TWI482276B - 氮化物半導體結構 - Google Patents

氮化物半導體結構 Download PDF

Info

Publication number
TWI482276B
TWI482276B TW101137770A TW101137770A TWI482276B TW I482276 B TWI482276 B TW I482276B TW 101137770 A TW101137770 A TW 101137770A TW 101137770 A TW101137770 A TW 101137770A TW I482276 B TWI482276 B TW I482276B
Authority
TW
Taiwan
Prior art keywords
layer
nitride
semiconductor structure
nitride semiconductor
tantalum
Prior art date
Application number
TW101137770A
Other languages
English (en)
Other versions
TW201415628A (zh
Inventor
Chih Wei Hu
chen zi Liao
Yen Hsiang Fang
Rong Xuan
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW101137770A priority Critical patent/TWI482276B/zh
Priority to CN201210422661.4A priority patent/CN103730553A/zh
Priority to US14/049,209 priority patent/US20140103354A1/en
Publication of TW201415628A publication Critical patent/TW201415628A/zh
Application granted granted Critical
Publication of TWI482276B publication Critical patent/TWI482276B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02488Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02505Layer structure consisting of more than two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/0251Graded layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/12Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a stress relaxation structure, e.g. buffer layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Led Devices (AREA)
  • Recrystallisation Techniques (AREA)

Description

氮化物半導體結構
本發明是有關於一種氮化物半導體結構,且特別是有關於一種矽基板的氮化物半導體結構。
目前,氮化物發光二極體之成本遠較其他照明元件高出許多,且用來成長氮化物的藍寶石基板具有導熱性差的缺點,嚴重影響其使用壽命。因此,以較低成本及高導熱性的基板來取代目前的藍寶石基板是各大公司努力的目標。由於矽基板具有高導熱性、高導電、容易切割及低成本等優點,近年來,各大公司爭相研發以矽基板為基礎的發光二極體。
然而,以矽基板為基礎所製造的大尺寸的氮化物半導體結構由於製作良率不高,使得元件成本無法大幅降低。影響大尺寸的氮化物半導體結構之良率的主要因素在於氮化物半導體層與矽基板間之膨脹係數與晶格的差異造成應力釋放不易,而導致大量的缺陷,進而造成氮化物半導體結構容易破裂。並且,製造過程中利用晶片貼合技術與雷射剝離系統達成基板分離之技術所需的設備昂貴且良率不高。
本發明提供一種氮化物半導體結構,其能減緩氮化物 半導體層與矽基板之間因膨脹係數及晶格的差異所造成應力,以降低破裂的狀況。並且,不需使用晶片貼合與雷射剝離等繁瑣之製程,有效提高大尺寸且表面無破裂之氮化物半導體結構的良率。
本發明提出一種氮化物半導體結構,包括一矽基板、一成核層、一緩衝層及一氮化物半導體層。成核層設置於矽基板上,成核層包括以立方體晶格排列之一氮化矽碳層(SiCN)或是由碳化矽及氮化矽碳組成之一漸變層。緩衝層設置於成核層上。氮化物半導體層設置於緩衝層上。
基於上述,本發明之氮化物半導體結構透過以立方體晶格排列之一氮化矽碳層或是由碳化矽及氮化矽碳組成之一漸變層來當作成核層,藉由提供氮化矽碳或是漸變層,有效地減緩氮化物半導體層與矽基板之間因膨脹係數的差異所造成應力。並且,本發明之氮化物半導體結構可避開晶片貼合與雷射剝離等繁瑣之製程,進而增加大尺寸的氮化物半導體結構的良率。
為讓本發明之上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。
圖1A是依照本發明之一實施例之一種氮化物半導體結構的示意圖。請參閱圖1A,本實施例之氮化物半導體結構100包括一矽基板110、一成核層120、一緩衝層130及一氮化物半導體層140。成核層120設置於矽基板110 上,在本實施例中,成核層120包括以立方體晶格排列之一氮化矽碳層122(SixCyNz)。緩衝層130設置於成核層120上,在本實施例中,立方晶格排列之氮化矽碳層122上面接的是六方晶系的各種氮化物。氮化物半導體層140設置於緩衝層130上。在本實施例中,成核層120、緩衝層130及氮化物半導體層140分別以有機金屬化學氣相沈積法(metal organic chemical vapor deposition,MOCVD)的沈積於矽基板110上。但成核層120、緩衝層130及氮化物半導體層140形成於矽基板110上的方式不以此為限制。
圖2為圖1A之氮化物半導體結構的矽基板的掃描式電子顯微鏡的影像。請參閱圖2,矽基板110包括與成核層120接觸之一表面112及多個凹穴114,這些凹穴114凹陷於表面112,以使形成於矽基板110上之成核層120能夠側向成長。若以此氮化物半導體結構100來製造發光二極體裝置,由於成核層120與矽基板110之間會存在由這些凹穴114所形成的多個空隙,這些空隙可用來幫助釋放應力。因此,光取出效率可被提高。此外,在本實施例中,矽基板110之晶格方向為(111)。在圖2中,凹陷於表面112的這些凹穴114只是其中一種矽基板的實施方式,在其他實施例中,矽基板110的表面112亦可為一平面,矽基板110之種類並不以此為限制。
在氮化矽碳層122(SixCyNz)中x=y+z,且z值小於0.3。本實施例之氮化物半導體結構100藉由上述氮化矽碳 層122的參數關係,有效地減緩氮化物半導體層140與矽基板110之間因膨脹係數及晶格的差異所造成應力。
緩衝層130包括以六方晶系(hexagonal)排列之一第一氮化物層131及一第二氮化物層132,第一氮化物層131接觸成核層120。在本實施例中,第一氮化物層131包括一氮化鋁層。第二氮化物層132包括鋁。在本實施例中,第二氮化物層132包括鋁含量步階漸變(step graded)之一氮化鋁鎵漸變層,本實施例之氮化物半導體結構100藉由鋁含量步階漸變之氮化鋁鎵漸變層可降低氮化物半導體層140與矽基板110之間因熱膨脹係數的差異所造成應力而導致氮化物半導體結構100出現凹陷(pit)或是裂痕(crack)的機率。但在其他實施例中,第二氮化物層132亦可包括鋁含量連續漸變(continuously graded)之一氮化鋁鎵漸變層,鋁含量連續漸變之氮化鋁鎵漸變層亦可減緩氮化物半導體層140與矽基板110之間因膨脹係數的差異所造成應力。
在本實施例中,緩衝層130更包括一複合層134,複合層134包括多個互相交疊的碳化矽層與第三氮化物層或是多個互相交疊的氮化矽碳層與第三氮化物層。在本實施例中,複合層之氮化矽碳層以六方晶系排列。複合層134設置在第二氮化物層132與氮化物半導體層140之間。在本實施例中,第三氮化物層包括一氮化鎵層。本實施例之複合層134例如是由多層氮化矽碳層與氮化鎵層形成的超晶格結構(superlattice),減緩氮化物半導體層140與矽 基板110之間因膨脹係數的差異所造成應力。此外,在本實施例中,氮化物半導體層140包括一氮化鎵層。
如圖1A所示,在本實施例中,緩衝層130的組成可以有兩種情形,一種是由第一氮化物層131(例如是氮化鋁層)、第二氮化物層132(例如是鋁含量步階漸變之氮化鋁鎵漸變層)及複合層134(例如是由多層氮化矽碳層與氮化鎵層形成的超晶格結構)所組成。
圖1B是依照本發明之另一實施例之一種氮化物半導體結構的示意圖。請參閱圖1B,在另一種情形下,第一氮化物層131亦可為第二氮化物層132的一部分。也就是說,緩衝層130亦可由第二氮化物層132(例如是鋁含量步階漸變之氮化鋁鎵漸變層)及複合層134(例如是由多層氮化矽碳層與氮化鎵層形成的超晶格結構)所組成,且第二氮化物層132是由氮化鋁層(也就是第一氮化物層131)漸變至氮化鋁鎵層或是氮化鎵層。
圖3為圖1A之氮化物半導體結構的穿透式電子顯微鏡(TEM)的橫截面的影像。請參閱圖3,在本實施例之氮化物半導體結構100的橫截面中並未有裂痕或空隙產生,也就是說,在氮化物半導體結構100中加入氮化矽碳層122可以大幅降低氮化物半導體層140與矽基板110之間因膨脹係數及晶格的差異所造成應力,有效地提升了氮化物半導體結構100的品質。
在本實施例中,氮化物半導體結構100的成核層120、緩衝層130及氮化物半導體層140分別可成長至一定厚 度。氮化矽碳層122的厚度約為50奈米至3000奈米。第一氮化物層131(氮化鋁層)的厚度約為50奈米至500奈米。第二氮化物層132(氮化鋁鎵漸變層)的厚度約為0.5微米至10微米。複合層134之超晶格結構可由4對至120對氮化矽碳層與氮化鎵層所形成,其厚度約為50奈米至300奈米。若氮化物半導體層140以氮化鎵層為例,氮化鎵層之厚度約為0.5微米至10微米。較佳大於1微米。因此,氮化物半導體結構100的整體厚度可被提升。
若將氮化物半導體結構100以氮化矽碳層122為起始點向矽基板110方向分析,氮原子所佔的原子百分比約小於30%。在其中一個實施例中,氮原子所佔的原子百分比約小於15%。在另一個實施例中,氮原子所佔的原子百分比約小於10%。在一較佳的實施例中,圖4A為圖1A之氮化物半導體結構以氮化矽碳層為起始點向矽基板方向分析的示意圖。圖4B是圖4A之以氮化矽碳層為起始點向矽基板方向分析之深度-原子百分比示意圖。請參閱圖4A及圖4B,以氮化矽碳層122為起始點向矽基板110方向分析每一截面之原子百分比,如圖4B所示,氮原子在深度為0奈米至100奈米之間所佔的原子百分比約在6%,在深度為100奈米至130奈米的區段,氮原子所佔的原子百分比逐漸下降。由圖4B可知,氮化矽碳層122中氮原子所佔的原子百分比隨著往矽基板110的方向逐漸下降,在本實施例中,氮化矽碳層122為一氮含量漸變之漸變層。此外,由於成核層120亦可由碳化矽及氮化矽碳組成之漸變層來 取代氮化矽碳層122,碳化矽及氮化矽碳組成之漸變層中氮原子所佔的原子百分比隨往矽基板的方向亦會逐漸下降。
碳原子在深度為0奈米至165奈米的區段,碳原子所佔的原子百分比由43%緩慢上升至接近50%,在深度大於165奈米的區段,碳原子所佔的原子百分比以較大的降幅下降。矽原子在深度為0奈米至165奈米的區段,其所佔的原子百分比約為50%,在深度大於為165奈米的區段,矽原子所佔的原子百分比快速地增加。如圖4B所示,在深度為0奈米至130奈米的區段中,碳原子被氮原子取代。在深度為0奈米至100奈米的區段中,碳原子被氮原子取代的量約佔原子百分比的6%。而在深度為100奈米至130奈米的區段,碳原子被氮原子取代的原子百分比逐漸下降。
圖5是圖1A之氮化物半導體結構的波峰位置-強度示意圖。請參閱圖5,本實施例之氮化物半導體結構100進行波峰位置-強度分析之結果顯示,在波峰位置為-1.440秒位置的波峰代表檢測到氮化鎵,在波峰位置為694.1秒位置的波峰代表檢測到氮化矽碳。
由圖3至圖5可知,本實施例之氮化物半導體結構100在實際測試上,可於成核層120所在的位置檢驗出氮原子的存在。將氮化物半導體結構100藉由波峰位置-強度的分析可得到氮化矽碳。並且,由穿透式電子顯微鏡(TEM)的橫截面的影像可知,本實施例之氮化物半導體結構100並未有空缺或是裂痕的發生。也就是說,經測試結果可知, 本實施例之氮化物半導體結構100藉由提供矽碳氮層可有效地減緩氮化物半導體層140與矽基板110之間因膨脹係數與晶格的差異所造成應力。因此,本實施例之氮化物半導體結構100可製作出厚度較大、大尺寸且高品質的產品,以應用於發光二極體或是電力元件等領域。
圖6是依照本發明之另一實施例之一種氮化物半導體結構的示意圖。請參閱圖6,圖6之氮化物半導體結構100’與圖1A之氮化物半導體結構100的主要差異在於,圖6之氮化物半導體結構100’的成核層120’中以碳化矽及氮化矽碳組成之一漸變層124取代圖1A之成核層120中以立方體晶格排列之氮化矽碳層122。在本實施例中,碳化矽與氮化矽碳組成之漸變層124的厚度約為50奈米至150奈米。
本實施例之氮化物半導體結構100’藉由碳化矽及氮化矽碳組成之漸變層124、第二氮化物層132包括鋁含量為非連續之氮化鋁鎵漸變層以及複合層134為互相交疊的碳化矽層與第三氮化物層或是互相交疊的氮化矽碳層與第三氮化物層,以降低氮化物半導體層140與矽基板110之間因膨脹係數及晶格的差異所造成應力,進而降低氮化物半導體結構100’出現凹陷(pit)或是裂痕(crack)的機率。
綜上所述,本發明之氮化物半導體結構藉由提供矽碳氮層或是碳化矽及氮化矽碳組成之漸變層、鋁含量為非連續之氮化鋁鎵漸變層以及互相交疊的碳化矽層與第三氮化物層或是互相交疊的氮化矽碳層與第三氮化物層,降低氮 化物半導體層與矽基板之間因膨脹係數及晶格的差異所造成應力,進而降低氮化物半導體結構出現凹陷(pit)或是裂痕(crack)的機率。並且,本發明之氮化物半導體結構具有低成本、大尺寸與高導電導熱等優勢,可與高度成熟的矽半導體產業結合成光電積體電路,可應用於發光二極體領域。在本發明之氮化物半導體結構上製作的發光二極體可提供較高流明/瓦、高色溫及高演色性。若製程針對8吋以上矽晶圓,將使發光二極體的製程能相容於現行的自動半導體生產線,其成本將會是藍寶石基板的十分之一,可有效地提高發光二極體產業的性價比。此外,本發明之氮化物半導體結構亦可應用於電力元件(power device)等其他領域。
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,故本發明之保護範圍當視後附之申請專利範圍所界定者為準。
100、100’‧‧‧氮化物半導體結構
110‧‧‧矽基板
112‧‧‧表面
114‧‧‧凹穴
120、120’‧‧‧成核層
122‧‧‧氮化矽碳層
124‧‧‧漸變層
131‧‧‧第一氮化物層
130‧‧‧緩衝層
132‧‧‧第二氮化物層
134‧‧‧複合層
140‧‧‧氮化物半導體層
圖1A是依照本發明之一實施例之一種氮化物半導體結構的示意圖。
圖1B是依照本發明之另一實施例之一種氮化物半導體結構的示意圖。
圖2為圖1A之氮化物半導體結構的矽基板的掃描式電子顯微鏡的影像。
圖3為圖1A之氮化物半導體結構的穿透式電子顯微鏡(TEM)的橫截面的影像。
圖4A為圖1A之氮化物半導體結構以氮化矽碳層為起始點向矽基板方向分析的示意圖。
圖4B是圖4A之以氮化矽碳層為起始點向矽基板方向分析之深度-原子百分比示意圖。
圖5是圖1A之氮化物半導體結構的波峰位置-強度示意圖。
圖6是依照本發明之另一實施例之一種氮化物半導體結構的示意圖。
100‧‧‧氮化物半導體結構
110‧‧‧矽基板
112‧‧‧表面
120‧‧‧成核層
122‧‧‧氮化矽碳層
131‧‧‧第一氮化物層
130‧‧‧緩衝層
132‧‧‧第二氮化物層
134‧‧‧複合層
140‧‧‧氮化物半導體層

Claims (14)

  1. 一種氮化物半導體結構,包括:一矽基板;一成核層,設置於該矽基板上,該成核層包括以立方體晶格排列之一氮化矽碳層(SixCyNz),其中x=y+z,z值小於0.3;一緩衝層,設置於該成核層上;以及一氮化物半導體層,設置於該緩衝層上。
  2. 如申請專利範圍第1項所述之氮化物半導體結構,其中該矽基板包括與該成核層接觸之一表面及多個凹穴,該些凹穴凹陷於該表面。
  3. 如申請專利範圍第1項所述之氮化物半導體結構,其中該矽基板之晶格方向為(111)。
  4. 如申請專利範圍第1項所述之氮化物半導體結構,其中該緩衝層包括以六方晶系排列之一第一氮化物層,該第一氮化物層接觸該成核層。
  5. 如申請專利範圍第4項所述之氮化物半導體結構,其中該第一氮化物層包括一氮化鋁層。
  6. 如申請專利範圍第1項所述之氮化物半導體結構,其中該緩衝層包括以六方晶系排列之一第二氮化物層,且該第二氮化物層包括鋁。
  7. 如申請專利範圍第6項所述之氮化物半導體結構,其中該第二氮化物層包括鋁含量步階漸變(step graded)之一氮化鋁鎵漸變層。
  8. 如申請專利範圍第6項所述之氮化物半導體結構,其中該第二氮化物層是由一氮化鋁層漸變至一氮化鋁鎵層或一是氮化鎵層。
  9. 如申請專利範圍第1項所述之氮化物半導體結構,其中該緩衝層包括一複合層,該複合層包括多個互相交疊的碳化矽層與第三氮化物層或是多個互相交疊的氮化矽碳層與第三氮化物層,該複合層接觸該氮化物半導體層。
  10. 如申請專利範圍第9項所述之氮化物半導體結構,其中該第三氮化物層包括一氮化鎵層。
  11. 如申請專利範圍第9項所述之氮化物半導體結構,其中該複合層之該氮化矽碳層以六方晶系排列。
  12. 如申請專利範圍第1項所述之氮化物半導體結構,其中該氮化物半導體層之厚度約為0.5微米至10微米。
  13. 如申請專利範圍第1項所述之氮化物半導體結構,其中該氮化矽碳層為氮含量為漸變之一漸變層。
  14. 如申請專利範圍第1項所述之氮化物半導體結構,其中該氮化矽碳層包括由碳化矽及氮化矽碳組成之一漸變層。
TW101137770A 2012-10-12 2012-10-12 氮化物半導體結構 TWI482276B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
TW101137770A TWI482276B (zh) 2012-10-12 2012-10-12 氮化物半導體結構
CN201210422661.4A CN103730553A (zh) 2012-10-12 2012-10-30 氮化物半导体结构
US14/049,209 US20140103354A1 (en) 2012-10-12 2013-10-09 Nitride semiconductor structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101137770A TWI482276B (zh) 2012-10-12 2012-10-12 氮化物半導體結構

Publications (2)

Publication Number Publication Date
TW201415628A TW201415628A (zh) 2014-04-16
TWI482276B true TWI482276B (zh) 2015-04-21

Family

ID=50454555

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101137770A TWI482276B (zh) 2012-10-12 2012-10-12 氮化物半導體結構

Country Status (3)

Country Link
US (1) US20140103354A1 (zh)
CN (1) CN103730553A (zh)
TW (1) TWI482276B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9159788B2 (en) 2013-12-31 2015-10-13 Industrial Technology Research Institute Nitride semiconductor structure
CN104157790B (zh) * 2014-06-30 2017-03-15 上海天马有机发光显示技术有限公司 一种有机发光薄膜封装结构,其器件、装置及制造方法
TWI550921B (zh) * 2014-07-17 2016-09-21 嘉晶電子股份有限公司 氮化物半導體結構
CN106025026B (zh) * 2016-07-15 2018-06-19 厦门乾照光电股份有限公司 一种用于发光二极管的AlN缓冲层及其制作方法
US20220384583A1 (en) * 2021-01-26 2022-12-01 Innoscience (Suzhou) Technology Co., Ltd. Semiconductor device and fabrication method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200728526A (en) * 2006-01-16 2007-08-01 Jyh-Rong Gong A substrate for semiconductor compound and a solid-state semiconductor device made therefrom
TWI289941B (en) * 2004-05-27 2007-11-11 Showa Denko Kk Gallium nitride-based semiconductor stacked structure, production method thereof, and compound semiconductor and light-emitting device each using the stacked structure
TW201005986A (en) * 2008-07-16 2010-02-01 Tekcore Co Ltd Optronic device and manufacturing method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5739544A (en) * 1993-05-26 1998-04-14 Matsushita Electric Industrial Co., Ltd. Quantization functional device utilizing a resonance tunneling effect and method for producing the same
US5739554A (en) * 1995-05-08 1998-04-14 Cree Research, Inc. Double heterojunction light emitting diode with gallium nitride active layer
US7368757B2 (en) * 2004-12-24 2008-05-06 Covalent Materials Corporation Compound semiconductor and compound semiconductor device using the same
JP2006196631A (ja) * 2005-01-13 2006-07-27 Hitachi Ltd 半導体装置及びその製造方法
EP1978550A4 (en) * 2005-12-28 2009-07-22 Nec Corp FIELD EFFECT TRANSISTOR AND MULTILAYER EPITAXIAL FILM FOR USE IN THE MANUFACTURE OF A FIELD EFFECT TRANSISTOR
TWM361096U (en) * 2009-01-22 2009-07-11 Bor-Wen Liou An effective way to obtain high photovoltaic efficiency of InxGa1-xN/GaN-based solar cell with an intrinsic layer
GB2487531A (en) * 2011-01-20 2012-08-01 Sharp Kk Substrate system consisting of a metamorphic transition region comprising a laminate of AlxGa1-x N and the same material as the substrate.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI289941B (en) * 2004-05-27 2007-11-11 Showa Denko Kk Gallium nitride-based semiconductor stacked structure, production method thereof, and compound semiconductor and light-emitting device each using the stacked structure
TW200728526A (en) * 2006-01-16 2007-08-01 Jyh-Rong Gong A substrate for semiconductor compound and a solid-state semiconductor device made therefrom
TW201005986A (en) * 2008-07-16 2010-02-01 Tekcore Co Ltd Optronic device and manufacturing method thereof

Also Published As

Publication number Publication date
TW201415628A (zh) 2014-04-16
US20140103354A1 (en) 2014-04-17
CN103730553A (zh) 2014-04-16

Similar Documents

Publication Publication Date Title
TWI482276B (zh) 氮化物半導體結構
TWI565094B (zh) 氮化物半導體結構
Kim et al. Effect of V-shaped pit size on the reverse leakage current of InGaN/GaN light-emitting diodes
KR101636032B1 (ko) 고전위 밀도의 중간층을 갖는 발광 다이오드 및 그것을 제조하는 방법
Ma et al. Improved GaN-based LED grown on silicon (111) substrates using stress/dislocation-engineered interlayers
KR101134732B1 (ko) 반도체 발광소자 및 그 제조방법
KR102094471B1 (ko) 질화물 반도체층의 성장방법 및 이에 의하여 형성된 질화물 반도체
CN105261681B (zh) 一种半导体元件及其制备方法
KR20110120019A (ko) 반도체 소자
Ali et al. Enhancement of near-UV GaN LED light extraction efficiency by GaN/sapphire template patterning
Zhang et al. Graphene‐Nanorod Enhanced Quasi‐Van Der Waals Epitaxy for High Indium Composition Nitride Films
KR20070024238A (ko) 질화갈륨계 발광소자 및 제조방법
US9112077B1 (en) Semiconductor structure
US8835955B2 (en) IIIOxNy on single crystal SOI substrate and III n growth platform
Gujrati et al. Multiple shapes micro‐LEDs with defect free sidewalls and simple liftoff and transfer using selective area growth on hexagonal boron nitride template
US20140097443A1 (en) Nitride semiconductor device
TWI491068B (zh) 氮化物半導體結構
US20140097444A1 (en) Nitride semiconductor device
US9240518B2 (en) Light emitting diode device having super lattice structure and a nano-structure layer
TWI460855B (zh) 氮化物半導體結構及其製造方法
JP2012104677A (ja) 半導体発光素子の製造方法
US20170012165A1 (en) Method of producing a semiconductor layer sequence and an optoelectronic semiconductor component
Tharian Degradation-and failure mode analysis of III-V nitride devices
TWI830472B (zh) 發光元件製造方法
KR100801219B1 (ko) 고휘도 발광 다이오드