CN103730553A - 氮化物半导体结构 - Google Patents

氮化物半导体结构 Download PDF

Info

Publication number
CN103730553A
CN103730553A CN201210422661.4A CN201210422661A CN103730553A CN 103730553 A CN103730553 A CN 103730553A CN 201210422661 A CN201210422661 A CN 201210422661A CN 103730553 A CN103730553 A CN 103730553A
Authority
CN
China
Prior art keywords
nitride
layer
nitride semiconductor
semiconductor structure
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201210422661.4A
Other languages
English (en)
Inventor
胡智威
廖宸梓
方彦翔
宣融
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Industrial Technology Research Institute ITRI
Original Assignee
Industrial Technology Research Institute ITRI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Industrial Technology Research Institute ITRI filed Critical Industrial Technology Research Institute ITRI
Publication of CN103730553A publication Critical patent/CN103730553A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02488Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02505Layer structure consisting of more than two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/0251Graded layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/12Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a stress relaxation structure, e.g. buffer layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Led Devices (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

本发明公开了一种氮化物半导体结构,所述氮氧化半导体结构包括一硅基板、一成核层、一缓冲层及一氮化物半导体层。成核层设置于硅基板上,成核层包括以立方体晶格排列的一氮化硅碳层(SiCN)。缓冲层设置于成核层上。氮化物半导体层设置于缓冲层上。本发明能减缓氮化物半导体层与硅基板之间因膨胀系数及晶格的差异所造成应力,以降低破裂的状况。同时本发明不需使用晶片贴合与激光剥离等繁琐的工艺,有效提高了大尺寸且表面无破裂的氮化物半导体结构的良率。

Description

氮化物半导体结构
技术领域
本发明是有关于一种氮化物半导体结构,且特别是有关于一种硅基板的氮化物半导体结构。
背景技术
目前,氮化物发光二极管的成本远较其他照明元件高出许多,且用来成长氮化物的蓝宝石基板具有导热性差的缺点,严重影响其使用寿命。因此,以较低成本及高导热性的基板来取代目前的蓝宝石基板是各大公司努力的目标。由于硅基板具有高导热性、高导电、容易切割及低成本等优点,近年来,各大公司争相研发以硅基板为基础的发光二极管。
然而,以硅基板为基础所制造的大尺寸的氮化物半导体结构由于制作良率不高,使得元件成本无法大幅降低。影响大尺寸的氮化物半导体结构的良率的主要因素在于氮化物半导体层与硅基板间的膨胀系数与晶格的差异造成应力释放不易,而导致大量的缺陷,进而造成氮化物半导体结构容易破裂。并且,制造过程中利用晶片贴合技术与激光剥离系统达成基板分离的技术所需的设备昂贵且良率不高。
发明内容
本发明的目的在于提供一种氮化物半导体结构,其能减缓氮化物半导体层与硅基板之间因膨胀系数及晶格的差异所造成应力,以降低破裂的状况。并且,不需使用晶片贴合与激光剥离等繁琐的工艺,有效提高大尺寸且表面无破裂的氮化物半导体结构的良率。
为实现本发明的目的而提出一种氮化物半导体结构,包括一硅基板、一成核层、一缓冲层及一氮化物半导体层。成核层设置于硅基板上,成核层包括以立方体晶格排列的一氮化硅碳层(SiCN)或是由碳化硅及氮化硅碳组成的一渐变层。缓冲层设置于成核层上。氮化物半导体层设置于缓冲层上。
该硅基板包括与该成核层接触的一表面及多个凹穴,该些凹穴凹陷于该表面。
该硅基板的晶格方向为(111)。
该氮氧化物半导体结构SixCyNz中的x=y+z,z值小于0.3。
该缓冲层包括以六方晶系排列的一第一氮化物层,该第一氮化物层接触该成核层。该第一氮化物层包括一氮化铝层。
该缓冲层包括以六方晶系排列的一第二氮化物层,且该第二氮化物层包括铝。该第二氮化物层包括铝含量步阶渐变(step graded)的一氮化铝镓渐变层。该第二氮化物层是由一氮化铝层渐变至一氮化铝镓层或一是氮化镓层。
该缓冲层包括一复合层,该复合层包括多个互相交叠的碳化硅层与第三氮化物层或是多个互相交叠的氮化硅碳层与第三氮化物层,该复合层接触该氮化物半导体层。该第三氮化物层包括一氮化镓层。该复合层的该氮化硅碳层以六方晶系排列。
该氮化物半导体层的厚度约为0.5微米至10微米。
该氮化硅碳层为氮含量为渐变的一渐变层。
该氮化硅碳层包括由碳化硅及氮化硅碳组成的一渐变层。
基于上述,本发明的氮化物半导体结构透过以立方体晶格排列的一氮化硅碳层或是由碳化硅及氮化硅碳组成的一渐变层来当作成核层,通过提供氮化硅碳或是渐变层,有效地减缓氮化物半导体层与硅基板之间因膨胀系数的差异所造成应力。并且,本发明的氮化物半导体结构可避开晶片贴合与激光剥离等繁琐的工艺,进而增加大尺寸的氮化物半导体结构的良率。
以下结合附图和具体实施例对本发明进行详细描述,但不作为对本发明的限定。
附图说明
图1A是本发明的一实施例的氮化物半导体结构的示意图;
图1B是本发明的另一实施例的氮化物半导体结构的示意图;
图2是图1A的氮化物半导体结构的硅基板的扫描式电子显微镜的影像;
图3是图1A的氮化物半导体结构的穿透式电子显微镜(TEM)的横截面的影像;
图4A是图1A的氮化物半导体结构以氮化硅碳层为起始点向硅基板方向分析的示意图;
图4B是图4A的以氮化硅碳层为起始点向硅基板方向分析的深度-原子百分比示意图;
图5是图1A的氮化物半导体结构的波峰位置-强度示意图;
图6是依照本发明的另一实施例的氮化物半导体结构的示意图。
其中,附图标记:
100、100’:氮化物半导体结构
110:硅基板
112:表面
114:凹穴
120、120’:成核层
122:氮化硅碳层
124:渐变层
131:第一氮化物层
130:缓冲层
132:第二氮化物层
134:复合层
140:氮化物半导体层
具体实施方式
图1A是依照本发明的一实施例的氮化物半导体结构的示意图。请参阅图1A,本实施例的氮化物半导体结构100包括一硅基板110、一成核层120、一缓冲层130及一氮化物半导体层140。成核层120设置于硅基板110上,在本实施例中,成核层120包括以立方体晶格排列的一氮化硅碳层122(SixCyNz)。缓冲层130设置于成核层120上,在本实施例中,立方晶格排列的氮化硅碳层122上面接的是六方晶系的各种氮化物。氮化物半导体层140设置于缓冲层130上。在本实施例中,成核层120、缓冲层130及氮化物半导体层140分别以有机金属化学气相沉积法(metal organic chemical vapor deposition,MOCVD)的沉积于硅基板110上。但成核层120、缓冲层130及氮化物半导体层140形成于硅基板110上的方式不以此为限制。
图2是图1A的氮化物半导体结构的硅基板的扫描式电子显微镜的影像。请参阅图2,硅基板110包括与成核层120接触的一表面112及多个凹穴114,这些凹穴114凹陷于表面112,以使形成于硅基板110上的成核层120能够侧向成长。若以此氮化物半导体结构100来制造发光二极管装置,由于成核层120与硅基板110之间会存在由这些凹穴114所形成的多个空隙,这些空隙可用来帮助释放应力。因此,光取出效率可被提高。此外,在本实施例中,硅基板110的晶格方向为(111)。在图2中,凹陷于表面112的这些凹穴114只是其中一种硅基板的实施方式,在其他实施例中,硅基板110的表面112亦可为一平面,硅基板110的种类并不以此为限制。
在氮化硅碳层122(SixCyNz)中x=y+z,且z值小于0.3。本实施例的氮化物半导体结构100通过上述氮化硅碳层122的参数关系,有效地减缓氮化物半导体层140与硅基板110之间因膨胀系数及晶格的差异所造成应力。
缓冲层130包括以六方晶系(hexagonal)排列的一第一氮化物层131及一第二氮化物层132,第一氮化物层131接触成核层120。在本实施例中,第一氮化物层131包括一氮化铝层。第二氮化物层132包括铝。在本实施例中,第二氮化物层132包括铝含量步阶渐变(step graded)的一氮化铝镓渐变层,本实施例的氮化物半导体结构100通过铝含量步阶渐变的氮化铝镓渐变层可降低氮化物半导体层140与硅基板110之间因热膨胀系数的差异所造成应力而导致氮化物半导体结构100出现凹陷(pit)或是裂痕(crack)的机率。但在其他实施例中,第二氮化物层132亦可包括铝含量连续渐变(continuously graded)的一氮化铝镓渐变层,铝含量连续渐变的氮化铝镓渐变层亦可减缓氮化物半导体层140与硅基板110之间因膨胀系数的差异所造成应力。
在本实施例中,缓冲层130更包括一复合层134,复合层134包括多个互相交叠的碳化硅层与第三氮化物层或是多个互相交叠的氮化硅碳层与第三氮化物层。在本实施例中,复合层的氮化硅碳层以六方晶系排列。复合层134设置在第二氮化物层132与氮化物半导体层140之间。在本实施例中,第三氮化物层包括一氮化镓层。本实施例的复合层134例如是由多层氮化硅碳层与氮化镓层形成的超晶格结构(superlattice),减缓氮化物半导体层140与硅基板110之间因膨胀系数的差异所造成应力。此外,在本实施例中,氮化物半导体层140包括一氮化镓层。
如图1A所示,在本实施例中,缓冲层130的组成可以有两种情形,一种是由第一氮化物层131(例如是氮化铝层)、第二氮化物层132(例如是铝含量步阶渐变的氮化铝镓渐变层)及复合层134(例如是由多层氮化硅碳层与氮化镓层形成的超晶格结构)所组成。
图1B是依照本发明的另一实施例的氮化物半导体结构的示意图。请参阅图1B,在另一种情形下,第一氮化物层131亦可为第二氮化物层132的一部分。也就是说,缓冲层130亦可由第二氮化物层132(例如是铝含量步阶渐变的氮化铝镓渐变层)及复合层134(例如是由多层氮化硅碳层与氮化镓层形成的超晶格结构)所组成,且第二氮化物层132是由氮化铝层(也就是第一氮化物层131)渐变至氮化铝镓层或是氮化镓层。
图3是图1A的氮化物半导体结构的穿透式电子显微镜(TEM)的横截面的影像。请参阅图3,在本实施例的氮化物半导体结构100的横截面中并未有裂痕或空隙产生,也就是说,在氮化物半导体结构100中加入氮化硅碳层122可以大幅降低氮化物半导体层140与硅基板110之间因膨胀系数及晶格的差异所造成应力,有效地提升了氮化物半导体结构100的品质。
在本实施例中,氮化物半导体结构100的成核层120、缓冲层130及氮化物半导体层140分别可成长至一定厚度。氮化硅碳层122的厚度约为50纳米至3000纳米。第一氮化物层131(氮化铝层)的厚度约为50纳米至500纳米。第二氮化物层132(氮化铝镓渐变层)的厚度约为0.5微米至10微米。复合层134的超晶格结构可由4对至120对氮化硅碳层与氮化镓层所形成,其厚度约为50纳米至300纳米。若氮化物半导体层140以氮化镓层为例,氮化镓层的厚度约为0.5微米至10微米。较佳大于1微米。因此,氮化物半导体结构100的整体厚度可被提升。
若将氮化物半导体结构100以氮化硅碳层122为起始点向硅基板110方向分析,氮原子所占的原子百分比约小于30%。在其中一个实施例中,氮原子所占的原子百分比约小于15%。在另一个实施例中,氮原子所占的原子百分比约小于10%。在一较佳的实施例中,图4A是图1A的氮化物半导体结构以氮化硅碳层为起始点向硅基板方向分析的示意图。图4B是图4A的以氮化硅碳层为起始点向硅基板方向分析的深度-原子百分比示意图。请参阅图4A及图4B,以氮化硅碳层122为起始点向硅基板110方向分析每一截面的原子百分比,如图4B所示,氮原子在深度为0纳米至100纳米之间所占的原子百分比约在6%,在深度为100纳米至130纳米的区段,氮原子所占的原子百分比逐渐下降。由图4B可知,氮化硅碳层122中氮原子所占的原子百分比随着往硅基板110的方向逐渐下降,在本实施例中,氮化硅碳层122为一氮含量渐变的渐变层。此外,由于成核层120亦可由碳化硅及氮化硅碳组成的渐变层来取代氮化硅碳层122,碳化硅及氮化硅碳组成的渐变层中氮原子所占的原子百分比随往硅基板的方向亦会逐渐下降。
碳原子在深度为0纳米至165纳米的区段,碳原子所占的原子百分比由43%缓慢上升至接近50%,在深度大于165纳米的区段,碳原子所占的原子百分比以较大的降幅下降。硅原子在深度为0纳米至165纳米的区段,其所占的原子百分比约为50%,在深度大于为165纳米的区段,硅原子所占的原子百分比快速地增加。如图4B所示,在深度为0纳米至130纳米的区段中,碳原子被氮原子取代。在深度为0纳米至100纳米的区段中,碳原子被氮原子取代的量约占原子百分比的6%。而在深度为100纳米至130纳米的区段,碳原子被氮原子取代的原子百分比逐渐下降。
图5是图1A的氮化物半导体结构的波峰位置-强度示意图。请参阅图5,本实施例的氮化物半导体结构100进行波峰位置-强度分析的结果显示,在波峰位置为-1.440秒位置的波峰代表检测到氮化镓,在波峰位置为694.1秒位置的波峰代表检测到氮化硅碳。
由图3至图5可知,本实施例的氮化物半导体结构100在实际测试上,可于成核层120所在的位置检验出氮原子的存在。将氮化物半导体结构100通过波峰位置-强度的分析可得到氮化硅碳。并且,由穿透式电子显微镜(TEM)的横截面的影像可知,本实施例的氮化物半导体结构100并未有空缺或是裂痕的发生。也就是说,经测试结果可知,本实施例的氮化物半导体结构100通过提供硅碳氮层可有效地减缓氮化物半导体层140与硅基板110之间因膨胀系数与晶格的差异所造成应力。因此,本实施例的氮化物半导体结构100可制作出厚度较大、大尺寸且高品质的产品,以应用于发光二极管或是电力元件等领域。
图6是依照本发明的另一实施例的氮化物半导体结构的示意图。请参阅图6,图6的氮化物半导体结构100’与图1A的氮化物半导体结构100的主要差异在于,图6的氮化物半导体结构100’的成核层120’中以碳化硅及氮化硅碳组成的一渐变层124取代图1A的成核层120中以立方体晶格排列的氮化硅碳层122。在本实施例中,碳化硅与氮化硅碳组成的渐变层124的厚度约为50纳米至150纳米。
本实施例的氮化物半导体结构100’通过碳化硅及氮化硅碳组成的渐变层124、第二氮化物层132包括铝含量为非连续的氮化铝镓渐变层以及复合层134为互相交叠的碳化硅层与第三氮化物层或是互相交叠的氮化硅碳层与第三氮化物层,以降低氮化物半导体层140与硅基板110之间因膨胀系数及晶格的差异所造成应力,进而降低氮化物半导体结构100’出现凹陷(pit)或是裂痕(crack)的机率。
综上所述,本发明的氮化物半导体结构通过提供硅碳氮层或是碳化硅及氮化硅碳组成的渐变层、铝含量为非连续的氮化铝镓渐变层以及互相交叠的碳化硅层与第三氮化物层或是互相交叠的氮化硅碳层与第三氮化物层,降低氮化物半导体层与硅基板之间因膨胀系数及晶格的差异所造成应力,进而降低氮化物半导体结构出现凹陷(pit)或是裂痕(crack)的机率。并且,本发明的氮化物半导体结构具有低成本、大尺寸与高导电导热等优势,可与高度成熟的硅半导体产业结合成光电积体电路,可应用于发光二极管领域。在本发明的氮化物半导体结构上制作的发光二极管可提供较高流明/瓦、高色温及高演色性。若工艺针对8吋以上硅晶圆,将使发光二极管的工艺能相容于现行的自动半导体生产线,其成本将会是蓝宝石基板的十分之一,可有效地提高发光二极管产业的性价比。此外,本发明的氮化物半导体结构亦可应用于电力元件(power device)等其他领域。
当然,本发明还可有其它多种实施例,在不背离本发明精神及其实质的情况下,熟悉本领域的技术人员可根据本发明作出各种相应的改变和变形,但这些相应的改变和变形都应属于本发明权利要求的保护范围。

Claims (15)

1.一种氮化物半导体结构,其特征在于,包括:
硅基板;
成核层,设置于该硅基板上,该成核层包括以立方体晶格排列的氮化硅碳层,该氮化硅碳层为SixCyNz
缓冲层,设置于该成核层上;以及
氮化物半导体层,设置于该缓冲层上。
2.根据权利要求1所述的氮化物半导体结构,其特征在于,该硅基板包括与该成核层接触的表面及多个凹穴,该些凹穴凹陷于该表面。
3.根据权利要求1所述的氮化物半导体结构,其特征在于,该硅基板的晶格方向为(111)。
4.根据权利要求1所述的氮化物半导体结构,其特征在于,该SixCyNz中的x=y+z,z值小于0.3。
5.根据权利要求1所述的氮化物半导体结构,其特征在于,该缓冲层包括以六方晶系排列的第一氮化物层,该第一氮化物层接触该成核层。
6.根据权利要求5所述的氮化物半导体结构,其特征在于,该第一氮化物层包括氮化铝层。
7.根据权利要求1所述的氮化物半导体结构,其特征在于,该缓冲层包括以六方晶系排列的第二氮化物层,且该第二氮化物层包括铝。
8.根据权利要求7所述的氮化物半导体结构,其特征在于,该第二氮化物层包括铝含量步阶渐变的氮化铝镓渐变层。
9.根据权利要求7所述的氮化物半导体结构,其特征在于,该第二氮化物层是由氮化铝层渐变至氮化铝镓层或是氮化镓层。
10.根据权利要求1所述的氮化物半导体结构,其特征在于,该缓冲层包括复合层,该复合层包括多个互相交叠的碳化硅层与第三氮化物层或是多个互相交叠的氮化硅碳层与第三氮化物层,该复合层接触该氮化物半导体层。
11.根据权利要求10所述的氮化物半导体结构,其特征在于,该第三氮化物层包括氮化镓层。
12.根据权利要求10所述的氮化物半导体结构,其特征在于,该复合层的该氮化硅碳层以六方晶系排列。
13.根据权利要求1所述的氮化物半导体结构,其特征在于,该氮化物半导体层的厚度约为0.5微米至10微米。
14.根据权利要求1所述的氮化物半导体结构,其特征在于,该氮化硅碳层为氮含量为渐变的渐变层。
15.根据权利要求1所述的氮化物半导体结构,其特征在于,该氮化硅碳层包括由碳化硅及氮化硅碳组成的渐变层。
CN201210422661.4A 2012-10-12 2012-10-30 氮化物半导体结构 Pending CN103730553A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW101137770A TWI482276B (zh) 2012-10-12 2012-10-12 氮化物半導體結構
TW101137770 2012-10-12

Publications (1)

Publication Number Publication Date
CN103730553A true CN103730553A (zh) 2014-04-16

Family

ID=50454555

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210422661.4A Pending CN103730553A (zh) 2012-10-12 2012-10-30 氮化物半导体结构

Country Status (3)

Country Link
US (1) US20140103354A1 (zh)
CN (1) CN103730553A (zh)
TW (1) TWI482276B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106025026A (zh) * 2016-07-15 2016-10-12 厦门乾照光电股份有限公司 一种用于发光二极管的AlN缓冲层及其制作方法
CN112956029A (zh) * 2021-01-26 2021-06-11 英诺赛科(苏州)科技有限公司 半导体器件及其制造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9159788B2 (en) 2013-12-31 2015-10-13 Industrial Technology Research Institute Nitride semiconductor structure
CN104157790B (zh) * 2014-06-30 2017-03-15 上海天马有机发光显示技术有限公司 一种有机发光薄膜封装结构,其器件、装置及制造方法
TWI550921B (zh) * 2014-07-17 2016-09-21 嘉晶電子股份有限公司 氮化物半導體結構

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5739544A (en) * 1993-05-26 1998-04-14 Matsushita Electric Industrial Co., Ltd. Quantization functional device utilizing a resonance tunneling effect and method for producing the same
US20060138448A1 (en) * 2004-12-24 2006-06-29 Toshiba Ceramics Co., Ltd. Compound semiconductor and compound semiconductor device using the same
US20060169987A1 (en) * 2005-01-13 2006-08-03 Makoto Miura Semiconductor device and manufacturing method thereof
CN101390201A (zh) * 2005-12-28 2009-03-18 日本电气株式会社 场效应晶体管和用于制备场效应晶体管的多层外延膜
TWM361096U (en) * 2009-01-22 2009-07-11 Bor-Wen Liou An effective way to obtain high photovoltaic efficiency of InxGa1-xN/GaN-based solar cell with an intrinsic layer

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5739554A (en) * 1995-05-08 1998-04-14 Cree Research, Inc. Double heterojunction light emitting diode with gallium nitride active layer
JP4652888B2 (ja) * 2004-05-27 2011-03-16 昭和電工株式会社 窒化ガリウム系半導体積層構造体の製造方法
TWI309681B (en) * 2006-01-16 2009-05-11 Jyh Rong Gong A substrate for semiconductor compound and a solid-state semiconductor device made therefrom
TW201005986A (en) * 2008-07-16 2010-02-01 Tekcore Co Ltd Optronic device and manufacturing method thereof
GB2487531A (en) * 2011-01-20 2012-08-01 Sharp Kk Substrate system consisting of a metamorphic transition region comprising a laminate of AlxGa1-x N and the same material as the substrate.

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5739544A (en) * 1993-05-26 1998-04-14 Matsushita Electric Industrial Co., Ltd. Quantization functional device utilizing a resonance tunneling effect and method for producing the same
US20060138448A1 (en) * 2004-12-24 2006-06-29 Toshiba Ceramics Co., Ltd. Compound semiconductor and compound semiconductor device using the same
US20060169987A1 (en) * 2005-01-13 2006-08-03 Makoto Miura Semiconductor device and manufacturing method thereof
CN101390201A (zh) * 2005-12-28 2009-03-18 日本电气株式会社 场效应晶体管和用于制备场效应晶体管的多层外延膜
TWM361096U (en) * 2009-01-22 2009-07-11 Bor-Wen Liou An effective way to obtain high photovoltaic efficiency of InxGa1-xN/GaN-based solar cell with an intrinsic layer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106025026A (zh) * 2016-07-15 2016-10-12 厦门乾照光电股份有限公司 一种用于发光二极管的AlN缓冲层及其制作方法
CN106025026B (zh) * 2016-07-15 2018-06-19 厦门乾照光电股份有限公司 一种用于发光二极管的AlN缓冲层及其制作方法
CN112956029A (zh) * 2021-01-26 2021-06-11 英诺赛科(苏州)科技有限公司 半导体器件及其制造方法
CN112956029B (zh) * 2021-01-26 2022-07-08 英诺赛科(苏州)科技有限公司 半导体器件及其制造方法
WO2022160089A1 (en) * 2021-01-26 2022-08-04 Innoscience (Suzhou) Technology Co., Ltd. Semiconductor device and fabrication method thereof

Also Published As

Publication number Publication date
TW201415628A (zh) 2014-04-16
TWI482276B (zh) 2015-04-21
US20140103354A1 (en) 2014-04-17

Similar Documents

Publication Publication Date Title
US8829554B2 (en) Light emitting element and a production method therefor
TWI619265B (zh) 具有經選擇之熱膨脹及/或表面特性之固態照明裝置及相關方法
US8791480B2 (en) Light emitting device and manufacturing method thereof
KR102098250B1 (ko) 반도체 버퍼 구조체, 이를 포함하는 반도체 소자 및 반도체 버퍼 구조체를 이용한 반도체 소자 제조방법
US20100224854A1 (en) Light emitting device
KR101134732B1 (ko) 반도체 발광소자 및 그 제조방법
CN103730553A (zh) 氮化物半导体结构
KR20170060614A (ko) 발광 소자 및 발광 소자의 제조방법
CN103236480A (zh) 一种发光二极管的外延片及其制造方法
CN103996755B (zh) 一种氮化物发光二极管组件的制备方法
CN103390698A (zh) 发光二极管及其制造方法
JP2012216603A (ja) 窒化物半導体発光素子およびその製造方法
CN101710567A (zh) 具有复合碳基衬底的氮化镓基半导体器件及其制造方法
JP2007165596A (ja) 窒化物系半導体発光素子及び窒化物系半導体発光素子の製造方法、ランプ
CN101807648B (zh) 引入式粗化氮极性面氮化镓基发光二极管及其制作方法
KR101480551B1 (ko) 수직구조 그룹 3족 질화물계 반도체 발광다이오드 소자 및이의 제조 방법
KR20090105462A (ko) 수직구조 그룹 3족 질화물계 반도체 발광다이오드 소자 및이의 제조 방법
KR101749694B1 (ko) 반도체 소자 및 그 제조 방법과 상기 반도체 소자를 포함하는 전자 장치
CN103137801A (zh) 在钻石基板上形成的磊晶层结构及其制造方法
KR101209487B1 (ko) 반도체 발광소자 및 그 제조방법
CN105047769A (zh) 一种利用湿法蚀刻进行衬底剥离的发光二极管制备方法
JP2015097265A (ja) Iii−v族材料の選択エリア成長用のエピ基板およびiii−v族材料をシリコン基板上に製造する方法
CN103985799A (zh) 发光二极管及其制作方法
JP2008235318A (ja) 窒化物半導体ウェハ及び薄膜半導体装置の製造方法
CN103178174A (zh) 氮化物半导体结构及其制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20140416