CN103813980B - 用于制备硫化锂的方法 - Google Patents

用于制备硫化锂的方法 Download PDF

Info

Publication number
CN103813980B
CN103813980B CN201280025805.0A CN201280025805A CN103813980B CN 103813980 B CN103813980 B CN 103813980B CN 201280025805 A CN201280025805 A CN 201280025805A CN 103813980 B CN103813980 B CN 103813980B
Authority
CN
China
Prior art keywords
lithium
sulfide
preparation
organic solvent
highly basic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201280025805.0A
Other languages
English (en)
Other versions
CN103813980A (zh
Inventor
P·里特迈尔
U·韦特尔曼
U·利施卡
D·豪克
B·菲格尔
A·施托尔
D·达维多夫斯基
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Albemarle Germany GmbH
Original Assignee
Rockwood Lithium GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rockwood Lithium GmbH filed Critical Rockwood Lithium GmbH
Publication of CN103813980A publication Critical patent/CN103813980A/zh
Application granted granted Critical
Publication of CN103813980B publication Critical patent/CN103813980B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/22Alkali metal sulfides or polysulfides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/32Non-oxide glass compositions, e.g. binary or ternary halides, sulfides or nitrides of germanium, selenium or tellurium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明涉及用于制备硫化锂的新方法及其用途,其中在惰性条件下,在-20至120℃温度范围内,在非质子有机溶剂中进行含锂强碱与硫化氢的反应。根据该方法获得的硫化锂用作伽伐尼电池中的正极物料或用于合成传导Li-离子的固体,特别是用于合成玻璃、玻璃陶瓷或结晶产品。

Description

用于制备硫化锂的方法
本发明涉及制备硫化锂的新方法及其用途。
最近,硫化锂作为用于合成传导锂离子的固体(玻璃、玻璃陶瓷或结晶产品如锂-硫银锗矿)的原料或作为锂/硫电池组中的阴极材料受到关注。锂/硫-电池组与锂-离子-电池组相比具有明显更高的能量密度并因此在电动性领域中的潜在应用对此极感兴趣。
在盖墨林无机化学手册,锂,补充卷(1969)中描述了下面的用于制备硫化锂的方法:
·将锂金属和硫一起研磨;
·使硫化铵或硫与锂金属在液氨中发生反应;
·使乙醇锂与H2S在乙醇中发生反应。
在所有这些方法中都会产生或多或少的含多硫化物的产物混合物,有时必须对其进行复杂的纯化。因此已知的是,在大约500℃的温度下用碳或氢还原硫化锂。文献EP0802159A1描述了氢氧化锂与硫化氢在气相中在130至445℃的温度范围内的反应。文献US4126666A1也描述了碳酸锂与硫化氢在气相中在500-700℃的温度范围内的反应。
此外,从文献US3615191A1和US3642436A1已知锂金属或氢化锂与硫化氢在醚溶剂如四氢呋喃(THF)中的反应。在这些反应中,产生硫化锂(Li2S)和硫氢化锂(LiSH)的混合物。可以通过在180℃-200℃下的热处理使不希望的LiSH转化为Li2S和硫化氢。
最近,从文献EP1460039A1已知氢氧化锂或碳酸锂与硫化氢在作为溶剂的N-甲基吡咯烷酮中在130℃下首先转化为LiSH,然后在200℃下转化为Li2S。文献EP1681263A1提出,用有机溶剂在超过100℃的温度下洗涤通过氢氧化锂与硫化氢在非质子有机溶剂中的反应获得的Li2S,以提纯Li2S。
本发明的目的在于,提供一种简单的方法,借助于此方法可以在尽可能经济、简单的反应条件下制备高纯度的硫化锂。
根据本发明,所述目的通过这样的方法得以解决,其中使含锂强碱与硫化氢在非质子有机溶剂中,在-20至120℃的温度范围内,在惰性条件下,优选在0至80℃的温度范围内,进行反应。在本发明范围内,将惰性条件理解为在保护气体下排除空气和空气湿度的操作。
为此,将气态硫化氢导入在非质子溶剂中的含Li强碱的溶液中。该反应在室温下自发地开始并且是放热的。硫化锂作为白色固体析出并且可以在反应结束后通过过滤和干燥分离。所述含锂强碱选自烷基锂、芳基锂或氨基锂,并且按照下列的反应方程式反应:
2R-Li+H2S→Li2S+2RH
2R2N-Li+H2S→Li2S+2R2NH
经分离的材料在X射线衍射图中只显示出所希望的Li2S的线条,未能检测到副产物如LiSH。
优选地,所使用的含Li强碱是下述商购可得的物质或溶液:在烃中的丁基锂或己基锂,或在不同的非质子溶剂中的有机氨基锂,优选二异丙基氨基锂或六甲基二硅基氨基锂(Lithiumhexamethyldisilazid)。
典型的非质子溶剂为脂肪烃或芳香烃,优选己烷或甲苯,以及选自脂肪醚或环醚的醚溶剂,优选乙醚、THF或这些溶剂的混合物。
根据本发明的方法相对于现有技术的优点因此是:
·使用商购可得的原材料;
·避免用对空气敏感和对湿度敏感的固体如Li-金属或LiH操作;
·在温和温度下的反应操作,由此不需要额外的能量用于加热或冷却;
·通过简单的方法如过滤和干燥分离产物;
·获得纯相产物,这避免了进一步的纯化步骤如破坏LiSH的加热。
使用根据本发明获得的硫化锂作为伽伐尼电池中的正极物料,用于合成传导Li-离子的固体,特别是用于合成玻璃、玻璃陶瓷或结晶产品和特别优选用于合成Li-硫银锗矿。
实施例1:从硫化氢制备硫化锂
在具有温度传感器、气体导入管(潜管)和气体排出管道(经由气量表和洗气器)的惰性化过的3L-平法兰双层反应器中,在氩气气氛下,预先置入1000g(1449ml,3.47mol,1.0当量)正丁基锂(2.4M,在己烷中),随后添加另外的380ml己烷。在搅拌下,将该反应溶液冷却至10℃。随后在10-15℃下经3小时将总共59g(38.7L,1.73mol,0.5当量)硫化氢经由潜管输入到该反应溶液中。由此析出无色固体。为了保持该反应悬浮液可搅拌,总共添加另外550ml己烷。在气体导入结束后,将反应器内容物加热至室温(22℃)并搅拌另外2小时。随后,使反应悬浮液通过G3-玻璃料过滤并用多份己烷彻底洗涤残留的无色固体。将所获得的固体在高真空下在室温下进行干燥直至恒重,随后通过X射线粉末衍射法(XRD)进行分析。获得纯相的硫化锂。

Claims (4)

1.用于制备硫化锂的方法,其特征在于,在惰性条件下,在-20至120°C温度范围内,在非质子有机溶剂中进行选自烷基锂、芳基锂或氨基锂的含锂强碱与硫化氢的反应,其中使用脂肪烃、芳香烃或醚溶剂或这些溶剂的混合物作为非质子有机溶剂,其中惰性条件表示在保护气体下排除空气和空气湿度的操作。
2.根据权利要求1的方法,其特征在于,使用丁基锂、己基锂、二异丙基氨基锂或六甲基二硅基氨基锂作为含锂强碱。
3.根据权利要求1的方法,其特征在于,使用己烷、甲苯、乙醚或THF作为溶剂。
4.根据权利要求1或2的方法,其特征在于,在0至80°C的温度范围内进行所述反应。
CN201280025805.0A 2011-05-27 2012-05-29 用于制备硫化锂的方法 Active CN103813980B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102011076572 2011-05-27
DE102011076572.7 2011-05-27
PCT/EP2012/060014 WO2012163900A2 (de) 2011-05-27 2012-05-29 Verfahren zur herstellung von lithiumsulfid

Publications (2)

Publication Number Publication Date
CN103813980A CN103813980A (zh) 2014-05-21
CN103813980B true CN103813980B (zh) 2016-05-18

Family

ID=46172792

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280025805.0A Active CN103813980B (zh) 2011-05-27 2012-05-29 用于制备硫化锂的方法

Country Status (7)

Country Link
US (1) US9017582B2 (zh)
EP (1) EP2714587B1 (zh)
JP (1) JP6016899B2 (zh)
KR (1) KR101963297B1 (zh)
CN (1) CN103813980B (zh)
DE (1) DE102012208982A1 (zh)
WO (1) WO2012163900A2 (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103329319B (zh) * 2011-01-27 2017-08-29 出光兴产株式会社 碱金属硫化物和导电剂的复合材料
CN104609376A (zh) * 2015-01-30 2015-05-13 浙江工业大学 一种硫化锂粉体的制备方法
CN108190845A (zh) * 2018-01-31 2018-06-22 湖南省正源储能材料与器件研究所 一种制备硫化锂的方法
CN110790239B (zh) * 2019-08-26 2022-01-28 浙江工业大学 一种硫化锂粉体的机械球磨合成方法
CN112678781B (zh) * 2019-10-18 2022-04-15 天齐锂业(江苏)有限公司 硫化锂的制备方法
CN111517288A (zh) * 2020-05-07 2020-08-11 天目湖先进储能技术研究院有限公司 一种合成硫化锂的方法
CN112520703B (zh) * 2020-08-03 2022-07-22 浙江工业大学 一种硫化锂的绿色制备方法
CN112408437B (zh) * 2020-11-19 2023-03-28 江西天新药业股份有限公司 锂盐的回收方法
KR20220079456A (ko) 2020-12-04 2022-06-13 주식회사 레이크머티리얼즈 황화리튬의 제조방법
CN112551491B (zh) * 2020-12-10 2022-04-08 天津大学 一种硫化锂的制备方法、硫化锂及其应用
CN112624061B (zh) * 2020-12-31 2022-09-20 江西赣锋锂业股份有限公司 一种利用工业级丁基锂制备碳/硫化锂正极复合材料的方法
CN112624060B (zh) * 2020-12-31 2022-09-20 江西赣锋锂业股份有限公司 一种利用工业级丁基锂制备高纯硫化锂的方法
CN113415812B (zh) * 2021-06-23 2023-03-24 高能时代(珠海)新能源科技有限公司 一种高纯硫化锂的制备方法及应用
US20230150828A1 (en) 2021-11-16 2023-05-18 Solid Power Operating, Inc. Lithium sulfide production method
CN114455550B (zh) * 2022-01-20 2023-07-18 湖北索立德新能源科技有限责任公司 硫化锂的制备方法
WO2023224150A1 (ko) * 2022-05-20 2023-11-23 주식회사 솔리드아이오닉스 황화리튬 제조 방법

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4126666A (en) * 1978-01-25 1978-11-21 Foote Mineral Company Process for producing high purity lithium sulfide
EP0802159A1 (en) * 1996-04-16 1997-10-22 Furukawa Co., Ltd. Method of manufacturing lithium sulfide
WO2004095474A1 (ja) * 2003-04-24 2004-11-04 Idemitsu Kosan Co., Ltd. リチウムイオン伝導性硫化物ガラス及びガラスセラミックスの製造方法並びに該ガラスセラミックスを用いた全固体型電池
CN1871177A (zh) * 2003-10-23 2006-11-29 出光兴产株式会社 硫化锂的精制方法
CN101494299A (zh) * 2007-12-03 2009-07-29 精工爱普生株式会社 硫化物系锂离子传导性固体电解质玻璃、全固体锂二次电池及全固体锂二次电池的制造方法
CN101679072A (zh) * 2007-04-16 2010-03-24 巴斯夫欧洲公司 制备富含锂的金属氧化物的方法
CN101821199A (zh) * 2007-10-08 2010-09-01 锡根大学 锂-硫银锗矿

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3615191A (en) * 1969-08-27 1971-10-26 Lithium Corp Method of preparing lithium sulfide
US3642436A (en) 1969-11-14 1972-02-15 Foote Mineral Co Method for preparing lithium sulfide compounds
US6680145B2 (en) * 2001-08-07 2004-01-20 3M Innovative Properties Company Lithium-ion batteries
JP2003252610A (ja) 2001-12-27 2003-09-10 Idemitsu Petrochem Co Ltd 硫化リチウムの再生方法及びポリアリーレンスルフィドの製造方法
WO2004093099A1 (ja) * 2003-04-15 2004-10-28 Idemitsu Kosan Co., Ltd. リチウムイオン導電性固体電解質の製造方法及びそれを用いた全固体型二次電池
JP4580149B2 (ja) * 2003-04-24 2010-11-10 出光興産株式会社 リチウムイオン伝導性硫化物ガラスの製造方法及びリチウムイオン伝導性硫化物ガラスセラミックスの製造方法
JP5460283B2 (ja) * 2008-12-15 2014-04-02 出光興産株式会社 硫化リチウムの製造方法
JP2012176866A (ja) * 2011-02-25 2012-09-13 Idemitsu Kosan Co Ltd 硫化物系固体電解質ガラスの製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4126666A (en) * 1978-01-25 1978-11-21 Foote Mineral Company Process for producing high purity lithium sulfide
EP0802159A1 (en) * 1996-04-16 1997-10-22 Furukawa Co., Ltd. Method of manufacturing lithium sulfide
WO2004095474A1 (ja) * 2003-04-24 2004-11-04 Idemitsu Kosan Co., Ltd. リチウムイオン伝導性硫化物ガラス及びガラスセラミックスの製造方法並びに該ガラスセラミックスを用いた全固体型電池
CN1871177A (zh) * 2003-10-23 2006-11-29 出光兴产株式会社 硫化锂的精制方法
CN101679072A (zh) * 2007-04-16 2010-03-24 巴斯夫欧洲公司 制备富含锂的金属氧化物的方法
CN101821199A (zh) * 2007-10-08 2010-09-01 锡根大学 锂-硫银锗矿
CN101494299A (zh) * 2007-12-03 2009-07-29 精工爱普生株式会社 硫化物系锂离子传导性固体电解质玻璃、全固体锂二次电池及全固体锂二次电池的制造方法

Also Published As

Publication number Publication date
JP2014518838A (ja) 2014-08-07
US20140084224A1 (en) 2014-03-27
KR101963297B1 (ko) 2019-03-28
DE102012208982A1 (de) 2012-11-29
KR20140053034A (ko) 2014-05-07
EP2714587A2 (de) 2014-04-09
WO2012163900A2 (de) 2012-12-06
EP2714587B1 (de) 2016-04-06
WO2012163900A3 (de) 2013-05-30
JP6016899B2 (ja) 2016-10-26
CN103813980A (zh) 2014-05-21
US9017582B2 (en) 2015-04-28

Similar Documents

Publication Publication Date Title
CN103813980B (zh) 用于制备硫化锂的方法
Zavorotynska et al. Recent progress in magnesium borohydride Mg (BH4) 2: Fundamentals and applications for energy storage
CN101861323B (zh) 结晶的完全溶解的双(草酸)硼酸锂(LiBOB)
US10442698B2 (en) Production of a hexafluorophosphate salt and of phosphorous pentafluoride
Petit et al. Ammonia borane H3NBH3 for solid-state chemical hydrogen storage: Different samples with different thermal behaviors
EP2007679A2 (en) Improved process for the synthesis and methanolysis of ammonia borane and borazine
KR100971065B1 (ko) 리튬이온전지용 전해액의 제조방법 및 이를 사용한리튬이온전지
EP2947046B1 (en) Hydrogen production method
CN112520703B (zh) 一种硫化锂的绿色制备方法
US8377415B2 (en) Methods for synthesizing alane without the formation of adducts and free of halides
US20210261411A1 (en) Method of making anhydrous metal sulfide nanocrystals
CN103569967B (zh) 一种氨硼烷的制备方法
Li et al. Reactive precipitation of anhydrous alkali sulfide nanocrystals with concomitant abatement of hydrogen sulfide and cogeneration of hydrogen
Shcherbina et al. Synthesis and characterization of barium amidoborane
Christe et al. Synthesis and characterization of tetrafluoroammonium hexafluorobismuthate and some properties of tetrafluoroammonium hexafluoroantimonate
JP5532181B1 (ja) リチウム電池及び/又はリチウムイオン電池の電解質用リチウム塩の製造方法及び製造装置
EP2832684B1 (en) Hydrogen production method
US20220135413A1 (en) Synthesis of Ammonia Using Cycle-Generated Hydrogen Sulfide
EP2832685A1 (en) Continuous production method for hydrogen
US20230323507A1 (en) Method of recycling nickel from waste battery material
Morse et al. Hydrogenated Graphite for Solid-State Hydrogen Storage: Evaluation of Bulk Impurities and Post-Synthetic Purification Strategies
JP2015017009A (ja) 水素化カルシウム及びその製造方法、水素化カルシウム組成物、水素発生剤、水素発生装置、水素組成物、並びに燃料電池用水素組成物
CN113707932A (zh) 无水硫化锂及其制备方法、硫化物固态电解质、固态电池

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant