CN109701627B - 含尖晶石结构的复合催化剂及其在合成气一步法制烯烃的应用 - Google Patents

含尖晶石结构的复合催化剂及其在合成气一步法制烯烃的应用 Download PDF

Info

Publication number
CN109701627B
CN109701627B CN201711016747.6A CN201711016747A CN109701627B CN 109701627 B CN109701627 B CN 109701627B CN 201711016747 A CN201711016747 A CN 201711016747A CN 109701627 B CN109701627 B CN 109701627B
Authority
CN
China
Prior art keywords
catalyst
reaction
prepared
alpo
synthesis gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711016747.6A
Other languages
English (en)
Other versions
CN109701627A (zh
Inventor
周海波
刘苏
王仰东
苏俊杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Petroleum and Chemical Corp
Sinopec Shanghai Research Institute of Petrochemical Technology
Original Assignee
China Petroleum and Chemical Corp
Sinopec Shanghai Research Institute of Petrochemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Petroleum and Chemical Corp, Sinopec Shanghai Research Institute of Petrochemical Technology filed Critical China Petroleum and Chemical Corp
Priority to CN201711016747.6A priority Critical patent/CN109701627B/zh
Publication of CN109701627A publication Critical patent/CN109701627A/zh
Application granted granted Critical
Publication of CN109701627B publication Critical patent/CN109701627B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

本发明属于化学化工技术领域,具体为一种含尖晶石结构氧化物的复合催化剂及其在合成气一步法制烯烃的应用,主要解决现有用于合成气制烯烃的催化剂低碳烯烃选择性不高的问题。催化剂为一种含尖晶石结构氧化物的复合催化剂,其特征在于包括尖晶石结构氧化物和磷铝分子筛,可以实现合成气高选择性一步法制烯烃。该催化剂较好地解决了如上问题,能够高效、连续、稳定地制取C2‑C4烯烃产物,可用于合成气制低碳烯烃的工业生产中。

Description

含尖晶石结构的复合催化剂及其在合成气一步法制烯烃的 应用
技术领域
本发明属于化学化工技术领域,具体涉及一种含尖晶石结构氧化物的复合催化剂及其在合成气一步法制烯烃的应用,尤其具体涉及一种用于合成气高选择性直接制低碳烯烃的含尖晶石结构氧化物的复合催化剂及其制备方法。
背景技术
以乙烯、丙烯等为代表的低碳烯烃是衡量一个国家化学工业水平的重要标准,也是重要的有机化工原料,可生产塑料、合成树脂、纤维、橡胶等大宗合成材料。近年来我国低碳烯烃产能不断提高,生产已具相当规模,但长期以来进口量持续增长。2011年我国乙烯和丙烯产量分别达1527.5万吨和1453.0万吨,同年进口量为106.0万吨和175.5万吨,同比增长30.0%和15.2%。随着国民经济的快速增长,我国对乙烯、丙烯等化工原料的需求将稳步增长,未来供求矛盾仍十分突出。
目前,我国低碳烯烃生产主要采用石脑油蒸汽裂解的石油化工路线。由于全球石油资源日渐匮乏,世界各大石油化工公司正积极开发替代传统烯烃生产的新路线。基于我国缺油、少气、富煤的资源特点,开发煤基合成气(CO+H2)制低碳烯烃技术具有重要的战略意义,合成气直接制取低碳烯烃工艺具有流程短、能耗和煤耗低的优势,是当前的研究热点,具有良好的发展前景。
费托合成技术(FTS)是当前被广泛应用的合成气转化工艺,因其具有单程转化率高,产物分布可调等优点,显示出了较好的经济效益。但受限于Anderson-Schulz-Flory分布(ASF分布),费托合成产物中附加值最高的低碳烯烃选择性无法突破58%。
专利文献CN102441383A公开了一种负载型铁基合成气制低碳烯烃催化剂的制备方法,以硅胶为载体,首先对硅胶载体进行表面改性,然后采用浸渍法负载金属助剂和活性组分Fe;其中硅胶载体的表面改性方法为采用含氮有机化合物溶液浸渍处理。该发明采用的硅胶载体经改性后,克服了载体与活性组分之间的强相互作用,提高了催化剂的活性和选择性。该发明方法制备的催化剂适用于合成气生产乙烯、丙烯和丁烯等低碳烯烃的反应过程。
专利文献CN102698764A涉及合成气制低碳烯烃的催化剂、制备方法及其用途,催化剂有主活性组分和助活性组分,其中主活性组分为氧化铁和氧化锌,助活性组分为氢氧化钾或碳酸镁。该发明优点是:由合成气直接得到低碳烯烃,不需要甲醇中间产品,低碳烯烃的生产成本低,低碳烯烃选择性高,分离流程简单,CO的单程转化率高,甲烷和CO2生产量少,操作能耗更低。催化剂的用途是合成气直接合成低碳烯烃。
CO和H2的合成气,合成粗甲醇,精制后得到精甲醇,最后将精甲醇转化为低碳烯烃。与一步费托法合成烯烃工艺相比,合成气经甲醇制烯烃工艺的烯烃产物基本集中在C2-4的低碳烯烃,具有较高的选择性。
CN1683079A涉及一种用于甲醇制烯烃反应的催化剂,主要解决以往文献中制得的硅磷铝分子筛用于甲醇制低碳烯烃过程中存在催化剂活性低,乙烯、丙烯及丁烯选择性低,乙烯和丙烯收率低的问题。本发明通过采用Zn-SAPO-34分子筛以及粘结剂作为甲醇制烯烃反应的催化剂的技术方案较好地解决了该问题,可用于甲醇制烯烃的工业生产中。
包信和等人(Science,2016,351,1065-1068)研发了基于合成气制醇和甲醇制烯烃的耦合反应体系(OX-ZEO催化剂),其能够将两种高选择性催化剂有机结合,实现CO加氢高选择性制烯烃。新发明通过缩短流程、降低能耗可大幅减少CO2排放和水资源消耗,具有较高的经济效益。
综上所述,现有技术中有的虽然CO转化率较高,但烯烃选择性,尤其是低碳烯烃选择性偏低,距离工业应用的理想目标还有很大差距;有的采用两步法,需先将合成气转化为甲醇,再转化为低碳烯烃,该项技术选择性较高,但两步反应所需转化路径长,反应装置复杂,中间产物/产物需经多次物料分离,固定投资大,能耗物耗高。而本发明所述催化剂具有单程转化率高、产物中低碳烯烃选择性高之优点,具有极强的市场竞争力。
发明内容
本发明的目的在于解决现有技术中存在的CO转化率低,低碳烯烃选择性有限的缺点,提供了一种新的用于合成气制低碳烯烃的催化剂,该催化剂用于合成气制低碳烯烃反应时,具有CO单程转化率高,C2-C4烯烃选择性高的优点。
为解决上述技术问题,本发明的技术方案如下:一种含尖晶石结构氧化物的复合催化剂,其特征在于包括含尖晶石结构氧化物和磷铝分子筛。
上述技术方案中,含尖晶石结构氧化物的复合催化剂,其特征在于氧化物选自元素周期表第ⅡB、第ⅣB、第ⅥB、第ⅢA族中的一种氧化物或至少一种氧化物。
上述技术方案中,优选的,氧化物包括选自元素周期表第ⅡB、第ⅣB、第ⅥB、第ⅢA族中的复合氧化物。
上述技术方案中,优选的,氧化物包括选自ZnO、Cr2O3、Al2O3、In2O3、ZrO2中的至少一种氧化物或其复合氧化物。
上述技术方案中,优选的,氧化物选自ZnO和Cr2O3
上述技术方案中,优选的,氧化物选自ZnO、Cr2O3和Al2O3
上述技术方案中,优选的,复合氧化物至少部分形成尖晶石结构。
上述技术方案中,更优选的,复合氧化物的XRD谱图中仅出现尖晶石结构的特征衍射峰,而不出现单一氧化物的衍射峰。
上述技术方案中,磷铝分子筛选自AlPO4-5、AlPO4-11、AlPO4-17、AlPO4-18、AlPO4-20、AlPO4-31、AlPO4-33、AlPO4-34、AlPO4-35、AlPO4-44、AlPO4-56中的至少一种。
上述技术方案中,优选的,磷铝分子筛选自AlPO4-17、AlPO4-18、AlPO4-31、AlPO4-33、AlPO4-34、AlPO4-35中的至少一种。
上述技术方案中,优选的,磷铝分子筛选自AlPO4-18和AlPO4-34中的一种或至少一种。
上述技术方案中,优选的,磷铝分子筛选自AlPO4-18和/或AlPO4-34,或者是AlPO4-34和AlPO4-18的共晶。
上述技术方案中,优选的,磷铝分子筛选自AlPO4-18和AlPO4-34。
上述技术方案中,优选的,磷铝分子筛为任意比例的AlPO4-18和AlPO4-34的混合物。
上述技术方案中,更优选的,磷铝分子筛中AlPO4-18和AlPO4-34的重量比为(1:9)~(9:1)。
上述技术方案中,含尖晶石结构氧化物的复合催化剂,磷铝分子筛和氧化物的重量比为5/1至1/5。
上述技术方案中,优选的,磷铝分子筛和氧化物的重量比为4/1至1/3。
上述技术方案中,优选的,磷铝分子筛和氧化物的重量比为3/1至1/2。
上述技术方案中,合成气与上述含尖晶石结构氧化物的复合催化剂接触,反应得到含低碳烯烃的产物。
上述技术方案中,优选的,反应温度为320-480℃,
上述技术方案中,优选的,反应压力0.5-8MPa。
上述技术方案中,优选的,体积空速为800-10000h-1
上述技术方案中,优选地,反应温度360-440℃;更优选地,反应温度为370-430℃;最优选地,反应温度为380-410℃。
上述技术方案中,优选地,反应压力1-6MPa;更优选的,反应压力为2-5MPa。
上述技术方案中,优选地,体积空速为1,000-8,000h-1;更优选的,体积空速为2,000-7,000h-1
上述技术方案中,优选的,CO与H2的体积比为0.3-3.5;优选为0.5-3;更优选为0.7-2.5。
其中,C2-C4烯烃选择性的计算方式为:(2*乙烯产物摩尔数+3*丙烯产物摩尔数+4*丁烯产物摩尔数)/有机产物中总碳数摩尔数。
本发明技术方案中涉及的磷铝分子筛不含硅,但可以包括在磷铝分子筛制备过程中由于原料中含硅杂质引入的硅组分,在整个催化剂体系由于含硅杂质引入的硅组分应小于0.1wt%。
本技术方案中采用氧化物和分子筛催化剂的耦合,同时通过优选分子筛催化剂为磷铝分子筛,相比含硅分子筛具有更优的催化性能。氧化物选自元素周期表第ⅡB、第ⅥB、第ⅢA族中的一种氧化物或至少一种氧化物或复合氧化物,特别是氧化物部分形成尖晶石结构的氧化物时,具有较强的结构稳定性,并且具有较高的比表面积,有利于活性位的暴露。由于尖晶石结构的存在,CO活化中心与H2活化中心较为接近,有利于CO加氢反应的进行。该类型部分形成尖晶石结构的氧化物在低温下活化CO能力较强,在高温下结构稳定,高度匹配磷铝分子筛催化剂的应用条件。磷铝分子筛催化剂酸性较弱,有利于减少氢转移副反应的发生,避免低碳烷烃的产生。因此,相比现有常规的催化剂,本技术方案的催化产物中C2-4烯烃选择性可进一步提高10%以上。
下面通过实施例对本发明作进一步阐述。
附图说明
图1中分别是ZnCr3(实施例12中涉及的氧化物)、Zn0.4/ZnCr2(实施例6中涉及的氧化物)、ZnCr1.1Al0.1(实施例19-32中涉及的氧化物)的XRD谱图。
具体实施方式
【实施例1】
ZnO+ZrO2催化剂按如下步骤制备:
称取1mol的硝酸锌,用1000mL蒸馏水溶解,然后将2.2mol NaOH溶于1000mL水,将两种水溶液并流共沉淀后,在70℃下陈化3h,过滤后在100℃下干燥过夜,在400℃下焙烧12h,得到ZnO催化剂。
称取1mol的硝酸锆,用1000mL蒸馏水溶解,然后将4.2mol NaOH溶于1000mL水,将两种水溶液并流共沉淀后,在70℃下陈化3h,过滤后在100℃下干燥过夜,在400℃下焙烧12h,得到ZrO2催化剂。
AlPO4-5催化剂按如下步骤制备:
以拟薄水铝石、磷酸、三正丙胺(TPA)分别为铝源、磷源、模板剂,摩尔比Al2O3∶P2O5∶TPA∶乙醇∶H2O=1∶1.2∶2.66∶80∶1000,加入反应釜后陈化2小时,190℃下搅拌晶化48h,得到的固体用去离子水洗至中性,分离得固体,烘干,马弗炉中550℃焙烧6小时,得AlPO4-5分子筛。
将0.42克制备好的ZnO催化剂、0.42克制备好的ZrO2催化剂和0.7克制备好的AlPO4-5混合,装入一个内径为6毫米的石英反应管中,将(n氢气:n一氧化碳=50:50)通入反应管中,进入催化床反应,反应温度为400℃,反应体系压力为4MPa,气体体积空速为4,000h-1条件下进行合成气制低碳烯烃反应。活性评价结果见表1。
【实施例2】
Ga2O3催化剂按如下步骤制备:
称取1mol的硝酸镓,用1000mL蒸馏水溶解,然后将3.1mol NaOH溶于1000mL水,将两种水溶液并流共沉淀后,在70℃下陈化3h,过滤后在100℃下干燥过夜,在400℃下焙烧12h,得到Ga2O3催化剂。
AlPO4-17催化剂按如下步骤制备:
以拟薄水铝石、磷酸、环己胺分别为铝源、磷源、模板剂,摩尔比Al2O3∶P2O5∶CHA∶HF∶H2O=1∶1∶1∶1∶40,加入反应釜后陈化2小时,200℃下搅拌晶化72h,得到的固体用去离子水洗至中性,分离得固体,烘干,马弗炉中550℃焙烧6小时,得AlPO4-17分子筛。
将0.84克制备好的Ga2O3催化剂和0.7克制备好的AlPO4-17混合,装入一个内径为6毫米的石英反应管中,将(n氢气:n一氧化碳=50:50)通入反应管中,进入催化床反应,反应温度为400℃,反应体系压力为4MPa,气体体积空速为4,000h-1条件下进行合成气制低碳烯烃反应。活性评价结果见表1。
【实施例3】
ZnZr0.8催化剂按如下步骤制备:
称取1mol的硝酸锌,0.8mol的硝酸锆,用1000mL蒸馏水溶解,然后将5.5mol NaOH溶于1000mL水,将两种水溶液并流共沉淀后,在70℃下陈化3h,过滤后在100℃下干燥过夜,在400℃下焙烧12h,得到ZnZr0.8催化剂。
AlPO4-18催化剂按如下步骤制备:
以拟薄水铝石、磷酸、N,N-二异丙基乙胺分别为铝源、磷源、模板剂,摩尔比Al2O3∶P2O5∶TPA∶H2O=1∶1∶1∶50,加入反应釜后陈化2小时,200℃下搅拌晶化48h,得到的固体用去离子水洗至中性,分离得固体,烘干,马弗炉中550℃焙烧6小时,得AlPO4-18分子筛。
将0.84克制备好的ZnZr0.8催化剂和0.7克制备好的AlPO4-18混合,装入一个内径为6毫米的石英反应管中,将(n氢气:n一氧化碳=50:50)通入反应管中,进入催化床反应,反应温度为400℃,反应体系压力为4MPa,气体体积空速为4,000h-1条件下进行合成气制低碳烯烃反应。活性评价结果见表1。
【实施例4】
In2O3催化剂按如下步骤制备:
称取1mol的硝酸铟,用1000mL蒸馏水溶解,然后将3.1mol NaOH溶于1000mL水,将两种水溶液并流共沉淀后,在70℃下陈化3h,过滤后在100℃下干燥过夜,在400℃下焙烧12h。得到In2O3催化剂。
Zn1.8Cr催化剂按如下步骤制备:
称取1.8mol的硝酸锌,1mol的硝酸铬,用1000mL蒸馏水溶解,然后将6.7mol NaOH溶于1000mL水,将两种水溶液并流共沉淀后,在70℃下陈化3h,过滤后在100℃下干燥过夜,在400℃下焙烧12h,得到Zn1.8Cr催化剂。
AlPO4-20催化剂按如下步骤制备:
以拟薄水铝石、磷酸、四甲基氢氧化胺分别为铝源、磷源、模板剂,摩尔比Al2O3∶P2O5∶TMAOH∶H2O=1∶1∶1∶50,加入反应釜后陈化2小时,200℃下搅拌晶化48h,得到的固体用去离子水洗至中性,分离得固体,烘干,马弗炉中550℃焙烧6小时,得AlPO4-20分子筛。
将0.28克制备好的In2O3催化剂、0.56克制备好的Zn1.8Cr催化剂和0.7克制备好的AlPO4-20混合,装入一个内径为6毫米的石英反应管中,将(n氢气:n一氧化碳=50:50)通入反应管中,进入催化床反应,反应温度为400℃,反应体系压力为4MPa,气体体积空速为4,000h-1条件下进行合成气制低碳烯烃反应。活性评价结果见表1。
【实施例5】
ZnCr1.2In0.4催化剂按如下步骤制备:
称取1mol的硝酸锌,1.2mol的硝酸铬,0.4mol的硝酸铟,用1000mL蒸馏水溶解,然后将7mol NaOH溶于1000mL水,将两种水溶液并流共沉淀后,在70℃下陈化3h,过滤后在100℃下干燥过夜,在400℃下焙烧12h,得到ZnCr1.2In0.4催化剂。
AlPO4-31催化剂按如下步骤制备:
以拟薄水铝石、磷酸、二正丁胺,分别为铝源、磷源、模板剂,摩尔比Al2O3∶P2O5∶DBA∶H2O=1∶1∶1.4∶40,加入反应釜后陈化2小时,170℃下搅拌晶化2h,得到的固体用去离子水洗至中性,分离得固体,烘干,马弗炉中550℃焙烧6小时,得AlPO4-31分子筛。
将0.84克制备好的ZnCr1.2In0.4催化剂和0.7克制备好的AlPO4-31混合,装入一个内径为6毫米的石英反应管中,将(n氢气:n一氧化碳=50:50)通入反应管中,进入催化床反应,反应温度为400℃,反应体系压力为4MPa,气体体积空速为4,000h-1条件下进行合成气制低碳烯烃反应。活性评价结果见表1。
【实施例6】
Zn0.4/ZnCr2催化剂按如下步骤制备:
称取1mol的硝酸锌,2mol的硝酸铬,用1000mL蒸馏水溶解,然后将8mol NaOH溶于1000mL水,将两种水溶液并流共沉淀后,在70℃下陈化3h,过滤后在100℃下干燥过夜,在400℃下焙烧12h。焙烧完成后,催化剂中间体负载0.4mol的醋酸锌,在80℃下烘干过夜,在400℃下焙烧1h,得到Zn0.4/ZnCr2催化剂。
AlPO4-5催化剂按【实施例1】制备。
将0.84克制备好的Zn0.4/ZnCr2催化剂和0.7克制备好的AlPO4-5混合,装入一个内径为6毫米的石英反应管中,将(n氢气:n一氧化碳=50:50)通入反应管中,进入催化床反应,反应温度为400℃,反应体系压力为4MPa,气体体积空速为4,000h-1条件下进行合成气制低碳烯烃反应。活性评价结果见表1。
【实施例7】
Zn2Cr催化剂按如下步骤制备:
称取2mol的硝酸锌,1mol的硝酸铬,用1000mL蒸馏水溶解,然后将7mol NaOH溶于1000mL水,将两种水溶液并流共沉淀后,在70℃下陈化3h,过滤后在100℃下干燥过夜,在400℃下焙烧12h。得到Zn2Cr催化剂。
AlPO4-34催化剂按如下步骤制备:
以拟薄水铝石、磷酸、吗啉,分别为铝源、磷源、模板剂,摩尔比Al2O3∶P2O5∶Mor∶HF∶H2O=1∶1∶2.0∶0.5∶100,加入反应釜后陈化2小时,180℃下搅拌晶化24h,得到的固体用去离子水洗至中性,分离得固体,烘干,马弗炉中550℃焙烧6小时,得AlPO4-34分子筛。
将0.84克制备好的Zn2Cr催化剂和0.7克制备好的AlPO4-34混合,装入一个内径为6毫米的石英反应管中,将(n氢气:n一氧化碳=50:50)通入反应管中,进入催化床反应,反应温度为400℃,反应体系压力为4MPa,气体体积空速为4,000h-1条件下进行合成气制低碳烯烃反应。活性评价结果见表1。
【实施例8】
Zn1.5Cr催化剂按如下步骤制备:
称取1.5mol的硝酸锌,1mol的硝酸铬,用1000mL蒸馏水溶解,然后将6mol NaOH溶于1000mL水,将两种水溶液并流共沉淀后,在70℃下陈化3h,过滤后在100℃下干燥过夜,在400℃下焙烧12h。得到Zn1.5Cr催化剂。
AlPO4-34催化剂按【实施例7】制备。
将0.84克制备好的Zn1.5Cr催化剂和0.7克制备好的AlPO4-34混合,装入一个内径为6毫米的石英反应管中,将(n氢气:n一氧化碳=50:50)通入反应管中,进入催化床反应,反应温度为400℃,反应体系压力为4MPa,气体体积空速为4,000h-1条件下进行合成气制低碳烯烃反应。活性评价结果见表1。
【实施例9】
ZnCr催化剂按如下步骤制备:
称取1mol的硝酸锌,1mol的硝酸铬,用1000mL蒸馏水溶解,然后将5mol NaOH溶于1000mL水,将两种水溶液并流共沉淀后,在70℃下陈化3h,过滤后在100℃下干燥过夜,在400℃下焙烧12h。得到ZnCr催化剂。
AlPO4-34催化剂按【实施例7】制备。
将0.84克制备好的ZnCr催化剂和0.7克制备好的AlPO4-34混合,装入一个内径为6毫米的石英反应管中,将(n氢气:n一氧化碳=50:50)通入反应管中,进入催化床反应,反应温度为400℃,反应体系压力为4MPa,气体体积空速为4,000h-1条件下进行合成气制低碳烯烃反应。活性评价结果见表1。
【实施例10】
ZnCr1.5催化剂按如下步骤制备:
称取1mol的硝酸锌,1.5mol的硝酸铬,用1000mL蒸馏水溶解,然后将6.6mol NaOH溶于1000mL水,将两种水溶液并流共沉淀后,在70℃下陈化3h,过滤后在100℃下干燥过夜,在400℃下焙烧12h。得到ZnCr1.5催化剂。
AlPO4-34催化剂按【实施例7】制备。
将0.84克制备好的ZnCr1.5催化剂和0.7克制备好的AlPO4-34混合,装入一个内径为6毫米的石英反应管中,将(n氢气:n一氧化碳=50:50)通入反应管中,进入催化床反应,反应温度为400℃,反应体系压力为4MPa,气体体积空速为4,000h-1条件下进行合成气制低碳烯烃反应。活性评价结果见表1。
【实施例11】
ZnCr2催化剂按如下步骤制备:
称取1mol的硝酸锌,2mol的硝酸铬,用1000mL蒸馏水溶解,然后将8mol NaOH溶于1000mL水,将两种水溶液并流共沉淀后,在70℃下陈化3h,过滤后在100℃下干燥过夜,在400℃下焙烧12h。得到ZnCr2催化剂。
AlPO4-34催化剂按【实施例7】制备。
将0.84克制备好的ZnCr2催化剂和0.7克制备好的AlPO4-34混合,装入一个内径为6毫米的石英反应管中,将(n氢气:n一氧化碳=50:50)通入反应管中,进入催化床反应,反应温度为400℃,反应体系压力为4MPa,气体体积空速为4,000h-1条件下进行合成气制低碳烯烃反应。活性评价结果见表1。
【实施例12】
ZnCr3催化剂按如下步骤制备:
称取1mol的硝酸锌,3mol的硝酸铬,用1000mL蒸馏水溶解,然后将11mol NaOH溶于1000mL水,将两种水溶液并流共沉淀后,在70℃下陈化3h,过滤后在100℃下干燥过夜,在400℃下焙烧12h。得到ZnCr3催化剂。
AlPO4-34催化剂按【实施例7】制备。
将0.84克制备好的ZnCr3催化剂和0.7克制备好的AlPO4-34混合,装入一个内径为6毫米的石英反应管中,将(n氢气:n一氧化碳=50:50)通入反应管中,进入催化床反应,反应温度为400℃,反应体系压力为4MPa,气体体积空速为4,000h-1条件下进行合成气制低碳烯烃反应。活性评价结果见表1。
【实施例13】
ZnCr1.5Al0.1催化剂按如下步骤制备:
称取1mol的硝酸锌,1.5mol的硝酸铬,0.1mol的硝酸铝,用1000mL蒸馏水溶解,然后将7mol NaOH溶于1000mL水,将两种水溶液并流共沉淀后,在70℃下陈化3h,过滤后在100℃下干燥过夜,在400℃下焙烧12h。得到ZnCr1.5Al0.1催化剂。
AlPO4-34催化剂按【实施例7】制备。
将0.84克制备好的ZnCr1.5Al0.1催化剂和0.7克制备好的AlPO4-34混合,装入一个内径为6毫米的石英反应管中,将(n氢气:n一氧化碳=50:50)通入反应管中,进入催化床反应,反应温度为400℃,反应体系压力为4MPa,气体体积空速为4,000h-1条件下进行合成气制低碳烯烃反应。活性评价结果见表1。
【实施例14】
ZnCr1.5Al0.2催化剂按如下步骤制备:
称取1mol的硝酸锌,1.5mol的硝酸铬,0.2mol的硝酸铝,用1000mL蒸馏水溶解,然后将7.2mol NaOH溶于1000mL水,将两种水溶液并流共沉淀后,在70℃下陈化3h,过滤后在100℃下干燥过夜,在400℃下焙烧12h。得到ZnCr1.5Al0.2催化剂。
AlPO4-34催化剂按【实施例7】制备。
将0.84克制备好的ZnCr1.5Al0.2催化剂和0.7克制备好的AlPO4-34混合,装入一个内径为6毫米的石英反应管中,将(n氢气:n一氧化碳=50:50)通入反应管中,进入催化床反应,反应温度为400℃,反应体系压力为4MPa,气体体积空速为4,000h-1条件下进行合成气制低碳烯烃反应。活性评价结果见表1。
【实施例15】
ZnCr1.5Al0.3催化剂按如下步骤制备:
称取1mol的硝酸锌,1.5mol的硝酸铬,0.3mol的硝酸铝,用1000mL蒸馏水溶解,然后将7.5mol NaOH溶于1000mL水,将两种水溶液并流共沉淀后,在70℃下陈化3h,过滤后在100℃下干燥过夜,在400℃下焙烧12h。得到ZnCr1.5Al0.3催化剂。
AlPO4-34催化剂按【实施例7】制备。
将0.84克制备好的ZnCr1.5Al0.3催化剂和0.7克制备好的AlPO4-34混合,装入一个内径为6毫米的石英反应管中,将(n氢气:n一氧化碳=50:50)通入反应管中,进入催化床反应,反应温度为400℃,反应体系压力为4MPa,气体体积空速为4,000h-1条件下进行合成气制低碳烯烃反应。活性评价结果见表1。
【实施例16】
ZnCr1.5Al0.15Zr0.05催化剂按如下步骤制备:
称取1mol的硝酸锌,1.5mol的硝酸铬,0.15mol的硝酸铝,0.05mol的硝酸锆,用1000mL蒸馏水溶解,然后将7.4mol NaOH溶于1000mL水,将两种水溶液并流共沉淀后,在70℃下陈化3h,过滤后在100℃下干燥过夜,在400℃下焙烧12h。得到ZnCr1.5Al0.15Zr0.05催化剂。
AlPO4-34催化剂按【实施例7】制备。
将0.84克制备好的ZnCr1.5Al0.15Zr0.05催化剂和0.7克制备好的AlPO4-34混合,装入一个内径为6毫米的石英反应管中,将(n氢气:n一氧化碳=50:50)通入反应管中,进入催化床反应,反应温度为400℃,反应体系压力为4MPa,气体体积空速为4,000h-1条件下进行合成气制低碳烯烃反应。活性评价结果见表1。
【实施例17】
ZnCr1.5Al0.1Zr0.1催化剂按如下步骤制备:
称取1mol的硝酸锌,1.5mol的硝酸铬,0.1mol的硝酸铝,0.1mol的硝酸锆,用1000mL蒸馏水溶解,然后将7.4mol NaOH溶于1000mL水,将两种水溶液并流共沉淀后,在70℃下陈化3h,过滤后在100℃下干燥过夜,在400℃下焙烧12h。得到ZnCr1.5Al0.1Zr0.1催化剂。
AlPO4-34催化剂按【实施例7】制备。
将0.84克制备好的ZnCr1.5Al0.1Zr0.1催化剂和0.7克制备好的AlPO4-34混合,装入一个内径为6毫米的石英反应管中,将(n氢气:n一氧化碳=50:50)通入反应管中,进入催化床反应,反应温度为400℃,反应体系压力为4MPa,气体体积空速为4,000h-1条件下进行合成气制低碳烯烃反应。活性评价结果见表1。
【实施例18】
ZnCr1.5Zr0.2催化剂按如下步骤制备:
称取1mol的硝酸锌,1.5mol的硝酸铬,0.2mol的硝酸锆,用1000mL蒸馏水溶解,然后将7.4mol NaOH溶于1000mL水,将两种水溶液并流共沉淀后,在70℃下陈化3h,过滤后在100℃下干燥过夜,在400℃下焙烧12h。得到ZnCr1.5Zr0.2催化剂。
AlPO4-34催化剂按【实施例7】制备。
将0.84克制备好的ZnCr1.5Zr0.2催化剂和0.7克制备好的AlPO4-34混合,装入一个内径为6毫米的石英反应管中,将(n氢气:n一氧化碳=50:50)通入反应管中,进入催化床反应,反应温度为400℃,反应体系压力为4MPa,气体体积空速为4,000h-1条件下进行合成气制低碳烯烃反应。活性评价结果见表1。
【实施例19】
ZnCr1.1Al0.1催化剂按如下步骤制备:
称取1mol的硝酸锌,1.1mol的硝酸铬,0.1mol的硝酸铝,用1000mL蒸馏水溶解,然后将5.7mol NaOH溶于1000mL水,将两种水溶液并流共沉淀后,在70℃下陈化3h,过滤后在100℃下干燥过夜,在400℃下焙烧12h。得到ZnCr1.1Al0.1催化剂。
AlPO4-5催化剂按【实施例1】制备。
将0.84克制备好的ZnCr1.1Al0.1催化剂和0.7克制备好的AlPO4-5混合,装入一个内径为6毫米的石英反应管中,将(n氢气:n一氧化碳=50:50)通入反应管中,进入催化床反应,反应温度为400℃,反应体系压力为4MPa,气体体积空速为4,000h-1条件下进行合成气制低碳烯烃反应。活性评价结果见表1。
【实施例20】
ZnCr1.1Al0.1催化剂按【实施例19】制备。
AlPO4-11催化剂按如下步骤制备:
以拟薄水铝石、磷酸、二异丙胺分别为铝源、磷源、模板剂,摩尔比Al2O3∶P2O5∶DIPA∶H2O=1∶1∶1∶50,加入反应釜后陈化2小时,200℃下搅拌晶化48h,得到的固体用去离子水洗至中性,分离得固体,烘干,马弗炉中550℃焙烧6小时,得AlPO4-11分子筛。
将0.84克制备好的ZnCr1.1Al0.1催化剂和0.7克制备好的AlPO4-11混合,装入一个内径为6毫米的石英反应管中,将(n氢气:n一氧化碳=50:50)通入反应管中,进入催化床反应,反应温度为400℃,反应体系压力为4MPa,气体体积空速为4,000h-1条件下进行合成气制低碳烯烃反应。活性评价结果见表1。
【实施例21】
ZnCr1.1Al0.1催化剂按【实施例19】制备。
AlPO4-17催化剂按【实施例2】制备。
将0.84克制备好的ZnCr1.1Al0.1催化剂和0.7克制备好的AlPO4-17混合,装入一个内径为6毫米的石英反应管中,将(n氢气:n一氧化碳=50:50)通入反应管中,进入催化床反应,反应温度为400℃,反应体系压力为4MPa,气体体积空速为4,000h-1条件下进行合成气制低碳烯烃反应。活性评价结果见表1。
【实施例22】
ZnCr1.1Al0.1催化剂按【实施例19】制备。
AlPO4-18催化剂按【实施例3】制备。
将0.84克制备好的ZnCr1.1Al0.1催化剂和0.7克制备好的AlPO4-18混合,装入一个内径为6毫米的石英反应管中,将(n氢气:n一氧化碳=50:50)通入反应管中,进入催化床反应,反应温度为400℃,反应体系压力为4MPa,气体体积空速为4,000h-1条件下进行合成气制低碳烯烃反应。活性评价结果见表1。
【实施例23】
ZnCr1.1Al0.1催化剂按【实施例19】制备。
AlPO4-20催化剂按【实施例4】制备。
将0.84克制备好的ZnCr1.1Al0.1催化剂和0.7克制备好的AlPO4-20混合,装入一个内径为6毫米的石英反应管中,将(n氢气:n一氧化碳=50:50)通入反应管中,进入催化床反应,反应温度为400℃,反应体系压力为4MPa,气体体积空速为4,000h-1条件下进行合成气制低碳烯烃反应。活性评价结果见表1。
【实施例24】
ZnCr1.1Al0.1催化剂按【实施例19】制备。
AlPO4-31催化剂按【实施例5】制备。
将0.84克制备好的ZnCr1.1Al0.1催化剂和0.7克制备好的AlPO4-31混合,装入一个内径为6毫米的石英反应管中,将(n氢气:n一氧化碳=50:50)通入反应管中,进入催化床反应,反应温度为400℃,反应体系压力为4MPa,气体体积空速为4,000h-1条件下进行合成气制低碳烯烃反应。活性评价结果见表1。
【实施例25】
ZnCr1.1Al0.1催化剂按【实施例19】制备。
AlPO4-34催化剂按【实施例7】制备。
将0.84克制备好的ZnCr1.1Al0.1催化剂和0.7克制备好的AlPO4-34混合,装入一个内径为6毫米的石英反应管中,将(n氢气:n一氧化碳=50:50)通入反应管中,进入催化床反应,反应温度为400℃,反应体系压力为4MPa,气体体积空速为4,000h-1条件下进行合成气制低碳烯烃反应。活性评价结果见表1。
【实施例26】
ZnCr1.1Al0.1催化剂按【实施例19】制备。
AlPO4-35催化剂按如下步骤制备:
以磷酸、异丙醇铝、六亚甲基亚胺分别为磷源、铝源、模板剂,摩尔比Al2O3∶P2O5∶HMI∶H2O=1∶1.5∶4.5∶100,加入反应釜后陈化2小时,200℃下搅拌晶化24h,得到的固体用去离子水洗至中性,分离得固体,烘干,马弗炉中550℃焙烧6小时,得AlPO4-35分子筛。
将0.84克制备好的ZnCr1.1Al0.1催化剂和0.7克制备好的AlPO4-35混合,装入一个内径为6毫米的石英反应管中,将(n氢气:n一氧化碳=50:50)通入反应管中,进入催化床反应,反应温度为400℃,反应体系压力为4MPa,气体体积空速为4,000h-1条件下进行合成气制低碳烯烃反应。活性评价结果见表1。
【实施例27】
ZnCr1.1Al0.1催化剂按【实施例19】制备。
AlPO4-44催化剂按如下步骤制备:
以拟薄水铝石、磷酸、三乙胺,分别为铝源、磷源、模板剂,摩尔比Al2O3∶P2O5∶TEA∶H2O=1∶1∶1.5∶60,加入反应釜后陈化2小时,180℃下搅拌晶化24h,得到的固体用去离子水洗至中性,分离得固体,烘干,马弗炉中550℃焙烧6小时,得AlPO4-44分子筛。
将0.84克制备好的ZnCr1.1Al0.1催化剂和0.7克制备好的AlPO4-44混合,装入一个内径为6毫米的石英反应管中,将(n氢气:n一氧化碳=50:50)通入反应管中,进入催化床反应,反应温度为400℃,反应体系压力为4MPa,气体体积空速为4,000h-1条件下进行合成气制低碳烯烃反应。活性评价结果见表1。
【实施例28】
ZnCr1.1Al0.1催化剂按【实施例19】制备。
AlPO4-56催化剂按如下步骤制备:
以磷酸、异丙醇铝、N,N,N',N'-四甲基-1,6-己二胺分别为磷源、铝源、模板剂,摩尔比Al2O3∶P2O5∶TMHD∶H2O=1∶1.1∶2∶50,加入反应釜后陈化2小时,200℃下搅拌晶化24h,得到的固体用去离子水洗至中性,分离得固体,烘干,马弗炉中550℃焙烧6小时,得AlPO4-56分子筛。
将0.84克制备好的ZnCr1.1Al0.1催化剂和0.7克制备好的AlPO4-56混合,装入一个内径为6毫米的石英反应管中,将(n氢气:n一氧化碳=50:50)通入反应管中,进入催化床反应,反应温度为400℃,反应体系压力为4MPa,气体体积空速为4,000h-1条件下进行合成气制低碳烯烃反应。活性评价结果见表1。
【实施例29】
ZnCr1.1Al0.1催化剂按【实施例19】制备。
AlPO4-18催化剂按【实施例3】制备。
AlPO4-34催化剂按【实施例7】制备。
将0.84克制备好的ZnCr1.1Al0.1催化剂、0.07克制备好的AlPO4-18、和0.63克制备好的AlPO4-34混合,装入一个内径为6毫米的石英反应管中,将(n氢气:n一氧化碳=50:50)通入反应管中,进入催化床反应,反应温度为400℃,反应体系压力为4MPa,气体体积空速为4,000h-1条件下进行合成气制低碳烯烃反应。活性评价结果见表1。
【实施例30】
ZnCr1.1Al0.1催化剂按【实施例19】制备。
AlPO4-18催化剂按【实施例3】制备。
AlPO4-34催化剂按【实施例7】制备。
将0.84克制备好的ZnCr1.1Al0.1催化剂、0.35克制备好的AlPO4-18、和0.35克制备好的AlPO4-34混合,装入一个内径为6毫米的石英反应管中,将(n氢气:n一氧化碳=50:50)通入反应管中,进入催化床反应,反应温度为400℃,反应体系压力为4MPa,气体体积空速为4,000h-1条件下进行合成气制低碳烯烃反应。活性评价结果见表1。
【实施例31】
ZnCr1.1Al0.1催化剂按【实施例19】制备。
AlPO4-18催化剂按【实施例3】制备。
AlPO4-34催化剂按【实施例7】制备。
将0.84克制备好的ZnCr1.1Al0.1催化剂、0.63克制备好的AlPO4-18、和0.7克制备好的AlPO4-34混合,装入一个内径为6毫米的石英反应管中,将(n氢气:n一氧化碳=50:50)通入反应管中,进入催化床反应,反应温度为400℃,反应体系压力为4MPa,气体体积空速为4,000h-1条件下进行合成气制低碳烯烃反应。活性评价结果见表1。
【实施例32】
ZnCr1.1Al0.1催化剂按【实施例19】制备。
AlPO4-18/AlPO4-34共晶分子筛催化剂按如下步骤制备:
以拟薄水铝石、磷酸、N,N,-二异丙基乙胺和三乙胺,分别为铝源、磷源、模板剂,摩尔比Al2O3∶P2O5∶DIEA∶TEA∶H2O=1∶1∶0.4∶1.4∶50,加入反应釜后陈化2小时,180℃下搅拌晶化24h,得到的固体用去离子水洗至中性,分离得固体,烘干,马弗炉中550℃焙烧6小时,得AlPO4-18/AlPO4-34共晶分子筛。
将0.84克制备好的ZnCr1.1Al0.1催化剂、0.7克制备好的AlPO4-18/AlPO4-34共晶分子筛混合,装入一个内径为6毫米的石英反应管中,将(n氢气:n一氧化碳=50:50)通入反应管中,进入催化床反应,反应温度为400℃,反应体系压力为4MPa,气体体积空速为4,000h-1条件下进行合成气制低碳烯烃反应。活性评价结果见表1。
【实施例33】
ZnCr1.25催化剂按如下步骤制备:
称取1mol的硝酸锌,1.25mol的硝酸铬,用1000mL蒸馏水溶解,然后将6mol NaOH溶于1000mL水,将两种水溶液并流共沉淀后,在70℃下陈化3h,过滤后在100℃下干燥过夜,在400℃下焙烧12h。得到ZnCr1.25催化剂。
AlPO4-18催化剂按【实施例3】制备。
将1.2克制备好的ZnCr1.25催化剂和0.3克制备好的AlPO4-18混合,装入一个内径为6毫米的石英反应管中,将(n氢气:n一氧化碳=50:50)通入反应管中,进入催化床反应,反应温度为400℃,反应体系压力为4MPa,气体体积空速为4,000h-1条件下进行合成气制低碳烯烃反应。活性评价结果见表1。
【实施例34】
ZnCr1.25催化剂按【实施例33】制备。
AlPO4-18催化剂按【实施例3】制备。
将1.0克制备好的ZnCr1.25催化剂和0.5克制备好的AlPO4-18混合,装入一个内径为6毫米的石英反应管中,将(n氢气:n一氧化碳=50:50)通入反应管中,进入催化床反应,反应温度为400℃,反应体系压力为4MPa,气体体积空速为4,000h-1条件下进行合成气制低碳烯烃反应。活性评价结果见表1。
【实施例35】
ZnCr1.25催化剂按【实施例33】制备。
AlPO4-18催化剂按【实施例3】制备。
将0.5克制备好的ZnCr1.25催化剂和1.0克制备好的AlPO4-18混合,装入一个内径为6毫米的石英反应管中,将(n氢气:n一氧化碳=50:50)通入反应管中,进入催化床反应,反应温度为400℃,反应体系压力为4MPa,气体体积空速为4,000h-1条件下进行合成气制低碳烯烃反应。活性评价结果见表1。
【实施例36】
ZnCr1.25催化剂按【实施例33】制备。
AlPO4-18催化剂按【实施例3】制备。
将0.3克制备好的ZnCr1.25催化剂和1.2克制备好的AlPO4-18混合,装入一个内径为6毫米的石英反应管中,将(n氢气:n一氧化碳=50:50)通入反应管中,进入催化床反应,反应温度为400℃,反应体系压力为4MPa,气体体积空速为4,000h-1条件下进行合成气制低碳烯烃反应。活性评价结果见表1。
【实施例37~42】
取实施例14制备得到的催化剂用于合成气制低碳烯烃反应,反应条件和评价结果见表2。
【实施例43】
取实施例14制备得到的催化剂,装入一个内径为6毫米的石英反应管中,将(n氢气:n一氧化碳=50:50)通入反应管中,进入催化床反应,反应温度为400℃,反应体系压力为4MPa,气体体积空速为4,000h-1条件下进行合成气制低碳烯烃反应。200小时的活性评价结果见表4。
【对比例1】
依据文献[Science,2016,351,1065-1068]的制备方法,合成Zn3.5CrAl和SAPO-34。
将0.75克Zn3.5CrAl和0.75克SAPO-34混合,装入一个内径为6毫米的石英反应管中,将合成气(n氢气:n一氧化碳=50:50)通入反应管中,进入催化床反应,反应温度为400℃,反应体系压力为4MPa,气体体积空速为4,000h-1条件下进行合成气制低碳烯烃反应。活性评价结果见表3。
【对比例2】
依据文献[Angewandte Chemie,2016,128,4803-4806]的制备方法,合成ZnZr2和SAPO-34。
将0.75克ZnZr2和0.75克SAPO-34混合,装入一个内径为6毫米的石英反应管中,将合成气(n氢气:n一氧化碳=50:50)通入反应管中,进入催化床反应,反应温度为400℃,反应体系压力为4MPa,气体体积空速为4,000h-1条件下进行合成气制低碳烯烃反应。活性评价结果见表3。
【对比例3】
依据专利文献[CN102441383A]的制备方法,合成负载型铁基催化剂。
将1.50克FeMnK/SiO2催化剂装入一个内径为6毫米的石英反应管中,将合成气(n氢气:n一氧化碳=50:50)通入反应管中,进入催化床反应,反应温度为400℃,反应体系压力为4MPa,气体体积空速为4,000h-1条件下进行合成气制低碳烯烃反应。活性评价结果见表3。
【对比例4】
依据专利文献[CN102698764A]的制备方法,合成FeZn-K催化剂。
将1.50克FeZn-K催化剂装入一个直径为6毫米的石英反应管中,将合成气(n氢气:n一氧化碳=50:50)通入反应管中,进入催化床反应,反应温度为400℃,反应体系压力为4MPa,气体体积空速为4,000h-1条件下进行合成气制低碳烯烃反应。活性评价结果见表3。
【对比例5】
ZnCr1.5Al0.2催化剂按【实施例14】制备。
SAPO-34催化剂按如下步骤制备:
以磷酸、拟薄水铝石、正硅酸乙酯、吗啡啉分别为磷源、铝源、硅源、模板剂,摩尔比Al2O3∶P2O5∶SiO2∶MOR∶H2O=1∶1∶0.6∶3∶100,加入反应釜后陈化2小时,200℃下搅拌晶化24h,得到的固体用去离子水洗至中性,分离得固体,烘干,马弗炉中550℃焙烧6小时,得SAPO-34分子筛。
将0.84克制备好的ZnCr1.5Al0.2催化剂和0.7克制备好的SAPO-34混合,装入一个内径为6毫米的石英反应管中,将(n氢气:n一氧化碳=50:50)通入反应管中,进入催化床反应,反应温度为400℃,反应体系压力为4MPa,气体体积空速为4,000h-1条件下进行合成气制低碳烯烃反应。活性评价结果见表3。
【对比例6】
ZnCr1.5Al0.2催化剂按【实施例14】制备。
SAPO-34催化剂按【对比例5】制备。
SAPO-18催化剂按如下步骤制备:
以N,N-二异丙基乙胺(DIEA)为模板剂,正磷酸、拟薄水铝石和正硅酸乙酯分别为磷源、铝源和硅源。摩尔比Al2O3∶P2O5∶SiO2∶DIEA∶H2O=1∶0.9∶0.4∶1.8∶100,于200℃下搅拌晶化24h,得到的固体用去离子水洗至中性,分离得固体,烘干,马弗炉中550℃焙烧6小时,得SAPO-18分子筛。
将0.84克制备好的ZnCr1.5Al0.2催化剂、0.35克制备好的SAPO-34、0.35克制备好的SAPO-18混合,装入一个内径为6毫米的石英反应管中,将(n氢气:n一氧化碳=50:50)通入反应管中,进入催化床反应,反应温度为400℃,反应体系压力为4MPa,气体体积空速为4,000h-1条件下进行合成气制低碳烯烃反应。活性评价结果见表3。
【对比例7】
依据文献[Science,2016,351,1065-1068]的制备方法,合成Zn3.5CrAl和SAPO-34。将0.75克Zn3.5CrAl和0.75克SAPO-34混合,装入一个内径为6毫米的石英反应管中,将合成气(n氢气:n一氧化碳=50:50)通入反应管中,进入催化床反应,反应温度为400℃,反应体系压力为4MPa,气体体积空速为4,000h-1条件下进行合成气制低碳烯烃反应。200小时的活性评价结果见表4。
表1
Figure BDA0001446619550000201
Figure BDA0001446619550000211
Figure BDA0001446619550000221
表2
Figure BDA0001446619550000222
表3
Figure BDA0001446619550000223
Figure BDA0001446619550000231
表4
Figure BDA0001446619550000232

Claims (9)

1.一种含尖晶石结构氧化物的复合催化剂,其特征在于包括含尖晶石结构的氧化物和磷铝分子筛,氧化物的XRD谱图中仅出现尖晶石结构的特征衍射峰,而不出现单一氧化物的衍射峰,所述氧化物为ZnO、Cr2O3和Al2O3,所述磷铝分子筛选自AlPO4-18和/或AlPO4-34,或者是AlPO4-34和AlPO4-18的共晶。
2.根据权利要求1所述的含尖晶石结构的复合催化剂,其特征在于磷铝分子筛和氧化物的重量比为(1:5)~(5:1)。
3.根据权利要求2所述的含尖晶石结构的复合催化剂,其特征在于磷铝分子筛和氧化物的重量比为(1:3)~(4:1)。
4.根据权利要求3所述的含尖晶石结构的复合催化剂,其特征在于磷铝分子筛和氧化物的重量比为(1:2)~(3:1)。
5.一种用于合成气制低碳烯烃的方法,合成气与权利要求1-4任一项所述的含尖晶石结构的复合催化剂接触,反应得到含低碳烯烃的产物。
6.根据权利要求5所述的用于合成气制低碳烯烃的方法,其特征在于反应温度为320-480℃,和/或反应压力0.5-8MPa,和/或体积空速为800-10000h-1
7.根据权利要求5所述的用于合成气制低碳烯烃的方法,其特征在于合成气中,CO与H2的体积比为0.3-3.5。
8.根据权利要求5所述的用于合成气制低碳烯烃的方法,其特征在于合成气中,CO与H2的体积比为0.5-3。
9.根据权利要求5所述的用于合成气制低碳烯烃的方法,其特征在于合成气中,CO与H2的体积比为0.7-2.5。
CN201711016747.6A 2017-10-26 2017-10-26 含尖晶石结构的复合催化剂及其在合成气一步法制烯烃的应用 Active CN109701627B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711016747.6A CN109701627B (zh) 2017-10-26 2017-10-26 含尖晶石结构的复合催化剂及其在合成气一步法制烯烃的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711016747.6A CN109701627B (zh) 2017-10-26 2017-10-26 含尖晶石结构的复合催化剂及其在合成气一步法制烯烃的应用

Publications (2)

Publication Number Publication Date
CN109701627A CN109701627A (zh) 2019-05-03
CN109701627B true CN109701627B (zh) 2022-08-12

Family

ID=66252777

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711016747.6A Active CN109701627B (zh) 2017-10-26 2017-10-26 含尖晶石结构的复合催化剂及其在合成气一步法制烯烃的应用

Country Status (1)

Country Link
CN (1) CN109701627B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112675904B (zh) * 2019-10-18 2023-08-04 中国石油化工股份有限公司 含碳催化剂及其在合成气一步法生产低碳烯烃中的应用
CN112705258A (zh) * 2019-10-24 2021-04-27 中国石油化工股份有限公司 一氧化碳加氢制备低碳烯烃的催化剂及应用
CN110743611B (zh) * 2019-10-31 2021-01-01 厦门大学 一种纳米复合催化剂及其制备方法和应用
CN113751065B (zh) * 2020-06-05 2024-03-26 中国石油化工股份有限公司 一种催化剂组合物及其在合成气直接制低碳烯烃中的应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102380414A (zh) * 2011-08-09 2012-03-21 南开大学 一种用于甲醇转化制备烯烃的催化剂及应用方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102380414A (zh) * 2011-08-09 2012-03-21 南开大学 一种用于甲醇转化制备烯烃的催化剂及应用方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Conversion of Synthesis Gas to Light Olefins: Impact of Hydrogenation Activity of Methanol Synthesis Catalyst on the Hybrid Process Selectivity over Cr−Zn and Cu−Zn with SAPO-34";Alexey V. Kirilin et al;《Ind. Eng. Chem. Res.》;20170921;第56卷;第13392-13401页 *
"Spinel-Structured ZnCr2O4 with Excess Zn Is the Active ZnO/Cr2O3 Catalyst for High-Temperature Methanol Synthesis";Huiqing Song et al;《ACS Catal》;20170927;第7卷;第7610-7622页 *

Also Published As

Publication number Publication date
CN109701627A (zh) 2019-05-03

Similar Documents

Publication Publication Date Title
CN109704900B (zh) 合成气一步法制烯烃的方法
CN107971026B (zh) 用于制低碳烯烃的组合催化剂
CN109701626B (zh) 用于合成气一步法制低碳烯烃的催化剂、制备及其用途
CN109701627B (zh) 含尖晶石结构的复合催化剂及其在合成气一步法制烯烃的应用
CN109701629B (zh) 用于制低碳烯烃的组合催化剂及其使用方法
CN104056652B (zh) 一种核壳型zsm-5分子筛小球催化剂
CN104056654B (zh) 一种zsm-5分子筛组合物、制备方法及其应用
CN104056653B (zh) 一种甲醇制丙烯催化剂
CN109701628A (zh) 含磷铝分子筛的复合催化剂及其在合成气一步法制烯烃的应用
CN106890672B (zh) 一种甲醇转化制轻烯烃催化剂及其制备方法和应用
CN110871107A (zh) 一种用于低碳醇和石脑油耦合催化裂解制低碳烯烃的催化剂及其制备方法与应用
CN103157502A (zh) 甲醇和/或二甲醚制取乙烯丙烯的催化剂、其制法及应用
CN111302885B (zh) 生物乙醇一锅法高效合成乙烯和1,3-丁二烯的方法
CN101497043A (zh) 制备液化石油气所用的催化剂及其制备方法
CN105174286A (zh) 一种高比例aei/cha共晶分子筛的制备方法
CN107486226B (zh) 合成气制低碳烯烃的催化剂、制备方法及其用途
CN106607061B (zh) 合成气一步法制低碳烯烃的流化床催化剂及其制备方法
CN104707646B (zh) 一种二甲醚氧化脱氢制备甲苯的催化剂及其制备方法和应用
CN111111764A (zh) 催化剂体系及其用途
CN109967066B (zh) 纳米片结构的钼酸铋催化剂在催化合成1,3-丁二烯中的应用
CN111111760B (zh) 二氧化碳加氢制取低碳烯烃的催化剂及其用途
CN109701630B (zh) 用于合成气直接制低碳烯烃的耦合催化剂体系
CN101439294A (zh) 一种乙醇脱水制乙烯的分子筛催化剂及制备和应用
CN107952469B (zh) 一种双功能催化剂及其制备方法和应用
CN114210360B (zh) 一种催化剂的制备方法及在二甲醚直接合成乙醇的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant