CN103813855B - 醇和醚在三元混合氧化物上的催化脱水 - Google Patents

醇和醚在三元混合氧化物上的催化脱水 Download PDF

Info

Publication number
CN103813855B
CN103813855B CN201280043847.7A CN201280043847A CN103813855B CN 103813855 B CN103813855 B CN 103813855B CN 201280043847 A CN201280043847 A CN 201280043847A CN 103813855 B CN103813855 B CN 103813855B
Authority
CN
China
Prior art keywords
catalyst
methyl
dehydration
organic compound
pentadiene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201280043847.7A
Other languages
English (en)
Other versions
CN103813855A (zh
Inventor
D.W.诺尔曼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eastman Chemical Co
Original Assignee
Eastman Chemical Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eastman Chemical Co filed Critical Eastman Chemical Co
Publication of CN103813855A publication Critical patent/CN103813855A/zh
Application granted granted Critical
Publication of CN103813855B publication Critical patent/CN103813855B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/195Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with vanadium, niobium or tantalum
    • B01J27/198Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/28Regeneration or reactivation
    • B01J27/285Regeneration or reactivation of catalysts comprising compounds of phosphorus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0036Grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/02Heat treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • C07C1/24Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms by elimination of water
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/51Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by pyrolysis, rearrangement or decomposition
    • C07C45/52Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by pyrolysis, rearrangement or decomposition by dehydration and rearrangement involving two hydroxy groups in the same molecule
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2527/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • C07C2527/14Phosphorus; Compounds thereof
    • C07C2527/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2527/195Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with vanadium, niobium or tantalum
    • C07C2527/198Vanadium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)
  • Furan Compounds (AREA)
  • Pyrane Compounds (AREA)

Abstract

三元V‑Ti‑P混合氧化物据显示将2‑甲基‑四氢呋喃以高转化率催化脱水,从而以高产率产生间戊二烯。从这种反应中收集的挥发性产物含有浓度高达80重量%的间戊二烯。还证实甘油以高转化率和适中的选择性脱水成丙烯醛。该催化剂还据显示将其它醇和醚基质脱水。该催化剂抗失活并在流程之间保持活性。

Description

醇和醚在三元混合氧化物上的催化脱水
发明领域
本发明涉及使用钒-钛-磷混合氧化物催化剂由醇和醚制备烯、二烯和醛的方法。
发明背景
地球化学过程通过生物材料的富集和脱水创造出能量密集的不可再生的有机原料。化学工业自此开发出利用这种有价值但有限的资源的简洁有效的方法。如果当前方法变得不经济,通过将可再生的生物基原料转化成适销产品以补充石油化学生产则会变得更重要。但是,在使产物选择性最大化的同时从生物材料中除去最多50重量%水对研究界构成重大挑战。间戊二烯(piperylene)例如是石油工业的副产物并且是用于塑料、粘合剂和树脂制造的重要原材料。由于降低副产物形成的工艺改进,商业间戊二烯供应变得越来越有限。因此,间戊二烯与石油工业脱离关系提供了获得这种有价值的产品的有利途径。
这种C5混合物的主要组分是1,3-戊二烯并通常被称作间戊二烯;1,4-戊二烯是次要组分并可以异构成1,3-异构体。2-甲基-四氢呋喃(2-Me-THF)——一种生物源原料的催化脱水可提供获得1,3-戊二烯的有竞争力的替代途径。现有技术对这种反应的涵盖有限并缺乏具体实例;但是,清楚的是,酸性催化剂是实施这种转化所必需的。负载在氧化铝上的各种金属氧化物、磷酸盐和二氧化钛据报道实施该脱水反应。例如,磷酸硼催化剂据报道将40%的2-Me-THF以91%选择性转化成1,3-戊二烯,以提供36%的单程产率和3.1摩尔1,3-戊二烯/千克催化剂/小时的时空产率(STY)。
二次反应,如间戊二烯聚合和气态分解产物的生成造成这种反应中的产率损失。催化剂结焦也阻碍性能以及催化剂对反应物和产物的选择性,这造成催化剂失活。用于此反应的优选催化剂因此应该表现出高2-Me-THF转化和对戊二烯的高选择性并在流程之间保持活性。
其它基质,如单醇的脱水可提供有用的烯产物,而二醇和环醚基质可产生相应的二烯。例如,正戊醇预计形成直链戊烯的混合物,而戊二醇将形成戊二烯异构体的混合物。都是环醚的四氢吡喃和3-甲基-四氢呋喃预计分别形成戊二烯异构体和异戊二烯。
三醇基质,如甘油——生物柴油副产物,已知可以在脱水后转化成丙烯醛。这种产物是丙烯酸的中间商业前体,但非常易反应并倾向于聚合,特别是在酸性催化剂表面上。羟基丙酮(丙酮醇)和丙酮的形成也是来自这种反应的可能产物。因此,甘油催化脱水成丙烯醛带来重大的选择性挑战。
能够促进上述脱水反应并可重复使用并在大量水存在下不会失活的催化剂非常有用。
发明概述
第一方面,本发明提供含氧(oxygenated)有机化合物的脱水方法,包括使该有机化合物在钒-钛-磷氧化物催化剂存在下反应由此使所述有机化合物脱水。
详述
根据一个实施方案,本文所述的催化剂能够促进上述脱水反应。其可重复使用并在大量水存在下不会失活。
包含钒、钛和磷(V-Ti-P)的三元钒磷氧化物(VPOs)是两性催化剂并据报道以比二元V-P类似物高的产率生产丙烯酸酯,但尚未被研究用于脱水反应。因此,根据一个实施方案,本文中公开的发明涉及通过钒-钛-磷(V-Ti-P)氧化物催化剂制造不饱和烃和醛的方法。例如,已经令人惊讶地发现,该V-Ti-P催化剂不仅表现出高2-甲基-四氢呋喃转化率,还以良好产率生产间戊二烯并在流程之间保持活性。2-Me-THF转化成间戊二烯提供了获得这种有价值的前体分子的有吸引力的替代途径。除提供对现有石油化学途径的有竞争力的替代方案外,这种脱水反应的有效催化提供更可持续的途径,因为2-Me-THF由生物源化学品,如乙酰丙酸和糠醛生成。“间戊二烯”是指1,3-戊二烯、1,4-戊二烯或其组合。如下列实施例中所示,该V-Ti-P催化剂表现出高达95%的2-Me-THF转化率、高达81%的对间戊二烯的选择性、高达65%的单程间戊二烯产率和最多15摩尔间戊二烯/千克催化剂/小时的STY。在空气中再生时,催化剂性能完全可再现。这表明该V-Ti-P材料难以被有机反应物、产物和共同生成的水钝化。
再现之前公开的磷酸硼催化剂的2-Me-THF性能的尝试是不成功的。该催化剂如现有技术中所述制备,但使用这种材料的各实验都导致高2-Me-THF转化率,但对间戊二烯几乎至完全没有选择性。实际上,使用现有技术中描述的反应器条件基本不产生间戊二烯。在从反应器中取出后,催化剂和反应器管明显被大量焦炭沉积物污染,即使尝试在空气中在400℃下再生后也如此。另一方面,该V-Ti-P催化剂在类似处理时没有表现出可见的结焦迹象。
该V-Ti-P催化剂还能将其它生物源化学品转化成相应的脱水烯和二烯。例如,正戊醇可以以100%转化率脱水并对直链和支化戊烯的混合物具有81%选择性。1,5-戊二醇可以以100%转化率脱水,从而以38%选择性产生间戊二烯和以39%选择性产生四氢吡喃(THP),这由进料的部分脱水生成。作为基质,THP是在V-Ti-P催化剂上脱水的更有挑战性的环醚。由于其具有固有的更低碱性的事实,其反应性低于2-Me-THF。尽管如此,THP可以以45%选择性和44%转化率转化成间戊二烯。
下面论述的大部分实施例对各种基质的脱水使用相同反应条件。反应器温度例如为大约350℃,这适合辅助伯醇基质,如正戊醇和1,5-戊二醇的选择性转化。另一方面,仲醇的脱水的选择性明显较低,尽管转化率为100%。仲醇通常比同属伯醇更有反应性,因此较低的反应器温度可改进这些脱水反应中的选择性。
甘油脱水成丙烯醛(一种α,β-不饱和醛)已知通过在液相和气相中的酸催化发生。这种反应是重要的,因为其提供目前通过丙烯的二阶段氧化制造的丙烯酸的可持续替代物。该V-Ti-P催化剂可以将甘油的水溶液以高转化率和适中选择性转化成丙烯醛。由于甘油中存在的仲醇官能团,实施这种反应所需的反应器温度明显低于之前论述的基质。例如,当在300℃下实施时,甘油转化率为92%且对丙烯醛的选择性为56%,以产生52%的单程产率和4摩尔丙烯醛/千克催化剂/小时的STY。
根据一个实施方案,脱水反应中所用的V-Ti-P催化剂可根据许多方法制备。但是,通常,通过将钒前体,如偏钒酸铵悬浮在水中、接着添加85%磷酸,获得该催化剂。然后将这种溶液添加到水溶性钛前体(TBALDH)的水溶液中。所得悬浮液在升高的温度下搅拌,接着通过蒸馏除水。所得固体在空气中的煅烧随后提供所需催化剂。该催化剂组合物具有通式VTiaPbOc,其中a = 0.3至6.0,优选1.0至4.0;b = 2.0至13.0,优选4.0至10.0;且c是满足非氧组分的化合价所需的原子数。
根据一个实施方案,该方法包括含有至少1至6个醇官能团、至少1至3个醚基团和至少1至6个碳原子或其组合的含氧有机化合物的脱水。例如,这样的有机化合物可包括乙醇、正丙醇、1,3-丙二醇、1,2-丙二醇、异丙醇、1,2,3-丙三醇(甘油)、正丁醇、1,4-丁二醇、1,3-丁二醇、1,2-丁二醇、异丁醇、四氢呋喃、二氢呋喃、1,2,3,4-丁四醇(苏糖醇、赤藓糖醇)、正戊醇、1,5-戊二醇、1,4-戊二醇、1,3-戊二醇、1,2-戊二醇、2,4-戊二醇、环戊醇、环戊二醇、季戊四醇、1,2,3,4,5-戊烷五醇(木糖醇)、四氢吡喃、二氢吡喃、2-甲基-四氢呋喃、3-甲基-四氢吡喃、3-甲基-1,3,5-戊三醇、1,6-己二醇、1,5-己二醇、2,5-己二醇、3-甲基-1,5-戊二醇、己二醇、频哪醇、己三醇、环己醇、环己二醇、甲基四氢吡喃、1,2,3,4,5,6-己烷六醇(山梨糖醇)。在基质分子中还可能存在官能团,如酮、内酯、醛、酯和羧酸。另外,在基质分子中还可能存在非氧杂原子,如氮、磷、硫。
根据本发明的一个实施方案,来自该方法的产物包括乙烯、丙烯、1-丁烯、2-丁烯、2-甲基-丙烯、丁二烯、1-戊烯、2-戊烯、2-甲基-2-丁烯、2-甲基-1-丁烯、1,3-戊二烯、1,4-戊二烯、异戊二烯、四氢吡喃、环戊烯、环戊二烯、1-己烯、2-己烯、3-己烯、4-甲基-1-戊烯、4-甲基-2-戊烯、2-甲基-1-戊烯、2-甲基-2-戊烯、3-甲基-2-戊烯、1,3-己二烯、1,4-己二烯、1,5-己二烯、2,4-己二烯、甲基四氢吡喃、环己烯、环己二烯、丙酮、羟基丙酮、丙烯醛。该有机化合物在V-Ti-P催化剂上在大约250℃至大约500℃、大约300℃至大约450℃、或大约325℃至大约375℃的工艺温度下脱水。此外,可以使用大约10 SCCM至1000 SCCM、或大约50SCCM至500 SCCM,或大约80 SCCM至100 SCCM的任选非反应性载气,如氮气或脱氧空气(oxygen depleted air)。非反应性载气可以以总进料的0.1至90摩尔%、10至70摩尔%或甚至40至60摩尔%的浓度存在。此外,也可以在反应过程中引入反应性气体,如氧气以使积聚的焦炭量最小化。氧气组分的浓度可以为0.1至25摩尔%,1至15摩尔%或甚至2至5摩尔%。在焦炭沉积的情况中,催化剂可以在反应流程之间在空气中在大约300℃至大约600℃的温度下再生。
该方法可以在大约0.1至大约100巴绝对压力(bara),大约1至大约50 bara,或甚至大约10至大约20 bara的压力下运行。
根据一个实施方案,该脱水反应的进料是有机化合物。如果该有机化合物在所需进料温度下为液体形式,其可以与稀释剂如水混合。如果该有机化合物在所需进料温度下是固体,可以将其溶解在水性或有机溶剂中。此外,根据一个实施方案,这种反应的液体进料速率可以为大约1.0至大约1000毫升/千克催化剂/分钟,大约5至大约500毫升/千克催化剂/分钟,或大约10至100毫升/千克催化剂/分钟。可以将抑制剂,如丁基羟基甲苯(BHT)添加到产物中以使聚合最小化。
实施例
材料
偏钒酸铵(99+ wt% NH4VO3)、磷酸(85 wt% H3PO4)、二氢氧化双(乳酸铵)钛(IV)(在水中的50 wt.%溶液)、硼酸和醇和醚基质购自商业供应商并照原样使用。
缩写
XRD = X-射线衍射;SCCM = 标准立方厘米/分钟;2-Me-THF = 2-甲基-四氢呋喃;3-Me-THF = 3-甲基-四氢呋喃;THP = 四氢吡喃;3-Me-THP = 3-甲基-四氢吡喃;1,4-C5H8= 1,4-戊二烯;1,3-C5H8 = 1,3-戊二烯;STY = 时空产率。
气相色谱法程序
经测量期收集液体产物样品,称重并通过气相色谱法分析。与7.86克内标溶液一起,将样品称入管瓶中至1.0XXX克的记录重量(其中X是天平上显示的实际数)。通过将75.00克环戊酮称入1000毫升烧瓶中、然后用乙腈装满烧瓶,制备内标溶液。为了分离所有组分,在为潜在被分析物校准的Shimadzu 2010气相色谱仪上注入各样品。这一程序用于分析来自除甘油脱水反应外的所有脱水反应的产物。
来自甘油脱水的液体产物样品如下分析:将大约1.2克样品与作为内标的大约0.15克THF一起称入GC管瓶中。为了分离所有组分,在为潜在被分析物校准的HP5890气相色谱仪上注入各样品。
实施例1. 2-甲基-THF在V-Ti-P催化剂上在300℃下的气相脱水
通过首先在500毫升单颈圆底烧瓶中将偏钒酸铵(19.455克)悬浮在300毫升去离子水中,制备催化剂。在70℃下加热1小时后,在70℃下经15分钟加入85%正磷酸(105.4克)以产生浅橙色溶液。用最低量的水将残留反应物洗到反应烧瓶中。将50重量%二氢氧化双(乳酸铵)钛(IV)(TBALDH)溶液(218.45克)添加到配有冷凝器和机械搅拌器的1升三颈反应釜中。将V/P溶液缓慢倒入TBALDH溶液中以产生浅绿色悬浮液。用30毫升水漂洗V/P烧瓶并将内容物添加到反应烧瓶中。该混合物随后在130℃下以700至800 rpm搅拌16小时。然后经4至6小时通过蒸馏除去水并将所得潮湿的浅绿色固体转移到陶瓷皿中并在马弗炉中在空气中在300℃下加热16小时。将所得固体压碎并筛至8x14目。该8x14目随后在石英管中在空气(60 SCCM)中在450℃下煅烧6小时以产生浅绿色不规则形状的丸粒。这种材料具有51.4平方米/克的BET表面积,通过X-射线衍射为非晶态并具有如通过X-射线荧光光谱法测得的1.0V-2.0Ti-5.1P的摩尔组成。
在长度 = 61厘米(24英寸)的25毫米外径(21毫米内径)石英反应管中进行2-甲基-THF的脱水。由Barnstead International管式电炉(F21100型号)向反应器供热。该石英反应器具有从管底部起20厘米(8英寸)的凹槽(indentation)。具有凹槽的反应器区域位于炉加热区的底部附近。该反应器还配有从反应器顶部延伸至凹槽下方大约1英寸的热电偶套管。首先在反应器中加载石英碎片至凹槽上方大约2.5英寸的高度以使催化剂位于炉中间。然后在反应器中加载5.0克催化剂装料。在催化剂床的中心附近放置在热电偶套管中的热电偶。在催化剂装料上方的区域中加入足量的石英碎片(大约2.5英寸)以到达炉加热区的顶部。将液体产物收集在安装到带有阱(trap)的干冰冷凝器上的三颈烧瓶中。主接收烧瓶的底部和干冰阱各自配有旋塞阀以便排出液体产物。
使用设定为80 SCCM的氮气载气和0.2 mL/min的无水2-甲基-四氢呋喃进料速率进行脱水反应。炉温设定为300℃。在3小时后收集液体样品,称重并通过气相色谱法(GC)分析有机产物。催化剂性能概括在表1中。样品的有机组分的重量百分比分析数据概括在表2中。在主接收器中收集的双相材料标作‘Receiver’;在GC分析之前添加无水四氢呋喃以均化样品。在流程完成后30分钟从干冰阱接收器中收集的材料标作‘Trap 1’。在将该阱升温至室温后从该干冰阱收集器中收集的材料标作‘Trap 2’;在GC分析之前添加无水四氢呋喃以均化样品。
这一实施例表明,V-Ti-P催化剂有效地将2-Me-THF脱水成间戊二烯。几乎60%的基质转化,且对1,4-和1,3-戊二烯的产物选择性分别为大约10%和60%。这种反应的STY或速率为8.6摩尔1,3-戊二烯/千克催化剂/小时。
实施例2: 2-甲基-THF在V-Ti-P催化剂上在350℃下的气相脱水
根据实施例1进行这一实施例中的脱水反应,只是该催化剂在该流程之前在400℃下用128 SCCM的空气流再生16小时。然后将炉温调节至350℃并将载气换成氮气(80SCCM)。催化剂性能概括在表1中。样品的有机组分的重量百分比分析数据概括在表2中。这一实施例表明2-Me-THF转化率(88%)在这一反应器温度下更高,且对1,3-戊二烯的选择性提高至66%,而对1,4-戊二烯的选择性降低至5.5%。这种反应的1,3-戊二烯总单程产率为大约59%且速率为14摩尔1,3-戊二烯/千克催化剂/小时。
实施例3: 实施例2反应器条件的再现
根据实施例2进行这一实施例中的脱水反应,只是将0.02克BHT抑制剂添加到样品管瓶中。催化剂性能概括在表1中。样品的有机组分的重量百分比分析数据概括在表2中。这一实施例清楚表明,该V-Ti-P催化剂性能在空气中再生后完全可再现。观察到相同的2-Me-THF转化率(88%),对1,3-戊二烯、1,4-戊二烯的选择性和高生产率基本与前一实施例中所述的相同。挥发性馏分(Trap 2)中1,3-和1,4-戊二烯的总浓度为大约82重量%。
实施例4: 2-Me-THF脱水成间戊二烯的寿命研究
根据实施例2进行这一实施例中的脱水反应,只是反应运行8小时。在2、4、6和8小时提取液体样品。催化剂性能概括在表3中。这一实施例表明在初始数据点后,对间戊二烯的选择性保持恒定在大约80%,但转化率随时间经过逐渐降低,可能是由于焦炭形成。共同进给少量氧在这种方法中有利,因为焦炭会在形成时燃烧,由此保持恒定活性。
对比例1: 使用磷酸硼催化剂的2-Me-THF脱水
如现有技术中所述通过在500毫升烧杯中混合61.83克硼酸和115.29克85重量%磷酸和100克去离子水制备这一实施例中的催化剂。在机械搅拌2小时后,将该白色糊料转移到陶瓷皿中并在110℃下干燥16小时。然后将该白色固体压碎并筛至8x14目,在100 SCCM空气流下在350℃下煅烧3小时。然后将5克这种材料装入石英反应管中。如实施例2中所述进行2-Me-THF的脱水。催化剂性能概括在表1中。这一实施例表明,在相同反应器条件下,磷酸硼催化剂以V-Ti-P催化剂的一半以下的选择性产生间戊二烯。此外,该反应的材料平衡(material balance)为77%,而V-Ti-P催化反应的材料平衡为94%,表明进料大量分解成焦炭或气态副产物。
对比例2: 尝试使用磷酸硼催化剂重复2-Me-THF脱水
根据对比例1进行这一实施例中的脱水反应,只是该催化剂在该流程之前在400℃下用128 SCCM的空气流再生16小时。然后将炉温调节至350℃并将载气换成氮气(80SCCM)。催化剂性能概括在表1中。这一实施例表明,不同于V-Ti-P催化剂,磷酸硼催化剂没有良好再生或从前一流程中失活,或两者皆有。2-Me-THF转化率在这一反应中明显更高(98%),但对间戊二烯的选择性低于10%。
对比例3: 使用磷酸硼催化剂的2-Me-THF脱水
此实施例中所用的催化剂是前一实施例中所用的相同催化剂装料。用与前一实施例中相同的反应器构造进行脱水实验,但催化剂在400℃下用128 SCCM空气流再生16小时。然后将反应器温度设定为350℃,2-Me-THF进料速率设定为0.0759 mL/min且氮气流设定为0 SCCM。这些反应器设置与现有技术中以每克催化剂为基础论述的那些相同。这一实施例表明,当在之前公开的条件下进行反应时,磷酸硼催化剂基本不由2-Me-THF生成间戊二烯,即使转化率为98%。61%的低材料平衡表明大量进料分解成焦炭或气态副产物。实际上,反应管甚至在尝试再生后仍被黑色沉积物覆盖。这些结果不符合现有技术,其报道了较低转化率但明显较高的对间戊二烯的选择性。
实施例5: 3-甲基-四氢呋喃在V-Ti-P催化剂上的脱水
如实施例2中所述进行这一实施例中的脱水反应,只是使用3-甲基-四氢呋喃作为液体进料。这一实施例中所用的催化剂是实施例4中所用的相同催化剂装料,但在使用前在400℃下用128 SCCM空气再生16小时。催化剂性能概括在表4中。这一实施例表明3-Me-THF的脱水不像相应的2-Me-THF反应那样有效。转化率为58%且对异戊二烯的选择性仅为14%。令人惊讶地,以11%选择性形成1,3-戊二烯,这表明基质碳骨架的重排。
实施例6: 正戊醇在V-Ti-P催化剂上的脱水
如实施例5中所述进行这一实施例中的脱水反应,只是使用正戊醇作为液体进料。催化剂性能概括在表4中。这一实施例清楚表明该V-Ti-P催化剂对正戊醇脱水高度活性和选择性,提供100%转化率和81%的戊烯异构体选择性。
实施例7: 1,4-戊二醇在V-Ti-P催化剂上的脱水
如实施例5中所述进行这一实施例中的脱水反应,只是使用1,4-戊二醇作为液体进料。催化剂性能概括在表4中。这一实施例表明尽管基质转化率为100%,对间戊二烯的选择性低于25%。考虑到基质含有高度反应性的仲醇,合理地估计反应器温度在这一实施例中太高。降低反应器温度预计提高对间戊二烯的选择性。
实施例8: 1,5-戊二醇在V-Ti-P催化剂上的脱水
如实施例5中所述进行这一实施例中的脱水反应,只是使用1,5-戊二醇作为液体进料。这一实施例表明基质100%转化,对1,3-戊二烯的选择性为34%且对环醚四氢吡喃(THP)的选择性为35%。后一产物的形成反映了基质的部分脱水,而前一产物来自完全脱水。
实施例9: 四氢吡喃在V-Ti-P催化剂上的脱水
如实施例5中所述进行这一实施例中的脱水反应,只是使用四氢吡喃作为液体进料。催化剂性能概括在表4中。这一实施例表明THP不像筛选的其它基质那样易反应。转化率为41%,对间戊二烯的选择性为45%。
实施例10: 3-甲基-1,5-戊二醇在V-Ti-P催化剂上的脱水
如实施例5中所述进行这一实施例中的脱水反应,只是使用3-甲基-1,5-戊二醇作为液体进料。这一实施例表明基质100%转化,对3-甲基-四氢吡喃的选择性为34%且对3-甲基-1,3-戊二烯的选择性为11%。
实施例11: 2,5-己二醇在V-Ti-P催化剂上的脱水
如实施例5中所述进行这一实施例中的脱水反应,只是使用2,5-己二醇作为液体进料。催化剂性能概括在表4中。这一实施例表明基质100%转化,对己二烯异构体的选择性为45%。如使用含仲醇的基质的上述实施例中所示,在降低反应器温度时,这一实施例中的产物选择性也较高。
实施例12: 甘油在V-Ti-P催化剂上的脱水
如实施例1中所述进行这一实施例中的脱水反应,只是使用甘油在去离子水中的30重量%溶液作为液体进料并将反应器温度设定为250℃。还使用新鲜的5克V-Ti-P催化剂装料并用纯乙醇而非THF均化该双相产物样品。催化剂性能概括在表5中。这一实施例表明转化的甘油量为37%,而对丙烯醛的选择性为23%。
实施例13: 甘油在V-Ti-P催化剂上在275℃下的脱水
如实施例2中所述进行这一实施例中的脱水反应,只是在催化剂再生后将反应器温度设定为275℃。催化剂性能概括在表5中。这一实施例表明转化的甘油量为69%,而对丙烯醛的选择性为60%。
实施例14: 甘油在V-Ti-P催化剂上在300℃下的脱水
如实施例2中所述进行这一实施例中的脱水反应,只是在催化剂再生后将反应器温度设定为300℃。催化剂性能概括在表5中。这一实施例表明转化的甘油量为92%,而对丙烯醛的选择性为56%。
已经特别参照其优选实施方案详细描述了本发明,但要理解的是,可以在本发明的精神和范围内作出变动和修改。

Claims (11)

1.含氧有机化合物的脱水方法,包括使所述有机化合物在钒-钛-磷氧化物催化剂存在下进行脱水由此使所述有机化合物脱水以产生二烯,所述钒-钛-磷氧化物催化剂具有式VTiaPbOc,其中a=0.3-6.0,b=2.0-13.0并且c是满足非氧组分的化合价所需的原子数,其中钛组分得自二氢氧化双(乳酸铵)钛(IV)的水溶液,且
其中所述有机化合物选自四氢呋喃、二氢呋喃、环戊二醇、四氢吡喃、二氢吡喃、2-甲基-四氢呋喃、3-甲基-四氢呋喃、甲基四氢吡喃、3-甲基-四氢吡喃和环己二醇。
2.根据权利要求1的方法,其中所述有机化合物选自四氢呋喃、二氢呋喃、四氢吡喃、二氢吡喃、2-甲基-四氢呋喃、3-甲基-四氢呋喃和3-甲基-四氢吡喃。
3.根据权利要求1的方法,其中所述方法在250℃至500℃的温度下进行。
4.根据权利要求3的方法,其中所述温度为300℃至450℃。
5.根据权利要求4的方法,其中所述温度为325℃至375℃。
6.根据权利要求1的方法,进一步包括在反应流程之间在空气中在300℃至600℃的温度下再生所述催化剂。
7.根据权利要求1的方法,其中所述方法在0.1至100巴绝对压力(bara)下进行。
8.根据权利要求7的方法,其中所述压力为1至50 bara。
9.根据权利要求8的方法,其中所述压力为10至20 bara。
10.根据权利要求1的方法,其中所述催化剂具有式VTiaPbOc,其中a = 1.0至4.0,b =4.0至10.0,且c是满足非氧组分的化合价所需的原子数。
11.根据权利要求1的方法,其中所述有机化合物选自2-甲基-四氢呋喃和3-甲基-四氢呋喃。
CN201280043847.7A 2011-09-16 2012-08-30 醇和醚在三元混合氧化物上的催化脱水 Expired - Fee Related CN103813855B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/234,277 US8981172B2 (en) 2011-09-16 2011-09-16 Catalytic dehydration of alcohols and ethers over a ternary mixed oxide
US13/234277 2011-09-16
PCT/US2012/052989 WO2013039705A1 (en) 2011-09-16 2012-08-30 Catalytic dehydration of alcohols and ethers over a ternary mixed oxide

Publications (2)

Publication Number Publication Date
CN103813855A CN103813855A (zh) 2014-05-21
CN103813855B true CN103813855B (zh) 2017-02-15

Family

ID=46939992

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280043847.7A Expired - Fee Related CN103813855B (zh) 2011-09-16 2012-08-30 醇和醚在三元混合氧化物上的催化脱水

Country Status (7)

Country Link
US (1) US8981172B2 (zh)
EP (1) EP2755762A1 (zh)
JP (1) JP6073325B2 (zh)
CN (1) CN103813855B (zh)
BR (1) BR112014006177A2 (zh)
WO (1) WO2013039705A1 (zh)
ZA (1) ZA201402772B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8765629B2 (en) * 2011-09-16 2014-07-01 Eastman Chemical Company Process for preparing V-Ti-P catalysts for synthesis of 2,3-unsaturated carboxylic acids
US8993801B2 (en) 2011-09-16 2015-03-31 Eastman Chemical Company Process for preparing V-Ti-P catalysts for synthesis of 2,3-unsaturated carboxylic acids
US8883672B2 (en) 2011-09-16 2014-11-11 Eastman Chemical Company Process for preparing modified V-Ti-P catalysts for synthesis of 2,3-unsaturated carboxylic acids
US9573119B2 (en) 2011-09-16 2017-02-21 Eastman Chemical Company Process for preparing V—Ti—P catalysts for synthesis of 2,3-unsaturated carboxylic acids
US11498062B2 (en) 2016-09-30 2022-11-15 Regents Of The University Of Minnesota Phosphorus-containing solid catalysts and reactions catalyzed thereby, including synthesis of p-xylene

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2273484A (en) 1936-01-03 1942-02-17 Melle Usines Sa Process for manufacturing synthetic rubber from furfurol
GB589709A (en) 1942-07-30 1947-06-27 Melle Usines Sa Improvements in or relating to the manufacture of olefines and di-olefines by catalytic dehydration
US3226337A (en) 1960-12-24 1965-12-28 Hoechst Ag Process for producing a catalyst for the oxidation of olefins and diolefins to unsaturated dicarboxylic acids
FR1601593A (en) 1968-06-24 1970-08-31 Prodn of acrylic or methacrylic acid by catalytic
DE2212964C3 (de) 1972-03-17 1980-01-31 Basf Ag, 6700 Ludwigshafen Vanadinpentoxid, Titandioxid und gegebenenfalls Zirkondioxid, Phosphor sowie weitere Metalloxide enthaltender Trägerkatalysator
US4151116A (en) 1977-08-05 1979-04-24 Halcon Research And Development Corporation Preparation of maleic anhydride
DE3010710A1 (de) 1980-03-20 1981-09-24 Chemische Werke Hüls AG, 4370 Marl Verfahren zur herstellung von katalysatoren fuer die gasphaseoxidation von gesaettigten und/oder ungesaettigten c(pfeil abwaerts)4(pfeil abwaerts)-kohlenwasserstoffen zu maleinsaeureanhydrid
US4250346A (en) 1980-04-14 1981-02-10 Union Carbide Corporation Low temperature oxydehydrogenation of ethane to ethylene
US4447638A (en) 1982-08-02 1984-05-08 Atlantic Richfield Company Preparation of dialkyl oxalates by the oxidative carbonylation of alcohols with a heterogeneous Pd-V-P-Ti containing catalyst system
US4515904A (en) 1983-09-30 1985-05-07 Standard Oil Company (Indiana) Catalysts for the production of maleic anhydride by the oxidation of butane
JPH0621100B2 (ja) * 1985-04-03 1994-03-23 東亞合成化学工業株式会社 アクリル酸またはメタクリル酸の製造法
JPS6468335A (en) * 1987-09-08 1989-03-14 Mitsubishi Rayon Co Production of unsaturated carboxylic acid and ester thereof
JPH0517392A (ja) 1991-03-29 1993-01-26 Nippon Synthetic Chem Ind Co Ltd:The アクリル酸の製造方法
US6046373A (en) * 1998-04-29 2000-04-04 Exxon Chemical Patents Inc. Catalytic conversion of oxygenates to olefins
ITMI991233A1 (it) 1999-06-01 2000-12-01 Lonza Spa Procedimento per preparare un precursore di catalizzatore di ossido misto vanadio/fosforo
US6642173B2 (en) * 2001-04-25 2003-11-04 Rohm And Haas Company Catalyst
JP2004290924A (ja) 2003-03-28 2004-10-21 Sumitomo Chem Co Ltd 触媒繊維およびその製造方法
WO2009127889A1 (en) 2008-04-16 2009-10-22 Arkema France Process for manufacturing acrolein from glycerol
CA2736800A1 (en) * 2008-08-27 2010-03-04 Randy D. Cortright Synthesis of liquid fuels from biomass
EP2179981A1 (en) 2008-10-24 2010-04-28 Arkema France Process for manufacturing acrolein from glycerol
JP2010099596A (ja) 2008-10-24 2010-05-06 Arkema France グリセリンの脱水反応によるアクロレイン及びアクリル酸の製造用触媒と、その製造法
US8993801B2 (en) 2011-09-16 2015-03-31 Eastman Chemical Company Process for preparing V-Ti-P catalysts for synthesis of 2,3-unsaturated carboxylic acids
US8765629B2 (en) * 2011-09-16 2014-07-01 Eastman Chemical Company Process for preparing V-Ti-P catalysts for synthesis of 2,3-unsaturated carboxylic acids
US8658557B2 (en) 2011-10-25 2014-02-25 Ineos Usa Llc Catalyst for n-butane oxidation to maleic anhydride

Also Published As

Publication number Publication date
US20130072696A1 (en) 2013-03-21
US8981172B2 (en) 2015-03-17
WO2013039705A1 (en) 2013-03-21
ZA201402772B (en) 2015-04-29
CN103813855A (zh) 2014-05-21
EP2755762A1 (en) 2014-07-23
BR112014006177A2 (pt) 2017-04-11
JP6073325B2 (ja) 2017-02-01
JP2014534167A (ja) 2014-12-18

Similar Documents

Publication Publication Date Title
CN103813855B (zh) 醇和醚在三元混合氧化物上的催化脱水
CN104602816B (zh) 来自具有少的甲烷和co2生成的合成气选择性生成低烃c1-c5的催化剂和工艺
US8232433B2 (en) Catalyst and alcohol synthesis method
CN104010996B (zh) 对二甲苯和/或对甲基苯甲醛的制备方法
CN109704900B (zh) 合成气一步法制烯烃的方法
JP2008088140A (ja) 化学工業原料及び燃料組成物の合成方法
JP2006290815A (ja) アクロレインの製造方法
CN103702963A (zh) 改良的脱水反应方法
CN109701629B (zh) 用于制低碳烯烃的组合催化剂及其使用方法
CN104379542A (zh) 由合成气生产乙烯和丙烯的工艺
CN107108398A (zh) 用于含氧化合物的脱水的方法
JP5849259B2 (ja) 触媒およびアルコールの合成法
CN102372291A (zh) Sapo-18/sapo-34共生分子筛的制备方法
JP7422210B2 (ja) バイオベースの液化石油ガスの生成
WO2012177484A1 (en) Catalysts for the production of hydroxy ether hydrocarbons by vapor phase hydrogenolysis of cyclic acetals and ketals
CN109701627B (zh) 含尖晶石结构的复合催化剂及其在合成气一步法制烯烃的应用
EP2809638A1 (de) Verfahren für die umwandlung von synthesegas zu olefinen
KR101622236B1 (ko) 알릴 알콜로부터 아크릴산 제조용 불균일계 촉매, 이를 이용한 알릴 알콜로부터 아크릴산을 제조하는 방법
JP5914615B1 (ja) アリルアルコールから3−ヒドロキシプロピオン酸を製造するための不均一系触媒、これを用いたアリルアルコールから3−ヒドロキシプロピオン酸を製造する方法
CN1027366C (zh) 戊烯的氧化脱氢
CN112642455B (zh) 一种合成愈创木酚的氮化铝负载金属氧化物催化剂及其制备方法和应用
CN102659588B (zh) 一种溴乙酸叔丁酯的合成方法
CN107973690A (zh) 用于丁烯氧化脱氢制丁二烯的催化剂及其方法
EP0003399A1 (en) A method for increasing the selectivity to acetic acid in the production of a mixture of C1 to C3 monocarboxylic acids by oxidation of paraffinic hydrocarbons
CN108137463A (zh) 由甘油制备丙烯酸的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170215

Termination date: 20190830