CN103236480A - 一种发光二极管的外延片及其制造方法 - Google Patents

一种发光二极管的外延片及其制造方法 Download PDF

Info

Publication number
CN103236480A
CN103236480A CN2013101567734A CN201310156773A CN103236480A CN 103236480 A CN103236480 A CN 103236480A CN 2013101567734 A CN2013101567734 A CN 2013101567734A CN 201310156773 A CN201310156773 A CN 201310156773A CN 103236480 A CN103236480 A CN 103236480A
Authority
CN
China
Prior art keywords
sublayer
layer
epitaxial wafer
constituent content
type layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2013101567734A
Other languages
English (en)
Other versions
CN103236480B (zh
Inventor
万林
魏世祯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HC Semitek Zhejiang Co Ltd
Original Assignee
HC Semitek Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HC Semitek Corp filed Critical HC Semitek Corp
Priority to CN201310156773.4A priority Critical patent/CN103236480B/zh
Publication of CN103236480A publication Critical patent/CN103236480A/zh
Application granted granted Critical
Publication of CN103236480B publication Critical patent/CN103236480B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

本发明公开了一种发光二极管的外延片及其制造方法,属于半导体技术领域。该外延片包括:衬底、以及依次层叠在衬底上的缓冲层、不掺杂的GaN层、n型层、多量子阱层和p型层,外延片还包括设于n型层与多量子阱层之间的电流扩展层,电流扩展层为超晶格结构,超晶格结构由第一子层和第二子层交替层叠而成,第一子层和第二子层由AlxGa1-xN制成,相邻的第一子层和第二子层中的Al的组分含量不同,其中,0<x<1。本发明通过上述技术方案,使得n型层中的电子在进入多量子阱层之前速度降低,使电子和空穴可以充分复合发光,提高了复合效率,且电流扩展层为超晶格结构,其多层结构可以有效释放衬底与n型层之间的应力,降低外延片中的缺陷,提高了内量子效率。

Description

一种发光二极管的外延片及其制造方法
技术领域
本发明涉及半导体技术领域,特别涉及一种发光二极管的外延片及其制造方法。
背景技术
发光二极管芯片为半导体晶体,是发光二极管的核心组件。发光二极管芯片包括外延片以及在外延片上制作的电极。
其中,外延片包括衬底和外延层,外延层包括依次层叠在衬底上的缓冲层、不掺杂的GaN层、n型层、多量子阱层和p型层。
在实现本发明的过程中,发明人发现现有技术至少存在以下问题:
现有的外延片中多量子阱层直接设于n型层上,由于n型层中的电子较p型层中的空穴具有较低的有效质量和较高的迁移率,在电场的驱动下,电子会以很快的速度越过多量子阱层而迁移到p型层,从而使得电子空穴的复合效率降低;且由于外延层与衬底之间具有较大的晶格常数和热膨胀系数失配,会在外延片中产生大量的位错和缺陷,影响了外延片的内量子效率。
发明内容
为了解决现有技术的问题,本发明实施例提供了一种发光二极管的外延片及其制造方法。所述技术方案如下:
一方面,本发明实施例提供了一种发光二极管的外延片,所述外延片包括衬底、以及依次层叠在所述衬底上的缓冲层、不掺杂的GaN层、n型层、多量子阱层和p型层,所述外延片还包括设于所述n型层与所述多量子阱层之间的电流扩展层,所述电流扩展层为超晶格结构,所述超晶格结构由第一子层和第二子层交替层叠而成,所述第一子层和所述第二子层由AlxGa1-xN制成,相邻的所述第一子层和所述第二子层中的Al的组分含量不同,其中,0<x<1。
可选地,各个所述第一子层的Al的组分含量相同,各个所述第二子层的Al的组分含量也相同。
可选地,各个所述第一子层的Al的组分含量不同,各个所述第二子层的Al的组分含量相同。
可选地,各个所述第一子层的Al的组分含量不同,各个所述第二子层的Al的组分含量也不同。
优选地,所述电流扩展层中各层的所述Al的最高组分含量为20%~60%
可选地,所述第一子层厚度为1~10nm,所述第二子层的厚度也为1~10nm。
可选地,所述第一子层的厚度和所述第二子层的厚度相同。
另一方面,本发明实施例还提供了一种发光二极管的外延片的制造方法,所述方法包括:
提供衬底,并依次在所述衬底上生长缓冲层、不掺杂的GaN层和n型层;
在所述n型层上生长电流扩展层,所述电流扩展层为超晶格结构,所述超晶格结构由第一子层和第二子层交替层叠而成,所述第一子层和所述第二子层由AlxGa1-xN制成,相邻的所述第一子层和所述第二子层中的Al的组分含量不同,其中,0<x<1;
在所述电流扩展层上依次生长多量子阱层和p型层。
本发明实施例提供的技术方案带来的有益效果是:通过在n型层和多量子阱层之间设有电流扩展层,使得n型层中的电子在进入多量子阱层之前速度降低,从而使电子和空穴在多量子阱层充分复合发光,提高了电子空穴的复合效率。并且由于应力会在层与层的交界处得到比较好的释放,而电流扩展层为超晶格结构,其多层结构可以有效释放衬底与n型层之间的应力,降低外延片中的缺陷,提高了发光二极管的内量子效率。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例一提供的一种发光二极管的外延片的结构示意图;
图2是本发明实施例二提供的一种发光二极管的外延片的结构示意图;
图3是本发明实施例二提供的电流扩展层的结构示意图;
图4~7是本发明实施例三提供的电流扩展层的结构示意图;
图8~10是本发明实施例四提供的电流扩展层的结构示意图;
图11是本发明实施例五提供的一种发光二极管的外延片的制造方法的流程图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。
实施例一
本发明实施例提供了一种发光二极管的外延片,参见图1,该外延片包括:
衬底11、以及依次层叠在衬底11上的缓冲层12、不掺杂的GaN层13、n型层14、电流扩展层15、多量子阱层16和p型层17,电流扩展层15为超晶格结构,该超晶格结构由第一子层151和第二子层152交替层叠而成,第一子层151和第二子层152由AlxGa1-xN制成,相邻的第一子层151和第二子层152中的Al的组分含量不同,其中,0<x<1。
具体地,由于电流扩展层15为超晶格结构,若干个第一子层151和若干个第二子层152交替层叠,使得电流扩展层15具有若干个交界面,而交界面可以很好地释放衬底11到n型层14之间积累的应力,从而降低了外延片中的应力,在此基础上生长多量子阱层16和p型层17,由于应力的减小,在生长过程中,可以进一步降低外延片中的缺陷,从而可以提供发光二极管的内量子效率。
本发明实施例提供的技术方案带来的有益效果是:通过在n型层和多量子阱层之间设有电流扩展层,使得n型层中的电子在进入多量子阱层之前速度降低,从而使电子和空穴在多量子阱层充分复合发光,提高了电子空穴的复合效率。并且由于应力会在层与层的交界处得到比较好的释放,而电流扩展层为超晶格结构,其多层结构可以有效释放衬底与n型层之间的应力,降低外延片中的缺陷,提高了发光二极管的内量子效率。
实施例二
本发明实施例提供了一种发光二极管的外延片,参见图2,该外延片包括:
衬底21、以及依次层叠在衬底21上的缓冲层22、不掺杂的GaN层23、n型层24、电流扩展层25、多量子阱层26和p型层27,电流扩展层25为超晶格结构,超晶格结构由第一子层251和第二子层252交替层叠而成,第一子层251和第二子层252由AlxGa1-xN制成,相邻的第一子层251和第二子层252中的Al的组分含量不同,其中,0<x<1。
具体地,由于电流扩展层25为超晶格结构,若干个第一子层251和若干个第二子层252交替层叠,使得电流扩展25具有若干个交界面,而交界面可以很好地释放衬底21到n型层24之间积累的应力,从而降低了外延片中的应力,在此基础上生长多量子阱层26和p型层27,由于应力的减小,在生长过程中,可以进一步降低外延片中的缺陷,从而可以提供发光二极管的内量子效率。
具体地,衬底21可以为蓝宝石衬底。
可选地,在本实施例中,各个第一子层251的Al的组分含量相同,各个第二子层252的Al的组分含量也相同。
优选地,电流扩展层25中的Al的最高组分为20%~60%。
可选地,第一子层251的厚度为1~10nm,第二子层252的厚度为1~10nm。
可选地,在本实施例中,第一子层251的厚度可以和第二子层252的厚度相同。显然地,在其他实施例中,第一子层251的厚度也可以和第二子层252的厚度不同。
在具体实现中,如图3所示,第一子层251为Al0.3Ga0.7N层,第二子层252为Al0.5Ga0.5N层,且Al0.3Ga0.7N层和Al0.5Ga0.5N层的厚度都为1.5nm。
可选地,在本实施例中,第一子层51的厚度与第二子层52的厚度不同。在其他实施例中,第一子层51的厚度与第二子层52的厚度也可以相同。
具体地,在本实施例中,n型层4的n型掺杂可以为Si掺杂。
具体地,在本实施例中,多量子阱层6可以为InGaN/GaN多量子阱层。
本发明实施例提供的技术方案带来的有益效果是:通过在n型层和多量子阱层之间设有电流扩展层,使得n型层中的电子在进入多量子阱层之前速度降低,从而使电子和空穴在多量子阱层充分复合发光,提高了电子空穴的复合效率。并且由于应力会在层与层的交界处得到比较好的释放,而电流扩展层为超晶格结构,其多层结构可以有效释放衬底与n型层之间的应力,降低外延片中的缺陷,提高了发光二极管的内量子效率。
实施例三
本发明实施例提供了一种发光二极管的外延片,本实施例提供的外延片与实施例二提供的外延片大致相同,不同之处仅在于,在本实施例中,各个第一子层251的Al的组分含量不同,各个第二子层252的Al的组分含量相同。
在本实施例的一种具体实施方式中,第一子层251中的Al的组分含量可以逐渐增大,如图4所示,第二子层252为Al0.4Ga0.6N层,第一子层251为AlxGa1-xN,其中,Al的组分含量即x的值为(0.2+0.02*n),其中n为层数。
在本实施例的又一具体实施方式中,第一子层251中的Al的组分含量可以逐渐减小,如图5所示,第二子层252为Al0.4Ga0.6N层,第一子层251为AlxGa1-xN,其中,Al的组分含量即x的值为(0.4-0.02*n),其中n为层数。
在本实施例的另一具体实施方式中,第一子层251中的Al的组分含量可以先增大再减小,如图6所示,第二子层252为Al0.4Ga0.6N层,各个第一子层251为AlxGa1-xN层,其中Al的组分含量即x的值依次为0.1、0.2、0.3、0.2、0.1。
在本实施例的再一具体实施方式中,第一子层251中的Al的组分含量可以先减小再增大,如图7所示,第二子层252为Al0.4Ga0.6N层,第一子层251为AlxGa1-xN层,其中Al的组分含量即x的值依次为0.3、0.2、0.1、0.2、0.3。
在本实施例的另一具体实施方式中,第一子层251中的Al的组分含量还可以呈周期性变化。
优选地,电流扩展层25中的Al的最高组分为20%~60%。即在本实施例中,上述第一子层251中x的最高取值在0.2~0.6之间。显然地,x的取值不大于0.2也可以,即x的取值不大于0.6。上述第二子层252中Al的最高组分取值也在0.2~0.6之间,显然地,Al的取值不大于0.2也可以。
本发明实施例提供的技术方案带来的有益效果是:通过在n型层和多量子阱层之间设有电流扩展层,使得n型层中的电子在进入多量子阱层之前速度降低,从而使电子和空穴在多量子阱层充分复合发光,提高了电子空穴的复合效率。并且由于应力会在层与层的交界处得到比较好的释放,而电流扩展层为超晶格结构,其多层结构可以有效释放衬底与n型层之间的应力,降低外延片中的缺陷,提高了发光二极管的内量子效率。
实施例四
本发明实施例提供了一种发光二极管的外延片,本实施例提供的外延片与实施例二提供的外延片大致相同,不同之处仅在于,在本实施例中,各个第一子层251的Al的组分含量不同,各个第二子层252的Al的组分含量也不同。
在本实施例的一种具体实施方式中,第一子层251中的Al的组分含量可以逐渐增大,第二子层252中的Al的组分含量也可以逐渐增大,如图8所示,第一子层251为AlxGa1-xN,其中Al的组分含量即x的值为(0.2+0.02*n),n为层数;第二子层252为AlyGa1-yN,其中Al的组分含量即y的值依次为(0.25+0.02*n),n为层数。
在本实施例的又一具体实施方式中,第一子层251中的Al的组分含量可以逐渐减小,第二子层252中的Al的组分含量可以逐渐增大,如图9所示,第一子层251为AlxGa1-xN,其中,Al的组分含量即x的值为(0.45-0.02*n),其n为层数;第二子层252为AlyGa1-yN,其中Al的组分含量即y的值依次为(0.2+0.02*n),n为层数。
在本实施例的另一具体实施方式中,第一子层251中的Al的组分含量可以逐渐减小,第二子层252中的Al的组分含量也可以逐渐减小,如图10所示,第一子层251为AlxGa1-xN,其中Al的组分含量即x的值为(0.45-0.02*n),n为层数;第二子层252为AlyGa1-yN,其中Al的组分含量即y的值依次为(0.4-0.02*n),n为层数。
优选地,电流扩展层25中的Al的最高组分为20%~60%。即在本实施例中,上述第一子层251和第二子层252中x和y的最高取值在0.2~0.6之间。显然地,x和y的取值不大于0.2也可以,即x和y的取值不大于0.6都可以。
本发明实施例提供的技术方案带来的有益效果是:通过在n型层和多量子阱层之间设有电流扩展层,使得n型层中的电子在进入多量子阱层之前速度降低,从而使电子和空穴在多量子阱层充分复合发光,提高了电子空穴的复合效率。并且由于应力会在层与层的交界处得到比较好的释放,而电流扩展层为超晶格结构,其多层结构可以有效释放衬底与n型层之间的应力,降低外延片中的缺陷,提高了发光二极管的内量子效率。
实施例五
本发明实施例提供了一种发光二极管的外延片的制造方法,该方法可以用来生长实施例一~实施例四提供的外延片,参见图11,该方法包括:
步骤501:提供衬底,并依次在衬底上生长缓冲层、不掺杂的GaN层和n型层。
步骤502:在n型层上生长电流扩展层,电流扩展层为超晶格结构,超晶格结构由第一子层和第二子层交替层叠而成,第一子层和第二子层由AlxGa1-xN制成,相邻的第一子层和第二子层中的Al的组分含量不同,其中,0<x<1;
步骤503:在电流扩展层上依次生长多量子阱层和p型层。
具体地,步骤201~203具体可以通过以下步骤实现:
将蓝宝石衬底在H2氛围并加温至1300℃下进行热处理10分钟,以清洁表面;
降温至625℃,沉积一层30nm的低温GaN缓冲层;
升温至1230℃,沉积一层2μm的非掺杂GaN层;
生长2μm的Si掺杂的GaN层,作为n型层;
在1220℃下生长5个周期的的电流扩展层,其中,第一子层为Al0.3Ga0.7N层,第二子层为Al0.5Ga0.5N层,且各个Al0.3Ga0.7N层和各个Al0.5Ga0.5N层的厚度都为1.5nm;
降温生长8个周期的InGaN/GaN的多量子阱层,其中,InGaN层的厚度为3.0nm,生长温度为850℃;GaN层的厚度为12nm,生长温度为950℃;
在多量子阱层上面生长300nm的P型层。
本发明实施例提供的技术方案带来的有益效果是:通过在n型层和多量子阱层之间设有电流扩展层,使得n型层中的电子在进入多量子阱层之前速度降低,从而使电子和空穴在多量子阱层充分复合发光,提高了电子空穴的复合效率。并且由于应力会在层与层的交界处得到比较好的释放,而电流扩展层为超晶格结构,其多层结构可以有效释放衬底与n型层之间的应力,降低外延片中的缺陷,提高了发光二极管的内量子效率。
上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (8)

1.一种发光二极管的外延片,所述外延片包括衬底、以及依次层叠在所述衬底上的缓冲层、不掺杂的GaN层、n型层、多量子阱层和p型层,其特征在于,所述外延片还包括设于所述n型层与所述多量子阱层之间的电流扩展层,所述电流扩展层为超晶格结构,所述超晶格结构由第一子层和第二子层交替层叠而成,所述第一子层和所述第二子层由AlxGa1-xN制成,相邻的所述第一子层和所述第二子层中的Al的组分含量不同,其中,0<x<1。
2.根据权利要求1所述的外延片,其特征在于,各个所述第一子层中的Al的组分含量相同,各个所述第二子层的Al的组分含量也相同。
3.根据权利要求1所述的外延片,其特征在于,各个所述第一子层的Al的组分含量不同,各个所述第二子层的Al的组分含量相同。
4.根据权利要求1所述的外延片,其特征在于,各个所述第一子层的Al的组分含量不同,各个所述第二子层的Al的组分含量不同。
5.根据权利要求1~4任一项所述的外延片,其特征在于,所述电流扩展层中各层的所述Al的最高组分含量为20%~60%。
6.根据权利要求1-4任一项所述的外延片,其特征在于,所述第一子层的厚度为1~10nm,所述第二子层的厚度为1~10nm。
7.根据权利要求1-4任一项所述的外延片,其特征在于,所述第一子层的厚度和所述第二子层的厚度相同。
8.一种发光二极管的外延片的制造方法,其特征在于,所述方法包括:
提供衬底,并依次在所述衬底上生长缓冲层、不掺杂的GaN层和n型层;
在所述n型层上生长电流扩展层,所述电流扩展层为超晶格结构,所述超晶格结构由第一子层和第二子层交替层叠而成,所述第一子层和所述第二子层由AlxGa1-xN制成,相邻的所述第一子层和所述第二子层中的Al的组分含量不同,其中,0<x<1;
在所述电流扩展层上依次生长多量子阱层和p型层。
CN201310156773.4A 2013-04-28 2013-04-28 一种发光二极管的外延片及其制造方法 Active CN103236480B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310156773.4A CN103236480B (zh) 2013-04-28 2013-04-28 一种发光二极管的外延片及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310156773.4A CN103236480B (zh) 2013-04-28 2013-04-28 一种发光二极管的外延片及其制造方法

Publications (2)

Publication Number Publication Date
CN103236480A true CN103236480A (zh) 2013-08-07
CN103236480B CN103236480B (zh) 2016-01-20

Family

ID=48884509

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310156773.4A Active CN103236480B (zh) 2013-04-28 2013-04-28 一种发光二极管的外延片及其制造方法

Country Status (1)

Country Link
CN (1) CN103236480B (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104009138A (zh) * 2014-05-21 2014-08-27 华南师范大学 一种led外延结构
CN104332537A (zh) * 2014-10-17 2015-02-04 厦门乾照光电股份有限公司 一种高浓度Te掺杂的发光二极管外延结构
CN104821356A (zh) * 2015-04-24 2015-08-05 华灿光电(苏州)有限公司 一种发光二极管外延片及其制造方法
CN105576095A (zh) * 2016-03-10 2016-05-11 厦门市三安光电科技有限公司 一种氮化物发光二极管及其制作方法
CN105914273A (zh) * 2016-05-09 2016-08-31 华灿光电(苏州)有限公司 一种红黄光发光二极管外延片及其制备方法
CN109326690A (zh) * 2018-08-29 2019-02-12 华灿光电(浙江)有限公司 一种发光二极管的外延片及其制备方法
CN109346583A (zh) * 2018-08-31 2019-02-15 华灿光电(浙江)有限公司 一种发光二极管外延片及其制备方法
CN110265518A (zh) * 2014-08-19 2019-09-20 首尔伟傲世有限公司 发光器件
CN113224215A (zh) * 2021-05-06 2021-08-06 厦门乾照光电股份有限公司 一种led外延结构及其制备方法
CN113871520A (zh) * 2021-09-15 2021-12-31 天津三安光电有限公司 一种半导体发光元件及制作方法
CN114613890A (zh) * 2022-03-24 2022-06-10 淮安澳洋顺昌光电技术有限公司 一种具有n型电流拓展层的发光二极管外延结构

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020155649A1 (en) * 2001-02-27 2002-10-24 Ngk Insulators, Ltd. Method for fabricating a nitride film
CN2596556Y (zh) * 2002-09-30 2003-12-31 中国科学院物理研究所 一种GaN基多量子阱蓝光发光二极管
CN102569571A (zh) * 2012-03-06 2012-07-11 华灿光电股份有限公司 半导体发光二极管及其制造方法
CN102623599A (zh) * 2012-04-25 2012-08-01 华灿光电股份有限公司 渐变电子阻挡层的紫外光氮化镓半导体发光二极管
CN102709424A (zh) * 2012-06-11 2012-10-03 华灿光电股份有限公司 一种提高发光二极管发光效率的方法
CN102820394A (zh) * 2011-06-07 2012-12-12 山东华光光电子有限公司 一种采用铝组分渐变电子阻挡层的led结构
CN103035805A (zh) * 2012-12-12 2013-04-10 华灿光电股份有限公司 一种发光二极管外延片及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020155649A1 (en) * 2001-02-27 2002-10-24 Ngk Insulators, Ltd. Method for fabricating a nitride film
CN2596556Y (zh) * 2002-09-30 2003-12-31 中国科学院物理研究所 一种GaN基多量子阱蓝光发光二极管
CN102820394A (zh) * 2011-06-07 2012-12-12 山东华光光电子有限公司 一种采用铝组分渐变电子阻挡层的led结构
CN102569571A (zh) * 2012-03-06 2012-07-11 华灿光电股份有限公司 半导体发光二极管及其制造方法
CN102623599A (zh) * 2012-04-25 2012-08-01 华灿光电股份有限公司 渐变电子阻挡层的紫外光氮化镓半导体发光二极管
CN102709424A (zh) * 2012-06-11 2012-10-03 华灿光电股份有限公司 一种提高发光二极管发光效率的方法
CN103035805A (zh) * 2012-12-12 2013-04-10 华灿光电股份有限公司 一种发光二极管外延片及其制备方法

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104009138A (zh) * 2014-05-21 2014-08-27 华南师范大学 一种led外延结构
CN110265518A (zh) * 2014-08-19 2019-09-20 首尔伟傲世有限公司 发光器件
CN104332537A (zh) * 2014-10-17 2015-02-04 厦门乾照光电股份有限公司 一种高浓度Te掺杂的发光二极管外延结构
CN104332537B (zh) * 2014-10-17 2017-06-16 厦门乾照光电股份有限公司 一种高浓度Te掺杂的发光二极管外延结构
CN104821356A (zh) * 2015-04-24 2015-08-05 华灿光电(苏州)有限公司 一种发光二极管外延片及其制造方法
CN104821356B (zh) * 2015-04-24 2017-06-20 华灿光电(苏州)有限公司 一种发光二极管外延片及其制造方法
CN105576095A (zh) * 2016-03-10 2016-05-11 厦门市三安光电科技有限公司 一种氮化物发光二极管及其制作方法
CN105914273A (zh) * 2016-05-09 2016-08-31 华灿光电(苏州)有限公司 一种红黄光发光二极管外延片及其制备方法
CN105914273B (zh) * 2016-05-09 2018-07-31 华灿光电(苏州)有限公司 一种红黄光发光二极管外延片及其制备方法
CN109326690A (zh) * 2018-08-29 2019-02-12 华灿光电(浙江)有限公司 一种发光二极管的外延片及其制备方法
CN109346583A (zh) * 2018-08-31 2019-02-15 华灿光电(浙江)有限公司 一种发光二极管外延片及其制备方法
CN113224215A (zh) * 2021-05-06 2021-08-06 厦门乾照光电股份有限公司 一种led外延结构及其制备方法
CN113871520A (zh) * 2021-09-15 2021-12-31 天津三安光电有限公司 一种半导体发光元件及制作方法
CN113871520B (zh) * 2021-09-15 2024-04-09 天津三安光电有限公司 一种半导体发光元件及制作方法
CN114613890A (zh) * 2022-03-24 2022-06-10 淮安澳洋顺昌光电技术有限公司 一种具有n型电流拓展层的发光二极管外延结构
CN114613890B (zh) * 2022-03-24 2023-10-20 淮安澳洋顺昌光电技术有限公司 一种具有n型电流拓展层的发光二极管外延结构

Also Published As

Publication number Publication date
CN103236480B (zh) 2016-01-20

Similar Documents

Publication Publication Date Title
CN103236480B (zh) 一种发光二极管的外延片及其制造方法
CN103681985B (zh) 一种发光二极管的外延片及其制作方法
CN106057989B (zh) 一种GaN基发光二极管的外延片的制作方法
CN105428482B (zh) 一种led外延结构及制作方法
CN102820392B (zh) 一种发光二极管的外延片及其制造方法
CN106229390B (zh) 一种GaN基发光二极管芯片的生长方法
CN102760808B (zh) 一种发光二极管的外延片及其制造方法
CN103035791B (zh) 一种发光二极管的外延片及其制造方法
CN105140356B (zh) 一种Al组分渐变式N型LED结构及其制备方法
CN103035805B (zh) 一种发光二极管外延片及其制备方法
CN104659170B (zh) 一种发光二极管外延片及其制备方法
CN104409587B (zh) 一种InGaN基蓝绿光发光二极管外延结构及生长方法
CN103943746A (zh) 一种GaN基发光二极管外延片及其制作方法
CN106057988A (zh) 一种GaN基发光二极管的外延片的制备方法
CN103531680A (zh) 一种led外延结构及其制备方法
CN106601882B (zh) 一种发光二极管的外延片及其制造方法
CN102903807B (zh) 一种发光二极管的外延片以及发光二极管
KR102094471B1 (ko) 질화물 반도체층의 성장방법 및 이에 의하여 형성된 질화물 반도체
CN105514232A (zh) 一种发光二极管外延片、发光二极管及外延片的制作方法
CN104091873A (zh) 一种发光二极管外延片及其制作方法
CN106848017B (zh) 一种GaN基发光二极管的外延片及其生长方法
CN105552178A (zh) 一种氮化镓基发光二极管外延片及其制作方法
CN106711296B (zh) 一种绿光发光二极管的外延片及其生长方法
CN102931302B (zh) 一种蓝绿光二极管外延片及其制造方法
CN108682721A (zh) 一种发光二极管外延片及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20160817

Address after: Su Zhen Xu Feng Cun 322000 Zhejiang city of Yiwu province (Zhejiang four Tatsu tool limited company)

Patentee after: HC semitek (Zhejiang) Co., Ltd.

Address before: 430223 Binhu Road, East Lake New Technology Development Zone, Hubei, China, No. 8, No.

Patentee before: HC SemiTek Corporation