TW201005986A - Optronic device and manufacturing method thereof - Google Patents

Optronic device and manufacturing method thereof Download PDF

Info

Publication number
TW201005986A
TW201005986A TW97127043A TW97127043A TW201005986A TW 201005986 A TW201005986 A TW 201005986A TW 97127043 A TW97127043 A TW 97127043A TW 97127043 A TW97127043 A TW 97127043A TW 201005986 A TW201005986 A TW 201005986A
Authority
TW
Taiwan
Prior art keywords
buffer
nitride
substrate
buffer film
layer
Prior art date
Application number
TW97127043A
Other languages
Chinese (zh)
Inventor
Jennh-Wa Fu
Yu-Chuan Liu
Tai-Chun Wang
Kwang-Ru Wang
Original Assignee
Tekcore Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tekcore Co Ltd filed Critical Tekcore Co Ltd
Priority to TW97127043A priority Critical patent/TW201005986A/en
Publication of TW201005986A publication Critical patent/TW201005986A/en

Links

Abstract

A manufacturing method of an optronic device includes the steps of providing a substrate; forming a nitride buffer film on the substrate by ALD, E-beam evaporator, sputter, PECVD, APCVD or ICPCVD; and forming an optronic element on the nitride buffer film.

Description

201005986 九、發明說明: ,【發明所屬之技術領域】 本發明係·-齡置及趣造方法,制關於一種半 導體光電裝置及其製造方法。 【先前技術】 目前,常見的光電裝置如發光二極體(light_emi麻g diode, ,LED)是由半導體材料製作而成的發光元件,其具有體積小、發 熱量低、耗電量低、沒有輻射、不含水銀、壽命長、反應速度快 以及可罪度尚等優點。因此,發光二極體的可廣泛應用於資訊、 通訊、消費性電子、汽車、照明以及交通號諸等。 一般發光二極體包含一基板、一:N[型半導體層、一發光層、 一P型半導體層、一N型電極以及一p型電極。發光層係位 塑半導體層與Ρ型半導體層之間。發光二極體之電壓以及電流的 隊關係呈指數關係。當於Ρ型電極以及Ν型電極施加一電壓,且該 電壓大於導通電壓(threshold voltage)時,發光二極體之電流迅 速增加,同時開始發光。 然而’發光二極體是以高毒性的有機金屬化學氣相沉積法來 ' 製作,因此’在光電元件的製造方法中如何減少有機金屬化學氣 相沉積法的使用步驟’實屬當前重要課題之一。 【發明内容】 有鑑於上述課題,本發明之目的為提供一種減少有機金屬化 201005986 學氣相沉積朗使时驟的光電裝置及錄造方法。 2達上相的’依據本發明之—種光絲置的製造方法包含 /、-基板,精由原子層沉積、電子束驗、雜1 助 學氣相沈積、常壓化學氣相沈積或感應式耗合電漿輔助化學氣相 =’形成-氮化物緩衝膜於基板上;以及形成—光電 化物緩衝膜上。 '虱 ❹ ❹ 在a施例中’ t氮化物緩衝膜具有變化的結構例如 物緩衝膜具有複數魏衝層或是具有不同材質之二部分,形^ :物緩衝膜的厚膜沉積製程除了是原子層沉積、電子束蒸鍵、: 广、電_助化學氣相沈積、f壓化學氣相沈積或感應式輕合電 漿輔助化學氣相沉積之外,亦可以是有機金屬化學氣相沉積、^ 溫分子束磊晶、或函素氣相磊晶。 ^ 光電元件係以光電二極體為例,其形成的方式為依序蠢晶至 少二層半導體層,其中-層半導體層為電光轉換層或光電轉換 層’這些半導體層構成—削、结構的二極體。舉例來說,光電元 件可以是發光二極體、雷射二極體、光二極體、太陽能電池等具 有二極體結構触電元件。光電二極體之材質可選用寬能隙材 料’例如III,V族材料。 …為達上述目的’依據本發明之—種光電裝置包含—氮化物緩 衝膜、-光電7G件A及-基板。氮化物緩衝膜具有複數個緩衝層; 光電元件條氮化驗_上;基麻概錄緩細以及光電 201005986 元件。 為達上述目的,依據本發明之一種光電裝置包含一氮化物緩 衝膜、一光電元件以及一基板。氮化物緩衝膜具有至少一缓衝層, 緩衝層具有不同材質的二個部分;光電元件位於氮化物緩衝膜 上,基板承載氣化物緩衝膜以及光電元件。 ' 承上所述,因依據本發明之一種光電裝置及其製造方法,主 要以原子層沉積、蒸鍍、濺鍍、電漿辅助化學氣相沈積、常壓化 ® 學氣相沈積或感應式柄合電漿辅助化學氣相沉積來形成光電裝置 的亂化物缓衝膜,因而可減少有機金屬化學氣相沉積的製程。 【實施方式】 以下將參照相關圖式’說明依據本發明較佳實施例之一種光 電裝置及其製造方法’其中相同的元件將以相同的參照符號加以 說明。 q 第一實施例 圖1出示一種光電裝置1的製造方法的流程。首先,提供一 基板11 ;然後,藉由原子層沉積(Atomic Layer Deposition,ALD )、 電子束蒸鍍(E-Beam Evaporator)、滅鑛(Sputter)、電漿辅助化 ' 學氣相沈積(Plasma Enhanced Chemical Vapor Deposition, PECVD )、常壓化學氣相沈積(Atmospheric Pressure Chemical Vapor Deposition,APCVD )或感應式耗合電漿輔助化學氣相沉積 (Inductive Coupled Plasma Chemical Vapor Deposition , 7 201005986 她1化物緩衝膜u於基板u上;以及蠢晶形成 一先电兀件於氮化物緩衝膜12上。氮化物緩衝膜12係可作為 =光電树13絲_層。光電元件13轉叫機金屬化 學氣相沉積來製作。 在本實施例中,光電元件13具有至少三層 131〜133,這些半導體層131〜133是依序遙晶於氮化物緩衝膜u, ❹ 其中一層半導體層m為電光轉換層或光電轉換層,這些半導體 層131〜133構成一 PIN結構的二極體。舉例來說,光電元件可以 是發光二極體、雷射二極體、光二極體、太陽能電池等具有二極 體結構的光電元件。光電二極體之材質可翻寬能騎料,例如 III-V族材料。 基板11係可為矽基板、砷化鎵基板、藍寶石基板、氮化招基 板、氮化鎵基板或碳化;5夕基板。以藍光二極體來說,藍寶石基板 是較常的選用對象。基板面向氮化物緩衝膜之一面可分為A面、 ® C面、R面或斜切面。以矽基板、珅化鎵基板、藍寶石基板、氮化 鋁基板、氮化鎵基板或碳化矽基板來說,較常用的是A面、c面、 - R面或斜切面。 - 經由前述半導體製程製造的氮化物緩衝膜12,其沉積厚度可 大於25奈米’例如介於50〜5000奈米,其晶體結構為磊晶 (epitaxy )、多晶(polycrystal)或非晶(amorphous)。氮化物緩衝 膜12可以是未經換雜的蟲晶層,也可以是經由推雜形成的n型半 201005986 導體或p型半導體。 另外,氮化物緩衝膜12之形貌可為奈米棒狀(r〇d)、奈米點 狀(dot)、奈米碟狀(dlsk )、奈米線狀(wire )或奈米材質狀(切伽〇 ) 等結構。 氮化物緩衝膜12之材料包含氮化矽系列的化合物例如氮化矽 (SiNx)、氮氧化石夕(si〇N)、氮碳化石夕(siCN)、銘-氮化石夕(SiNx : A1)以及氮化鎵銦链(AlxInyGa】_xyN)至少其中之一。關於氮化蘇 ©鋼銘(A1xInyGai-x-yN)的成分比例關係如下:卜卜 氮化物緩衝膜12之材料也可以包含前述至少二材料的排列組合。 另外,氮化物緩衝膜12之材料也可以是氮化物系列的化合物和氧 化物系列的化合物的組合,在此所指的氧化物系列的化合物如氧 化矽(SiOx)系列、氧化錫(Ζη〇χ)、或是氧化銦錫(ΙΤ〇χ)。 圖2出示一種光電裝置la的製造方法的流程,首先,提供一 ❹基板11 ;然後’形成一氮化物緩衝膜12a於基板上;接著,與圖 1不同的是,磊晶形成一光電元件之前,摻雜氮化物緩衝膜12a。 在摻雜後圖案化氮化物緩衝膜12a,之後才磊晶形成一光電元件 13於氮化物緩衝膜Ua上。氮化物緩衝膜12a可摻雜為N型半導 . 體或是P型半導體。 本實施例的變化也可以是氮化物緩衝膜被摻雜為N型半導體 或是P型半導體,氮化物緩衝膜係沒有被圖案化;或是氮化物緩 衝膜沒有被掺雜而僅氮化物缓衝膜被圖案化。 9 201005986 基板的變化係如圖3A〜3C所示,基板lla〜lle上的圖案係可 包3弧形圖案(圖3A)、一齒形(t〇〇th)圖案(圖3B)或一槽 形(hole)圖案(圖冗),基板η上的圖案的線寬係可為微米㈤刪 meter)等級或奈米(nan〇meter)等級,基板丨丨可以於製造前本 •身即具有圖案,或是在製造時_化基板。基板關案也可類似 —於前述氮化物緩衝膜的圖案。另外’當基板沒有被圖案化或是有 被随化為前述圖形時’級上的!^物緩細係可翻案化為 ❹前述圖3A-3C的圖案。 另外’本實施_光電元件可以是垂直式二極體或是水平式 二極體。例如以垂直式發光二極體來說,光縣置的製造方法更 包含結合—承雜板於光電元件,__麟職魏化物緩 衝膜的基板。另外,也可以進—步去除氮化物緩衝膜。二個電極 形成於光電裝置的二側。 ❾ 躲水平式二極齡說’可以不需結合另-承載基板,也不 需剝離原始的基板。-個電極形成於光電元件上,另—個電極是 形成於光電元件的其中一個半導體層上。 4化物緩衝膜面向光電元件之—侧為三族元素極性側,使光 :電it件面向氮化物緩衝膜之-_五族元素極性側。獅基板後 可Ϊ一步去除說化物缓細,因而光電元件的五族元素極性側便 會露出’這-側藉由侧就可做出微結構。另外,若氮化物緩衝 顧摻雜喊有錄’或是成為可導電的Ν型半導體或ρ型半導 10 201005986 體’其可不被去除而作為電極或是連接至電極的線路。 另外’氮化物緩衝膜面向光電元件之一側為五族元素極性 ^钱電元件非面向氮化物緩_之—側為五族元素極性側, 這一側藉由姓刻就可做出微結構。 - 苐二實施例 圖4出示—種光電裝置2的製造方法的流程,朗〗不同的 〇是’氮化物緩衝膜22具有複數層緩衝層。形成氣化物緩衝膜的製 程可以除了前述原子層沉積、電子束絲、濺鍍、電漿辅助化學 氣相沈積g壓化學氣相沈積錢應式耦合電漿輔助化學氣相沉 積之外,亦可以是有機金屬化學氣相沉積(魔心职^就⑹㈣ Vapor Dep〇sitiGn,M0CVD)、高溫分子束蠢日日日(施以咖b_ Epitaxy ’ MBE )、或_素氣相遙晶(邮恤v啊£邱卿, HVPE)。南溫分子束磊晶的溫度範圍是⑽〜⑴叱。氛化物緩衝 膜22具有複婁丈層緩衝層221、222,這些緩衝層221、222是依序 沉積在基板2i上,然後光電元件μ是蟲晶在緩衝層222上。這 -些緩衝層22卜222可以是利用相同的製程形成,或是分別用不同 - 的製程形成。 較頂層或較接近光電元件23的緩衝層222是以有機金屬化學 氣相沉積來製作,這樣就可以不需更換反應爐就可直接製作光電 元件。光電元件23具有至少三層半導體層231〜233,這些半導體 201005986 層231〜233是依序蟲晶於氮化物緩衝膜μ。 以下是以-些材料為例作說明並非限定各緩衝層的材料,各 緩衝層的材料係可互換。各缓衝層亦可使用不同的^來製作。 緩衝層221之材料為氮切系列的化合物例如氮化石夕 (狐)、氮氧化砂(Si0N )、氮碳化秒(SiCN )、或銘遗化秒(现: ’ A1)、或是氧化物系列的化合物如氧化矽(SiOx)系列、氧化錫 (风)、《是氧化銦錫(rmx)、或是氮化蘇姻銘 ® (AlxInyGai.x_yN)。關於氮化鎵銦銘(AlJ%Gai一)的成分比例 關係如下:〇么幻,崎u。,緩衝層221也可具有至少二個 以上的前述材料,也就是緩衝層221可包含的材料可以是前述材 料的排列組合。 〜緩衝層222之材料為氮化蘇錮铭(AlxInyGa,x_yN)。關於氮化 錄姻銘(AlxIny Gai _x-yN )的成分比例關係如下:〇 $ ^,β 乂幻。 、、爰衝層222 了作為蠢晶漸變層(grading㈣沈)。 ❹㉟由麵半導體製程製造的統祕賊Μ,其沉積厚度可 以大於25奈米,例如5〇〜5〇〇〇奈米之間。其晶體結構為遙晶 (epitaxy )夕晶(p〇lycfystal)或非晶(啦_細)。氮化物緩衝 :膜22係未經摻雜’也可經由摻雜而成為N型半導體或P型半導體。 另外,全部的緩衝層係都被摻雜為N型半導體或P型半導體, 也可以僅部分的緩衝層被摻雜為N型半導體或p型半導體,也可 以全部的緩衝層都不摻雜。 12 201005986 圖出丁種光電裝置的製造方法的流程,與 沉積緩衝層222前先沉積一擴散層22()。 刊的疋, 緩衝層221可以藉由低溫製程製作,緩衝層22 程製作,以高溫製程製作的緩衝層222可作為長晶^㈣製 作擴散層22G以前的步驟可使用非有機日^製 素氣相剔·。另外,崎输==南 ^,Γ 222 獅咖作 二以兩溫製程製作,或是皆以低溫製程製作。、 氮化物緩衝膜具有複數層緩衝層的更進一 所示,這些緩衝層是依序沉積在基板上,、,番〔圖6A〜6F 同的子結構。各子結構可有二 I⑬地構成類似或相 的材料結構。 "叫觸,各子結構有對應 如圖6A〜6D所示,光電梦 參 具有複數個子結構,至少咖衝❹— 衝層上形成有複數_誠的子:椹、有相同驗11。例如:缓 緩衝層,仏魅 心的子結構’各子結構具有二個以上的 蝴tr料是選自前述緩衝層的不同材料。201005986 IX. Description of the invention: [Technical field to which the invention pertains] The present invention relates to an age-setting and interesting method for fabricating a semiconductor optoelectronic device and a method of manufacturing the same. [Prior Art] At present, a common photovoltaic device such as a light-emitting diode (LED) is a light-emitting element made of a semiconductor material, which has a small volume, low heat generation, low power consumption, and no Radiation, no mercury, long life, fast response and sinfulness. Therefore, the light-emitting diode can be widely used in information, communication, consumer electronics, automobiles, lighting, and traffic numbers. A general light-emitting diode comprises a substrate, an N-type semiconductor layer, a light-emitting layer, a P-type semiconductor layer, an N-type electrode and a p-type electrode. The light-emitting layer is between the plastic semiconductor layer and the germanium-type semiconductor layer. The voltage of the LED and the team relationship of the current are exponential. When a voltage is applied to the Ρ-type electrode and the Ν-type electrode, and the voltage is greater than the threshold voltage, the current of the light-emitting diode rapidly increases and light emission starts. However, 'the light-emitting diode is made by highly toxic organometallic chemical vapor deposition method', so how to reduce the use of organometallic chemical vapor deposition in the manufacturing method of photovoltaic elements is a current important issue. One. SUMMARY OF THE INVENTION In view of the above problems, an object of the present invention is to provide an optoelectronic device and a recording method for reducing the time of organometallic formation 201005986. 2 The upper phase of the invention according to the invention includes a substrate, a substrate, an atomic layer deposition, an electron beam test, a heterogeneous vapor deposition, an atmospheric pressure chemical vapor deposition or an induction. The plasma-assisted chemical vapor phase = 'formation-nitride buffer film on the substrate; and the -formation buffer film. '虱❹ ❹ In a case, the 'n nitride buffer film has a changed structure, for example, the material buffer film has a complex Wei punch layer or two parts with different materials, and the thick film deposition process of the material buffer film is in addition to Atomic layer deposition, electron beam evaporation,: wide, electric-assisted chemical vapor deposition, f-pressure chemical vapor deposition or inductive light-weight plasma-assisted chemical vapor deposition, or organic metal chemical vapor deposition , ^ Warm molecular beam epitaxy, or elemental vapor epitaxy. ^ Photoelectric elements are exemplified by photodiodes, which are formed by sequential stupid crystals of at least two semiconductor layers, wherein the -layer semiconductor layers are electro-optic conversion layers or photoelectric conversion layers 'these semiconductor layers are formed--structured Diode. For example, the photovoltaic element may be a light-emitting diode, a laser diode, a photodiode, a solar cell, or the like having a diode structure. The material of the photodiode can be selected from a wide bandgap material such as III, V material. In order to achieve the above object, a photovoltaic device according to the present invention comprises a nitride buffer film, a photoelectric 7G device A and a substrate. The nitride buffer film has a plurality of buffer layers; the photovoltaic element strip nitride test _ upper; the base linen summary and the photoelectric 201005986 components. To achieve the above object, an optoelectronic device according to the present invention comprises a nitride buffer film, a photovoltaic element, and a substrate. The nitride buffer film has at least one buffer layer having two portions of different materials; the photovoltaic element is located on the nitride buffer film, and the substrate carries the vaporization buffer film and the photovoltaic element. According to the invention, an optoelectronic device and a method for manufacturing the same according to the present invention are mainly atomic layer deposition, evaporation, sputtering, plasma-assisted chemical vapor deposition, atmospheric pressure, vapor deposition or inductive The shank-assisted plasma-assisted chemical vapor deposition forms a disordered buffer film of the photovoltaic device, thereby reducing the process of organometallic chemical vapor deposition. [Embodiment] Hereinafter, a photovoltaic device and a method of manufacturing the same according to a preferred embodiment of the present invention will be described with reference to the accompanying drawings, wherein the same elements will be described with the same reference numerals. q First Embodiment Fig. 1 shows a flow of a method of manufacturing an optoelectronic device 1. First, a substrate 11 is provided; then, by Atomic Layer Deposition (ALD), E-Beam Evaporator, Sputter, and plasma assisted vapor deposition (Plasma) Enhanced Chemical Vapor Deposition (PECVD), Atmospheric Pressure Chemical Vapor Deposition (APCVD) or Inductive Coupled Plasma Chemical Vapor Deposition (7 201005986) u is on the substrate u; and the stupid crystal forms a first electric device on the nitride buffer film 12. The nitride buffer film 12 can be used as the = photo-electric tree 13 wire layer. The photoelectric element 13 is called metal chemical vapor deposition. In this embodiment, the photovoltaic element 13 has at least three layers 131 to 133, and the semiconductor layers 131 to 133 are sequentially crystallized in the nitride buffer film u, ❹ one of the semiconductor layers m is an electro-optical conversion layer or photoelectric a conversion layer, these semiconductor layers 131 to 133 constitute a PIN structure diode. For example, the photovoltaic element may be a light emitting diode, a laser diode, A photovoltaic element having a diode structure such as a diode or a solar cell. The material of the photodiode can be widened to ride, for example, a III-V material. The substrate 11 can be a germanium substrate, a gallium arsenide substrate, or a sapphire. Substrate, nitrided substrate, gallium nitride substrate or carbonized; 5th substrate. In the case of blue diode, sapphire substrate is the more common object. The surface of the substrate facing the nitride buffer film can be divided into A surface, ® C-plane, R-face or chamfered surface. For a germanium substrate, a gallium antimonide substrate, a sapphire substrate, an aluminum nitride substrate, a gallium nitride substrate or a tantalum carbide substrate, the A surface, the c surface, and the -R surface are more commonly used. Or a chamfered surface. - The nitride buffer film 12 manufactured by the foregoing semiconductor process may have a deposition thickness of more than 25 nm, for example, between 50 and 5000 nm, and its crystal structure is epitaxy or polycrystal. Alternatively, the nitride buffer film 12 may be a non-replaced layer of insect crystals, or may be an n-type half 201005986 conductor or a p-type semiconductor formed by pushing. Further, the shape of the nitride buffer film 12 Appearance can be nanorod (r〇d), nai A structure such as a dot, a dlsk, a wire, or a nano-material (Cheliz). The material of the nitride buffer film 12 contains a compound of a tantalum nitride series such as nitrogen. At least one of bismuth (SiNx), nitrous oxide (si〇N), nitrogen-carbonated fossil (siCN), indium-nitride (SiNx: A1), and gallium nitride indium chain (AlxInyGa)_xyN. Regarding the compositional relationship of the nitriding sulphide (A1xInyGai-x-yN) is as follows: The material of the nitride buffer film 12 may also include the above-described arrangement of at least two materials. In addition, the material of the nitride buffer film 12 may also be a combination of a compound of a nitride series and a compound of an oxide series, and the compounds of the oxide series referred to herein are, for example, yttrium oxide (SiOx) series, tin oxide (Ζη〇χ). ), or indium tin oxide (ΙΤ〇χ). 2 shows a flow of a method for fabricating a photovoltaic device 1a. First, a germanium substrate 11 is provided; then a nitride buffer film 12a is formed on the substrate; then, unlike FIG. 1, before epitaxial formation of a photovoltaic element The nitride buffer film 12a is doped. After the doping, the nitride buffer film 12a is patterned, and then a photovoltaic element 13 is epitaxially formed on the nitride buffer film Ua. The nitride buffer film 12a may be doped with an N-type semiconductor or a P-type semiconductor. The variation of this embodiment may also be that the nitride buffer film is doped into an N-type semiconductor or a P-type semiconductor, and the nitride buffer film is not patterned; or the nitride buffer film is not doped and only nitride is slowed down. The film is patterned. 9 201005986 The variation of the substrate is as shown in FIGS. 3A to 3C, and the pattern on the substrate 11a to lle may include a curved pattern (FIG. 3A), a toothed pattern (FIG. 3B) or a groove. The hole pattern (image redundancy), the line width of the pattern on the substrate η can be a micrometer (five) or a nanometer (nan〇meter) grade, and the substrate can be patterned before fabrication. Or at the time of manufacture - the substrate. The substrate can also be similar to the pattern of the aforementioned nitride buffer film. In addition, when the substrate is not patterned or has been subjected to the aforementioned pattern, it is on the level! The material slowing down can be turned into the pattern of the aforementioned Figs. 3A-3C. Further, the present embodiment may be a vertical diode or a horizontal diode. For example, in the case of a vertical light-emitting diode, the manufacturing method of the optical county includes a substrate that combines a load-bearing plate on a photovoltaic element, a __Lin-Wai-Wide film. Alternatively, the nitride buffer film can be removed in a stepwise manner. Two electrodes are formed on both sides of the photovoltaic device.躲 Hiding the horizontal two-dimension says that it is not necessary to bond the other-bearing substrate, nor to strip the original substrate. One electrode is formed on the photovoltaic element, and the other electrode is formed on one of the semiconductor layers of the photovoltaic element. The side of the compound buffer film facing the photovoltaic element is the polarity side of the group III element, so that the light: the electricity element faces the polarity side of the -five element of the nitride buffer film. After the lion substrate, the thinning of the compound can be further removed, so that the polar side of the five elements of the photovoltaic element is exposed. This side can be made by the side. In addition, if the nitride buffer is doped, it may become an electrically conductive germanium-type semiconductor or a p-type semi-conductor 10 201005986 body which may be removed as an electrode or a line connected to the electrode. In addition, the side of the nitride buffer film facing the photovoltaic element is a group of five elements, the polarity of the element is not the nitride-like side, and the side is the polarity side of the five elements, and the side can be made by the surname. . - Second Embodiment FIG. 4 shows a flow of a method of manufacturing a photovoltaic device 2. The different 〇 is that the nitride buffer film 22 has a plurality of buffer layers. The process for forming the vaporization buffer film may be in addition to the aforementioned atomic layer deposition, electron beam, sputtering, plasma-assisted chemical vapor deposition, g-pressure chemical vapor deposition, plasma-assisted plasma-assisted chemical vapor deposition, or It is an organometallic chemical vapor deposition (Magic job) (6) (4) Vapor Dep〇sitiGn, M0CVD), high-temperature molecular beam stupid day (with coffee b_ Epitaxy ' MBE ), or _ gas phase telecrystal (mail v Ah, Qiu Qing, HVPE). The temperature range of the southern temperature molecular beam epitaxy is (10) ~ (1) 叱. The buffer buffer film 22 has reticular buffer layers 221, 222 which are sequentially deposited on the substrate 2i, and then the photovoltaic element μ is insect crystal on the buffer layer 222. These buffer layers 22 can be formed by the same process or by different processes. The buffer layer 222, which is closer to the top layer or closer to the photovoltaic element 23, is formed by organometallic chemical vapor deposition, so that the photovoltaic element can be directly fabricated without replacing the reactor. The photovoltaic element 23 has at least three semiconductor layers 231 to 233 which are sequentially crystallized to the nitride buffer film μ. Hereinafter, some materials are exemplified, and the materials of the respective buffer layers are not limited, and the materials of the respective buffer layers are interchangeable. Each buffer layer can also be made using a different ^. The material of the buffer layer 221 is a nitrogen-cut series of compounds such as nitrite (fox), nitrous oxide sand (Si0N), nitrogen carbonization seconds (SiCN), or indefinite seconds (now: 'A1), or oxide series. Compounds such as yttrium oxide (SiOx) series, tin oxide (wind), "indium tin oxide (rmx), or nitridinium (AlxInyGai.x_yN). The composition ratio of the indium gallium nitride indium (AlJ%Gai one) is as follows: 〇 幻 ,, 崎 u. The buffer layer 221 may also have at least two of the foregoing materials, that is, the buffer layer 221 may comprise a material which may be a combination of the foregoing materials. The material of the buffer layer 222 is AlxInyGa (x_yN). The compositional ratio of nitriding (AlxIny Gai _x-yN) is as follows: 〇 $ ^, β 乂 。. The buffer layer 222 is used as a gradation layer (grading). ❹35 The thief 制造 made by the surface semiconductor process, its deposition thickness can be greater than 25 nm, for example between 5 〇 and 5 〇〇〇 nanometer. Its crystal structure is epitaxy (p〇lycfystal) or amorphous (la-fine). Nitride buffer: The film 22 is undoped or may be an N-type semiconductor or a P-type semiconductor via doping. Further, all of the buffer layers are doped with an N-type semiconductor or a P-type semiconductor, and only a part of the buffer layer may be doped as an N-type semiconductor or a p-type semiconductor, or all of the buffer layers may not be doped. 12 201005986 illustrates the flow of a method of fabricating a photovoltaic device, and depositing a diffusion layer 22 () before depositing the buffer layer 222. As a result, the buffer layer 221 can be fabricated by a low-temperature process, and the buffer layer 22 can be fabricated. The buffer layer 222 made by a high-temperature process can be used as a long crystal. (4) A step of making a diffusion layer 22G can be performed using a non-organic day gas. Opposite. In addition, the savage == South ^, Γ 222 lion coffee made two two-temperature process, or both made in a low-temperature process. Further, the nitride buffer film has a plurality of buffer layers which are sequentially deposited on the substrate, and have the same substructures as shown in Figs. 6A to 6F. Each substructure may have a similar or phased material structure with two I13s. "Crypt, each substructure has a corresponding picture. As shown in Fig. 6A~6D, the photoelectric dream has a plurality of substructures, at least the coffee is rushed--the complex layer is formed on the punching layer _ Cheng's son: 椹, has the same test 11. For example, a buffer layer, a substructure of the enchantment, and each substructure has two or more bats which are different materials selected from the aforementioned buffer layers.

SiN^,層221之材料為秘4、SiNx、麵X或 有複數個蝴,這,糊222上形成 224 AlxmyGa,x.yK 0 ^ ' 224 ? ^ 如圖6B所示,緩衝層221之材料為啊或卿a】,緩衝 201005986 層221上形成右_ ΊΊΊ ,、散層220,擴散層220上形成有緩衝層222,、緩 結;^,、全Γ材料為Α1χΙιν^Ν ’緩衝層222上形成有複數個子 AUnyG^yK ^ 223 ' 224 ? 224 " 如圖6C〜6Γ)邮-卜 •有複數個子結構,JT氣化物緩衝膜22c〜22d在基板21上形成 乂4*子結構具有相同或類似的緩衝層組態。 如圖6C沐- Jt, ❹221不子結構具有二個緩衝層221、222,緩衝層 =枓為㈣、啊、啊或’緩衝層拉之 两〜xlnyGai•”N。 ^ D所不’各子結構具有二個緩衝層221、222,緩衝層 才料為S^4、呂叫、SiONx或SiNx:Al,緩衝層222之材料 為 AWnyGai_x_yN。 柯卄 圖6E所不,光電裝置2e的氮化物緩衝膜具有複數個 ❹y在:^些魏層巾可財重複姻或類㈣子結構,或都是彼 β不,的。緩衝層功〜222是以低溫製程製作,緩衝層奶〜224 /皿lu这作’在以低溫製程製作的緩衝層221〜功的最頂 ·.層和高溫製程製作的緩衝層223〜224的最底層之間形成有擴散層 :=另外’製作方式亦可改為緩衝層功〜222是在低溫製程製作, 緩衝層223〜224是在高溫製程製作;缓衝層221〜224亦可皆是以 间温製程製作’或是皆以低溫製程製作。 域6F所示,光電裝置2f的氮化物緩衝膜观具有複數個 14 201005986 層,在這些複數層中可以有重複 3 ^jAr S頌似的子結構。缓衝層221 疋以低>4絲作’緩衝層221上 ,^ . ^ 战有擴放層220,擴散層220 =成有複數個子結構,各子結構具有_ 222、22 222、223是高溫製程製作。緩衝層切之材料為腳肩: S趟,或SlNx:Ai,緩衝層扣之材料為a㈣ 以上關於氮化鎵銦銘㈤响一)的成分比例關係如下: ,OSygl 〇 <1 ❹ 卜各緩衝層可分別以低溫製程製作或是以高溫製程製作。 另外’各緩層之材質可以互換,例如:圖6a〜6e巾緩衝層22】、 4之材貝可以互換’圖6A〜6B及圖6E中緩衝層223、224之材 質亦可以互換,圖6F之緩衝層22 :1、222、223之材f亦可以交換。 由於本實施例的氮化物缓衝膜的厚度、結晶特性、元素排列 ^、以及基板的材質、表面特性、以及光電元件的種類變化係 與第—實施例對應的元件具有相同或類似的變化,故此不再贅述。 第三實施例 圖7出示一種光電裝置的製造方法的流程,與前述實施例不 同的是’氮化物緩衝膜具有不同材質之二個以上的部分。形成氮 化物緩衝膜的製程可以除了前述原子層沉積、電子束蒸鍍、濺鍍、 電|辅助化學氣相沈積、常壓化學氣相沈積或感應式耦合電漿輔 助化學氣相沉積之外,亦可以是有機金屬化學氣相沉積 15 201005986 (Metal-organic Chemical Vapor Deposition,MOCVD)、高溫分子 束磊晶(Molecular Beam Epitaxy ’ MBE )、或函素氣相磊晶(HydrideSiN^, the material of layer 221 is secret 4, SiNx, surface X or a plurality of butterflies, and 224 AlxmyGa, x.yK 0 ^ ' 224 ? ^ is formed on paste 222, as shown in FIG. 6B, the material of buffer layer 221 For the ah or Qing a], the buffer 201005986 layer 221 is formed with a right _ ΊΊΊ, a dispersion layer 220, a diffusion layer 220 is formed with a buffer layer 222, and a gradual junction; ^, the whole Γ material is Α1χΙιν^Ν 'buffer layer 222 A plurality of sub-AnoG^yK^ 223 '224? 224 " as shown in Fig. 6C~6Γ) have a plurality of substructures, and the JT vaporization buffer films 22c to 22d form a 乂4* substructure on the substrate 21 Same or similar buffer layer configuration. 6C Mu-Jt, ❹221 子 substructure has two buffer layers 221, 222, buffer layer = 枓 is (four), ah, ah or 'buffer layer pull two ~ xlnyGai•" N. ^ D not all 'children The structure has two buffer layers 221, 222, the buffer layer is S^4, Lv, SiONx or SiNx: Al, and the material of the buffer layer 222 is AWnyGai_x_yN. No. 6E, the nitride buffer of the photovoltaic device 2e The membrane has a plurality of ❹y in: ^ some Wei layer towels can be repeated or a class (four) substructure, or both are not. The buffer layer work ~ 222 is made by low temperature process, buffer layer milk ~ 224 / dish lu This is done by forming a diffusion layer between the buffer layer 221 made of a low-temperature process, the top layer of the work layer, and the bottom layer of the buffer layers 223 to 224 produced by the high-temperature process: = another 'production method can also be changed to buffer The layer work ~ 222 is fabricated in a low temperature process, the buffer layers 223 to 224 are fabricated in a high temperature process; the buffer layers 221 to 224 can also be fabricated in a temperature-temperature process or both are produced in a low temperature process. As shown in the field 6F, The nitride buffer film of the photovoltaic device 2f has a plurality of layers 14 201005986, in which the plurality of layers can be The substructure is repeated with 3 ^jAr S. The buffer layer 221 疋 is made of low > 4 wires as the 'buffer layer 221, ^ ^ has the expanded layer 220, and the diffusion layer 220 = has a plurality of substructures Each sub-structure has _ 222, 22 222, 223 is made by high-temperature process. The material of the buffer layer is the shoulder: S趟, or SlNx: Ai, the material of the buffer layer is a (four) or more. The composition ratio of a) is as follows: , OSygl 〇 <1 ❹ Bu buffer layer can be made by low temperature process or high temperature process. In addition, the materials of each layer can be interchanged, for example: Figure 6a~6e towel buffer The layers 22 and 4 can be interchanged. The materials of the buffer layers 223 and 224 in FIGS. 6A to 6B and 6E can also be interchanged, and the material f of the buffer layers 22: 1, 222 and 223 of FIG. 6F can also be exchanged. The thickness, crystal characteristics, element arrangement of the nitride buffer film of the present embodiment, and the material of the substrate, the surface characteristics, and the type change of the photovoltaic element have the same or similar changes as those of the first embodiment. No longer described. Third Embodiment FIG. 7 shows an optoelectronic device. The flow of the manufacturing method is different from the previous embodiment in that the nitride buffer film has two or more portions of different materials. The process for forming the nitride buffer film may be in addition to the aforementioned atomic layer deposition, electron beam evaporation, sputtering, In addition to auxiliary chemical vapor deposition, atmospheric pressure chemical vapor deposition or inductively coupled plasma-assisted chemical vapor deposition, it may also be an organometallic chemical vapor deposition 15 201005986 (Metal-organic Chemical Vapor Deposition, MOCVD), High-temperature molecular beam epitaxy (MBE), or gas phase epitaxy (Hydride)

Vapor Phase Epitaxy ’ HVPE)。高溫分子束磊晶的溫度範圍是 500〜1150。(:。 -- 氮化物緩衝膜32具有複數層依序沉積的緩衝層321、322,在 •同一層緩衝層321中具有不同材質之部分3211、3212,這些部分 3211、3212是沉積在基板31上利用光罩及曝光顯影製程來製作, ❹其係可糊相_製程形成,或是分不同的製程形成。氣化 物緩衝膜32形成好後,光電元件33+是磊晶在氮化物緩衝膜32上。 以下是以一些材料為例作說明並非限定各緩衝層的材料,各 緩衝層的材料係可互換。各緩衝層亦可使用不同的製程來製作。 •緩衝層321的部分32U、3212之材料為氮化石夕系列的化合物 例如氮化梦(SiNx)、氮氧化;5夕(siON),氮碳化;5夕(siCN)、或 ❹鋁氮化石夕(SlNx: A1)、或是氧化物系列的化合物如氧化石夕(狐) 系歹J氧化錫(Ζη〇χ)、或是氧化銦錫(ΙΤ〇χ)、或是氮化鎵銦紹 (AWnyGai,x_yN)’關於氮化鎵銦鋁(AUnyGa_N)的成分比例 '關係如下:0$也,0分$卜缓衝層321也可具有至少二個以 ·'上的前述材料組成的部分,也就是緩衝層321可包含的材料可以 是則述材料的排列組合。 、羡衝層322之材料為氮化鎵銘(AlJiiyGa^N),關於氮化 豕·叙(AlxInyGa】_x-yN)的成分比例關係如下:,〇分$1。 16 201005986 緩衝層322可作為磊晶漸變層(grading layer)。 經由前述半導體製程製造的氮化物緩衝膜32,其沉積厚度可 以大於25奈米,例如50〜5〇〇〇奈米之間,其晶體結構為磊晶 (epitaxy)、多晶(polycrystal)或非晶(am〇rph〇us)。氮化物緩衝 "" 膜32係未經摻雜,也可被摻雜為]sf型半導體或P型半導體。 . 另外’可以全部的緩衝層都被摻雜為N型半導體或是p型半 導體,也可以部分的缓衝層被摻雜為N型半導體或是p型半導體, ® 也可以全部的緩衝層都不摻雜。 ® 8出示-種光電裝置的製造方法的流程,與圖4不同的是, 沉積緩衝層322前先沉積一擴散層32〇。 緩衝層321可以在低溫製程製作,緩衝層322是在高溫製程 製作’以高溫製作的緩衝層322可作為長晶層。另外,製作擴散 層320以前的步驟可使用非有機金屬化學氣相沉積及非函素氣相 藝2晶的製程。另外,製作方式亦可改為緩衝層321是在高溫製程 製^、’緩衝層322是在低溫製程製作;緩衝層切、姐亦可皆是 以回溫製程製作’或是皆以低溫製程製作。Vapor Phase Epitaxy ’ HVPE). The temperature range of the high temperature molecular beam epitaxy is 500 to 1150. (: - The nitride buffer film 32 has a plurality of layers of buffer layers 321 and 322 which are sequentially deposited, and have portions 3211 and 3212 of different materials in the same buffer layer 321, and these portions 3211 and 3212 are deposited on the substrate 31. It is made by using a photomask and an exposure and development process, and can be formed by a paste process or a different process. After the vaporization buffer film 32 is formed, the photovoltaic element 33+ is epitaxial on the nitride buffer film. 32. The following is a description of some materials, not limiting the material of each buffer layer, the material of each buffer layer is interchangeable. Each buffer layer can also be made using different processes. • Part 32U, 3212 of buffer layer 321 The material is a compound of the nitriding series, such as Nitrix (SiNx), nitrogen oxidation; SiON, nitrogen carbonization; Si Xi, or lanthanum aluminum nitride (SlNx: A1), or oxidation Compounds of the series such as oxidized stone (fox) system 歹J tin oxide (Ζη〇χ), or indium tin oxide (ΙΤ〇χ), or gallium nitride indium (AWnyGai, x_yN) 'About gallium nitride The composition ratio of indium aluminum (AUnyGa_N) is as follows: 0$ also, 0 The buffer layer 321 may also have at least two portions composed of the foregoing materials on the top, that is, the buffer layer 321 may comprise a material which may be an arrangement of the materials. The material of the buffer layer 322 is nitrogen. The ratio of the composition of the gallium nitride (AlJiiyGa^N) to the tantalum nitride (AlxInyGa)_x-yN is as follows: 〇 $ $ 1. 16 201005986 The buffer layer 322 can be used as an grading layer. The nitride buffer film 32 manufactured by the foregoing semiconductor process may have a deposition thickness of more than 25 nm, for example, between 50 and 5 nanometers, and the crystal structure thereof is epitaxy, polycrystal or amorphous. (am〇rph〇us).Nitride Buffer"" Film 32 is undoped and can also be doped as a [sf-type semiconductor or a P-type semiconductor. In addition, all buffer layers can be doped. For N-type semiconductors or p-type semiconductors, part of the buffer layer can be doped as an N-type semiconductor or a p-type semiconductor, and ® can also be doped without all buffer layers. The flow of the manufacturing method is different from that of Figure 4, the deposition buffer A diffusion layer 32 is deposited before 322. The buffer layer 321 can be fabricated in a low temperature process, and the buffer layer 322 is fabricated in a high temperature process. The buffer layer 322 made at a high temperature can be used as a growth layer. In addition, the steps before the diffusion layer 320 is formed. Non-organic metal chemical vapor deposition and non-element gas phase art 2 crystal can be used. In addition, the production method can also be changed to buffer layer 321 in high temperature process, 'buffer layer 322 is made in low temperature process; buffer Layer cutting, sisters can also be made by the process of reheating process or both are made by low temperature process.

_氮觸緩舰具树數魏_的更進-賴杨圖9A〜9F :戶^ 緩衝層是依序沉積在基板上,並重複地構成類似或相 的糾 各子結财有二^上的_層,各子結構有對應 的材料結構。 圖9D所示,光電裝置3a〜3d的氮化物緩衝膜32a〜32d 17 201005986 具有複數個子結構,至少二個子 衝層上形财魏_、_的子〃目。例如:緩 緩衝層,各緩衝相材料是D,各子結構具有二個以上的 有至少二個以上材料不同的部分吻制的材料。另外,各可 如圖9A〜9D所; ,工 具嫩個蝴 ❹ 衝層上形成有複數相同_子:==。例" 缓衝:Γ層的材料是選自前述緩衝層的:同^ 机,緩衝層功切成有j料為謝x,部分3212之材料為 緩衝層322、323 r Λ 數個子結構’這些子結構具有二個 材料為啊。,领層322之材料為A1為⑻一,緩衝層- Λ SiN αΓ 5 32Π ^ 3212 ❹ 马SiNx:Al,緩衝居价 ^ '' 有緩衝層322,緩^層322 _擴散層獨’擴散層320上形成 上形m 曰 才料為A1xInyGai-x-yN,緩衝層322 緩衝询,樹轉料屬_ 323、汹, 緩衝層324材料為AlxInyGn 如圖9C〜9D所示,氮化物緩衝 有複數個询在基板31上形成 时相同或_的簡層組態。 321==’、各子結構具有二個緩衝層321、322,緩衝層 / ’'、、3 4 SiNx Si〇Nx 或 SiNx:A1 ’ 緩衝層 322 之材料 201005986 為AUnyGai-x_yN。其中,緩衝層321具有材料不同的二個部分。 另外,在其他緩衝層亦可有至少二個材料不同的部分。刀 如圖9D所不,各子結構具有二個緩衝層切、边,声 奶之材料為祕、SiNx、漏χ或_χ:Αι,緩衝層奶: 、為灿知一。其中,最底層的緩衝層321具有材料不^ -個部分。另外,在魏緩衝層亦可有至少二個_㈣的部分。一 ❹ 展㈣9E所示,光電裝置知的氮化物緩衝膜级具有複 層,在這些複數層中可財重複___子結構,或都是彼 ,不_。緩衝層奶〜322是以低溫製程製作,緩衝層切〜汹 疋以_程製作’纽低峨讀作的_ 321〜您頂 層和高 323韻触觸之卿層 32〇。另外,糊321具細侧,分 ^ 322〜324 _至少二細上材料不同的部 = 可改為緩衝層32i〜322是在t作方式亦 、 在皿衣私製作,緩衝層323〜324是為 低溫製程製作;緩衝層32 皆以低溫製程製作。 亦了白疋心溫製程製作,或是 如圖9F所示,光電裝置3 ” 層,在這些複數層中可以以” 緩顿似具有複數個 是以低溫製程製;:==類似的子結構。緩_ 十 θ $成有擴散層320,擴散層320 上开>成有複數個子結構,各 " —是高溫製程製作。_=Γ衝層322、323,麵 乍緩衝層321之材料為SiCNx、SiNx、 19 201005986_Nitrate slows down the number of ships and the number of Wei _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ layer, each substructure has a corresponding material structure. As shown in Fig. 9D, the nitride buffer films 32a to 32d 17 201005986 of the photovoltaic devices 3a to 3d have a plurality of sub-structures, and at least two sub-layers have a sub-item of the shape of the __, _. For example, a buffer layer, each buffer phase material is D, and each substructure has two or more portions of a material having at least two different materials. In addition, each of them can be as shown in Figs. 9A to 9D; the same number of the same _ sub: == is formed on the punching layer of the tool. Example " Buffer: The material of the enamel layer is selected from the above buffer layer: the same machine, the buffer layer is cut into j material for X, and the material of part 3212 is buffer layer 322, 323 r Λ several substructures' These substructures have two materials. The material of the collar layer 322 is A1 is (8) one, the buffer layer - Λ SiN α Γ 5 32 Π ^ 3212 ❹ Ma SiNx: Al, the buffer price ^ '' has a buffer layer 322, the buffer layer 322 _ diffusion layer alone 'diffusion layer The upper shape m is formed on the 320 as A1xInyGai-x-yN, the buffer layer 322 is buffered, the tree material is _ 323, 汹, and the buffer layer 324 is AlxInyGn. As shown in FIGS. 9C to 9D, the nitride buffer has a plurality of The inquiry is the same or a simple layer configuration when formed on the substrate 31. 321 ==', each substructure has two buffer layers 321, 322, buffer layer / '', 3 4 SiNx Si〇Nx or SiNx: A1 ' buffer material 322 material 201005986 is AUnyGai-x_yN. The buffer layer 321 has two portions having different materials. In addition, at least two different portions of materials may be present in other buffer layers. Knife As shown in Fig. 9D, each substructure has two buffer layers cut and edged, and the material of the sonic milk is secret, SiNx, leaky or χ: Αι, buffer layer milk: , is known as one. The bottommost buffer layer 321 has a material portion. In addition, there may be at least two _(four) portions in the Wei buffer layer. As shown in Fig. 9(e), 9E, the nitride buffer film level known by the photovoltaic device has a complex layer in which the ___ substructures can be repeated, or both, or not. Buffer layer milk ~ 322 is made by low-temperature process, buffer layer cut ~ 汹 疋 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ In addition, the paste 321 has a thin side, and is divided into 322 to 324 _ at least two parts of the material different in thickness = can be changed to the buffer layer 32i to 322, which is also produced in the manner of the t-shirt, and the buffer layers 323 to 324 are It is made for low temperature process; buffer layer 32 is made by low temperature process. Also, the white 疋 heart temperature process is produced, or as shown in FIG. 9F, the photovoltaic device 3 ” layer, in these plural layers, may be “slowly like a plurality of low temperature processes;:== similar substructures . The relaxation _ ten θ $ is formed with a diffusion layer 320, and the diffusion layer 320 is opened with a plurality of substructures, and each " is a high temperature process. _= buffer layer 322, 323, material of the buffer layer 321 is SiCNx, SiNx, 19 201005986

SiONJ SiNx:A1,緩衝層322之材料為AijnyGa—N。另外,緩 衝層321具有材料不同的二個部分,其他的缓衝層:322〜324亦可 有至少二個以上材料不同的部分。 社關於氮化鎵脑(AlxInyGai〜N)的成分比例關係如下: - Ogxgl,〇 另外各緩衝層可分取低溫製程製作或是以高溫製程製作。 糾’各緩層之材質或結構可以互換,例如:圖9A中緩衝層 © 322、323之材質可以互換,緩衝層321係可與緩衝層奶、奶 其中之互換材質或結構;圖9B巾緩衝層323、似之材質可以 互換’緩衝層321係可與緩衝層322、323、324其中之一互換材 質或結構;圖9C及圖9D中緩衝層32卜322之材質或結構係可 以互換;圖9E中緩衝層32卜322之材質或結構係可以互換,緩 衝層323、324之材質亦可以互換,緩衝層奶、您亦可分別與 緩衝層323、324互換材質或結構;㈣之緩衝層322、323之材 質亦可以交換’緩衝層321係可與缓衝層奶、切、324其中之 一互換材質或結構。 • 由於本實施_氮化物緩_的厚度、結晶特性、元素排列 方心以及基板的材質、表面特性係與第—實施例或第二實施例 對應的元件具有相同__變化,故此不再贊述。 綜上所述’因依據本發明之—種光電裝置及其·方法,主 要以原子L練、鱗、魏_化學氣相沈積、常壓化 20 201005986 學氣相沈積或感應柄合電漿 氣 的氮化r衝膜,可減少有機金屬裝置 =::圍r其進行之等效修改或變更,包含於後附 【圖式簡單說明】 ® 圖1係依據本發明第—恭你办丨,々_ , ^ 立団 M狀—縣綠置之製造流程示 思、圖; -圖2係依據本發明第一貫施例之另—種光電裝置之製造流程 不意圖; 圖3A〜圖3C係圖1之基板之變化之示意圖; Q 4與圖5係依據本發明第二實施例之一種光電裝置之製造 流程示意圖; 圖6A〜圖6F係圖4與圖5之氮化物緩衝膜之變化之示意圖; 圖7與圖8係依據本發明第三實施例之一種光電裝置之製造 - 流裎示意圖;以及 ; ® 9A〜圖9F係圖7與圖8之氮化物緩衝膜之變化之示意圖。 【主要元件符號說明】 1 ' la、2、2a〜2f、3、3a〜3f :光電裝置 11、Ua〜lie、2卜 31 :基板 21 201005986 12、12a、22、22a〜22f、32、32a〜32f :氮化物緩衝膜 221〜224、321〜324 :缓衝層 3211、3212 :部分 220、320 :擴散層 .13、23、33 :光電元件 131〜133、231〜233、331〜333 :半導體層 ❹SiONJ SiNx: A1, the material of the buffer layer 322 is AijnyGa-N. Further, the buffer layer 321 has two portions having different materials, and the other buffer layers: 322 to 324 may have at least two or more different portions. The ratio of the composition of the gallium nitride brain (AlxInyGai~N) is as follows: - Ogxgl, 〇 Each buffer layer can be produced by low-temperature process or by high-temperature process. The materials or structures of the retarding layers can be interchanged. For example, the materials of the buffer layers © 322 and 323 in FIG. 9A can be interchanged, and the buffer layer 321 can be interchanged with the buffer layer milk and milk, or the structure; Layer 323, such as material can be interchanged 'buffer layer 321 can be interchangeable with one of buffer layer 322, 323, 324 material or structure; the material or structure of buffer layer 32 322 in Figures 9C and 9D can be interchanged; The material or structure of the buffer layer 32 322 in 9E can be interchanged, and the materials of the buffer layers 323 and 324 can also be interchanged. The buffer layer milk can also be exchanged with the buffer layer 323, 324 for material or structure; (4) the buffer layer 322 The material of 323 can also be exchanged. The buffer layer 321 can be exchanged with the material or structure of one of the buffer layer milk, cut and 324. • Since the thickness, crystal characteristics, element arrangement center, and substrate material and surface characteristics of the present embodiment are the same as those of the first embodiment or the second embodiment, they are no longer praised. Said. In summary, the invention relates to a photovoltaic device and a method thereof, mainly using atomic L, scale, Wei_chemical vapor deposition, atmospheric pressure 20 201005986, vapor deposition or induction shank plasma gas The nitriding r-film can reduce the equivalent modification or modification of the organometallic device =:: r, which is included in the attached [Simple Description] ® Figure 1 is based on the invention - 々 _ , ^ 団 団 M - 县 绿 绿 绿 绿 绿 绿 绿 绿 绿 绿 绿 绿 绿 绿 绿 绿 绿 绿 绿 绿 绿 绿 绿 绿 绿 绿 绿 绿 绿 绿 绿 绿 绿 绿 绿 绿 绿 绿 绿 绿 绿 绿 绿 绿 绿 绿FIG. 1 is a schematic view showing a manufacturing process of a photovoltaic device according to a second embodiment of the present invention; FIG. 6A to FIG. 6F are changes of the nitride buffer film of FIG. 4 and FIG. 7 and FIG. 8 are schematic views showing the manufacture of a photovoltaic device according to a third embodiment of the present invention; and; FIG. 9A to FIG. 9F are diagrams showing changes in the nitride buffer film of FIGS. 7 and 8. [Description of main component symbols] 1 'la, 2, 2a to 2f, 3, 3a to 3f: photoelectric device 11, Ua~lie, 2b 31: substrate 21 201005986 12, 12a, 22, 22a to 22f, 32, 32a 〜32f: nitride buffer films 221 to 224, 321 to 324: buffer layers 3211, 3212: portions 220, 320: diffusion layers 13.13, 23, 33: photovoltaic elements 131 to 133, 231 to 233, 331 to 333: Semiconductor layer

22twenty two

Claims (1)

201005986 十、申請專利範園·· 卜一種光電裝置的製造方法,包含: 提供一基板; 猎^原子層沉積、電子束蒸鍵、雜、 _ 常壓化學氣相吵择+a十 予虱相沈積、 予孔相此積或感應式輕合電漿輔助化學氣相沉積, • 石^氮化物緩衝膜於該基板上;以及 猫曰曰形成辆元件於該t/fb物麟膜上。 ❿2、Μ請專利範圍第1項所述之製造方法,其中該光電元件係— 發光二極體。 士申明專利|巳圍第!項所述之製造方法,其中該氮化物緩衝膜 的沉積厚度大於25奈米。 4、 如申請專利範圍第3項所述之製造方法,其中該氮化物緩衝膜 的沉積厚度介於50-5000奈米。 5、 如申請專利範圍第1項所述之製造方法’其中該基板為矽基板、 ❹坤化鎵基板、藍寶石基板、氮化錫基板、氮化蘇基板或碳化石夕 基板。 6如申请專利範圍第1項所述之製造方法’其中該基板面向該氮 化物緩衝膜之一面為A面、C面、R面或斜切面。 7、 如申請專利範圍第1項所述之製造方法,其中該氮化物緩衝膜 之晶體結構為磊晶(epitaxy )、多晶(P〇lycrystal )或非晶 (amorphous)。 8、 如申請專利範圍第1項所述之製造方法,其中該氮化物缓衝臈 23 201005986 具有奈米棒狀、奈米點狀、奈米蝶狀、奈米線狀或奈米材質狀 結構。 9、 如申請專利範圍第1項所述之製造方法’其中該氮化物緩衝犋 未經摻雜’其面向該光電元件之一_為三族元素極性侧 ' 元素極性侧。 矢 10、 如申請專利範圍第1項所述之製造方法,更包含: 摻雜該氮化物緩衝膜。 11如申轉利制第丨項所述之製造方法,其巾該基板係圖案 化基板。 12、 如申請專利範圍第1項所述之製造方法,更包含: 圖案化該氮化物緩衝膜。 13、 如申請專利翻第〗項所述之製造方法,其中形成該氮化物 緩衝膜的步驟包含: e 沉積一第一緩衝層於該基板上;以及 沉積一第二緩衝層於該第—緩衝層上。 14、 如申請專利範圍第13項所述之製造方法,其中該第一緩衝層 之材料選自IUb⑦(SiNx)、錄彳㈣(SiQN)、.氮碳化矽 ' (SlCN)、紹-氮化石夕(SiNx : A1)、氧化石夕(Si〇x)、氧化錫 (ZnOx)、氧化銦錫(ΙΤ〇χ)、或氮化鎵銦鋁(Al為Gai xyN)。 如申请專利範圍第13項所述之製造方法,其中該第一缓衝層 包含-第-部分及-第二部分,該第—部分及該第二部分係 24 201005986 不同材質。 16、如中請專利範圍第1項所述之製造方法,其中形成該氮化物 缓衝膜的步驟包含: 坏積複數個子結構於該基板上,其中各子結構有對應的複數 ' 個緩衝層。 ‘ 17、如申請專利範圍第1項所述之製造方法,其中形成該氮化物 緩衝膜的步驟包含: ❹ 〉 冗積—第一緩衝層於該基板上;以及 沉積複數子結構於該第一緩衝層上,其中各子結構有對應的 複數個緩衝層。 18、 如申請專利範圍第丨項所述之製造方法,其中形成該氮化物 緩衝膜的步驟包含: 沉積至少二緩衝層於該基板上;以及 ❷ 在其中二個緩衝層之間沉積一擴散層。 19、 如申請專利範圍帛丨項所述之製造方法,其中形成該氣化物 緩衝膜的步驟包含: - 沉積—第—緩衝層於該基板上; - '儿積—擴散層於該第一緩衝層上;以及 貝複數子結構於该擴散層上,其中各子結構有對應的複數 個緩询^層。 20、 —種光電裝置,包含· 25 201005986 一氮化物緩衝膜,其中該氮化物缓衝膜具有複數個緩衝層; 一光電元件,位於該氮化物缓衝膜上;以及 一基板’承載該氮化物緩衝膜以及該光電元件。 2卜如申請專利範圍第2〇項所述之光電裝置,其中該氮化物緩衝_ 膜形成於該基板上,該光電元件形成於該氮化物緩衝膜上。 22、如申請專利範圍第2〇項所述之光電裝置,其中該光電元件係 —發光二極體。 ® 23 '如申請專利範圍第2〇項所狀光電裝置,其中該氮化物緩衝 膜的沉積厚度大於25奈米。 24、 如申請專利範圍第23項所述之光電裝置,其中該氮化物緩衝 膜的沉積厚度介於50-5000奈米。 25、 如申請專利範圍第2〇項所述之光電裝置,其中該等緩衝層之 材料選自氮化矽(SiNx)、氮氧化矽(Si0N)、氮碳化矽 ❹ (SlCN)、叙-氮化石夕(SiNx : A1)、氧化石夕(SiOx)、氡化锡 (ZnOx)、氧化銦錫(IT〇j、或氮化鎵銦紹㈤。 26、 如申料利範圍第2G項所述之光餘置,其巾之-層緩衝層 包含一第一部分及一第二部分,該第一部分及該第二部分係 : 不同材質。 如申明專利範圍第20項所述之光電裝置,其中該等緩衝層中 至少四層構成複數對材料結構對應的子結構。 如申明專利範圍第20項所述之光電裝置,該氮化物緩衝膜更 26 201005986 包含: 一擴散層,位於其中二個緩衝層之間。 29、 如申請專利範圍第28項所述之光電裝置,其中該擴散層上之 複數個緩衝層構成複數對材料結構對應的子結構。 30、 一種光電裝置,包含·· 一氮化物緩衝膜,其中該氮化物緩衝膜具有至少一緩衝層, 该緩衝層具有不同材質的二個部分; 一光電元件,位於該氮化物緩衝膜上;以及 一基板,承載該氮化物緩衝膜以及該光電元件。 3卜如中請專利範圍第3Q項所述之光電裝置,其巾魏化物緩衝 膜形成於該基板上,該光電元件形成於該氮化物緩衝膜上。 32、 如申請專利範圍第3〇項所述之光電褒置,其中該光電元件係 一發光二極體。 33、 如申請專利範圍第3Q項所述之域裝置,其中該氮化物緩衝 膜的沉積厚度大於25奈米。 34、 如申請專利範圍第33項所述之光電裝置,其中魏化物緩衝 膜的沉積厚度介於50-5000奈米。 35、 如申請專利範圍第3〇項所述之光電裝置,其中該緩衝層之材 料選自氮化石夕(SiNx )、&氧化石夕(Si〇N )、氮碳化矽(SiCN )、 叙-氮化石夕(SiNx : A1)、氧化矽(Si〇x)、氧化錫(Ζη〇χ)、氧 化鋼錫(ΙΤ〇χ)、或氮化鎵銦銘(AIJnyGa—N)。 27 201005986 36、 如申請專利範圍第30項所述之光電裝置,其中該氮化物缓衝 膜具有複數缓衝層,該等緩衝層中至少四層構成複數對材料 結構對應的子結構。 37、 如申請專利範圍第36項所述之光電裝置,該氮化物缓衝膜更 '' 包含: - 一擴散層,位於其中二個缓衝層之間。 38、 如申請專利範圍第37項所述之光電裝置,其中該擴散層上之 © 複數個缓衝層構成複數對材料結構對應的子結構。 28201005986 X. Application for Patent Fan Park·· A method for manufacturing an optoelectronic device, comprising: providing a substrate; hunting atomic layer deposition, electron beam steaming, miscellaneous, _ atmospheric pressure chemical gas phase selection + a ten 虱 phase The deposition, the pre-pore phase or the inductive light-kneading plasma assisted chemical vapor deposition, the stone nitride buffer film on the substrate; and the meerkat forming the component on the t/fb film. The manufacturing method according to the first aspect of the invention, wherein the photovoltaic element is a light-emitting diode. Shi Shenming patent|巳围第! The method of manufacturing according to the invention, wherein the nitride buffer film has a deposition thickness of more than 25 nm. 4. The manufacturing method according to claim 3, wherein the nitride buffer film has a deposition thickness of 50 to 5000 nm. 5. The manufacturing method according to claim 1, wherein the substrate is a germanium substrate, a germanium gallium substrate, a sapphire substrate, a tin nitride substrate, a tantalum nitride substrate or a carbonized carbide substrate. 6. The manufacturing method according to claim 1, wherein the substrate faces the one side of the nitride buffer film as an A surface, a C surface, an R surface or a chamfered surface. 7. The manufacturing method according to claim 1, wherein the nitride buffer film has a crystal structure of epitaxy, polycrystalline (P〇lycrystal) or amorphous. 8. The manufacturing method according to claim 1, wherein the nitride buffer 臈 23 201005986 has a nanorod shape, a nano dot shape, a nano butterfly shape, a nanowire shape or a nano material structure. . 9. The manufacturing method according to claim 1, wherein the nitride buffer 犋 is undoped' which faces one of the photovoltaic elements _ is a polar side of the tripolar element side element side. The manufacturing method of claim 1, further comprising: doping the nitride buffer film. The manufacturing method according to the above item, wherein the substrate is a patterned substrate. 12. The method of manufacturing of claim 1, further comprising: patterning the nitride buffer film. 13. The manufacturing method of claim 1, wherein the step of forming the nitride buffer film comprises: e depositing a first buffer layer on the substrate; and depositing a second buffer layer on the first buffer On the floor. 14. The manufacturing method according to claim 13, wherein the material of the first buffer layer is selected from the group consisting of IUb7 (SiNx), 彳 (4) (SiQN), 氮 碳 矽 S (SlCN), 绍-Ni nitride (SiNx: A1), oxidized stone (Si〇x), tin oxide (ZnOx), indium tin oxide (yttrium), or gallium indium aluminum nitride (Al is Gai xyN). The manufacturing method of claim 13, wherein the first buffer layer comprises a -part portion and a second portion, the first portion and the second portion being 24 201005986 different materials. The manufacturing method of claim 1, wherein the step of forming the nitride buffer film comprises: building a plurality of substructures on the substrate, wherein each substructure has a corresponding plurality of buffer layers . The manufacturing method of claim 1, wherein the step of forming the nitride buffer film comprises: 冗 〉 redundancy-first buffer layer on the substrate; and depositing a plurality of sub-structures on the first On the buffer layer, each substructure has a corresponding plurality of buffer layers. 18. The method of claim 2, wherein the step of forming the nitride buffer film comprises: depositing at least two buffer layers on the substrate; and depositing a diffusion layer between the two buffer layers. . 19. The method of manufacturing of the patent application, wherein the step of forming the vaporization buffer film comprises: - depositing - a buffer layer on the substrate; - a chiral diffusion layer in the first buffer And a plurality of sub-structures on the diffusion layer, wherein each sub-structure has a corresponding plurality of buffer layers. 20, an optoelectronic device comprising: 25 201005986 a nitride buffer film, wherein the nitride buffer film has a plurality of buffer layers; a photovoltaic element on the nitride buffer film; and a substrate 'bearing the nitrogen a buffer film and the photovoltaic element. 2. The photovoltaic device of claim 2, wherein the nitride buffer film is formed on the substrate, and the photovoltaic element is formed on the nitride buffer film. 22. The photovoltaic device of claim 2, wherein the photovoltaic element is a light emitting diode. ® 23 'Optoelectronic device as claimed in claim 2, wherein the nitride buffer film has a deposited thickness greater than 25 nm. 24. The photovoltaic device of claim 23, wherein the nitride buffer film has a deposition thickness of between 50 and 5000 nm. 25. The photovoltaic device of claim 2, wherein the material of the buffer layer is selected from the group consisting of tantalum nitride (SiNx), niobium oxynitride (Si0N), niobium nitriding (SlCN), and na-nitrogen. Fossil (SiNx: A1), oxidized stone (SiOx), antimony telluride (ZnOx), indium tin oxide (IT〇j, or gallium nitride indium (5). 26, as stated in the scope of claim 2G The light-receiving portion of the towel-layer buffer layer comprises a first portion and a second portion, the first portion and the second portion being different materials. The photovoltaic device according to claim 20, wherein At least four layers of the buffer layer constitute a plurality of substructures corresponding to the material structure. The photovoltaic device according to claim 20, wherein the nitride buffer film 26 201005986 comprises: a diffusion layer, located in two of the buffer layers The optoelectronic device of claim 28, wherein the plurality of buffer layers on the diffusion layer constitute a plurality of substructures corresponding to the material structure. 30. An optoelectronic device comprising: a nitride Buffer film, wherein the nitridation The buffer film has at least one buffer layer having two portions of different materials; a photovoltaic element on the nitride buffer film; and a substrate carrying the nitride buffer film and the photovoltaic element. In the photovoltaic device according to the third aspect of the invention, the towel-based buffer film is formed on the substrate, and the photovoltaic element is formed on the nitride buffer film. 32. The photoelectric device according to claim 3 The device, wherein the photovoltaic device is a light-emitting diode, 33. The device of claim 3, wherein the nitride buffer film has a deposition thickness greater than 25 nm. The optoelectronic device of claim 33, wherein the deposition thickness of the buffer film is in the range of 50-5000 nm. 35. The photovoltaic device according to claim 3, wherein the material of the buffer layer is selected from the group consisting of nitride. Xi (XNx), & oxidized stone Xi (N〇N), niobium nitriding (SiCN), sulphide (SiNx: A1), yttrium oxide (Si〇x), tin oxide (Ζη〇χ), Iron oxide tin The oxy-inductive device of claim 30, wherein the nitride buffer film has a plurality of buffer layers, and at least the buffer layer is at least AIJnyGa-N. The four layers constitute a plurality of substructures corresponding to the material structure. 37. The photovoltaic device according to claim 36, wherein the nitride buffer film further comprises: - a diffusion layer, located in two of the buffer layers 38. The photovoltaic device of claim 37, wherein the plurality of buffer layers on the diffusion layer constitute a plurality of substructures corresponding to the material structure. 28
TW97127043A 2008-07-16 2008-07-16 Optronic device and manufacturing method thereof TW201005986A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97127043A TW201005986A (en) 2008-07-16 2008-07-16 Optronic device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97127043A TW201005986A (en) 2008-07-16 2008-07-16 Optronic device and manufacturing method thereof

Publications (1)

Publication Number Publication Date
TW201005986A true TW201005986A (en) 2010-02-01

Family

ID=44826498

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97127043A TW201005986A (en) 2008-07-16 2008-07-16 Optronic device and manufacturing method thereof

Country Status (1)

Country Link
TW (1) TW201005986A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI414004B (en) * 2010-10-25 2013-11-01 Univ Nat Chiao Tung Multilayer substrate having a gallium nitride layer and fabrication method thereof
TWI482276B (en) * 2012-10-12 2015-04-21 Ind Tech Res Inst Nitride semiconductor structure
US9859462B2 (en) 2012-12-06 2018-01-02 Genesis Photonics Inc. Semiconductor structure
US10229977B2 (en) 2016-09-19 2019-03-12 Genesis Photonics Inc. Nitrogen-containing semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI414004B (en) * 2010-10-25 2013-11-01 Univ Nat Chiao Tung Multilayer substrate having a gallium nitride layer and fabrication method thereof
TWI482276B (en) * 2012-10-12 2015-04-21 Ind Tech Res Inst Nitride semiconductor structure
US9859462B2 (en) 2012-12-06 2018-01-02 Genesis Photonics Inc. Semiconductor structure
US10229977B2 (en) 2016-09-19 2019-03-12 Genesis Photonics Inc. Nitrogen-containing semiconductor device

Similar Documents

Publication Publication Date Title
TWI649895B (en) High-efficiency ultraviolet light-emitting diode with variable structure position
Cho et al. Surface plasmon enhanced light emission from AlGaN-based ultraviolet light-emitting diodes grown on Si (111)
CN101910050B (en) Nanowire growth on dissimilar material
US20140077240A1 (en) Iv material photonic device on dbr
JP5130437B2 (en) Semiconductor light emitting device and manufacturing method thereof
US8952243B2 (en) Stacked structure including vertically grown semiconductor, p-n junction device including the stacked structure, and method of manufacturing thereof
WO2003100872A1 (en) Semiconductor light-emitting device
CN106935675A (en) Opto-electronic device comprising hetero-junctions
WO2002101840A1 (en) Iii group nitride based semiconductor element and method for manufacture thereof
TW201001726A (en) Techniques for enhancing efficiency of photovoltaic devices using high-aspect-ratio nanostructures
CN104904016A (en) Electronic device comprising nanowire(s), provided with a transition metal buffer layer, method for growing at least one nanowire and method for producing a device
CN106796965A (en) Semiconductor structure, multi-junction photovoltaic battery and correlation technique including bonding layer
CN110010744A (en) By the manufacturing method for adding the optoelectronic device of transformational structure on emitting structural
JP2012119569A (en) Nitride semiconductor element
TW201005986A (en) Optronic device and manufacturing method thereof
TWI607582B (en) Semiconductor device and the manufacturing method thereof
KR100738399B1 (en) Nitride semiconductor light emitting device
JP6266490B2 (en) Semiconductor device and manufacturing method thereof
TW200840101A (en) Semiconductor chip and method of manufacturing semiconductor chip
KR101619110B1 (en) Semi-conductor optoelectronic dcvice and method for manufacturing the same
KR101731862B1 (en) Optoelectronic semiconductor device and method for manufacturing same
US8785219B1 (en) Optoelectronic semiconductor device and the manufacturing method thereof
CN109346577A (en) A kind of gallium nitride based LED epitaxial slice and preparation method thereof
US20100176373A1 (en) Fabrication method of nitride semiconductor light emitting device and nitride semiconductor light emitting device thereby
CN107919417A (en) Light emitting diode and preparation method thereof