TWI415275B - Thin film photovoltaic device and manufacturing process thereof - Google Patents

Thin film photovoltaic device and manufacturing process thereof Download PDF

Info

Publication number
TWI415275B
TWI415275B TW098134346A TW98134346A TWI415275B TW I415275 B TWI415275 B TW I415275B TW 098134346 A TW098134346 A TW 098134346A TW 98134346 A TW98134346 A TW 98134346A TW I415275 B TWI415275 B TW I415275B
Authority
TW
Taiwan
Prior art keywords
layer
electrode layer
photoelectric conversion
electrode
photovoltaic device
Prior art date
Application number
TW098134346A
Other languages
Chinese (zh)
Other versions
TW201114044A (en
Inventor
Min Chuan Wang
yu chen Li
Wen Lung Liung
Der Jun Jan
Chi Fong Ai
Original Assignee
Iner Aec Executive Yuan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iner Aec Executive Yuan filed Critical Iner Aec Executive Yuan
Priority to TW098134346A priority Critical patent/TWI415275B/en
Publication of TW201114044A publication Critical patent/TW201114044A/en
Application granted granted Critical
Publication of TWI415275B publication Critical patent/TWI415275B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

A thin film photovoltaic device comprises: a substrate, a first electrode layer, a second electrode layer, a photoelectric conversion layer, and a plurality of metallic nanoparticles, wherein the photoelectric conversion layer is disposed between the first electrode layer and the second electrode layer and is able to absorb electromagnetic wave to generate electron-hole pairs and conduct electrons to the first electrode layer and holes to the second electrode layer. Moreover, the metallic nanoparticles can be distributed over the contact interface between the first electrode layer and the photoelectric conversion layer or can be distributed inside the first electrode layer. The manufacturing process of the thin film photovoltaic device is also provided in the present invention.

Description

一種薄膜光伏裝置及其製造方法Thin film photovoltaic device and manufacturing method thereof

本發明係有關一種薄膜光伏裝置及其製造方法,尤其是指一種具有複數個金屬奈米粒子結構的矽薄膜光伏裝置及其製造方法。本發明係利用電漿處理使透明導電薄膜的表面形成複數個金屬奈米粒子,該些金屬奈米粒子會吸收入射光產生表面電漿共振效應,可以有效增加薄膜光伏裝置的效能。而且用本發明的製造方法製造該薄膜光伏裝置,可避免於電漿輔助化學氣相沉積製程中因使用電漿處理前電極所造成的沉積腔體的汙染問題。The invention relates to a thin film photovoltaic device and a manufacturing method thereof, in particular to a germanium thin film photovoltaic device having a plurality of metal nano particle structures and a manufacturing method thereof. The invention utilizes plasma treatment to form a plurality of metal nano particles on the surface of the transparent conductive film, and the metal nanoparticles absorb the incident light to generate a surface plasma resonance effect, which can effectively increase the performance of the thin film photovoltaic device. Moreover, the thin film photovoltaic device manufactured by the manufacturing method of the present invention can avoid the contamination problem of the deposition chamber caused by the use of the plasma treatment front electrode in the plasma assisted chemical vapor deposition process.

近年來溫室效應造成地球暖化已成為世界各國最重視之問題,發展潔淨的能源已是不可避免的趨勢,其中又以太陽能為再生能源技術開發的重點。因為光伏裝置利用光電效應之原理產生電能,由於發電過程中不產生二氧化碳,對於減緩地球溫室效應將會有極大的貢獻。然而半導體、液晶顯示器與太陽光伏產業皆需要使用大量之結晶矽原料,導致結晶矽供應的嚴重短缺,而結晶矽的短缺嚴重影響了結晶矽光伏裝置的發展。因此厚度僅需幾微米的非晶矽薄膜光伏裝置便成為光伏產業大量生產的明日之星。另一方面,如何在不增加整體元件製程成本的考量下,提升光伏元件的效率,儼然成為目前薄膜光伏裝置最重要的研發方向之一。In recent years, the global warming caused by global warming has become the most important issue in the world. It is an inevitable trend to develop clean energy. Among them, solar energy is the focus of renewable energy technology development. Because photovoltaic devices use the principle of photoelectric effect to generate electricity, since carbon dioxide is not produced during power generation, it will greatly contribute to the mitigation of the global warming effect. However, semiconductors, liquid crystal displays and the solar photovoltaic industry all require the use of a large amount of crystalline germanium raw materials, resulting in a serious shortage of supply of crystalline germanium, and the shortage of crystalline germanium seriously affects the development of crystalline germanium photovoltaic devices. Therefore, an amorphous germanium thin film photovoltaic device with a thickness of only a few micrometers has become a star of the mass production of the photovoltaic industry. On the other hand, how to improve the efficiency of photovoltaic components without increasing the cost of the overall component process has become one of the most important research and development directions for thin-film photovoltaic devices.

為了增加光伏裝置效率,許多針對電極進行處理的技術已被發展出來。一般常用的技術為在前電極表面形成具有粗糙度之電極結構產生陷光效應,減少光的反射,以增加光伏裝置之短路電流。除此之外,利用表面電漿共振效應(Surface Plasmon Resonance)提昇光伏裝置對入射光的吸收能力,也是目前熱門的研究方向之一。In order to increase the efficiency of photovoltaic devices, many techniques for processing electrodes have been developed. A commonly used technique is to form an electrode structure having roughness on the surface of the front electrode to generate a trapping effect, reducing reflection of light to increase the short-circuit current of the photovoltaic device. In addition, the use of Surface Plasmon Resonance to enhance the absorption capacity of photovoltaic devices for incident light is also one of the hot research directions.

為了使光伏裝置具有產生表面電漿共振效應的結構,如D. Derkacs,S. H. Lim,P. Matheu,W. Mar,a and E. T. Yub,“Improved performance of amorphous silicon solar cells via scattering from surface Plasmon polaritons in nearby metallic nano particles,“Appl. Phys. Lett.,89,093103(2006)所揭露之光伏裝置結構,如第1圖所示之光伏裝置10的結構,其係包含有:一第一電極層11、一n型半導體層12、一本質半導體層13、一p型半導體層14以及一第二電極層15,其中,該第二電極層15更包含有複數個金屬奈米粒子151。圖中的hv代表入射的電磁輻射。光伏裝置10係在電漿輔助化學氣相沉積過程中,利用電漿處理該第二電極層15的透明導電薄膜,使該第二電極層15的透明導電薄膜內所含的金屬成份部份還原形成具有金屬奈米粒子151的表面電漿共振結構。然而,該技術所用的製造方法,容易造成沉積設備之腔體的汙染問題,增加整體量產的不穩定因素。另一方面,該光伏裝置10是以第二電極層15作為前電極,其所含的金屬奈米粒子151具有吸收及遮蔽短波長光的效應,因此入射到光伏裝置的光電轉換層之短波長光子的量將會減少。In order to make a photovoltaic device have a structure that produces a surface plasma resonance effect, such as D. Derkacs, SH Lim, P. Matheu, W. Mar, a and ET Yub, "Improved performance of amorphous silicon solar cells via scattering from surface Plasmon polaritons in The photovoltaic device structure disclosed in "Appl. Phys. Lett., 89, 093103 (2006), the structure of the photovoltaic device 10 shown in FIG. 1 includes: a first electrode layer 11 An n-type semiconductor layer 12, an intrinsic semiconductor layer 13, a p-type semiconductor layer 14, and a second electrode layer 15, wherein the second electrode layer 15 further comprises a plurality of metal nanoparticles 151. Hv in the figure represents incident electromagnetic radiation. The photovoltaic device 10 is in the process of plasma-assisted chemical vapor deposition, and the transparent conductive film of the second electrode layer 15 is treated by plasma to reduce the metal component contained in the transparent conductive film of the second electrode layer 15. A surface plasma resonance structure having metal nanoparticles 151 is formed. However, the manufacturing method used in this technique is liable to cause contamination problems of the cavity of the deposition apparatus and increase the instability of the overall mass production. On the other hand, the photovoltaic device 10 uses the second electrode layer 15 as a front electrode, and the metal nanoparticle 151 contained therein has the effect of absorbing and shielding short-wavelength light, and thus is incident on the short-wavelength of the photoelectric conversion layer of the photovoltaic device. The amount of photons will decrease.

綜合上述,因此亟需一種薄膜光伏裝置及其製造方法,藉以解決習知技術的問題。In summary, there is a need for a thin film photovoltaic device and a method of fabricating the same to solve the problems of the prior art.

本發明的主要目的係提供一種薄膜光伏裝置之結構及其製造方法,尤其是指一種具有複數個金屬奈米粒子結構的矽薄膜光伏裝置及其製造方法。應用該結構可有效增加矽薄膜光伏裝置光電流特性,並且應用本發明的製造方法,可以避免於電漿輔助化學氣相沉積製程中因使用電漿處理電極所造成的沉積腔體的汙染問題。The main object of the present invention is to provide a structure of a thin film photovoltaic device and a method for fabricating the same, and more particularly to a germanium thin film photovoltaic device having a plurality of metal nanoparticle structures and a method of fabricating the same. The application of the structure can effectively increase the photocurrent characteristics of the germanium thin film photovoltaic device, and the manufacturing method of the present invention can avoid the contamination problem of the deposition chamber caused by the use of the plasma processing electrode in the plasma assisted chemical vapor deposition process.

本技術具有下列特性:This technology has the following characteristics:

1.在不增加製程成本的情況下,增加薄膜光伏裝置光電流特性。1. Increase the photocurrent characteristics of thin film photovoltaic devices without increasing process cost.

2.本發明的製造方法製作薄膜光伏裝置,其係在物理氣相沉積製程中以電漿處理背電極的透明導電薄膜,使該透明導電薄膜內所含的金屬成份部分還原形成具有金屬奈米粒子的表面電漿共振結構。2. The manufacturing method of the present invention produces a thin film photovoltaic device in which a transparent conductive film of a back electrode is treated by plasma in a physical vapor deposition process, and a metal component contained in the transparent conductive film is partially reduced to form a metal nanoparticle. The surface plasma resonance structure of the particles.

3.由於本製程係於物理氣相沉積製程中以電漿處理透明導電電極,與在電漿輔助化學氣相沉積製程中處理透明導電電極的方法相較,無污染沉積設備腔體之疑慮。3. Since the process is to treat the transparent conductive electrode by plasma in the physical vapor deposition process, compared with the method of processing the transparent conductive electrode in the plasma-assisted chemical vapor deposition process, the contamination of the deposition device chamber is not considered.

4.本發明之光伏裝置係利用背電極形成表面電漿共振結構之光伏裝置,與利用前電極形成表面電漿共振結構之光伏裝置相較,入射電磁幅射中的短波長區段不會被其所含的金屬奈米粒子所吸收或遮蔽。4. The photovoltaic device of the present invention is a photovoltaic device that uses a back electrode to form a surface plasma resonance structure, and a short wavelength segment in the incident electromagnetic radiation is not compared with a photovoltaic device that uses a front electrode to form a surface plasma resonance structure. The metal nanoparticles contained therein are absorbed or shielded.

為使 貴審查委員能對本發明之特徵、目的及功能有更進一步的認知與瞭解,下文特將本發明之裝置的相關細部結構以及設計的理念原由進行說明,以使得 審查委員可以了解本發明之特點,詳細說明陳述如下:請參閱第2A圖所示,其係為本發明之薄膜光伏裝置第一實施例在光照射下進行光電轉換的剖面結構示意圖。如第2A圖所示,第一實施例的薄膜光伏裝置20包括:一基板21、一第一電極層22、複數個金屬奈米粒子221、一光電轉換層23以及一第二電極層24,其中,複數個金屬奈米粒子221係分布於該第一電極層22與該光電轉換層23的接觸界面。在第一實施例中是以第二電極層24作為前電極,而以第一電極層22作為背電極,而該光電轉換層23係形成於該第一電極層22與該第二電極層24之間,當入射電磁輻射從第二電極層24進入該光電轉換層23時,該光電轉換層23會吸收電磁輻射產生電子電洞對,同時將電子傳導至該第一電極層22,且將電洞傳導至該第二電極層24。In order to enable the reviewing committee to have a further understanding and understanding of the features, objects and functions of the present invention, the related detailed structure of the device of the present invention and the concept of the design are explained below so that the reviewing committee can understand the present invention. The detailed description is as follows: Please refer to FIG. 2A, which is a schematic cross-sectional view showing the photoelectric conversion of the first embodiment of the thin film photovoltaic device of the present invention under light irradiation. As shown in FIG. 2A, the thin film photovoltaic device 20 of the first embodiment includes a substrate 21, a first electrode layer 22, a plurality of metal nanoparticles 221, a photoelectric conversion layer 23, and a second electrode layer 24. The plurality of metal nanoparticles 221 are distributed at the contact interface between the first electrode layer 22 and the photoelectric conversion layer 23 . In the first embodiment, the second electrode layer 24 is used as the front electrode, and the first electrode layer 22 is used as the back electrode, and the photoelectric conversion layer 23 is formed on the first electrode layer 22 and the second electrode layer 24. Between when the incident electromagnetic radiation enters the photoelectric conversion layer 23 from the second electrode layer 24, the photoelectric conversion layer 23 absorbs electromagnetic radiation to generate an electron hole pair while conducting electrons to the first electrode layer 22, and The hole is conducted to the second electrode layer 24.

第2B圖係為本發明之薄膜光伏裝置第一實施例的製造流程圖,其係包含有下列步驟:步驟251:提供一基板;步驟252更包含有下列步驟:步驟2521:以物理氣相沉積(PVD)在該基板上沉積一第一電極層;步驟2522:以電漿處理在該第一電極層之表面形成複數個金屬奈米粒子;步驟2523:以雷射切割該第一電極層形成圖案;步驟253:以化學氣相沉積(CVD)在該第一電極層上沉積一光電轉換層;步驟254:以雷射切割該光電轉換層形成圖案;步驟255:以物理氣相沉積(PVD)在該光電轉換層上沉積一第二電極層;步驟256:以雷射切割該第二電極層形成圖案。2B is a manufacturing flow diagram of the first embodiment of the thin film photovoltaic device of the present invention, which comprises the following steps: Step 251: providing a substrate; Step 252 further comprises the following steps: Step 2521: Physical vapor deposition (PVD) depositing a first electrode layer on the substrate; Step 2522: forming a plurality of metal nanoparticles on the surface of the first electrode layer by plasma treatment; Step 2523: cutting the first electrode layer by laser cutting a pattern; step 253: depositing a photoelectric conversion layer on the first electrode layer by chemical vapor deposition (CVD); step 254: laser cutting the photoelectric conversion layer to form a pattern; step 255: physical vapor deposition (PVD) Depositing a second electrode layer on the photoelectric conversion layer; and step 256: cutting the second electrode layer to form a pattern by laser.

在第一實施例中,其光電轉換層23可以是由一n型半導體層231與一p型半導體層233所構成的p-n接面,較佳地,該光電轉換層23更包含有一本質半導體層232形成於該n型半導體層231與p型半導體層233之間,藉以增加光伏裝置的光吸收層厚度。光電轉換層的製造方式已在習知技術多有描述,在此不再贅述。In the first embodiment, the photoelectric conversion layer 23 may be a pn junction formed by an n-type semiconductor layer 231 and a p-type semiconductor layer 233. Preferably, the photoelectric conversion layer 23 further includes an intrinsic semiconductor layer. 232 is formed between the n-type semiconductor layer 231 and the p-type semiconductor layer 233, thereby increasing the thickness of the light absorbing layer of the photovoltaic device. The manufacturing method of the photoelectric conversion layer has been described in the prior art, and will not be described herein.

請參閱第2C圖所示,其係為本發明之薄膜光伏裝置第二實施例在光照射下進行光電轉換的剖面結構示意圖。如第2C圖所示,第二實施例的薄膜光伏裝置20’包括:一基板21、一金屬層211、一第一電極層22、複數個金屬奈米粒子221、一光電轉換層23以及一第二電極層24,其中,複數個金屬奈米粒子221係分布於該第一電極層22與該光電轉換層23的接觸界面。在第二實施例中是以第二電極層24作為前電極,而以第一電極層22作為背電極,而該光電轉換層23係形成於該第一電極層22與該第二電極層24之間,當入射電磁輻射從第二電極層24進入該光電轉換層23時,該光電轉換層23會吸收電磁輻射產生電子電洞對,同時將電子傳導至該第一電極層22,且將電洞傳導至該第二電極層24。Please refer to FIG. 2C, which is a schematic cross-sectional structural view of the second embodiment of the thin film photovoltaic device of the present invention undergoing photoelectric conversion under light irradiation. As shown in FIG. 2C, the thin film photovoltaic device 20' of the second embodiment includes: a substrate 21, a metal layer 211, a first electrode layer 22, a plurality of metal nanoparticles 221, a photoelectric conversion layer 23, and a The second electrode layer 24, wherein a plurality of metal nanoparticles 221 are distributed at a contact interface between the first electrode layer 22 and the photoelectric conversion layer 23. In the second embodiment, the second electrode layer 24 is used as the front electrode, and the first electrode layer 22 is used as the back electrode, and the photoelectric conversion layer 23 is formed on the first electrode layer 22 and the second electrode layer 24. Between when the incident electromagnetic radiation enters the photoelectric conversion layer 23 from the second electrode layer 24, the photoelectric conversion layer 23 absorbs electromagnetic radiation to generate an electron hole pair while conducting electrons to the first electrode layer 22, and The hole is conducted to the second electrode layer 24.

第2D圖係為本發明之薄膜光伏裝置第二實施例的製造流程圖,其係包含有下列步驟:步驟251:提供一基板;步驟252’更包含有下列步驟:步驟252a:以物理氣相沉積(PVD)在該基板上沉積一金屬層;步驟252b:以物理氣相沉積(PVD)在該金屬層上沉積一第一電極層;步驟252c:以電漿處理在該第一電極層之表面形成複數個金屬奈米粒子;步驟252d:以雷射切割該第一電極層及金屬層形成圖案;步驟253:以化學氣相沉積(CVD)在該第一電極層上沉積一光電轉換層;步驟254:以雷射切割該光電轉換層形成圖案;步驟255:以物理氣相沉積(PVD)在該光電轉換層上沉積一第二電極層;步驟256:以雷射切割該第二電極層形成圖案。2D is a manufacturing flow diagram of a second embodiment of the thin film photovoltaic device of the present invention, which comprises the following steps: Step 251: providing a substrate; Step 252' further comprises the following steps: Step 252a: Physical gas phase Depositing (PVD) depositing a metal layer on the substrate; step 252b: depositing a first electrode layer on the metal layer by physical vapor deposition (PVD); step 252c: treating the first electrode layer with plasma Forming a plurality of metal nanoparticles on the surface; step 252d: cutting the first electrode layer and the metal layer by laser to form a pattern; and step 253: depositing a photoelectric conversion layer on the first electrode layer by chemical vapor deposition (CVD) Step 254: laser cutting the photoelectric conversion layer to form a pattern; step 255: depositing a second electrode layer on the photoelectric conversion layer by physical vapor deposition (PVD); step 256: cutting the second electrode by laser The layers form a pattern.

在第二實施例中,其光電轉換層23可以是由一n型半導體層231與一p型半導體層233所構成的p-n接面,較佳地,該光電轉換層23更包含有一本質半導體層232形成於該n型半導體層231與p型半導體層233之間,藉以增加光伏裝置的光吸收層厚度。光電轉換層的製造方式已在習知技術多有描述,在此不再贅述。In the second embodiment, the photoelectric conversion layer 23 may be a pn junction formed by an n-type semiconductor layer 231 and a p-type semiconductor layer 233. Preferably, the photoelectric conversion layer 23 further includes an intrinsic semiconductor layer. 232 is formed between the n-type semiconductor layer 231 and the p-type semiconductor layer 233, thereby increasing the thickness of the light absorbing layer of the photovoltaic device. The manufacturing method of the photoelectric conversion layer has been described in the prior art, and will not be described herein.

請參閱第3A圖所示,其係為本發明之薄膜光伏裝置第三實施例在光照射下進行光電轉換的剖面結構示意圖。如第3A圖所示,第三實施例的薄膜光伏裝置30包括:一基板31、一第一電極層32、複數個金屬奈米粒子321、一光電轉換層33以及一第二電極層34,其中,複數個金屬奈米粒子321係分布於該第一電極層32內。在第三實施例中是以第二電極層34作為前電極,而以第一電極層32作為背電極,而該光電轉換層33係形成於該第一電極層32與該第二電極層34之間,當入射電磁輻射從第二電極層34進入該光電轉換層33時,該光電轉換層33會吸收電磁輻射產生電子電洞對,同時將電子傳導至該第一電極層32,且將電洞傳導至該第二電極層34。Please refer to FIG. 3A, which is a cross-sectional structural diagram of a third embodiment of the thin film photovoltaic device of the present invention for photoelectric conversion under light irradiation. As shown in FIG. 3A, the thin film photovoltaic device 30 of the third embodiment includes a substrate 31, a first electrode layer 32, a plurality of metal nanoparticles 321 , a photoelectric conversion layer 33, and a second electrode layer 34. The plurality of metal nanoparticles 321 are distributed in the first electrode layer 32. In the third embodiment, the second electrode layer 34 is used as the front electrode, and the first electrode layer 32 is used as the back electrode, and the photoelectric conversion layer 33 is formed on the first electrode layer 32 and the second electrode layer 34. Between when the incident electromagnetic radiation enters the photoelectric conversion layer 33 from the second electrode layer 34, the photoelectric conversion layer 33 absorbs electromagnetic radiation to generate an electron hole pair while conducting electrons to the first electrode layer 32, and The hole is conducted to the second electrode layer 34.

第3B圖係為本發明之薄膜光伏裝置第三實施例的製造流程圖,其係包含有下列步驟:步驟351:提供一基板;步驟352更包含有下列步驟:步驟3521:以物理氣相沉積(PVD)在該基板上沉積一第一電極層;步驟3522:以電漿處理在該第一電極層之表面形成複數個金屬奈米粒子;步驟3523:以物理氣相沉積(PVD)再沉積該第一電極層,使該複數個金屬奈米粒子分布於該第一電極層內;步驟3524:以雷射切割該第一電極層形成圖案;步驟353:以化學氣相沉積(CVD)在該第一電極層上沉積一光電轉換層;步驟354:以雷射切割該光電轉換層形成圖案;步驟355:以物理氣相沉積(PVD)在該光電轉換層上沉積一第二電極層;步驟356:以雷射切割該第二電極層形成圖案。3B is a manufacturing flow diagram of a third embodiment of the thin film photovoltaic device of the present invention, which comprises the following steps: Step 351: providing a substrate; Step 352 further comprises the following steps: Step 3521: Physical vapor deposition (PVD) depositing a first electrode layer on the substrate; step 3522: forming a plurality of metal nanoparticles on the surface of the first electrode layer by plasma treatment; step 3523: redepositing by physical vapor deposition (PVD) The first electrode layer distributes the plurality of metal nanoparticles in the first electrode layer; step 3524: laser cutting the first electrode layer to form a pattern; and step 353: chemical vapor deposition (CVD) a photoelectric conversion layer is deposited on the first electrode layer; step 354: laser cutting the photoelectric conversion layer to form a pattern; step 355: depositing a second electrode layer on the photoelectric conversion layer by physical vapor deposition (PVD); Step 356: Cutting the second electrode layer to form a pattern by laser.

在第三實施例中,其光電轉換層33可以是由一n型半導體層331與一p型半導體層333所構成的p-n接面,較佳地,該光電轉換層33更包含有一本質半導體層332形成於該n型半導體層331與p型半導體層333之間,藉以增加光伏裝置的光吸收層厚度。光電轉換層的製造方式已在習知技術多有描述,在此不再贅述。In the third embodiment, the photoelectric conversion layer 33 may be a pn junction formed by an n-type semiconductor layer 331 and a p-type semiconductor layer 333. Preferably, the photoelectric conversion layer 33 further includes an intrinsic semiconductor layer. 332 is formed between the n-type semiconductor layer 331 and the p-type semiconductor layer 333, thereby increasing the thickness of the light absorbing layer of the photovoltaic device. The manufacturing method of the photoelectric conversion layer has been described in the prior art, and will not be described herein.

請參閱第3C圖所示,其係為本發明之薄膜光伏裝置第四實施例在光照射下進行光電轉換的剖面結構示意圖。如第3C圖所示,第四實施例的薄膜光伏裝置30’包括:一基板31、一金屬層311、一第一電極層32、複數個金屬奈米粒子321、一光電轉換層33以及一第二電極層34,其中,複數個金屬奈米粒子321係分布於該第一電極層32內。在第四實施例中是以第二電極層34作為前電極,而以第一電極層32作為背電極,而該光電轉換層33係形成於該第一電極層32與該第二電極層34之間,當入射電磁輻射從第二電極層34進入該光電轉換層33時,該光電轉換層33會吸收電磁輻射產生電子電洞對,同時將電子傳導至該第一電極層32,且將電洞傳導至該第二電極層34。Please refer to FIG. 3C, which is a cross-sectional structural diagram of the fourth embodiment of the thin film photovoltaic device of the present invention for photoelectric conversion under light irradiation. As shown in FIG. 3C, the thin film photovoltaic device 30' of the fourth embodiment includes: a substrate 31, a metal layer 311, a first electrode layer 32, a plurality of metal nanoparticles 321 , a photoelectric conversion layer 33, and a The second electrode layer 34, wherein a plurality of metal nanoparticles 321 are distributed in the first electrode layer 32. In the fourth embodiment, the second electrode layer 34 is used as the front electrode, and the first electrode layer 32 is used as the back electrode, and the photoelectric conversion layer 33 is formed on the first electrode layer 32 and the second electrode layer 34. Between when the incident electromagnetic radiation enters the photoelectric conversion layer 33 from the second electrode layer 34, the photoelectric conversion layer 33 absorbs electromagnetic radiation to generate an electron hole pair while conducting electrons to the first electrode layer 32, and The hole is conducted to the second electrode layer 34.

第3D圖係為本發明之薄膜光伏裝置第四實施例的製造流程圖,其係包含有下列步驟:步驟351:提供一基板;步驟352’更包含有下列步驟:步驟352a:以物理氣相沉積(PVD)在該基板上沉積一金屬層;步驟352b:以物理氣相沉積(PVD)在該金屬層上沉積一第一電極層;步驟352c:以電漿處理在該第一電極層之表面形成複數個金屬奈米粒子;步驟352d:以物理氣相沉積(PVD)再沉積該第一電極層,使該複數個金屬奈米粒子分布於該第一電極層內;步驟352e:以雷射切割該第一電極層及金屬層形成圖案;步驟353:以化學氣相沉積(CVD)在該第一電極層上沉積一光電轉換層;步驟354:以雷射切割該光電轉換層形成圖案;步驟355:以物理氣相沉積(PVD)在該光電轉換層上沉積一第二電極層;步驟356:以雷射切割該第二電極層形成圖案。3D is a manufacturing flow diagram of a fourth embodiment of the thin film photovoltaic device of the present invention, which comprises the following steps: Step 351: providing a substrate; Step 352' further comprises the following steps: Step 352a: Physical gas phase Depositing (PVD) depositing a metal layer on the substrate; step 352b: depositing a first electrode layer on the metal layer by physical vapor deposition (PVD); step 352c: treating the first electrode layer with plasma Forming a plurality of metal nanoparticles on the surface; step 352d: redepositing the first electrode layer by physical vapor deposition (PVD) to distribute the plurality of metal nanoparticles in the first electrode layer; step 352e: Cutting and cutting the first electrode layer and the metal layer to form a pattern; Step 353: depositing a photoelectric conversion layer on the first electrode layer by chemical vapor deposition (CVD); Step 354: cutting the photoelectric conversion layer into a pattern by laser cutting Step 355: depositing a second electrode layer on the photoelectric conversion layer by physical vapor deposition (PVD); and step 356: cutting the second electrode layer by laser to form a pattern.

在第四實施例中,其光電轉換層33可以是由一n型半導體層331與一p型半導體層333所構成的p-n接面,較佳地,該光電轉換層33更包含有一本質半導體層332形成於該n型半導體層331與p型半導體層333之間,藉以增加光伏裝置的光吸收層厚度。光電轉換層的製造方式已在習知技術多有描述,在此不再贅述。In the fourth embodiment, the photoelectric conversion layer 33 may be a pn junction formed by an n-type semiconductor layer 331 and a p-type semiconductor layer 333. Preferably, the photoelectric conversion layer 33 further includes an intrinsic semiconductor layer. 332 is formed between the n-type semiconductor layer 331 and the p-type semiconductor layer 333, thereby increasing the thickness of the light absorbing layer of the photovoltaic device. The manufacturing method of the photoelectric conversion layer has been described in the prior art, and will not be described herein.

請參閱第4A圖所示,其係為本發明之薄膜光伏裝置第五實施例在光照射下進行光電轉換的剖面結構示意圖。如第4A圖所示,第五實施例的薄膜光伏裝置40包括:一基板41、一第一電極層42、一光電轉換層43、一第二電極層44以及複數個金屬奈米粒子441,其中,複數個金屬奈米粒子441係分布於該第二電極層44內。在第五實施例中是以第一電極層42作為前電極,而以第二電極層44作為背電極,而該光電轉換層43係形成於該第一電極層42與該第二電極層44之間,當入射電磁輻射從第一電極層42進入該光電轉換層43時,該光電轉換層43會吸收電磁輻射產生電子電洞對,同時將電子傳導至該第二電極層44,且將電洞傳導至該第一電極層42。Please refer to FIG. 4A, which is a cross-sectional structural diagram of a fifth embodiment of the thin film photovoltaic device of the present invention for photoelectric conversion under light irradiation. As shown in FIG. 4A, the thin film photovoltaic device 40 of the fifth embodiment includes a substrate 41, a first electrode layer 42, a photoelectric conversion layer 43, a second electrode layer 44, and a plurality of metal nanoparticles 441. The plurality of metal nanoparticles 441 are distributed in the second electrode layer 44. In the fifth embodiment, the first electrode layer 42 is used as the front electrode, and the second electrode layer 44 is used as the back electrode, and the photoelectric conversion layer 43 is formed on the first electrode layer 42 and the second electrode layer 44. Between when the incident electromagnetic radiation enters the photoelectric conversion layer 43 from the first electrode layer 42, the photoelectric conversion layer 43 absorbs electromagnetic radiation to generate an electron hole pair, while conducting electrons to the second electrode layer 44, and The hole is conducted to the first electrode layer 42.

第4B圖係為本發明之薄膜光伏裝置第五實施例的製造流程圖,其係包含有下列步驟:步驟451:提供一基板;步驟452:以物理氣相沉積(PVD)在該基板上沉積一第一電極層;步驟453:以雷射切割該第一電極層形成圖案;步驟454:以化學氣相沉積(CVD)在該第一電極層上沉積一光電轉換層;步驟455:以雷射切割該光電轉換層形成圖案;步驟456更包含有下列步驟:步驟4561:以物理氣相沉積(PVD)在該光電轉換層上沉積一第二電極層;步驟4562:以電漿處理在該第二電極層之表面形成複數個金屬奈米粒子;步驟4563:以物理氣相沉積(PVD)再沉積該第二電極層,使該複數個金屬奈米粒子分布於該第二電極層內;步驟4564:以雷射切割該第二電極層形成圖案。4B is a manufacturing flow diagram of a fifth embodiment of the thin film photovoltaic device of the present invention, comprising the steps of: step 451: providing a substrate; and step 452: depositing on the substrate by physical vapor deposition (PVD). a first electrode layer; step 453: laser cutting the first electrode layer to form a pattern; step 454: depositing a photoelectric conversion layer on the first electrode layer by chemical vapor deposition (CVD); step 455: The step of cutting the photoelectric conversion layer to form a pattern; the step 456 further comprises the steps of: step 4561: depositing a second electrode layer on the photoelectric conversion layer by physical vapor deposition (PVD); step 4562: treating the plasma layer Forming a plurality of metal nanoparticles on the surface of the second electrode layer; step 4563: redepositing the second electrode layer by physical vapor deposition (PVD), dispersing the plurality of metal nanoparticles in the second electrode layer; Step 4564: cutting the second electrode layer to form a pattern by laser.

在第五實施例中,其光電轉換層43可以是由一p型半導體層431與一n型半導體層433所構成的p-n接面,較佳地,該光電轉換層43更包含有一本質半導體層432形成於該p型半導體層431與n型半導體層433之間,藉以增加光伏裝置的光吸收層厚度。光電轉換層的製造方式已在習知技術多有描述,在此不再贅述。In the fifth embodiment, the photoelectric conversion layer 43 may be a pn junction formed by a p-type semiconductor layer 431 and an n-type semiconductor layer 433. Preferably, the photoelectric conversion layer 43 further includes an intrinsic semiconductor layer. 432 is formed between the p-type semiconductor layer 431 and the n-type semiconductor layer 433 to increase the thickness of the light absorbing layer of the photovoltaic device. The manufacturing method of the photoelectric conversion layer has been described in the prior art, and will not be described herein.

請參閱第4C圖所示,其係為本發明之薄膜光伏裝置第六實施例在光照射下進行光電轉換的剖面結構示意圖。如第4C圖所示,第六實施例的薄膜光伏裝置40’包括:一基板41、一第一電極層42、一光電轉換層43、一第二電極層44、複數個金屬奈米粒子441以及一金屬層45,其中,複數個金屬奈米粒子441係分布於該第二電極層44內。在第六實施例中是以第一電極層42作為前電極,而以第二電極層44作為背電極,而該光電轉換層43係形成於該第一電極層42與該第二電極層44之間,當入射電磁輻射從第一電極層42進入該光電轉換層43時,該光電轉換層43會吸收電磁輻射產生電子電洞對,同時將電子傳導至該第二電極層44,且將電洞傳導至該第一電極層42。Please refer to FIG. 4C, which is a cross-sectional structural diagram of the sixth embodiment of the thin film photovoltaic device of the present invention for photoelectric conversion under light irradiation. As shown in FIG. 4C, the thin film photovoltaic device 40' of the sixth embodiment includes a substrate 41, a first electrode layer 42, a photoelectric conversion layer 43, a second electrode layer 44, and a plurality of metal nanoparticles 441. And a metal layer 45 in which a plurality of metal nanoparticles 441 are distributed in the second electrode layer 44. In the sixth embodiment, the first electrode layer 42 is used as the front electrode, and the second electrode layer 44 is used as the back electrode, and the photoelectric conversion layer 43 is formed on the first electrode layer 42 and the second electrode layer 44. Between when the incident electromagnetic radiation enters the photoelectric conversion layer 43 from the first electrode layer 42, the photoelectric conversion layer 43 absorbs electromagnetic radiation to generate an electron hole pair, while conducting electrons to the second electrode layer 44, and The hole is conducted to the first electrode layer 42.

第4D圖係為本發明之薄膜光伏裝置第六實施例的製造流程圖,其係包含有下列步驟:步驟451:提供一基板;步驟452:以物理氣相沉積(PVD)在該基板上沉積一第一電極層;步驟453:以雷射切割該第一電極層形成圖案;步驟454:以化學氣相沉積(CVD)在該第一電極層上沉積一光電轉換層;步驟455:以雷射切割該光電轉換層形成圖案;步驟456’更包含有下列步驟:步驟4561:以物理氣相沉積(PVD)在該光電轉換層上沉積一第二電極層;步驟4562:以電漿處理在該第二電極層之表面形成複數個金屬奈米粒子;步驟4563:以物理氣相沉積(PVD)再沉積該第二電極層,使該複數個金屬奈米粒子分布於該第二電極層內;步驟4564a:以物理氣相沉積(PVD)在該第二電極層上沉積一金屬層;步驟4564b:以雷射切割該第二電極層及金屬層形成圖案。4D is a manufacturing flow diagram of a sixth embodiment of the thin film photovoltaic device of the present invention, comprising the steps of: step 451: providing a substrate; and step 452: depositing on the substrate by physical vapor deposition (PVD). a first electrode layer; step 453: laser cutting the first electrode layer to form a pattern; step 454: depositing a photoelectric conversion layer on the first electrode layer by chemical vapor deposition (CVD); step 455: The step of cutting the photoelectric conversion layer to form a pattern; the step 456' further comprises the following steps: Step 4561: depositing a second electrode layer on the photoelectric conversion layer by physical vapor deposition (PVD); step 4562: treating with plasma Forming a plurality of metal nanoparticles on the surface of the second electrode layer; Step 4563: redepositing the second electrode layer by physical vapor deposition (PVD), dispersing the plurality of metal nanoparticles in the second electrode layer Step 4564a: depositing a metal layer on the second electrode layer by physical vapor deposition (PVD); step 4564b: cutting the second electrode layer and the metal layer by laser to form a pattern.

在第六實施例中,其光電轉換層43可以是由一p型半導體層431與一n型半導體層433所構成的p-n接面,較佳地,該光電轉換層43更包含有一本質半導體層432形成於該p型半導體層431與n型半導體層433之間,藉以增加光伏裝置的光吸收層厚度。光電轉換層的製造方式已在習知技術多有描述,在此不再贅述。In the sixth embodiment, the photoelectric conversion layer 43 may be a pn junction formed by a p-type semiconductor layer 431 and an n-type semiconductor layer 433. Preferably, the photoelectric conversion layer 43 further includes an intrinsic semiconductor layer. 432 is formed between the p-type semiconductor layer 431 and the n-type semiconductor layer 433 to increase the thickness of the light absorbing layer of the photovoltaic device. The manufacturing method of the photoelectric conversion layer has been described in the prior art, and will not be described herein.

在上述第一~四實施例中所用的基板可以是玻璃或可撓式基板等耐溫材料例如不鏽鋼,而在上述第五、六實施例中所用的基板係為玻璃。The substrate used in the above first to fourth embodiments may be a temperature resistant material such as glass or a flexible substrate such as stainless steel, and the substrate used in the fifth and sixth embodiments is glass.

在上述第一~六實施例中所用的第一電極與第二電極係為透明導電氧化物(TCO),例如ZnO。當利用電漿(例如氫電漿)處理該透明導電氧化物層時,該透明導電氧化物層內所含的金屬成份會在其表面部份還原形成金屬奈米粒子,使該透明導電氧化物層具有表面電漿共振結構,若該透明導電氧化物層為ZnO,則金屬奈米粒子係為Zn的奈米粒子。The first electrode and the second electrode used in the above first to sixth embodiments are transparent conductive oxides (TCO) such as ZnO. When the transparent conductive oxide layer is treated with a plasma (for example, hydrogen plasma), the metal component contained in the transparent conductive oxide layer is partially reduced at its surface to form metal nanoparticles, and the transparent conductive oxide is made. The layer has a surface plasma resonance structure, and if the transparent conductive oxide layer is ZnO, the metal nanoparticles are Zn nanoparticles.

在上述第二、四、六實施例中所用的金屬層係用來改善背電極的電阻值。The metal layer used in the above second, fourth, and sixth embodiments is used to improve the resistance value of the back electrode.

在上述第一~六實施例中的光電轉換層中,其p型半導體層、n型半導體層與本質半導體層的材質可以為矽,而矽材質可以為非晶矽、奈米晶矽、微晶矽、多晶矽或者前述之混合相,而較佳地,p型矽半導體層的厚度係介於1奈米至100奈米之間,本質矽半導體層的厚度係介於200奈米至4000奈米之間,n型矽半導體層的厚度係介於1奈米至100奈米之間。In the photoelectric conversion layer of the first to sixth embodiments, the p-type semiconductor layer, the n-type semiconductor layer and the intrinsic semiconductor layer may be made of germanium, and the germanium material may be amorphous germanium, nanocrystalline germanium or micro. a crystal germanium, a polycrystalline germanium or a mixed phase as described above, and preferably, the thickness of the p-type germanium semiconductor layer is between 1 nm and 100 nm, and the thickness of the intrinsic germanium semiconductor layer is between 200 nm and 4000 nm. Between the meters, the thickness of the n-type germanium semiconductor layer is between 1 nm and 100 nm.

雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。While the present invention has been described in its preferred embodiments, the present invention is not intended to limit the invention, and the present invention may be modified and modified without departing from the spirit and scope of the invention. The scope of protection is subject to the definition of the scope of the patent application.

10...薄膜光伏裝置10. . . Thin film photovoltaic device

11...第一電極層11. . . First electrode layer

12...n型半導體層12. . . N-type semiconductor layer

13...本質半導體層13. . . Intrinsic semiconductor layer

14...p型半導體層14. . . P-type semiconductor layer

15...第二電極層15. . . Second electrode layer

151...金屬奈米粒子151. . . Metal nanoparticle

20...薄膜光伏裝置20. . . Thin film photovoltaic device

20’...薄膜光伏裝置20’. . . Thin film photovoltaic device

21...基板twenty one. . . Substrate

211...金屬層211. . . Metal layer

22...第一電極層twenty two. . . First electrode layer

221...金屬奈米粒子221. . . Metal nanoparticle

23...光電轉換層twenty three. . . Photoelectric conversion layer

231...n型半導體層231. . . N-type semiconductor layer

232...本質半導體層232. . . Intrinsic semiconductor layer

233...p型半導體層233. . . P-type semiconductor layer

24...第二電極層twenty four. . . Second electrode layer

251、252、252’、2521、2522、2523、252a、252b、252c、252d、253、254、255、256...製造步驟251, 252, 252', 2521, 2522, 2523, 252a, 252b, 252c, 252d, 253, 254, 255, 256. . . Manufacturing step

30...薄膜光伏裝置30. . . Thin film photovoltaic device

30’...薄膜光伏裝置30’. . . Thin film photovoltaic device

31...基板31. . . Substrate

311...金屬層311. . . Metal layer

32...第一電極層32. . . First electrode layer

321...金屬奈米粒子321. . . Metal nanoparticle

33...光電轉換層33. . . Photoelectric conversion layer

331...n型半導體層331. . . N-type semiconductor layer

332...本質半導體層332. . . Intrinsic semiconductor layer

333...p型半導體層333. . . P-type semiconductor layer

34...第二電極層34. . . Second electrode layer

351、352、352’、3521、3522、3523、3524、352a、352b、352c、352d、352e、353、354、355、356...製造步驟351, 352, 352', 3521, 3522, 3523, 3524, 352a, 352b, 352c, 352d, 352e, 353, 354, 355, 356. . . Manufacturing step

40...薄膜光伏裝置40. . . Thin film photovoltaic device

40’...薄膜光伏裝置40’. . . Thin film photovoltaic device

41...基板41. . . Substrate

42...第一電極層42. . . First electrode layer

43...光電轉換層43. . . Photoelectric conversion layer

431...p型半導體層431. . . P-type semiconductor layer

432...本質半導體層432. . . Intrinsic semiconductor layer

433...n型半導體層433. . . N-type semiconductor layer

44...第二電極層44. . . Second electrode layer

441...金屬奈米粒子441. . . Metal nanoparticle

45...金屬層45. . . Metal layer

451、452、453、454、455、456、456’、4561、4562、4563、4564、4564a、4564b...製造步驟451, 452, 453, 454, 455, 456, 456', 4561, 4562, 4563, 4564, 4564a, 4564b. . . Manufacturing step

第1圖係為先前技術之薄膜光伏裝置的剖面結構示意圖;1 is a schematic cross-sectional view of a prior art thin film photovoltaic device;

第2A圖係為本發明之薄膜光伏裝置第一實施例的剖面結構示意圖;2A is a schematic cross-sectional structural view of a first embodiment of the thin film photovoltaic device of the present invention;

第2B圖係為本發明之薄膜光伏裝置第一實施例的製造流程圖;2B is a manufacturing flow chart of the first embodiment of the thin film photovoltaic device of the present invention;

第2C圖係為本發明之薄膜光伏裝置第二實施例的剖面結構示意圖;2C is a schematic cross-sectional structural view of a second embodiment of the thin film photovoltaic device of the present invention;

第2D圖係為本發明之薄膜光伏裝置第二實施例的製造流程圖;2D is a manufacturing flow chart of the second embodiment of the thin film photovoltaic device of the present invention;

第3A圖係為本發明之薄膜光伏裝置第三實施例的剖面結構示意圖;3A is a schematic cross-sectional structural view of a third embodiment of the thin film photovoltaic device of the present invention;

第3B圖係為本發明之薄膜光伏裝置第三實施例的製造流程圖;3B is a manufacturing flow chart of the third embodiment of the thin film photovoltaic device of the present invention;

第3C圖係為本發明之薄膜光伏裝置第四實施例的剖面結構示意圖;3C is a schematic cross-sectional structural view of a fourth embodiment of the thin film photovoltaic device of the present invention;

第3D圖係為本發明之薄膜光伏裝置第四實施例的製造流程圖;3D is a manufacturing flow chart of the fourth embodiment of the thin film photovoltaic device of the present invention;

第4A圖係為本發明之薄膜光伏裝置第五實施例的剖面結構示意圖;4A is a schematic cross-sectional structural view of a fifth embodiment of the thin film photovoltaic device of the present invention;

第4B圖係為本發明之薄膜光伏裝置第五實施例的製造流程圖;4B is a manufacturing flow chart of the fifth embodiment of the thin film photovoltaic device of the present invention;

第4C圖係為本發明之薄膜光伏裝置第六實施例的剖面結構示意圖;4C is a schematic cross-sectional structural view of a sixth embodiment of the thin film photovoltaic device of the present invention;

第4D圖係為本發明之薄膜光伏裝置第六實施例的製造流程圖。Figure 4D is a manufacturing flow diagram of a sixth embodiment of the thin film photovoltaic device of the present invention.

20‧‧‧薄膜光伏裝置20‧‧‧Thin-film photovoltaic installation

21‧‧‧基板21‧‧‧Substrate

22‧‧‧第一電極層22‧‧‧First electrode layer

221‧‧‧金屬奈米粒子221‧‧‧Metal Nanoparticles

23‧‧‧光電轉換層23‧‧‧Photoelectric conversion layer

231‧‧‧n型半導體層231‧‧‧n type semiconductor layer

232‧‧‧本質半導體層232‧‧‧Intrinsic semiconductor layer

233‧‧‧p型半導體層233‧‧‧p-type semiconductor layer

24‧‧‧第二電極層24‧‧‧Second electrode layer

Claims (23)

一種薄膜光伏裝置,其包括:一基板;一第一電極層;一第二電極層;一光電轉換層,其係設置於該第一電極層與該第二電極層之間,並可吸收電磁波產生電子電洞對,同時將電子傳導至該第一電極層,而將電洞傳導至該第二電極層;以及複數個金屬奈米粒子,其係分布於該第一電極層與該光電轉換層的接觸界面。 A thin film photovoltaic device comprising: a substrate; a first electrode layer; a second electrode layer; a photoelectric conversion layer disposed between the first electrode layer and the second electrode layer, and absorbing electromagnetic waves Generating an electron hole pair while conducting electrons to the first electrode layer and conducting the holes to the second electrode layer; and a plurality of metal nanoparticles distributed over the first electrode layer and the photoelectric conversion The contact interface of the layer. 如申請專利範圍第1項所述之薄膜光伏裝置,其中該第一電極層與第二電極層係為透明導電氧化物,而該第一電極層的組成成分係包含該些金屬奈米粒子的金屬成分。 The thin film photovoltaic device of claim 1, wherein the first electrode layer and the second electrode layer are transparent conductive oxides, and the composition of the first electrode layer comprises the metal nanoparticles. Metal composition. 如申請專利範圍第2項所述之薄膜光伏裝置,其中更包含有一金屬層形成於該第一電極層與該基板之間。 The thin film photovoltaic device of claim 2, further comprising a metal layer formed between the first electrode layer and the substrate. 如申請專利範圍第2項所述之薄膜光伏裝置,其中該光電轉換層更包含一p型半導體層以及一n型半導體層。 The thin film photovoltaic device of claim 2, wherein the photoelectric conversion layer further comprises a p-type semiconductor layer and an n-type semiconductor layer. 如申請專利範圍第4項所述之薄膜光伏裝置,其中該光電轉換層更包含一本質半導體層形成於該p型半導體層與n型半導體層之間。 The thin film photovoltaic device of claim 4, wherein the photoelectric conversion layer further comprises an intrinsic semiconductor layer formed between the p-type semiconductor layer and the n-type semiconductor layer. 如申請專利範圍第5項所述之薄膜光伏裝置,其中該p型半導體層、本質半導體層以及n型半導體層係為含有矽的半導體層。 The thin film photovoltaic device according to claim 5, wherein the p-type semiconductor layer, the intrinsic semiconductor layer, and the n-type semiconductor layer are semiconductor layers containing germanium. 一種薄膜光伏裝置,其包括:一基板;一第一電極層;一第二電極層;一光電轉換層,其係設置於該第一電極層與該第二電極層之間,並可吸收電磁波產生電子電洞對,同時將電子傳導至該第一電極層,而將電洞傳導至該第二電極層;以及複數個金屬奈米粒子,其係分布於該第一電極層內。 A thin film photovoltaic device comprising: a substrate; a first electrode layer; a second electrode layer; a photoelectric conversion layer disposed between the first electrode layer and the second electrode layer, and absorbing electromagnetic waves Generating an electron hole pair while conducting electrons to the first electrode layer and conducting the holes to the second electrode layer; and a plurality of metal nanoparticles distributed in the first electrode layer. 如申請專利範圍第7項所述之薄膜光伏裝置,其中該第一電極層與第二電極層係為透明導電氧化物,而該第一電極層的組成成分係包含該些金屬奈米粒子的金屬成分。 The thin film photovoltaic device of claim 7, wherein the first electrode layer and the second electrode layer are transparent conductive oxides, and the composition of the first electrode layer comprises the metal nanoparticles. Metal composition. 如申請專利範圍第8項所述之薄膜光伏裝置,其中更包含有一金屬層形成於該第一電極層與該基板之間。 The thin film photovoltaic device of claim 8, further comprising a metal layer formed between the first electrode layer and the substrate. 如申請專利範圍第8項所述之薄膜光伏裝置,其中該光電轉換層更包含一p型半導體層以及一n型半導體層。 The thin film photovoltaic device of claim 8, wherein the photoelectric conversion layer further comprises a p-type semiconductor layer and an n-type semiconductor layer. 如申請專利範圍第10項所述之薄膜光伏裝置,其中該光電轉換層更包含一本質半導體層形成於該p型半導體層與n型半導體層之間。 The thin film photovoltaic device of claim 10, wherein the photoelectric conversion layer further comprises an intrinsic semiconductor layer formed between the p-type semiconductor layer and the n-type semiconductor layer. 如申請專利範圍第11項所述之薄膜光伏裝置,其中該p型半導體層、本質半導體層以及n型半導體層係為含有矽的半導體層。 The thin film photovoltaic device according to claim 11, wherein the p-type semiconductor layer, the intrinsic semiconductor layer, and the n-type semiconductor layer are semiconductor layers containing germanium. 一種薄膜光伏裝置,其係包括:一基板; 一第一電極層,其係為一前電極;一第二電極層,其係為一背電極;一光電轉換層,其係設置於該第一電極層與該第二電極層之間,其中該光電轉換層更包含一p型半導體層以及一n型半導體層,當入射一電磁輻射從該第一電極層進入該光電轉換層,該光電轉換層可吸收電磁波產生電子電洞對,同時將電子傳導至該第二電極層,而將電洞傳導至該第一電極層;以及複數個金屬奈米粒子,其係分布於該第二電極層內。 A thin film photovoltaic device comprising: a substrate; a first electrode layer is a front electrode; a second electrode layer is a back electrode; and a photoelectric conversion layer is disposed between the first electrode layer and the second electrode layer, wherein The photoelectric conversion layer further includes a p-type semiconductor layer and an n-type semiconductor layer. When incident electromagnetic radiation enters the photoelectric conversion layer from the first electrode layer, the photoelectric conversion layer can absorb electromagnetic waves to generate an electron hole pair, and Electrons are conducted to the second electrode layer to conduct holes to the first electrode layer; and a plurality of metal nanoparticles are distributed in the second electrode layer. 如申請專利範圍第13項所述之薄膜光伏裝置,其中該第一電極層與第二電極層係為透明導電氧化物,而該第二電極層的組成成分係包含該些金屬奈米粒子的金屬成分。 The thin film photovoltaic device of claim 13, wherein the first electrode layer and the second electrode layer are transparent conductive oxides, and the composition of the second electrode layer comprises the metal nanoparticles. Metal composition. 如申請專利範圍第14項所述之薄膜光伏裝置,其中更包含有一金屬層形成於該第二電極層之上。 The thin film photovoltaic device of claim 14, further comprising a metal layer formed on the second electrode layer. 如申請專利範圍第13項所述之薄膜光伏裝置,其中該光電轉換層更包含一本質半導體層形成於該p型半導體層與n型半導體層之間。 The thin film photovoltaic device of claim 13, wherein the photoelectric conversion layer further comprises an intrinsic semiconductor layer formed between the p-type semiconductor layer and the n-type semiconductor layer. 如申請專利範圍第16項所述之薄膜光伏裝置,其中該p型半導體層、本質半導體層以及n型半導體層係為含有矽的半導體層。 The thin film photovoltaic device according to claim 16, wherein the p-type semiconductor layer, the intrinsic semiconductor layer, and the n-type semiconductor layer are semiconductor layers containing germanium. 一種薄膜光伏裝置的製造方法,其係包括下列步驟:步驟1:提供一基板;步驟2:以物理氣相沉積在該基板上沉積一第一電極層;步驟3:以電漿處理在該第一電極層之表面形成複數個 金屬奈米粒子;步驟4:以雷射切割該第一電極層形成圖案;步驟5:以化學氣相沉積在該第一電極層上沉積一光電轉換層;步驟6:以雷射切割該光電轉換層形成圖案;步驟7:以物理氣相沉積在該光電轉換層上沉積一第二電極層;步驟8:以雷射切割該第二電極層形成圖案。 A method of manufacturing a thin film photovoltaic device, comprising the steps of: providing a substrate; step 2: depositing a first electrode layer on the substrate by physical vapor deposition; and step 3: treating the electrode with the plasma a plurality of surfaces of an electrode layer are formed Metal nanoparticle; step 4: laser cutting the first electrode layer to form a pattern; step 5: depositing a photoelectric conversion layer on the first electrode layer by chemical vapor deposition; step 6: laser cutting the photoelectric The conversion layer forms a pattern; Step 7: depositing a second electrode layer on the photoelectric conversion layer by physical vapor deposition; Step 8: laser cutting the second electrode layer to form a pattern. 一種薄膜光伏裝置的製造方法,其係包括下列步驟:步驟1:提供一基板;步驟2:以物理氣相沉積在該基板上沉積一金屬層;步驟3:以物理氣相沉積在該金屬層上沉積一第一電極層;步驟4:以電漿處理在該第一電極層之表面形成複數個金屬奈米粒子;步驟5:以雷射切割該第一電極層及金屬層形成圖案;步驟6:以化學氣相沉積在該第一電極層上沉積一光電轉換層;步驟7:以雷射切割該光電轉換層形成圖案;步驟8:以物理氣相沉積在該光電轉換層上沉積一第二電極層;步驟9:以雷射切割該第二電極層形成圖案。 A method of fabricating a thin film photovoltaic device, comprising the steps of: providing a substrate; step 2: depositing a metal layer on the substrate by physical vapor deposition; and step 3: depositing the metal layer on the metal layer by physical vapor deposition Depositing a first electrode layer thereon; Step 4: forming a plurality of metal nanoparticles on the surface of the first electrode layer by plasma treatment; Step 5: cutting the first electrode layer and the metal layer by laser to form a pattern; 6: depositing a photoelectric conversion layer on the first electrode layer by chemical vapor deposition; step 7: cutting the photoelectric conversion layer by laser to form a pattern; and step 8: depositing a physical vapor deposition layer on the photoelectric conversion layer Second electrode layer; Step 9: laser cutting the second electrode layer to form a pattern. 一種薄膜光伏裝置的製造方法,其係包括下列步驟:步驟1:提供一基板;步驟2:以物理氣相沉積在該基板上沉積一第一電極 層;步驟3:以電漿處理在該第一電極層之表面形成複數個金屬奈米粒子;步驟4:以物理氣相沉積再沉積該第一電極層,使該複數個金屬奈米粒子分布於該第一電極層內;步驟5:以雷射切割該第一電極層形成圖案;步驟6:以化學氣相沉積在該第一電極層上沉積一光電轉換層;步驟7:以雷射切割該光電轉換層形成圖案;步驟8:以物理氣相沉積在該光電轉換層上沉積一第二電極層;步驟9:以雷射切割該第二電極層形成圖案。 A method of fabricating a thin film photovoltaic device, comprising the steps of: providing a substrate; step 2: depositing a first electrode on the substrate by physical vapor deposition a layer; step 3: forming a plurality of metal nanoparticles on the surface of the first electrode layer by plasma treatment; Step 4: redepositing the first electrode layer by physical vapor deposition to distribute the plurality of metal nanoparticles In the first electrode layer; step 5: laser cutting the first electrode layer to form a pattern; step 6: depositing a photoelectric conversion layer on the first electrode layer by chemical vapor deposition; step 7: using a laser Cutting the photoelectric conversion layer to form a pattern; Step 8: depositing a second electrode layer on the photoelectric conversion layer by physical vapor deposition; Step 9: cutting the second electrode layer to form a pattern by laser. 一種薄膜光伏裝置的製造方法,其係包括下列步驟:步驟1:提供一基板;步驟2:以物理氣相沉積在該基板上沉積一金屬層;步驟3:以物理氣相沉積在該金屬層上沉積一第一電極層;步驟4:以電漿處理在該第一電極層之表面形成複數個金屬奈米粒子;步驟5:以物理氣相沉積再沉積該第一電極層,使該複數個金屬奈米粒子分布於該第一電極層內;步驟6:以雷射切割該第一電極層及金屬層形成圖案;步驟7:以化學氣相沉積在該第一電極層上沉積一光電轉換層;步驟8:以雷射切割該光電轉換層形成圖案; 步驟9:以物理氣相沉積在該光電轉換層上沉積一第二電極層;步驟10:以雷射切割該第二電極層形成圖案。 A method of fabricating a thin film photovoltaic device, comprising the steps of: providing a substrate; step 2: depositing a metal layer on the substrate by physical vapor deposition; and step 3: depositing the metal layer on the metal layer by physical vapor deposition Depositing a first electrode layer thereon; Step 4: forming a plurality of metal nanoparticles on the surface of the first electrode layer by plasma treatment; Step 5: depositing the first electrode layer by physical vapor deposition to make the plurality Metal nanoparticles are distributed in the first electrode layer; Step 6: laser cutting the first electrode layer and the metal layer to form a pattern; Step 7: depositing a photoelectric layer on the first electrode layer by chemical vapor deposition Converting layer; Step 8: cutting the photoelectric conversion layer by laser to form a pattern; Step 9: depositing a second electrode layer on the photoelectric conversion layer by physical vapor deposition; Step 10: cutting the second electrode layer by laser to form a pattern. 一種薄膜光伏裝置的製造方法,其係包括下列步驟:步驟1:提供一基板;步驟2:以物理氣相沉積在該基板上沉積一第一電極層;步驟3:以雷射切割該第一電極層形成圖案。 步驟4:以化學氣相沉積在該第一電極層上沉積一光電轉換層;步驟5:以雷射切割該光電轉換層形成圖案;步驟6:以物理氣相沉積在該光電轉換層上沉積一第二電極層;步驟7:以電漿處理在該第二電極層之表面形成複數個金屬奈米粒子;步驟8:以物理氣相沉積再沉積該第二電極層,使該複數個金屬奈米粒子分布於該第二電極層內;步驟9:以雷射切割該第二電極層形成圖案。 A method for fabricating a thin film photovoltaic device, comprising the steps of: providing a substrate; step 2: depositing a first electrode layer on the substrate by physical vapor deposition; and step 3: cutting the first electrode by laser The electrode layer forms a pattern. Step 4: depositing a photoelectric conversion layer on the first electrode layer by chemical vapor deposition; step 5: cutting the photoelectric conversion layer by laser to form a pattern; and step 6: depositing on the photoelectric conversion layer by physical vapor deposition a second electrode layer; step 7: forming a plurality of metal nanoparticles on the surface of the second electrode layer by plasma treatment; Step 8: redepositing the second electrode layer by physical vapor deposition to make the plurality of metals Nanoparticles are distributed in the second electrode layer; Step 9: laser cutting the second electrode layer to form a pattern. 一種薄膜光伏裝置的製造方法,其係包括下列步驟:步驟1:提供一基板;步驟2:以物理氣相沉積在該基板上沉積一第一電極層;步驟3:以雷射切割該第一電極層形成圖案。 步驟4:以化學氣相沉積在該第一電極層上沉積一光電轉換層;步驟5:以雷射切割該光電轉換層形成圖案;步驟6:以物理氣相沉積在該光電轉換層上沉積一第二 電極層;步驟7:以電漿處理在該第二電極層之表面形成複數個金屬奈米粒子;步驟8:以物理氣相沉積再沉積該第二電極層,使該複數個金屬奈米粒子分布於該第二電極層內;步驟9:以物理氣相沉積在該第二電極上沉積一金屬層;步驟10:以雷射切割該第二電極層及金屬層形成圖案。 A method for fabricating a thin film photovoltaic device, comprising the steps of: providing a substrate; step 2: depositing a first electrode layer on the substrate by physical vapor deposition; and step 3: cutting the first electrode by laser The electrode layer forms a pattern. Step 4: depositing a photoelectric conversion layer on the first electrode layer by chemical vapor deposition; step 5: cutting the photoelectric conversion layer by laser to form a pattern; and step 6: depositing on the photoelectric conversion layer by physical vapor deposition One second Electrode layer; Step 7: forming a plurality of metal nanoparticles on the surface of the second electrode layer by plasma treatment; Step 8: redepositing the second electrode layer by physical vapor deposition to make the plurality of metal nanoparticles Distributing in the second electrode layer; Step 9: depositing a metal layer on the second electrode by physical vapor deposition; Step 10: cutting the second electrode layer and the metal layer by laser to form a pattern.
TW098134346A 2009-10-09 2009-10-09 Thin film photovoltaic device and manufacturing process thereof TWI415275B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW098134346A TWI415275B (en) 2009-10-09 2009-10-09 Thin film photovoltaic device and manufacturing process thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW098134346A TWI415275B (en) 2009-10-09 2009-10-09 Thin film photovoltaic device and manufacturing process thereof

Publications (2)

Publication Number Publication Date
TW201114044A TW201114044A (en) 2011-04-16
TWI415275B true TWI415275B (en) 2013-11-11

Family

ID=44909888

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098134346A TWI415275B (en) 2009-10-09 2009-10-09 Thin film photovoltaic device and manufacturing process thereof

Country Status (1)

Country Link
TW (1) TWI415275B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW387152B (en) * 1996-07-24 2000-04-11 Tdk Corp Solar battery and manufacturing method thereof
TWM324293U (en) * 2007-01-02 2007-12-21 Advance Design Technology Inc Solar cell structure using low temperature polysilicon thin film induced by nanometer metal particles
TWM360451U (en) * 2008-11-13 2009-07-01 Ru-Yuan Yang A dye sensitized solar cell with high density packing
TW200929554A (en) * 2007-12-25 2009-07-01 Ind Tech Res Inst Thin film solar cell module and method of fabricating the same
TWM361096U (en) * 2009-01-22 2009-07-11 Bor-Wen Liou An effective way to obtain high photovoltaic efficiency of InxGa1-xN/GaN-based solar cell with an intrinsic layer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW387152B (en) * 1996-07-24 2000-04-11 Tdk Corp Solar battery and manufacturing method thereof
TWM324293U (en) * 2007-01-02 2007-12-21 Advance Design Technology Inc Solar cell structure using low temperature polysilicon thin film induced by nanometer metal particles
TW200929554A (en) * 2007-12-25 2009-07-01 Ind Tech Res Inst Thin film solar cell module and method of fabricating the same
TWM360451U (en) * 2008-11-13 2009-07-01 Ru-Yuan Yang A dye sensitized solar cell with high density packing
TWM361096U (en) * 2009-01-22 2009-07-11 Bor-Wen Liou An effective way to obtain high photovoltaic efficiency of InxGa1-xN/GaN-based solar cell with an intrinsic layer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
本案說明書中之先前技術 *

Also Published As

Publication number Publication date
TW201114044A (en) 2011-04-16

Similar Documents

Publication Publication Date Title
Konagai Present status and future prospects of silicon thin-film solar cells
JP2008181965A (en) Laminated optoelectric converter and its fabrication process
JP2013055178A (en) Thin film solar cell and manufacturing method of the same
Sawicka-Chudy et al. Characteristics of TiO2, Cu2O, and TiO2/Cu2O thin films for application in PV devices
Suresh et al. A study to improve light confinement and rear-surface passivation in a thin-Cu (In, Ga) Se2 solar cell
JPWO2011013719A1 (en) Transparent conductive substrate for solar cell and solar cell
TW201517291A (en) Transparent cover, solar module, and method of fabricating solar cell
Yin et al. Rear point contact structures for performance enhancement of semi-transparent ultrathin Cu (In, Ga) Se2 solar cells
Yan et al. Enhancing carrier transport in flexible CZTSSe solar cells via doping Li strategy
KR20110087378A (en) Silicon thin film solar cells using periodic or random metal nanoparticle layer and fabrication method thereof
Dhar et al. Light trapping in a-Si/c-Si heterojunction solar cells by embedded ITO nanoparticles at rear surface
KR20110092023A (en) Solar cell and method of fabricating the same
Hsu et al. Effects of nanostructured back reflectors on the external quantum efficiency in thin film solar cells
CN101872805B (en) Preparation method of crystal silicon photovoltaic cell with deep energy level impurities
Park et al. Diffused transmission and texture-induced defect with transparent conducting oxide front electrode of amorphous silicon solar cell
TWI415275B (en) Thin film photovoltaic device and manufacturing process thereof
TWI497730B (en) Thin film photovoltaic device and manufacturing process thereof
Yu et al. Polymorphous nano-si and radial junction solar cells
Ducros et al. Back reflectors with periodic gratings for light trapping in a-SiGe: H solar cells
Wang et al. Improvement of bifacial heterojunction silicon solar cells with light-trapping asymmetrical bifacial structures
TWI501412B (en) Solar cell having improved light-trapping structure
Selvan et al. Pulsed laser deposition of ZnO and MoO3 as reflection prohibitors on photovoltaic cell substrate to enhance the efficiency
KR101368905B1 (en) Method for manufacturing Thin film type Solar Cell
Prayogi et al. Electronic structure of P-type amorphous silicon nanowires
US20150200326A1 (en) Method and apparatus for increasing efficiency of thin film photovoltaic cell

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees