혼합되어 생성된 중간체 슬러리를 연결관을 통해 반응기로 투입하는 단계;
고온 및 고압의 물을 포함하는 초임계수를 반응기에 주입관을 통해 주입하는 단계; 및
반응기에서 수열 반응에 의해 무기물 슬러리를 제조하여 연속적으로 배출하는 단계;
를 포함하는 방법을 제공한다.
이러한 수열 합성법은, 앞서 설명한 바와 같은 잇점들로 인해, 종래에 수열 합성법에 의해 제조 가능한 것으로 알려져 있는 무기물들 뿐만 아니라 종래의 수열 합성법으로는 효율적으로 제조하기 어려운 무기물들의 제조에도 적용될 수 있다.
본 발명은 또한, 상기 방법에 따른 양극활물질을 제공한다.
상기 무기물은 수열법에 의해 제조될 수 있는 것이라면 그것의 종류가 특별히 한정되는 것은 아니며, 예를 들어, Co2O3, Fe2O3, LiMn2O4, MOx (M=Fe, Ni, Co, Mn, Al 등이고, 상기 x는 전기적 중성을 만족하는 수), MOOH(M=Fe, Ni, Co, Mn, Al 등), AaMmXxOoSsNnFf(A는 Li, Na, K, Rb, Cs, Be, Mg, Ca, Sr, Ba로 이루어진 군에서 선택되는 하나 이상이고; M은 전이금속을 하나 이상 포함하고, 선택적으로 B, Al, Ga, In로 이루어진 군에서 선택되는 하나 이상을 포함할 수 있으며; X는 P, As, Si, Ge, Se,Te, C로 이루어진 군에서 선택되는 하나 이상이고; O는 산소; S는 황; N은 질소; F는 불소이며; a, m, x, o, s, n 및 f는 0 이상이고 전기적 중성을 만족하는 수)등을 들 수 있다.
구체적인 예에서, 상기 무기물은 LiaMbM’cPO4(M=Fe, Ni, Co, Mn으로 이루어진 군에서 선택되는 하나 이상; M’=Ca, Ti, S, C, Mg로 이루어진 군에서 선택되는 하나 이상; a, b, c는 0 이상이고 전기적 중성을 만족하는수)일 수 있고, 더욱 상세하게는 올리빈 구조의 LiFePO4 일 수 있다.
이상에서 설명한 바와 같이, 본 발명에 따른 수열 합성 장치는, 반응기에 인접한 부위의 내면에 소수성 코팅이 형성되어 있는 연결관을 포함하고 있어서, 연결관의 막힘을 최소화하거나 완전히 해소할 수 있으므로, 공정 효율성을 크게 향상시킨다.
도 1은 종래 기술에 따른 수열 합성 장치의 개략적인 모식도이다;
도 2는 본 발명의 하나의 실시예에 따른 수열 합성 장치의 모식도이다;
도 3은 도 2의 A를 확대한 모식도이다;
도 4는 본 발명의 또 다른 실시예에 따른 연결관의 모식도이다;
도 5는 본 발명의 또 다른 실시예에 따라 냉각부재가 장착된 연결관을 포함하는 수열 합성 장치의 모식도이다;
도 6는 본 발명의 또 다른 실시예에 따라 혼합기, 반응기, 주입관 및 연결관 내부에 소수성 물질이 코팅된 수열 합성 장치의 개략적인 모식도이다.
이하에서는, 본 발명의 도면을 참조하여 설명하지만, 이는 본 발명의 더욱 용이한 이해를 위한 것으로, 본 발명의 범주가 그것에 의해 한정되는 것은 아니다.
도 2에는 본 발명의 하나의 실시예에 따른 수열 합성 장치(100)를 모식적으로 도시하고 있고, 도 3은 도 2의 A를 확대한 모식도를 도시하고 있다.
도 2를 참조하면, Li 전구체 용액이 혼합기(120)의 상부에 설치된 제 1 공급관(122)으로 투입되고, Fe, P가 함유된 전구체 용액이 혼합기의 측부에 제 1 공급관(122)을 기준으로 10 내지 90의 내각(θ)을 이루며 위치한 제 2 공급관(123) 및 제 3 공급관(124)으로 공급된다. 공급된 하나 이상의 상기 전구체 용액은 혼합기(120) 내부에서 유체 흐름에 의해 자연스럽게 혼합되어 중간체 슬러리(F1)를 생성하므로, 이러한 구조는 서로 다른 전구체 용액의 공급 및 혼합에 유리하며, 제 1 공급관(123) 및 제 2 공급관(124)이 경사면을 형성하여, 전구체 용액의 이동 속도에 따른 혼합량을 조절할 수 있다.
상기 혼합기(120) 내부에 생성된 중간체 슬러리(F1)는 혼합기(120)의 하단과 반응기(101)의 상단을 상호 연결하도록 위치한 연결관(130)을 따라 반응기(101)로 유입되고, 상기 유입된 중간체 슬러리(F1)는, 반응기(101)의 외면에 설치된 2개의 주입구(102)로 주입된 초임계 액상 스트림과 고온 반응하여 제조된 무기물 슬러리가 연속적으로 배출된다.
도 3을 참조하면, 반응기(101)에 인접한 연결관(130)의 내면에 소수성 물질의 코팅층(140)이 형성되어 있다. 따라서, 수용성의 중간체 슬러리가 코팅층(140)의 반발력에 의해 내면과의 마찰로 생기는 저항을 최소화하고, 그에 따라 반응기(101)에 인접한 연결관(130)의 내부면 가장자리부터 연결관(130)이 막히는 현상이 현저하게 줄어들게 된다.
도 4에는 본 발명의 또 다른 실시예에 따른 연결관(230)이 모식적으로 도시되어 있다.
도 4를 참조하면, 연결관(230)의 내면 전체에 소수성 물질의 코팅층(240)이 형성되어 있다. 일반적으로, 연결관(230)의 내면 전체를 코팅하는 것은 코팅층(240)의 두께를 균일하게 하기 어려운 단점이 있지만, 중간체 슬러리가 혼합기로부터 반응기 내부로 유입되는 과정에서 진행 방향으로의 운동량 손실이 거의 없으므로 생성물 내의 무기물 함량이 종래의 장치보다 높다는 장점이 있다.
도 5에는 본 발명의 또 다른 실시예에 따라 냉각부재(332)가 장착된 연결관(330)을 포함하는 수열 합성 장치(300)를 모식적으로 도시되어 있다.
도 5를 참조하면 연결관(330)의 외부에 10℃ 내외의 냉매에 접촉한 금속관 또는 방열판으로 이루어진 냉각부재(332)가 위치하고 있다. 상기 냉각부재(332)는 초임계 액상 스트림으로부터 유입되는 열을 빠르게 냉각시켜 석출 및 조기 반응을 억제하여 소수성 코팅의 효과를 극대화할 수 있다.
도 6에는 본 발명의 또 다른 실시예에 따라 혼합기(420), 반응기(401), 주입관(402) 및 연결관(430) 내부에 소수성 물질이 코팅된 수열 합성 장치(400)를 모식적으로 도시하고 있다.
도 6를 참조하면, 기본적인 구성은 도 2의 장치와 동일하고, 고온 및 고압의 환경에서 운전되는 수열 합성 장치(400)의 내구성을 향상하기 위해, 혼합기(420), 반응기(401), 주입관(402) 및 연결관(430)의 내부에 각각 소수성 물질의 코팅층이 형성되어 있다는 점에서, 도 2의 구조와 차이가 있다.
이러한 장치는, 예를 들어, 양극활물질용 무기물 슬러리를 제조함에 있어서 반응기(401) 내부로 유입된 초임계 액상 스트림의 열로부터 장치의 내면의 부식을 방지하고, 중간체 슬러리(F1)의 유동성을 개선해, 양극활물질이 균일한 입자 분포도를 갖도록 하는 장점이 있다.
본 발명이 속한 분야에서 통상의 지식을 가진 자라면, 상기 내용을 바탕으로 본 발명의 범주내에서 다양한 응용 및 변형을 행하는 것이 가능할 것이다.

Claims (23)

  1. 수열법에 의해 무기물 슬러리를 연속적으로 제조하는 장치로서,
    적어도 하나 이상의 공급관을 통해 투입되는 하나 이상의 무기물 제조용 전구체 용액이 혼합되어 중간체 슬러리를 생성하는 혼합기;
    상기 혼합기 의 일측에 위치하여 생성된 중간체 슬러리를 연속적으로 하기 반응기로 배출하며, 반응기에 인접한 부위의 내면에 소수성 코팅이 형성되어 있는 연결관; 및
    열 교환기에 의해 초임계 또는 아임계로 가열된 액상 스트림을 공급받아 상기 연결관으로부터 공급된 중간체 슬러리를 수열 반응시키는 반응기로서, 상기 혼합기로부터 생성된 중간체 슬러리가 투입되는 연결관이 연결되어 있고, 가열된 액상 스트림이 주입되는 주입관이 적어도 하나 이상 연결되어 있는 반응기; 를 포함하고,
    상기 소수성 코팅의 두께는 10 내지 50 ㎛인 것을 특징으로 하는 수열 합성 장치.
  2. 제 1 항에 있어서, 상기 공급관은 혼합기 상면의 중심부에 위치한 제 1 공급관, 그것의 일측부에 제 1 공급관 기준으로 10 내지 90도의 내각을 형성하며 위치한 제 2 공급관, 및 제 2 공급관에 대향하도록 타측에 위치한 제 3 공급관으로 구성된 것을 특징으로 하는 수열 합성 장치.
  3. 제 1 항에 있어서, 상기 소수성 코팅은 소수성 물질을 포함하는 코팅으로 이루어진 것을 특징으로 하는 수열 합성 장치.
  4. 제 3 항에 있어서, 상기 소수성 물질은 불소기를 가진 유기 물질 또는 소수성 기로 치환된 유기 물질인 것을 특징으로 하는 수열 합성 장치.
  5. 제 4 항에 있어서, 상기 유기 물질은 PTFE, 및/또는 수산기가 소수성기로 치환된 PVA인 것을 특징으로 하는 수열 합성 장치.
  6. 제 3 항에 있어서, 상기 소수성 물질은 불소기를 가진 무기 화합물인 것을 특징으로 하는 수열 합성 장치.
  7. 제 6 항에 있어서, 상기 무기 화합물은 MgF2 및/또는 CaF2인 것을 특징으로 하는 수열 합성 장치.
  8. 제 1 항에 있어서, 상기 소수성 코팅은 윤활성 코팅 물질인 것을 특징으로하는 수열 합성 장치.
  9. 제 8 항에 있어서, 상기 윤활성 코팅 물질은 이황화텅스텐(WS2) 및/또는 이황화몰리브덴(MoS2)인 것을 특징으로 하는 수열 합성 장치.
  10. 제 3 항에 있어서, 소수성 물질은 카본(carbon) 입자인 것을 특징으로 하는 수열 합성 장치.
  11. 제 1 항에 있어서, 상기 소수성 코팅은 글라스 라이닝(glass lining)인 것을 특징으로 하는 수열 합성 장치.
  12. 제 3 항에 있어서, 상기 소수성 코팅은, 소수성의 유기 용제와 소수성 물질을 혼합하여 코팅액을 제조하여 연결관의 내면에 도포한 후, 도포면을 열처리하여 형성되는 것을 특징으로 하는 수열 합성 장치.
  13. 제 12 항에 있어서, 상기 소수성의 유기 용제와 소수성 물질의 혼합비(부피비)는 300 내지 1200 : 0.1 내지 50이고, 상기 열처리는 100 내지 600℃에서 30분 내지 1시간의 조건을 수행되는 것을 특징으로 하는 수열 합성 장치.
  14. 삭제
  15. 제 1 항에 있어서, 상기 소수성 코팅은 연결관의 내면 전체에 형성되어 있는 것을 특징으로 하는 수열 합성 장치.
  16. 제 1 항에 있어서, 상기 혼합기, 반응기 및 주입관 중의 적어도 하나 이상의 내면에도 소수성 코팅이 형성되어 있는 것을 특징으로 하는 수열 합성 장치.
  17. 제 1 항에 있어서, 상기 연결관의 외부에는 가열된 액상 스트림에서 유입된 열을 냉각하는 냉각부재가 설치되어 있는 것을 특징으로 하는 수열 합성 장치.
  18. 제 1 항에 있어서, 상기 액상 스트림은 350 내지 800℃ 및 180 내지 550 bar의 환경에서 가열된 초임계수인 것을 특징으로 하는 수열 합성 장치.
  19. 제 1 항에 있어서, 상기 주입관은 반응기의 외측에 두 개가 형성되어 있는 것을 특징으로 하는 수열 합성 장치.
  20. 제 1 항 내지 제 13 항 및 제 15 항 내지 제 19 항 중 어느 하나에 따른 수열 합성 장치로 무기물 슬러리를 제조하는 방법으로서,
    무기물 제조용 제 1 전구체 용액을 제 1 공급관, 제 2 전구체 용액을 제 2 공급관 및 제 3 공급관을 통해 혼합기로 투입하는 단계;
    투입된 전구체 용액이 혼합되어 생성된 중간체 슬러리를 연결관을 통해 반응기로 투입하는 단계;
    고온 및 고압의 물을 포함하는 초임계수를 반응기에 주입관을 통해 주입하는 단계; 및
    반응기에서 수열 반응에 의해 무기물 슬러리를 제조하여 연속적으로 배출하는 단계;
    를 포함하는 방법.
  21. 삭제
  22. 삭제
  23. 삭제
KR1020120134968A 2012-11-27 2012-11-27 수열 합성 장치 및 이를 사용한 양극 활물질의 제조방법 KR101565303B1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020120134968A KR101565303B1 (ko) 2012-11-27 2012-11-27 수열 합성 장치 및 이를 사용한 양극 활물질의 제조방법
TW102143229A TWI520777B (zh) 2012-11-27 2013-11-27 水熱合成裝置及使用彼製造陰極活性材料之方法
US14/438,300 US9843035B2 (en) 2012-11-27 2013-11-27 Hydrothermal synthesis device and method of preparing cathode active material using the same
PCT/KR2013/010820 WO2014084583A1 (ko) 2012-11-27 2013-11-27 수열 합성 장치 및 이를 사용한 양극 활물질의 제조방법
EP13858721.7A EP2886192B1 (en) 2012-11-27 2013-11-27 Hydrothermal synthesis apparatus and method for preparing cathode active material using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120134968A KR101565303B1 (ko) 2012-11-27 2012-11-27 수열 합성 장치 및 이를 사용한 양극 활물질의 제조방법

Publications (2)

Publication Number Publication Date
KR20140067562A KR20140067562A (ko) 2014-06-05
KR101565303B1 true KR101565303B1 (ko) 2015-11-03

Family

ID=50828146

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120134968A KR101565303B1 (ko) 2012-11-27 2012-11-27 수열 합성 장치 및 이를 사용한 양극 활물질의 제조방법

Country Status (5)

Country Link
US (1) US9843035B2 (ko)
EP (1) EP2886192B1 (ko)
KR (1) KR101565303B1 (ko)
TW (1) TWI520777B (ko)
WO (1) WO2014084583A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111761072A (zh) * 2020-07-01 2020-10-13 西安交通大学 一种用于超临界水热合成纳米金属粉体的多段射流高效混合装置与方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101565298B1 (ko) * 2012-11-27 2015-11-03 주식회사 엘지화학 무기화합물의 제조장치 및 이를 사용한 무기화합물의 제조방법
KR101596272B1 (ko) * 2013-01-03 2016-02-22 주식회사 엘지화학 리튬 복합 전이금속 산화물 제조용 장치, 이를 이용하여 제조된 리튬 복합 전이금속 산화물, 및 그 제조방법
CN104993141B (zh) * 2015-06-08 2017-10-13 陕西科技大学 一种一维ws2纳米管钠离子电池负极材料的制备方法
CN104953119B (zh) * 2015-06-08 2017-04-05 陕西科技大学 一种二维矩阵棒状ws2负极材料的制备方法
CN109088054B (zh) * 2017-10-24 2021-11-16 苏州市相城区渭塘城乡发展有限公司 一种循环性能优异的锂电池
CN108554317A (zh) * 2018-01-25 2018-09-21 葛映东 单通道多样进料式搅拌反应釜
CN112038540B (zh) * 2019-06-04 2023-05-12 湖北大学 一种高循环稳定性的锂硫电池隔膜

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002102672A (ja) 2000-09-29 2002-04-09 Kurita Water Ind Ltd 水熱反応装置および方法
JP2003340262A (ja) 2002-05-29 2003-12-02 Japan Organo Co Ltd 水熱反応処理装置及び水熱反応処理方法
GB0402963D0 (en) 2004-02-11 2004-03-17 Univ Nottingham Counter current mixing device for two different fluids
KR100733236B1 (ko) * 2005-07-25 2007-06-28 마쯔시다덴기산교 가부시키가이샤 이산화망간, 그것의 제조방법 및 제조장치, 및 그것을이용하여 작성되는 전지용 활물질 및 전지
JP5985134B2 (ja) 2009-01-23 2016-09-06 関東電化工業株式会社 無機微粒子の製造方法及びその製造装置
US20110156682A1 (en) 2009-12-30 2011-06-30 Dev Alok Girdhar Voltage converter with integrated schottky device and systems including same
WO2011139574A2 (en) * 2010-05-05 2011-11-10 Applied Materials, Inc. Hydrothermal synthesis of active materials and in situ spraying deposition for lithium ion battery
JP5657118B2 (ja) * 2010-08-11 2015-01-21 エルジー・ケム・リミテッド 無機化合物の生成デバイス、およびそれを用いた無機化合物の生成方法
KR101522526B1 (ko) * 2012-11-26 2015-05-26 주식회사 엘지화학 무기 입자의 제조방법 및 그로부터 얻어진 무기 입자
KR101565298B1 (ko) * 2012-11-27 2015-11-03 주식회사 엘지화학 무기화합물의 제조장치 및 이를 사용한 무기화합물의 제조방법

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111761072A (zh) * 2020-07-01 2020-10-13 西安交通大学 一种用于超临界水热合成纳米金属粉体的多段射流高效混合装置与方法
CN111761072B (zh) * 2020-07-01 2021-11-09 西安交通大学 一种用于超临界水热合成纳米金属粉体的多段射流高效混合装置与方法

Also Published As

Publication number Publication date
TWI520777B (zh) 2016-02-11
KR20140067562A (ko) 2014-06-05
EP2886192A1 (en) 2015-06-24
WO2014084583A1 (ko) 2014-06-05
US9843035B2 (en) 2017-12-12
EP2886192A4 (en) 2016-06-08
US20150280214A1 (en) 2015-10-01
EP2886192B1 (en) 2018-01-03
TW201440885A (zh) 2014-11-01

Similar Documents

Publication Publication Date Title
KR101565303B1 (ko) 수열 합성 장치 및 이를 사용한 양극 활물질의 제조방법
Dong et al. A review on synthesis and engineering of crystal precursors produced via coprecipitation for multicomponent lithium-ion battery cathode materials
US10396356B2 (en) Nickel manganese composite hydroxide particles and manufacturing method thereof, cathode active material for a non-aqueous electrolyte secondary battery and manufacturing method thereof, and a non-aqueous electrolyte secondary battery
TWI665156B (zh) 用於製備電池單元材料的方法和系統
TWI589520B (zh) 製造無機粒子的方法及由彼製得的無機粒子
CN103025419B (zh) 用于制备无机化合物的装置和使用其制备无机化合物的方法
EP2653447A1 (en) Nickel-manganese composite hydroxide particles, method for producing same, positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
US20130230780A1 (en) Cathode material for lithium batteries
KR101596272B1 (ko) 리튬 복합 전이금속 산화물 제조용 장치, 이를 이용하여 제조된 리튬 복합 전이금속 산화물, 및 그 제조방법
JP2020516016A (ja) ガス発生を抑制したリチウム金属複合酸化物粉末
Entwistle et al. Co-precipitation synthesis of nickel-rich cathodes for Li-ion batteries
CN107619028B (zh) 五氟化磷高效连续化合成工艺
US20230253541A1 (en) System with Power Jet Modules and Method thereof
KR101565298B1 (ko) 무기화합물의 제조장치 및 이를 사용한 무기화합물의 제조방법
KR101210495B1 (ko) 초임계수 조건에서 소용돌이형 혼합기를 이용한 인산화물계 양극활물질 나노입자 제조방법 및 이에 의하여 제조되는 양극활물질 나노입자
US20150166344A1 (en) Preparation of an electrode-active material using decompression equipment
JP2003119031A (ja) ニッケル含有スラリー及びその製造方法、並びにリチウムニッケル系酸化物の製造方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20181016

Year of fee payment: 4