TWM361096U - An effective way to obtain high photovoltaic efficiency of InxGa1-xN/GaN-based solar cell with an intrinsic layer - Google Patents

An effective way to obtain high photovoltaic efficiency of InxGa1-xN/GaN-based solar cell with an intrinsic layer Download PDF

Info

Publication number
TWM361096U
TWM361096U TW98201244U TW98201244U TWM361096U TW M361096 U TWM361096 U TW M361096U TW 98201244 U TW98201244 U TW 98201244U TW 98201244 U TW98201244 U TW 98201244U TW M361096 U TWM361096 U TW M361096U
Authority
TW
Taiwan
Prior art keywords
solar cell
gallium nitride
indium gallium
nitride semiconductor
layer
Prior art date
Application number
TW98201244U
Other languages
Chinese (zh)
Inventor
Bor-Wen Liou
Original Assignee
Bor-Wen Liou
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bor-Wen Liou filed Critical Bor-Wen Liou
Priority to TW98201244U priority Critical patent/TWM361096U/en
Publication of TWM361096U publication Critical patent/TWM361096U/en

Links

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

This invention describes an effective way to obtain high photovoltaic efficiency of InxGa1-xN/GaN-based solar cell with an intrinsic layer by applying SiCN/Si substrate. The n+/i/p device with sophisticated structures, including SiCN buffer layer, epitaxially laterally overgrowth (ELOG) GaN on Si substrate, surface roughness, and anti-reflection layer, is disclosed. The ELOG procedure employed in this work are aimed at reducing the stress and defect of GaN and Si substrate to obtain a low threading dislocation density that approaches the ideal value. It was found that the device and fabrication developed in the disclosed structure is applicable to the realization of solar cell with a low leakage dark current and an adjustable the energy bandgap of InxGa1-xN-based diode. This effect increased the solar spectrum response.

Description

M361096 五、新型說明: 【新型所屬之技術領域】 本創作係關於一種太陽能電池(so 1 ar ce 11),特別是指 一種氮化銦鎵半導體製作的太陽能電池。 【先前技術】 目前太陽能電池以材料區分,可分為矽晶系、無機與化 合物半導體三種’而矽晶系太陽能電池又細分為單晶矽 φ ( C-Si )、多晶矽(P〇ly-Si )與非晶矽(α -Si )三種,單 晶矽擁有發電特性安定、轉換效率較高之優點,但相較於多 晶矽仍有製程良率低、價格昂貴之缺點。而非晶矽雖製程簡 單’但具有穩定性差及轉換效率低的問題,總之,不同半導 體材料之太陽能電池關係到整體太陽能模組之發電效率,以 商業化角度而言,目前仍以矽製品為大宗,化合物合金半導 體所製得之太陽能電池大部分是實驗室之產品。此外,以矽 • 製成之光電元件皆有著因非直接能帶特性所導致光吸收效 率不佳的缺點,換言之大部分之太陽光源是以熱形式消耗 掉,非常可惜,換言之,即使入射光能量大於能帶〇· 5 eV, ' 其吸收係數(absorption coefficient)還是僅有 i〇3 cm-i 左 .右,因此必需具有足夠的少數載子擴散長度(min〇rity carrier diffusi〇n iength)才能使被光激發之電子電洞進 入空乏區並被電場分開。 相較之下,直接能帶太陽能電池包含硒化銅銦(cis)、篩 M361096 化編(CdTe)、砷化鎵(GaAs)、磷化銦(InP)與氮化鎵(GaN)系 列的元件’在入射光大於能帶時均具有很大的吸收係數(大 於10 cm )’所以有著較佳的光轉換效率。換言之,理想的 太陽能電池材料必須具備有下列之特性:(丨)直接能隙 (direct bandgap)半導體;(2)組成的材料無毒性;(3)可利 用薄膜沉積的技術’並可大面積製造;(4)有良好的光電轉 -換效率;與(5)具有長時期的穩定性與抗紫外線性。而其中, ··三五族材料為直接能隙半導體,對光有較佳的光電轉換效 率’且三五族材料種類多’對於吸收光譜與特性的調變上, 選擇性較高也可薄膜化並可大大降低製造成本,並且其轉換 效率與材料本身對熱效應的影響也很低,有助於降低太陽能 電池在使用高聚焦倍率集光系統下的穩定性,如此便可降低 材質的破壞性與提升電池本身的壽命。 經前述說明可知,有效地運用太陽光光譜中的波段以增 φ 加太陽能電池的光電轉換效率,是研究太陽能電池相關領域 者目前所待突破的課題。 【新型内容】 、 本創作之目的即在於提供一種氮化銦鎵(InxGa^N)合金 -半導體材料的能隙變化,其能依需求調變銦含量之大小(x) 乃從0.77eV變化至3.42eV左右(即氮化銦(inN)能隙值至氮 化鎵(GaN)能隙值間之大小範圍),也可以用下面之簡式 Egi^GaHN^xEgCInNHG-x^JGal^-bxCl-x)算出其能隙值之 M361096 大小’其中典型能隙值為Eg(InN) = 0.77eV,Eg(GaN) = 3.42eV與 參數bftaAeV,因此只要適當調變銦含量(χ)之大小,所製備 的太陽能電池可剛好匹配從〇· 51eV到3. 01eV的太陽光光譜 的響應特性’所以能成為本創作所提之高效能太陽能電池之 主要材料。 本創作之次一目的係在於提供一種氮化銦鎵三元化合物 中形成ri+/i/p接面以使得其所形成的n+型氮化銦鎵層,根M361096 V. New description: [New technical field] This creation is about a solar cell (so 1 ar ce 11), especially a solar cell made of indium gallium nitride semiconductor. [Prior Art] At present, solar cells are classified by materials and can be classified into twin crystals, inorganic and compound semiconductors, and twinned solar cells are subdivided into single crystal germanium φ (C-Si) and polycrystalline germanium (P〇ly-Si). With amorphous yttrium (α-Si), single crystal germanium has the advantages of stable power generation characteristics and high conversion efficiency, but it has the disadvantages of low process yield and high price compared with polycrystalline germanium. The amorphous germanium has a simple process, but has poor stability and low conversion efficiency. In short, solar cells of different semiconductor materials are related to the power generation efficiency of the overall solar module. From a commercial point of view, Bulk, most of the solar cells made by compound alloy semiconductors are products of the laboratory. In addition, the photovoltaic elements made of 矽• have the disadvantage of poor light absorption efficiency due to indirect band characteristics. In other words, most of the solar light sources are consumed in the form of heat, which is a pity, in other words, even incident light energy. It is greater than the energy band 〇· 5 eV, 'the absorption coefficient is only i〇3 cm-i left and right, so it must have enough minority carrier diffusion length (min〇rity carrier diffusi〇n iength) The photo-excited electron holes enter the depletion zone and are separated by the electric field. In contrast, direct energy solar cells include components such as copper indium selenide (cis), sieve M361096 (CdTe), gallium arsenide (GaAs), indium phosphide (InP), and gallium nitride (GaN) series. 'There is a large absorption coefficient (greater than 10 cm) when the incident light is larger than the energy band', so it has better light conversion efficiency. In other words, the ideal solar cell material must have the following characteristics: (丨) direct bandgap semiconductor; (2) the composition of the material is non-toxic; (3) can use the technology of thin film deposition 'and can be manufactured in large areas (4) has good photoelectric conversion-changing efficiency; and (5) has long-term stability and UV resistance. Among them, · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · The manufacturing cost can be greatly reduced, and the conversion efficiency and the material itself have a low influence on the thermal effect, which helps to reduce the stability of the solar cell under the use of a high focusing magnification light collecting system, thereby reducing the destructiveness of the material. And enhance the life of the battery itself. As can be seen from the foregoing description, the effective use of the wavelength band in the solar spectrum to increase the φ and the photoelectric conversion efficiency of the solar cell is a subject to be studied in the field of solar cell related fields. [New content] The purpose of this creation is to provide an energy gap change of an indium gallium nitride (InxGa^N) alloy-semiconductor material, which can be adjusted according to the demand, and the indium content (x) is changed from 0.77 eV to 3.42 eV (ie, the range of the indium nitride (inN) energy gap value to the gallium nitride (GaN) energy gap value), you can also use the following simple Egi^GaHN^xEgCInNHG-x^JGal^-bxCl- x) Calculate the M361096 size of the energy gap value, where the typical energy gap value is Eg(InN) = 0.77eV, Eg(GaN) = 3.42eV and the parameter bftaAeV, so as long as the indium content (χ) is properly modulated, The prepared solar cell can match the response characteristics of the solar spectrum from 〇·51eV to 3.1eV, so it can be the main material of the high-performance solar cell proposed by the present invention. The second objective of the present invention is to provide an n+ type indium gallium nitride layer formed by forming a ri+/i/p junction in an indium gallium nitride ternary compound.

φ 據其不同的本質(intrinsic)將 i-InxGanN 層與 p-InxGai-xN 層分別作為電子產生層與電洞產生層,乃在於n/p接面中多 加一本質半導體層,其功能為使空乏區之寬度調至最佳長度 已獲得良好之量子效率與反應速度,其優點可歸納為:(1) 大幅度增加受光面積’可獲得更多之光電子;(2)增加空乏 區之電容’以減少RC時間常數(電阻值乘以電壓值的大小) 與(3)以增加空乏區所佔之比例,使得準電中性區的大多數 φ 的光電流是以漂移電流而非擴散電流來行動,可增加太陽能 電池之反應速度;同時,在矽基板與氮化鎵之間引入氮化碳 矽以降低氮化鎵内的差排密度並抑制形成於前述三元化合 -物内的差排量,進而增加其三元化合物本身的光電轉換效率 的太陽能電池。 可達成上述新型目的之氮化銦鎵半導體製作的太陽能電 池,包括有:一具有呈相反設置的一上表面及一下表面之矽 基板、一形成於該矽基板之上表面的磊晶膜、一夾置於該磊 M361096 晶膜與該矽基板之間並磊製於該矽基板的氮化碳矽成核層 (SiCN micleation layer),及分別形成於該磊晶膜之上表 面與該矽基板之下表面的一第一接觸電極與一第二接觸電 極。該磊晶膜具有一第一 n+型氮化銦鎵半導體、第二土型氮 化銦鎵半導體、第三p型氮化銦鎵半導體、第四卩型氮化鎵 半導體,其中,且氮化銦鎵(11^31』)在〇&lt;χ&lt;1之變化範 圍,能有效地運用太陽光光譜中的波段以增加太陽能電池的 光電轉換效率。 【實施方式】 請參閱圖一,本創作所提供之氮化銦鎵半導體製作的太 陽能電池,主要包括有:一矽基板丨;一成核層2,以氣相 沉積法與橫向磊晶過生長技術形成於該矽基板丨之上表面; 一磊晶膜3,位於該成核層2之上;一抗反射膜4,位於該 蟲晶膜3之上。 該石夕基板1是p型掺質的矽基板1(p_Si substrate), 該石夕基板1的上表面是形成有複數相互平行之條狀溝槽,本 創作藉由該矽基板1之上表面的條狀溝槽與該氮化碳矽成核 層2的橫向磊晶過生長技術,使得線差排產生彎折並降低線 差排密度。 該成核層2主要為氮化碳矽(SiCN)成核層2,本創作為 進步利用熱應力來調整上下界面間的晶格不匹配度,較佳 地,將該氮化碳矽成核層2以介於115〇〜12〇〇。(:之間的成膜 M361096 溫度在矽基板1上生長的,再透過快速升溫化學氣相沉積法 (rapid thermal chemical vapor deposition, RTCVD)與採用附生層 過生長(epitaxial layer over growth, ELOG)技術,或稱為 橫向磊晶過生長技術(epitaxy of lateral over-growth, ELOG)降低缺陷密度而製成的。同時,藉該氮化碳矽成核層2 之面溫成膜溫度以調整該梦基板1與該氛化碳妙成核層2之 間的晶格不匹配度’更進一步地降低形成於該磊晶膜3内的 差排密度並改善其光電轉換效率;該氮化碳矽成核層2的厚 度是介於20nm~30nm之間。 該磊晶膜3分別由一第一半導體層31、一第二半導體層 32、一第三半導體層33以及第四半導體層34所構成而位於 該成核層2之上;其中該第一半導體層31主要為n+型氮化 銦鎵半導體,該第二半導體層32主要為i型氮化銦鎵半導 體該第一半導體層33主要為p型氮化銦鎵半導體,該第 四半導體層34主要為口型氮化鎵半導體,該氮化銦鎵 (InxGa^N)為低電阻係數半導體添加p型摻質與^^型摻質所 形成的磊曰曰膜3,幻nxGai—xN(〇&lt; χ〈&quot;之變化範圍,能有效 地運用太陽光光譜中的波段以增加太陽能電池的光電轉換 效率; 在本創作該較佳實施例中,半導體材料的導電能力除了 取決於本身材料的能隙特性之外,還另外受到外來雜質的影 3 讀&amp;體所街生的能階使半導體電性改變而形成非 8 M361096 本質半導體。這種將雜質加入半導 千导體材料而改變電性的方式 即是所謂的摻雜(doping),而 所加入的雜質即為摻質 (dopant),而該第一半導體層Μ斑 一 與第二半導體層33分別為 半導體添加n型摻質與半導體添加p型摻質; 該第一半導體層31添加 11型推質的濃度是介於3xl〇19 個/。伽2。個g之間’且該第—半導體…厚度是φ According to its different intrinsic, the i-InxGanN layer and the p-InxGai-xN layer are respectively used as an electron generating layer and a hole generating layer, and an n-p junction is added with an intrinsic semiconductor layer, and its function is to make The width of the depletion zone is adjusted to the optimal length. The quantum efficiency and reaction speed have been obtained. The advantages can be summarized as follows: (1) A large increase in the light receiving area can be obtained to obtain more photoelectrons; (2) Increase the capacitance of the depletion zone. To reduce the RC time constant (the resistance value multiplied by the voltage value) and (3) to increase the ratio of the depletion region, so that most of the photocurrent in the quasi-neutral region is the drift current rather than the diffusion current. Action, which can increase the reaction speed of the solar cell; at the same time, carbon nitride is introduced between the germanium substrate and the gallium nitride to reduce the difference in the density of the gallium nitride and suppress the difference formed in the aforementioned ternary compound A solar cell that increases the photoelectric conversion efficiency of the ternary compound itself. A solar cell made of an indium gallium nitride semiconductor capable of achieving the above novel object includes: a germanium substrate having an upper surface and a lower surface disposed oppositely, and an epitaxial film formed on an upper surface of the germanium substrate, a carbon nitride nucleation layer (SiCN migation layer) sandwiched between the epitaxial M361096 crystal film and the germanium substrate, and formed on the upper surface of the epitaxial film and the germanium substrate A first contact electrode and a second contact electrode of the lower surface. The epitaxial film has a first n+ type indium gallium nitride semiconductor, a second earth indium gallium nitride semiconductor, a third p-type indium gallium nitride semiconductor, and a fourth germanium gallium nitride semiconductor, wherein, and nitrided Indium gallium (11^31) can effectively use the wavelength band in the solar spectrum to increase the photoelectric conversion efficiency of the solar cell in the range of 〇&lt;χ&lt;1. [Embodiment] Referring to Figure 1, the solar cell fabricated by the indium gallium nitride semiconductor provided by the present invention mainly includes: a germanium substrate; a nucleation layer 2, which is formed by vapor deposition and lateral epitaxial growth. The technique is formed on the upper surface of the crucible substrate; an epitaxial film 3 is disposed on the nucleation layer 2; and an anti-reflection film 4 is disposed on the insect crystal film 3. The stone substrate 1 is a p-type doped substrate 1 (p_Si substrate), and the upper surface of the substrate 1 is formed with a plurality of strip-shaped grooves parallel to each other, and the upper surface of the substrate 1 is created by the substrate The strip-shaped trench and the lateral epitaxial overgrowth technique of the carbon nanotube nucleation layer 2 cause the line difference row to bend and reduce the line difference row density. The nucleation layer 2 is mainly a carbon nitride tantalum (SiCN) nucleation layer 2, and the present invention attempts to adjust the lattice mismatch between the upper and lower interfaces by using thermal stress. Preferably, the carbon nitride is nucleated. Layer 2 is between 115 〇 and 12 〇〇. (: The film formation M361096 temperature is grown on the ruthenium substrate 1, and then through rapid thermal chemical vapor deposition (RTCVD) and epitaxial layer over growth (ELOG) The technique, or epitaxy of lateral over-growth (ELOG), is used to reduce the defect density. At the same time, the surface temperature of the carbon nanotube nucleation layer 2 is adjusted to adjust the temperature. The lattice mismatch between the dream substrate 1 and the condensed carbon nucleation layer 2 further reduces the difference in density formed in the epitaxial film 3 and improves its photoelectric conversion efficiency; The thickness of the nucleation layer 2 is between 20 nm and 30 nm. The epitaxial film 3 is composed of a first semiconductor layer 31, a second semiconductor layer 32, a third semiconductor layer 33 and a fourth semiconductor layer 34, respectively. And located on the nucleation layer 2; wherein the first semiconductor layer 31 is mainly an n+ type indium gallium nitride semiconductor, and the second semiconductor layer 32 is mainly an i-type indium gallium nitride semiconductor. The first semiconductor layer 33 is mainly P-type indium gallium nitride semiconductor, the fourth The conductor layer 34 is mainly a lip-type gallium nitride semiconductor, and the indium gallium nitride (InxGa^N) is a low-resistance semiconductor with a p-type dopant and a ^^-type dopant formed by the protrusion film 3, the magic nxGai- The range of variation of xN(〇&lt;χ<&quot; can effectively utilize the wavelength band in the solar spectrum to increase the photoelectric conversion efficiency of the solar cell; in the preferred embodiment of the present invention, the conductivity of the semiconductor material depends on In addition to the energy gap characteristics of the material itself, it is additionally affected by the foreign matter. The energy level of the semiconductor body changes the semiconductor to form a non-S M361096 intrinsic semiconductor. This impurity is added to the semiconducting thousand conductor. The way in which the material changes electrical properties is so-called doping, and the added impurity is a dopant, and the first semiconductor layer freckle 1 and the second semiconductor layer 33 are respectively added to the semiconductor. The type of dopant and the semiconductor are added with a p-type dopant; the concentration of the 11-type push substance added to the first semiconductor layer 31 is between 3 x 1 〇 19 / gal gal. between g and the thickness of the first semiconductor is

介於〇H25m之間’·.且該第—半導體層31的一上表面 是呈粗化狀; 該第二半導體層32係為本質半 之寬度調至最佳長度已獲得良好之 導體,其功能為使空乏 量子效率與反應速度; 區 該第三半導體層 個 /cm3〜3xl018 個 /cm3 介於0. 15m〜0. 25m之 33添加p型摻質的濃度是介於5χΐ〇ΐ7 之間,且該第三半導體層33的厚度是 間。 本創作進而分別形成於Μ晶膜3與料基板i之一表 _面的一第一接觸電極51與一第二接觸電極52,該第一接觸 電極51是鈦/銘/鈦/金(Ti/A1/Tl/Au)所構成;該第二接觸 電極52是銀(Ag)所構成。 该叠置於該蟲晶膜3並裸露出該第一接觸電極51的抗反 射膜4(anti_refective layer),該抗反射膜4的膜層結構 為二氧化鈦/氧化矽(Ti〇2/Si〇2)。 主要為具有精密調變能帶間隙之氮化銦鎵結構之η + /ι/ρ型半導體,包含降低矽基板丨與氮化鎵之間的應力與缺 M361096 陷之高溫氮化碳矽(SiCN)緩衝層、以橫向磊晶過生長技術形 成表面粗糙化與抗反層等結構佈局;這些結構可有效提昇與 調變氮化銦鎵結構之n+/i/p型半導體的各項物理特性,如 增加光之轉換效率’降低暗電流密度’可調變能帶間隙與提 昇太陽光之反應光譜等優越特性,故此氮化銦鎵太陽能電池 之製造方法於太陽光源之收集及能源科技上有廣泛使用之 價值。 參數 X V〇c (V) 2 Jsc (mA/cm ) FF (%) η (%) @28〇C n+/i/p 0.94 2.83 38.1 88.7 30.1 0.83 2.88 38.5 85.2 32.4 0.68 3.09 40.1 86.3 33.5 表一為本創作太陽能電池之不同銦含量(χ)之特性,其中 包括開路電壓(Vc^)、短路電流(Js。)、填充效率(FF)與效率(η) 之大小。 上列詳細說明係針對本創作之一可行實施例之具體說 明’惟該實施例並非用以限制本創作之專利範圍,凡未脫離 本創作技藝精神所為之等效實施或變更,均應包含於本案之 專利範圍中。 综上所述,本創作之氮化銦鎵系光電半導體之高效能太 陽能電池’可有效地運用太陽光光譜中的波段以增加太陽能 電池的光電轉換效率,確實達到較習用物品增進上述多項功 M361096 效,應已充分符合新穎性及進步性之法定新型專利要件,妥 依法提出申請,懇請貴局核准本件新型專利申請案,以勵 創作’至感德便。 【圖式簡單說明】 圖一為本創作氮化銦鎵半導體製作的太陽能電池之剖面 示意圖; 圖二為該太陽能電池於照光時電流對電壓之關係圖。 • 【主要元件符號說明】 1矽基板 2成核層 3蟲晶膜 31第一半導體層 32第二半導體層 33第三半導體層 • 34第四半導體層 4抗反射膜 51第一接觸電極 52第二接觸電極Between H25m and the upper surface of the first semiconductor layer 31 is roughened; the second semiconductor layer 32 is a conductor having a width of the essence half adjusted to an optimum length. The function is to make the quantum efficiency and the reaction rate of the depletion; the third semiconductor layer/cm3~3xl018/cm3 is between 0.15m~0. The concentration of the p-type dopant added by the 25m is between 5χΐ〇ΐ7 And the thickness of the third semiconductor layer 33 is inter-. The present invention is further formed on a first contact electrode 51 and a second contact electrode 52 of the surface of the twin film 3 and the substrate i, respectively. The first contact electrode 51 is titanium/ming/titanium/gold (Ti /A1/Tl/Au); the second contact electrode 52 is made of silver (Ag). The anti-reflective film 4 is deposited on the insect film 3 and exposes the anti-reflective film 4 of the first contact electrode 51. The anti-reflective film 4 has a film structure of titanium dioxide/yttria (Ti〇2/Si〇2). ). It is mainly an η + /ι/ρ type semiconductor with indium gallium nitride structure with precise modulation band gap, including the stress between the germanium and gallium nitride of the germanium substrate and the high temperature carbonitride carbon (SiCN) which is trapped in M361096 The buffer layer and the lateral epitaxial overgrowth technology form a surface roughening and anti-reflective layer structure; these structures can effectively improve the physical properties of the n+/i/p type semiconductor with the indium nitride gallium structure. Such as the increase of light conversion efficiency 'reduced dark current density' adjustable variable energy band gap and enhanced solar light reaction spectrum and other superior characteristics, so the manufacturing method of indium gallium nitride solar cell is widely used in the collection of solar light source and energy technology The value of use. Parameter XV〇c (V) 2 Jsc (mA/cm) FF (%) η (%) @28〇C n+/i/p 0.94 2.83 38.1 88.7 30.1 0.83 2.88 38.5 85.2 32.4 0.68 3.09 40.1 86.3 33.5 Table 1 The characteristics of different indium contents (χ) of solar cells are created, including open circuit voltage (Vc^), short circuit current (Js.), filling efficiency (FF) and efficiency (η). The detailed description above is a detailed description of one of the possible embodiments of the present invention. The present invention is not intended to limit the scope of the present invention. Any equivalent implementation or modification that is not departing from the spirit of the present invention should be included in The patent scope of this case. In summary, the high-performance solar cell of the indium gallium nitride-based optoelectronic semiconductor of the present invention can effectively use the wavelength band in the solar spectrum to increase the photoelectric conversion efficiency of the solar cell, and indeed achieves the above-mentioned multi-function M361096. Effectiveness, should be fully in line with the novelty and progressive statutory new patent requirements, apply in accordance with the law, and ask your bureau to approve this new type of patent application, in order to encourage the creation of 'to the sense of virtue. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic cross-sectional view of a solar cell fabricated by indium gallium nitride semiconductor; Fig. 2 is a graph showing current versus voltage of the solar cell during illumination. • [Main element symbol description] 1 矽 substrate 2 nucleation layer 3 worm film 31 first semiconductor layer 32 second semiconductor layer 33 third semiconductor layer • 34 fourth semiconductor layer 4 anti-reflection film 51 first contact electrode 52 Two contact electrode

Claims (1)

M361096 六、申請專利範圍: 1· 一種氮化銦鎵半導體製作的太陽能電池,包括: 一矽基板; 一成核層,該成核層主要為氮化碳矽(SiCN)成核層,以 氣相沉積法與橫向磊晶過生長技術形成於該矽基板之上 表面; 一蟲晶膜’位於該成核層之上; &gt; 一抗反射臈,位於該磊晶膜之上。 2'如申請專利範圍第1項所述之氮化銦鎵半導體製作的太 陽能電池,其中該該矽基板是p型摻質的矽基板。 3_如申請專利範圍第1項所述之氮化銦鎵半導體製作的太 陽能電池’其中該矽基板的上表面是形成有複數相互平 行之條狀溝槽。 4_如申請專利範圍第3項所述之氮化銦鎵半導體製作的太 I 陽能電池’其中該矽基板之上表面的條狀溝槽與該氮化 奴矽成核層的橫向磊晶過生長技術,使得線差排產生彎 折並降低線差排密度。 5'如申清專利範圍第1項所述之氮化錮鎵半導體製作的太 陽忐電池,其中該成核層是以介於1150120(rc之間的 成膜溫度在矽基板上生長。 如申凊專利範圍第1項所述之氮化銦鎵半導體製作的太 陽成電池’其中該成核層的厚度是介於2〇nm~3〇nm之間。 12 M361096 …羽 補充 7. 如申請專利範圍第項所述之氮化銦鎵半導一 陽能電池,其中該磊晶膜包括有一第一半導體層、一第 二半導體層、一第三半導體層以及第四半導體層。 8. 如申請專利範圍第7項所述之氮化銦鎵半導體製作的太 陽能電池,其中該第一半導體層主要為n+型氮化銦鎵半 導體。 -9.如申請專利範圍第β項所述之氮化銦鎵半導體製作的太 . 電池其中该第一半導體層的一表面是呈粗化狀。 10.如申請專利範圍第8項所述之氮化銦鎵半導體製作的太 陽能電池,其中該第一半導體層為添加n型摻質》 11_如申請專利範圍第7項所述之氮化銦鎵半導體製作的太 陽能電池,其中該第二半導體層主要為i型氮化銦鎵半 導體。 I2·如申吻專利範圍第11項所述之氮化銦鎵半導體製作的 &gt; 太陽旎電池,其中該第二半導體層係為本質半導體。 13_如申请專利範圍第7項所述之氮化銦鎵半導體製作的太 陽能電池,其中該第三半導體層主要為ρ型氮化銦鎵半 導體。 14. 如申清專利範圍第項所述之氮化銦鎵半導體製作的 太陽能電池,其中該第三半導體層為添加口型摻質。 15. 如申請專利範圍第7項所述之氮化銦鎵半導體製作的太 陽能電池,其中該第四半導體層主要為ρ型氮化鎵半導 13M361096 VI. Patent application scope: 1. A solar cell made of indium gallium nitride semiconductor, comprising: a germanium substrate; a nucleation layer, the nucleation layer is mainly a carbon nitride tantalum (SiCN) nucleation layer, with gas A phase deposition method and a lateral epitaxial overgrowth technique are formed on the upper surface of the germanium substrate; a crystal film 'is located above the nucleation layer; &gt; an anti-reflective germanium, located above the epitaxial film. 2' The solar cell made of indium gallium nitride semiconductor according to claim 1, wherein the germanium substrate is a p-type doped germanium substrate. 3) A solar cell made of an indium gallium nitride semiconductor according to the first aspect of the invention, wherein the upper surface of the germanium substrate is formed with a plurality of strip-like grooves which are parallel to each other. 4_T.I. A solar cell made of an indium gallium nitride semiconductor as described in claim 3, wherein the strip-shaped trench on the upper surface of the germanium substrate and the lateral epitaxial layer of the nitride nucleation layer Over-growth technology causes the line difference to bend and reduce the line difference density. 5' The solar tantalum battery fabricated by the gallium nitride semiconductor according to claim 1, wherein the nucleation layer is grown on the tantalum substrate at a film formation temperature between 1150120 (rc). The solar cell made of indium gallium nitride semiconductor according to item 1 of the patent scope, wherein the thickness of the nucleation layer is between 2 〇 nm and 3 〇 nm. 12 M361096 ... feather supplement 7. The indium gallium nitride semiconductor according to the above aspect, wherein the epitaxial film comprises a first semiconductor layer, a second semiconductor layer, a third semiconductor layer and a fourth semiconductor layer. The solar cell fabricated by the indium gallium nitride semiconductor according to the seventh aspect, wherein the first semiconductor layer is mainly an n+ type indium gallium nitride semiconductor. -9. Indium gallium nitride according to claim β. A solar cell fabricated by indium gallium nitride semiconductor according to claim 8, wherein the first semiconductor layer is Add n-type dopants 11_如如The solar cell fabricated by the indium gallium nitride semiconductor according to the seventh aspect of the invention, wherein the second semiconductor layer is mainly an i-type indium gallium nitride semiconductor. I2·Nitriding as described in claim 11 a solar cell manufactured by an indium gallium semiconductor, wherein the second semiconductor layer is an intrinsic semiconductor. The solar cell fabricated by the indium gallium nitride semiconductor according to claim 7, wherein the third semiconductor layer The invention is mainly a p-type indium gallium nitride semiconductor. 14. A solar cell fabricated by indium gallium nitride semiconductor according to claim 1, wherein the third semiconductor layer is a doped dopant. The solar cell fabricated by the indium gallium nitride semiconductor according to the seventh aspect, wherein the fourth semiconductor layer is mainly a p-type gallium nitride semiconductor 13 M361096 體。 16·如申請專利範圍第1項所述之氮化銦鎵半導體製作的太 陽能電池’其中該磊晶膜進而於上表面形成第一接觸電 極。 17·如申請專利範圍第16項所述之氮化銦鎵半導體製作的 太陽能電池,其中該第一接觸電極是鈦/鋁/鈦/金所構 成。 18.如申吻專利乾圍第1項所述之氮化錮鎵半導體製作的太 陽能電池’其中該矽基板進而於下表面形成第二接觸電 極。 19. 如申請專利範圍第18項所述之氮化銦錄半導體製作的 太陽能電池,其中該第二接觸電極是銀所構成。 20. 如申請專利範圍第,項所述之氮化銦鎵半導體製作的太 陽能電池,其中該抗反射膜的膜層結構為二氧化欽/氧化 石夕。 14 M361096M361096 body. 16. A solar cell made of an indium gallium nitride semiconductor according to claim 1, wherein the epitaxial film further forms a first contact electrode on the upper surface. 17. The solar cell fabricated by the indium gallium nitride semiconductor according to claim 16, wherein the first contact electrode is made of titanium/aluminum/titanium/gold. 18. A solar cell made of a gallium nitride semiconductor according to the first aspect of the invention, wherein the germanium substrate further forms a second contact electrode on the lower surface. 19. The solar cell fabricated by the indium nitride recording semiconductor according to claim 18, wherein the second contact electrode is made of silver. 20. A solar cell made of an indium gallium nitride semiconductor according to the scope of the patent application, wherein the antireflection film has a film structure of dioxins/oxidized oxide. 14 M361096 \ Η\ Η 圖一 M361096 4020 {zi/vol》A}!SU9Dμιφ,υηο o 0 I ^..........^ -^==^ .0 :0 IrixGa^N Solar Cell 々 〇 众 x=0.68, n+/i/p + +'&quot;+ x=0.94, n+/i/pFigure 1 M361096 4020 {zi/vol》A}!SU9Dμιφ,υηο o 0 I ^..........^ -^==^ .0 :0 IrixGa^N Solar Cell x众x=0.68 , n+/i/p + +'&quot;+ x=0.94, n+/i/p 1 2Voltage (V) 31 2Voltage (V) 3
TW98201244U 2009-01-22 2009-01-22 An effective way to obtain high photovoltaic efficiency of InxGa1-xN/GaN-based solar cell with an intrinsic layer TWM361096U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98201244U TWM361096U (en) 2009-01-22 2009-01-22 An effective way to obtain high photovoltaic efficiency of InxGa1-xN/GaN-based solar cell with an intrinsic layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98201244U TWM361096U (en) 2009-01-22 2009-01-22 An effective way to obtain high photovoltaic efficiency of InxGa1-xN/GaN-based solar cell with an intrinsic layer

Publications (1)

Publication Number Publication Date
TWM361096U true TWM361096U (en) 2009-07-11

Family

ID=44383202

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98201244U TWM361096U (en) 2009-01-22 2009-01-22 An effective way to obtain high photovoltaic efficiency of InxGa1-xN/GaN-based solar cell with an intrinsic layer

Country Status (1)

Country Link
TW (1) TWM361096U (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI415275B (en) * 2009-10-09 2013-11-11 Iner Aec Executive Yuan Thin film photovoltaic device and manufacturing process thereof
CN103730553A (en) * 2012-10-12 2014-04-16 财团法人工业技术研究院 Nitride semiconductor structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI415275B (en) * 2009-10-09 2013-11-11 Iner Aec Executive Yuan Thin film photovoltaic device and manufacturing process thereof
CN103730553A (en) * 2012-10-12 2014-04-16 财团法人工业技术研究院 Nitride semiconductor structure

Similar Documents

Publication Publication Date Title
US10916676B2 (en) Optoelectronic devices including heterojunction and intermediate layer
US10050166B2 (en) Silicon heterojunction photovoltaic device with wide band gap emitter
US20120305059A1 (en) Photon recycling in an optoelectronic device
JP2010512664A (en) Zinc oxide multi-junction photovoltaic cell and optoelectronic device
JP2008053730A (en) Single conformal junction nano-wire photovoltaic device
Cai et al. Investigation of InGaN pin homojunction and heterojunction solar cells
TW201001726A (en) Techniques for enhancing efficiency of photovoltaic devices using high-aspect-ratio nanostructures
Saron et al. Heteroepitaxial growth of GaN/Si (111) junctions in ammonia-free atmosphere: Charge transport, optoelectronic, and photovoltaic properties
Saron et al. Interface properties determined the performance of thermally grown GaN/Si heterojunction solar cells
Liu et al. Nitride-based concentrator solar cells grown on Si substrates
JP2011198975A (en) Tandem type solar cell
JP2005064246A (en) Photoelectric conversion element and manufacturing method thereof, and solar cell
US20150122329A1 (en) Silicon heterojunction photovoltaic device with non-crystalline wide band gap emitter
JP6335784B2 (en) Variable band gap solar cell
Cederberg et al. The preparation of InGa (As) Sb and Al (Ga) AsSb films and diodes on GaSb for thermophotovoltaic applications using metal-organic chemical vapor deposition
TWM361096U (en) An effective way to obtain high photovoltaic efficiency of InxGa1-xN/GaN-based solar cell with an intrinsic layer
Benslim et al. Study and optimization of InGaN Schottky solar cell performance
Hsueh et al. Si nanowire-based photovoltaic devices prepared at various temperatures
Cai et al. Effect of light intensity and temperature on the performance of GaN-based pin solar cells
TWM373564U (en) High photovoltaic efficiency of Inx Ga1-x N/gan-based solar cell
Wu et al. Growth, fabrication, and characterization of InGaAsN double heterojunction solar cells
Gambaryan et al. The growth of InAsSbP‐based diode heterostructures with quantum dots as a new material for thermophotovoltaic application
Nakatsuka et al. Formation and Characterization of Ge1–x–ySixSny/Ge Heterojunction Structures for Photovoltaic Cell Application
Yan et al. Impact Ionization in Schottky-Type Al 0.4 Ga 0.6 N Avalanche Photodiodes
Lai et al. Enhanced optical absorbance of epitaxial emitter silicon solar cells with a back germanium epilayer