CN103710333A - 一种固定化载体及其制备方法和固定化β-葡萄糖苷酶 - Google Patents

一种固定化载体及其制备方法和固定化β-葡萄糖苷酶 Download PDF

Info

Publication number
CN103710333A
CN103710333A CN201310712037.2A CN201310712037A CN103710333A CN 103710333 A CN103710333 A CN 103710333A CN 201310712037 A CN201310712037 A CN 201310712037A CN 103710333 A CN103710333 A CN 103710333A
Authority
CN
China
Prior art keywords
magnetic nanoparticle
magnetic
fixation support
preparation
carboxyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201310712037.2A
Other languages
English (en)
Inventor
闫云君
陈亭亭
张后今
徐莉
黄霜霜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong University of Science and Technology
Original Assignee
Huazhong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong University of Science and Technology filed Critical Huazhong University of Science and Technology
Priority to CN201310712037.2A priority Critical patent/CN103710333A/zh
Publication of CN103710333A publication Critical patent/CN103710333A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)

Abstract

本发明公开了一种固定化载体及其制备方法和固定化β-葡萄糖苷酶。所述固定化载体,包括磁性纳米颗粒、富羧基复合材料以及过渡金属离子;富羧基复合材料包裹在磁性纳米颗粒表面形成富羧基壳,其表面羧基与过渡金属离子络合,过渡金属离子与待固定化的酶通过金属离子配位键结合。所述制备方法,包括步骤:(1)制备磁性纳米颗粒;(2)对所述颗粒进行羟基功能化修饰;(3)对所述颗粒进行环氧基功能化修饰;(4)对所述颗粒进行羧基功能化修饰;(5)对所述颗粒进行过渡金属离子络合。所述固定化的β-葡萄糖苷酶,将所述功能化载体和β-葡萄糖苷酶通过金属配位键结合。本发明生物酶结合牢固,酶活高,操作稳定性强,适合大规模生产。

Description

一种固定化载体及其制备方法和固定化β-葡萄糖苷酶
技术领域
本发明属于固相化的酶制备领域,更具体地,涉及一种固定化载体及其制备方法和固定化β-葡萄糖苷酶。
背景技术
酶的固定化是指通过物理、化学方法,利用载体将酶限制或束缚在一定的区域内,使酶在此特定区域内进行催化反应的一种酶工程技术。酶的固定化技术因其具有使酶回收及连续化运作,降低生产成本的优势而成为近年来酶工程领域最为活跃的研究重点之一。
磁性纳米颗粒作为固定化载体,由于利于分离和再利用因此应用广泛。目前磁性纳米颗粒载体的制作方法主要用壳聚糖包裹磁性纳米核,在壳聚糖表面交联戊二醛。
然而,这种方法制备的磁性纳米颗粒固定化载体,由于采用共价键合作用力将酶分子与载体共价交联在一起,作用力过强,导致酶的三级结构、活性结构域受到不同程度的破坏,对酶活力会造成影响,和游离生物酶相比,活力大幅降低。
β-葡萄糖苷酶,是催化纤维素降解的关键酶,固定化的β-葡萄糖苷酶在生物质能源、食品储存发酵工业、生物医药等领域都有重要应用。目前固定化的β-葡萄糖苷酶,主要是采用共价键合作用力、物理吸附力或包埋法等方法与功能性磁性纳米颗粒结合。其中,共价键合作用力过强,造成酶的催化结构域和底物结合结构与都遭到不同程度的破坏,酶活降低;物理吸附力,作用力过若,结合不牢固,导致多次使用后生物酶流失,批次使用效果不稳定;包埋法,β-葡萄糖苷酶的活性位点受到载体的阻碍,影响传质阻力,导致催化效率降低。
发明内容
针对现有技术的以上缺陷或改进需求,本发明提供了一种固定化载体及其制备方法和固定化β-葡萄糖苷酶,其目的在于采用金属离子配位键将如β-葡萄糖苷酶的生物酶与磁性纳米颗粒结合,形成固定化的生物酶,由此解决目前磁性纳米颗粒固定化酶的酶活低、生物酶易脱落、操作稳定性低的技术问题。
为实现上述目的,按照本发明的一个方面,提供了一种固定化载体,包括磁性纳米颗粒、富羧基复合材料以及过渡金属离子;其中,磁性纳米颗粒平均粒径在5纳米至20纳米之间,富羧基复合材料包裹在磁性纳米颗粒表面形成富羧基壳,其平均厚度在5纳米至30纳米之间,其表面羧基与过渡金属离子络合,过渡金属离子用于与待固定化的酶通过金属离子配位键结合。
优选地,所述固定化的载体,其磁性纳米颗粒为纳米铁氧化物、纳米钛氧化物或纳米硅氧化物。
优选地,所述固定化的载体,其富羧基复合材料包括三层,从里到外依次为多羟基溶胶-凝胶型化合物、环氧氯丙烷和多羧基化合物。
优选地,所述固定化的载体,其过渡金属离子为Co2+、Ni2+和/或Mn2+,每克载体包含过渡金属离子20微摩尔至100微摩尔。
按照本发明的另一方面,提供了一种固定化载体制备方法,包括以下步骤:
(1)制备磁性纳米颗粒;
(2)对步骤(1)中制备的磁性纳米颗粒进行羟基功能化修饰:将步骤(1)中得到的磁性纳米颗粒和多羟基溶胶-凝胶型化合物均匀分散于有机溶剂中,强力搅拌同时低温凝固,去除有机溶剂,获得包覆有多羟基溶胶-凝胶型化合物的磁性纳米颗粒;
(3)对步骤(2)中制备的包覆有多羟基溶胶-凝胶型化合物的磁性纳米颗粒进行环氧基功能化修饰:将步骤(2)中获得包覆有多羟基溶胶-凝胶型化合物的磁性纳米颗粒,在碱性条件下均匀分散于环氧氯丙烷的惰性有机溶剂溶液中,去除惰性有机溶剂,获得环氧基功能化的磁性纳米颗粒;
(4)对步骤(3)中制备的环氧基功能化的磁性纳米颗粒进行羧基功能化修饰:将步骤(3)中获得的环氧基功能化的磁性纳米颗粒,在碱性还原条件下,与具有氨基残基或亚氨基残基的富羧基化合物共价交联,获得富羧基复合材料包裹的磁性纳米颗粒;
(5)将步骤(4)中获得的磁性纳米颗粒其表面的羧基与过渡金属离子络合,即制得固定化载体。
优选地,所述固定化载体制备方法,其步骤(2)所述的多羟基溶胶-凝胶型化合物为琼脂糖或壳聚糖,所述磁性纳米颗粒与多羟基溶胶-凝胶型化合物超声分散后,采用乳化剂,在65摄氏度下,通过强力搅拌分散于有机溶剂中,所述有机溶剂为甲苯-三氯甲烷溶液,采用磁性分离去除有机溶剂。
优选地,所述固定化载体制备方法,其步骤(3)所述的惰性有机溶剂为二甲基亚砜,采用磁性分离去除有机溶剂。
优选地,所述固定化载体制备方法,其步骤(4)所述的具有氨基残基或亚氨基残基的富羧基化合物为亚氨基二乙酸或氨三乙酸,所述富羧基化合物其氨基残基或亚氨基残基与环氧基功能化的磁性纳米颗粒表面的环氧基发生共价交联反应。
优选地,所述固定化载体制备方法,其步骤(5)络合反应条件为25摄氏度,摇床混合3小时,摇床转速为120转/分钟。
按照本发明的另一方面,提供了一种β-葡萄糖苷酶,包括所述的固定化载体和β-葡萄糖苷酶;所述固定化载体表面的过渡金属离子和β-葡萄糖苷酶的组氨酸残基通过金属离子配位键结合,每克载体表面固定有1毫克到3毫克β-葡萄糖苷酶。
总体而言,通过本发明所构思的以上技术方案与现有技术相比,由于本发明采用金属离子配位键将磁性纳米颗粒载体和生物酶结合,能够取得下列有益效果:
(1)本发明提供的固定化载体,采用金属离子配位键与生物酶结合,磁性纳米载体会选择生物酶的相应残基进行结合,实现生物酶的定向固定化,因此能通过选择适合的配位键,避开影响生物酶活的关键功能域,从而减小固定化对生物酶活力的影响,最大限度地保证固定化酶的催化效率。
(2)本发明提供的固定化载体,其与生物酶结合的金属配位键,作用力较物理吸附作用力强,能将生物酶牢固的固定在载体表面,批次使用实验表明,生物酶不易从固定化载体表面脱落,催化效果稳定持久。
(3)本发明提供的固定化载体,与生物酶形成配位键键合的反应条件温和,反应效率高,反应时间短,既能应用于生物酶的固定化,还能应用于带有组氨酸标签工程酶的纯化,适合应用于工业大规模生产。
(4)本发明提供的固定化载体,采用富羧基复合材料包裹磁性纳米颗粒,其表面羧基与过渡金属离子络合,过渡金属离子可根据固定的生物酶不同进行选择,从而使固定化载体适用于不同的固定化酶。对于不同的生物酶,通过选择不同的过渡金属离子,来最大限度地保证生物酶活。
(5)本发明提供的固定化的β-葡萄糖苷酶,选择适合的过渡金属离子,可对β-葡萄糖苷酶产生激活作用,使得固定化的β-葡萄糖苷酶酶活超过游离的β-葡萄糖苷酶,同时其操作稳定性、物理稳定性和化学稳定性都优于游离的β-葡萄糖苷酶,应用于工业生产能大幅提高生产效率,同时降低生物酶使用成本。
优选方案,选择Co2+离子作为过渡金属离子,能有效的激活β-葡萄糖苷酶的生物活性,同时牢固将其固定。
附图说明
图1为本发明提供的固定化载体的结构示意图;
图2为本发明提供的固定化载体的电镜照片;
图3是实施例固定化的β-葡萄糖苷酶活化能测试结果;
图4是实施例固定化的β-葡萄糖苷酶批次使用测试结果;
图5是实施例固定化的β-葡萄糖苷酶热稳定性测试结果。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
本发明提供的一种固定化载体,其结构示意图如图1所示,包括磁性纳米颗粒、富羧基复合材料以及过渡金属离子。
所述磁性纳米颗粒,平均粒径在5纳米至20纳米之间,可为纳米铁氧化物、纳米钛氧化物或纳米硅氧化物,例如:Fe3O4、Fe2O3、TiO2、SiO2,优选磁性和稳定性良好且成本较低的Fe3O4
所述富羧基复合材料,是指含有丰富羧基的复合材料,包裹在磁性纳米颗粒表面形成富羧基壳,其平均厚度在5纳米至30纳米之间。富羧基复合材料包括三层,从里到外依次为多羟基溶胶-凝胶型化合物、环氧氯丙烷和多羧基化合物。多羟基溶胶-凝胶型化合物,如琼脂糖、壳聚糖;多羧基化合物如亚氨基二乙酸、氨三乙酸。
所述过渡金属离子,为Co2+、Ni2+和/或Mn2+,每克载体包含过渡金属离子20微摩尔至100微摩尔。
所述富羧基复合材料包裹在磁性纳米颗粒表面形成富羧基壳,其表面羧基与过渡金属离子络合,过渡金属离子与待固定化的酶通过金属离子配位键结合。
本发明提供的载体团聚颗粒电镜照片如图2所示。
本发明提供的固定化载体制备方法,包括以下步骤:
(1)制备磁性纳米颗粒。
(2)制备包覆有多羟基溶胶-凝胶型化合物的磁性纳米颗粒。
将多羟基溶胶-凝胶型化合物溶于水,加热形成溶胶。将磁性纳米颗粒加入多羟基溶胶-凝胶型化合物溶胶,超声分散,得到磁性纳米颗粒和多羟基溶胶-凝胶型化合物悬浊液。将所述悬浊液加入由表面活性剂和有机溶剂组成的乳化剂中,高温强力搅拌,得到均匀分散体系。对均匀分散体系持续搅拌,常温冷却,温度降低到室温后,获得包覆有多羟基溶胶-凝胶型化合物的磁性纳米颗粒。包覆有多羟基溶胶-凝胶型化合物的磁性纳米颗粒分散在有机溶剂中,磁性分离并清洗颗粒,获得纯净的包覆有多羟基溶胶-凝胶型化合物的磁性纳米颗粒。
(3)制备环氧基功能化的磁性纳米颗粒。
将步骤(2)获得的包覆有多羟基溶胶-凝胶型化合物的磁性纳米颗粒分散在强碱性溶液中,并加入二甲基亚砜和环氧氯丙烷,超声分散后,搅拌均匀,形成环氧基功能化的磁性纳米颗粒。磁性分离并清洗颗粒,获得纯净的环氧基功能化的磁性纳米颗粒。
(4)制备富羧基复合材料包裹的磁性纳米颗粒。
将步骤(3)制备的环氧基功能化的磁性纳米颗粒,分散在含有亚氨基二乙酸或氨三乙酸弱碱性溶液中,加入还原剂,超声分散,持续搅拌,使所述富羧基化合物其氨基残基或亚氨基残基与环氧基功能化的磁性纳米颗粒表面的环氧基发生共价交联反应,形成富羧基复合材料包裹的磁性纳米颗粒。磁性分离并清洗颗粒,获得纯净的富羧基复合材料包裹的磁性纳米颗粒。
(5)制备络合过渡金属离子的磁性纳米颗粒。
将步骤(4)中获得的富羧基复合材料包裹的磁性纳米颗粒,分散于过渡金属盐溶液中。优选地,在25摄氏度,摇床混合3小时,摇床转速为120转/分钟。使富羧基复合材料包裹的磁性纳米颗粒与过渡金属离子络合,即形成固定化载体。磁性分离并清洗颗粒,获得纯净的固定化载体。
本发明提供的固定化的β-葡萄糖苷酶,包括所述的固定化载体和β-葡萄糖苷酶;所述固定化载体表面的过渡金属离子和β-葡萄糖苷酶的组氨酸残基通过金属离子配位键结合,每克载体表面固定有1毫克到3毫克β-葡萄糖苷酶。其制备方法为:将所述固定化载体加入β-葡萄糖苷酶溶液中,所述β-葡萄糖苷酶溶液浓度为0.2毫克/毫升至1.0毫克/毫升,β-葡萄糖苷酶和固定化载体的质量比为1:200,搅拌反应4-12小时;磁性分离并清洗颗粒,即获得固定化β-葡萄糖苷酶。
所述磁性纳米颗粒可为磁性纳米颗粒为纳米铁氧化物、纳米钛氧化物或纳米硅氧化物。下面仅以磁性和稳定性良好且成本较低的Fe3O4为例,按照优选方案,具体说明本发明的实施方式。
以下为实施例:
实施例1
一种固定化载体,包括磁性纳米颗粒、富羧基复合材料以及过渡金属离子。
所述磁性纳米颗粒,为Fe3O4,平均粒径为5纳米。
所述富羧基复合材料,包裹在磁性纳米颗粒表面形成富羧基壳,其平均厚度为30纳米。富羧基复合材料包括三层,从里到外依次为琼脂糖、环氧氯丙烷和亚氨基二乙酸。
所述过渡金属离子为Co2+,每克载体包含过渡金属离子50微摩尔。
所述富羧基复合材料包裹在磁性纳米颗粒表面形成富羧基壳,其表面羧基与过渡金属离子络合,过渡金属离子与待固定化的酶通过金属离子配位键结合。
所述固定化载体制备方法,包括以下步骤:
(1)制备磁性纳米颗粒。
采用化学共沉淀法制备磁性Fe3O4纳米颗粒,控制平均粒径为5纳米。
(2)制备包覆有多羟基溶胶-凝胶型化合物的磁性纳米颗粒。
将1.8克琼脂糖溶于45毫升水中,加热形成溶胶。将5克磁性纳米颗粒加入到琼脂糖溶胶中,220瓦超声分散30分钟,得到磁性Fe3O4纳米颗粒和琼脂糖悬浊液。将所述悬浊液加入由216毫升甲苯、84毫升三氯甲烷和4.5毫升司班80组成的乳化剂中,65摄氏度,1000转/分钟,强力搅拌20分钟,得到均匀分散体系。对均匀分散体系持续搅拌,常温冷却,温度降低到室温后,获得包覆有琼脂糖的磁性Fe3O4纳米颗粒。包覆有琼脂糖的磁性Fe3O4纳米颗粒分散在有机溶剂中,磁性分离并用大量乙醚和双蒸水清洗颗粒,获得纯净的包覆有琼脂糖的磁性Fe3O4纳米颗粒。
(3)制备环氧基功能化的磁性纳米颗粒。
将步骤(2)获得的包覆有琼脂糖的磁性Fe3O4纳米颗粒1.5克分散在3毫升4摩尔/升的NaOH溶液中,并加入17毫升二甲基亚砜和12毫升环氧氯丙烷,220瓦超声分散30分钟后,50摄氏度,摇床混合12小时,摇床转速为200转/分钟,形成环氧基功能化的磁性Fe3O4纳米颗粒。磁性分离并用大量丙酮和水洗涤清洗颗粒,获得纯净的环氧基功能化的磁性纳米颗粒。
(4)制备富羧基复合材料包裹的磁性纳米颗粒。
将步骤(3)制备的环氧基功能化的磁性Fe3O4纳米颗粒0.5克,分散在40毫升含有1.5摩尔/升亚氨基二乙酸和2.0摩尔/升碳酸钠溶液中,加入0.15克硼氢化钠,超声分散1小时,37摄氏度,摇床混合12小时,摇床转速为200转/分钟,使所述氨基二乙酸其亚氨基残基与环氧基功能化的磁性纳米颗粒表面的环氧基发生共价交联反应,形成富羧基复合材料包裹的磁性Fe3O4纳米颗粒。磁性分离并清洗颗粒,获得纯净的富羧基复合材料包裹的磁性Fe3O4纳米颗粒。
(5)制备络合过渡金属离子的磁性纳米颗粒。
将步骤(4)中获得的富羧基复合材料包裹的磁性纳米颗粒2.0克,分散于150毫升0.25摩尔/升的CoCl2溶液中,25摄氏度,摇床混合3小时,摇床转速为120转/分钟。使富羧基复合材料包裹的磁性纳米颗粒与过渡金属离子络合,即形成固定化载体。磁性分离并用大量双蒸水清洗颗粒,获得纯净的固定化载体。
一种固定化的β-葡萄糖苷酶,包括所述的固定化载体和β-葡萄糖苷酶;所述固定化载体表面的Co2+和β-葡萄糖苷酶的组氨酸残基通过金属离子配位键结合,每克载体表面固定有3毫克β-葡萄糖苷酶。其制备方法为:将所述固定化载体加入0.5毫克/毫升β-葡萄糖苷酶溶液中,β-葡萄糖苷酶和固定化载体的质量比为1:200,25摄氏度,摇床混合5小时,摇床转速为150转/分钟;磁性分离并清洗颗粒,即获得固定化β-葡萄糖苷酶。
对制备的β-葡萄糖苷酶进行活化能测试,结果见图3,其横坐标为开尔文温度的倒数(1/T),纵坐标为相对酶活回收率的对数(lnK);进行批次使用测试,结果见图4;90分钟不同温度热处理后,进行热稳定性测试,结果见图5。
实施例2
一种固定化载体,包括磁性纳米颗粒、富羧基复合材料以及过渡金属离子。
所述磁性纳米颗粒,为Fe3O4,平均粒径为11纳米。
所述富羧基复合材料,包裹在磁性纳米颗粒表面形成富羧基壳,其平均厚度为20纳米。富羧基复合材料包括三层,从里到外依次为琼脂糖、环氧氯丙烷和氨三乙酸。
所述过渡金属离子为Ni2+,每克载体包含过渡金属离子100微摩尔。
所述富羧基复合材料包裹在磁性纳米颗粒表面形成富羧基壳,其表面羧基与过渡金属离子络合,过渡金属离子与待固定化的酶通过金属离子配位键结合。
所述固定化载体制备方法,包括以下步骤:
(1)制备磁性纳米颗粒。
采用化学共沉淀法制备磁性Fe3O4纳米颗粒,控制平均粒径为11纳米。
(2)制备包覆有多羟基溶胶-凝胶型化合物的磁性纳米颗粒。
将1.8克琼脂糖溶于45毫升水中,加热形成溶胶。将5克磁性纳米颗粒加入到琼脂糖溶胶中,220瓦超声分散30分钟,得到磁性Fe3O4纳米颗粒和琼脂糖悬浊液。将所述悬浊液加入由216毫升甲苯、84毫升三氯甲烷和4.5毫升司班80组成的乳化剂中,65摄氏度,1000转/分钟,强力搅拌20分钟,得到均匀分散体系。对均匀分散体系持续搅拌,常温冷却,温度降低到室温后,获得包覆有琼脂糖的磁性Fe3O4纳米颗粒。包覆有琼脂糖的磁性Fe3O4纳米颗粒分散在有机溶剂中,磁性分离并用大量乙醚和双蒸水清洗颗粒,获得纯净的包覆有琼脂糖的磁性Fe3O4纳米颗粒。
(3)制备环氧基功能化的磁性纳米颗粒。
将步骤(2)获得的包覆有琼脂糖的磁性Fe3O4纳米颗粒1.5克分散在3毫升4摩尔/升的NaOH溶液中,并加入17毫升二甲基亚砜和12毫升环氧氯丙烷,220瓦超声分散30分钟后,50摄氏度,摇床混合12小时,摇床转速为200转/分钟,形成环氧基功能化的磁性Fe3O4纳米颗粒。磁性分离并用大量丙酮和水洗涤清洗颗粒,获得纯净的环氧基功能化的磁性纳米颗粒。
(4)制备富羧基复合材料包裹的磁性纳米颗粒。
将步骤(3)制备的环氧基功能化的磁性Fe3O4纳米颗粒0.5克,分散在40毫升含有1.5摩尔/升氨三乙酸和2.0摩尔/升碳酸钠溶液中,加入0.15克硼氢化钠,超声分散1小时,37摄氏度,摇床混合12小时,摇床转速为200转/分钟,使所述氨三乙酸其氨基残基与环氧基功能化的磁性纳米颗粒表面的环氧基发生共价交联反应,形成富羧基复合材料包裹的磁性Fe3O4纳米颗粒。磁性分离并清洗颗粒,获得纯净的富羧基复合材料包裹的磁性Fe3O4纳米颗粒。
(5)制备络合过渡金属离子的磁性纳米颗粒。
将步骤(4)中获得的富羧基复合材料包裹的磁性纳米颗粒2.0克,分散于150毫升0.25摩尔/升的NiCl2溶液中,25摄氏度,摇床混合3小时,摇床转速为120转/分钟。使富羧基复合材料包裹的磁性纳米颗粒与过渡金属离子络合,即形成固定化载体。磁性分离并用大量双蒸水清洗颗粒,获得纯净的固定化载体。
一种固定化的β-葡萄糖苷酶,包括所述的固定化载体和β-葡萄糖苷酶;所述固定化载体表面的Ni2+和β-葡萄糖苷酶的组氨酸残基通过金属离子配位键结合,每克载体表面固定有2毫克β-葡萄糖苷酶。其制备方法为:将所述固定化载体加入0.5毫克/毫升β-葡萄糖苷酶溶液中,β-葡萄糖苷酶和固定化载体的质量比为1:200,25摄氏度,摇床混合5小时,摇床转速为150转/分钟;磁性分离并清洗颗粒,即获得固定化β-葡萄糖苷酶。
对制备的β-葡萄糖苷酶进行活化能测试,结果见图3,其横坐标为开尔文温度的倒数(1/T),纵坐标为相对酶活回收率的对数(lnK);进行批次使用测试,结果见图4;90分钟不同温度热处理后,进行热稳定性测试,结果见图5。
实施例3
一种固定化载体,包括磁性纳米颗粒、富羧基复合材料以及过渡金属离子。
所述磁性纳米颗粒,为Fe3O4,平均粒径为20纳米。
所述富羧基复合材料,包裹在磁性纳米颗粒表面形成富羧基壳,其平均厚度为5纳米。富羧基复合材料包括三层,从里到外依次为壳聚糖、环氧氯丙烷和亚氨基二乙酸与氨三乙酸摩尔比2比1混合的混合物。
所述过渡金属离子为Mn2+,每克载体包含过渡金属离子20微摩尔。
所述富羧基复合材料包裹在磁性纳米颗粒表面形成富羧基壳,其表面羧基与过渡金属离子络合,过渡金属离子与待固定化的酶通过金属离子配位键结合。
所述固定化载体制备方法,包括以下步骤:
(1)制备磁性纳米颗粒。
采用化学共沉淀法制备磁性Fe3O4纳米颗粒,控制平均粒径为20纳米。
(2)制备包覆有多羟基溶胶-凝胶型化合物的磁性纳米颗粒。
将1.8克壳聚糖溶于45毫升水中,加热形成溶胶。将5克磁性纳米颗粒加入到壳聚糖胶中,220瓦超声分散30分钟,得到磁性Fe3O4纳米颗粒和壳聚糖悬浊液。将所述悬浊液加入由216毫升甲苯、84毫升三氯甲烷和4.5毫升司班80组成的乳化剂中,65摄氏度,1000转/分钟,强力搅拌20分钟,得到均匀分散体系。对均匀分散体系持续搅拌,常温冷却,温度降低到室温后,获得包覆有壳聚糖的磁性Fe3O4纳米颗粒。包覆有壳聚糖的磁性Fe3O4纳米颗粒分散在有机溶剂中,磁性分离并用大量乙醚和双蒸水清洗颗粒,获得纯净的包覆有壳聚糖的磁性Fe3O4纳米颗粒。
(3)制备环氧基功能化的磁性纳米颗粒。
将步骤(2)获得的包覆有壳聚糖的磁性Fe3O4纳米颗粒1.5克分散在3毫升4摩尔/升的NaOH溶液中,并加入17毫升二甲基亚砜和12毫升环氧氯丙烷,220瓦超声分散30分钟后,50摄氏度,摇床混合12小时,摇床转速为200转/分钟,形成环氧基功能化的磁性Fe3O4纳米颗粒。磁性分离并用大量丙酮和水洗涤清洗颗粒,获得纯净的环氧基功能化的磁性纳米颗粒。
(4)制备富羧基复合材料包裹的磁性纳米颗粒。
将步骤(3)制备的环氧基功能化的磁性Fe3O4纳米颗粒0.5克,分散在40毫升含有1.0摩尔/升亚氨基二乙酸、0.5摩尔/升氨三乙酸和2.0摩尔/升碳酸钠溶液中,加入0.15克硼氢化钠,超声分散1小时,37摄氏度,摇床混合12小时,摇床转速为200转/分钟,使所述富羧基化合物其氨基残基或亚氨基残基与环氧基功能化的磁性纳米颗粒表面的环氧基发生共价交联反应,形成富羧基复合材料包裹的磁性Fe3O4纳米颗粒。磁性分离并清洗颗粒,获得纯净的富羧基复合材料包裹的磁性Fe3O4纳米颗粒。
(5)制备络合过渡金属离子的磁性纳米颗粒。
将步骤(4)中获得的富羧基复合材料包裹的磁性纳米颗粒2.0克,分散于150毫升0.25摩尔/升的MnCl2溶液中,25摄氏度,摇床混合3小时,摇床转速为120转/分钟。使富羧基复合材料包裹的磁性纳米颗粒与过渡金属离子络合,即形成固定化载体。磁性分离并用大量双蒸水清洗颗粒,获得纯净的固定化载体。
一种固定化的β-葡萄糖苷酶,包括所述的固定化载体和β-葡萄糖苷酶;所述固定化载体表面的Mn2+和β-葡萄糖苷酶的组氨酸残基通过金属离子配位键结合,每克载体表面固定有1毫克β-葡萄糖苷酶。其制备方法为:将所述固定化载体加入0.5毫克/毫升β-葡萄糖苷酶溶液中,β-葡萄糖苷酶和固定化载体的质量比为1:200,25摄氏度,摇床混合5小时,摇床转速为150转/分钟;磁性分离并清洗颗粒,即获得固定化β-葡萄糖苷酶。
对制备的β-葡萄糖苷酶进行活化能测试,结果见图3,其横坐标为开尔文温度的倒数(1/T),纵坐标为相对酶活回收率的对数(lnK);进行批次使用测试,结果见图4;90分钟不同温度热处理后,进行热稳定性测试,结果见图5。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种固定化载体,其特征在于,包括磁性纳米颗粒、富羧基复合材料以及过渡金属离子;其中,磁性纳米颗粒平均粒径在5纳米至20纳米之间,富羧基复合材料包裹在磁性纳米颗粒表面形成富羧基壳,其平均厚度在5纳米至30纳米之间,其表面羧基与过渡金属离子络合,过渡金属离子用于与待固定化的酶通过金属离子配位键结合。
2.如权利要求1所述的固定化的载体,其特征在于,所述磁性纳米颗粒为纳米铁氧化物、纳米钛氧化物或纳米硅氧化物。
3.如权利要求1所述的固定化的载体,其特征在于,所述富羧基复合材料包括三层,从里到外依次为多羟基溶胶-凝胶型化合物、环氧氯丙烷和多羧基化合物。
4.如权利要求1所述的固定化载体,其特征在于,所述过渡金属离子为Co2+、Ni2+和/或Mn2+,每克载体包含过渡金属离子20微摩尔至100微摩尔。
5.制备如权利要求1至4任意一项所述固定化载体制备方法,其特征在于,包括以下步骤:
(1)制备磁性纳米颗粒;
(2)对步骤(1)中制备的磁性纳米颗粒进行羟基功能化修饰:将步骤(1)中得到的磁性纳米颗粒和多羟基溶胶-凝胶型化合物均匀分散于有机溶剂中,强力搅拌同时低温凝固,去除有机溶剂,获得包覆有多羟基溶胶-凝胶型化合物的磁性纳米颗粒;
(3)对步骤(2)中制备的包覆有多羟基溶胶-凝胶型化合物的磁性纳米颗粒进行环氧基功能化修饰:将步骤(2)中获得包覆有多羟基溶胶-凝胶型化合物的磁性纳米颗粒,在碱性条件下均匀分散于环氧氯丙烷的惰性有机溶剂溶液中,去除惰性有机溶剂,获得环氧基功能化的磁性纳米颗粒;
(4)对步骤(3)中制备的环氧基功能化的磁性纳米颗粒进行羧基功能化修饰:将步骤(3)中获得的环氧基功能化的磁性纳米颗粒,在碱性还原条件下,与具有氨基残基或亚氨基残基的富羧基化合物共价交联,获得富羧基复合材料包裹的磁性纳米颗粒;
(5)将步骤(4)中获得的磁性纳米颗粒其表面的羧基与过渡金属离子络合,即制得固定化载体。
6.如权利要求5所述的固定化载体制备方法,其特征在于,步骤(2)所述的多羟基溶胶-凝胶型化合物为琼脂糖或壳聚糖,所述磁性纳米颗粒与多羟基溶胶-凝胶型化合物超声分散后,采用乳化剂,在65摄氏度下,通过强力搅拌分散于有机溶剂中,所述有机溶剂为甲苯-三氯甲烷溶液,采用磁性分离去除有机溶剂。
7.如权利要求5所述的固定化载体制备方法,其特征在于,步骤(3)所述的惰性有机溶剂为二甲基亚砜,采用磁性分离去除有机溶剂。
8.如权利要求5所述的固定化载体制备方法,其特征在于,步骤(4)所述的具有氨基残基或亚氨基残基的富羧基化合物为亚氨基二乙酸或氨三乙酸,所述富羧基化合物其氨基残基或亚氨基残基与环氧基功能化的磁性纳米颗粒表面的环氧基发生共价交联反应。
9.如权利要求5所述的固定化载体制备方法,其特征在于,所述步骤(5)络合反应条件为25摄氏度,摇床混合3小时,摇床转速为120转/分钟。
10.一种固定化的β-葡萄糖苷酶,其特征在于,包括如权利要求1至4任意一项所述的固定化载体和β-葡萄糖苷酶;所述固定化载体表面的过渡金属离子和β-葡萄糖苷酶的组氨酸残基通过金属离子配位键结合,每克载体表面固定有1毫克到3毫克β-葡萄糖苷酶。
CN201310712037.2A 2013-12-21 2013-12-21 一种固定化载体及其制备方法和固定化β-葡萄糖苷酶 Pending CN103710333A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310712037.2A CN103710333A (zh) 2013-12-21 2013-12-21 一种固定化载体及其制备方法和固定化β-葡萄糖苷酶

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310712037.2A CN103710333A (zh) 2013-12-21 2013-12-21 一种固定化载体及其制备方法和固定化β-葡萄糖苷酶

Publications (1)

Publication Number Publication Date
CN103710333A true CN103710333A (zh) 2014-04-09

Family

ID=50403692

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310712037.2A Pending CN103710333A (zh) 2013-12-21 2013-12-21 一种固定化载体及其制备方法和固定化β-葡萄糖苷酶

Country Status (1)

Country Link
CN (1) CN103710333A (zh)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104525129A (zh) * 2014-12-31 2015-04-22 湖南科技大学 一种用于重金属废水处理的改性活性炭的制备方法
CN105056912A (zh) * 2015-07-23 2015-11-18 江苏大学 固定化金属离子亲和磁性纳米颗粒的制备方法及其应用
CN105779428A (zh) * 2016-05-24 2016-07-20 南京财经大学 一种用纤维素载体固定β-葡萄糖苷酶的方法及应用
CN106011206A (zh) * 2016-05-19 2016-10-12 天津大学 用复合载体磁性纳米颗粒固定化双酶制备活性肽的方法
CN106754861A (zh) * 2016-12-26 2017-05-31 浙江工商大学 一种多孔磁性铜离子金属螯合载体及其制备方法、利用载体固定化木瓜酶的方法及其应用
CN107326021A (zh) * 2016-10-27 2017-11-07 东北林业大学 一种磁性纤维素微球固定化脂肪酶催化剂的制备方法
CN107828776A (zh) * 2017-12-13 2018-03-23 沈阳农业大学 一种双功能离子螯合磁性载体及其应用
CN108028113A (zh) * 2015-06-26 2018-05-11 Mag基因技术私人有限公司 不影响蛋白质功能性质的磁性纳米颗粒在交联蛋白质基质中的包埋
CN108715842A (zh) * 2018-06-04 2018-10-30 浙江工业大学 一种高活性β-葡萄糖苷酶的制备方法
CN109082420A (zh) * 2018-08-21 2018-12-25 江苏大学 金属有机框架材料固定化β-葡萄糖苷酶及其制备方法和应用
CN112458076A (zh) * 2020-11-30 2021-03-09 中国农业科学院油料作物研究所 一种纤维素基磁性微球固定化磷脂酶的制备方法
CN112679701A (zh) * 2020-12-28 2021-04-20 重庆宸安生物制药有限公司 一种固定化赖氨酸内肽酶及其制备方法与用途
CN113181883A (zh) * 2021-05-08 2021-07-30 苏州英芮诚生化科技有限公司 一种小粒径琼脂糖羧基磁珠及其制备方法
CN114836394A (zh) * 2022-04-27 2022-08-02 华中科技大学 一种酪氨酸酶定向固定化方法及载体制备
CN115007118A (zh) * 2022-08-08 2022-09-06 康盈红莓(中山)生物科技有限公司 蛋白质分离纯化用磁珠和其交联壳聚糖及其制备使用方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
刘琳琳 等: "金属螯合载体定向固定化木瓜蛋白酶的研究", 《生物工程学报》 *
刘琳琳: "金属鳌合载体的制备及其用于固定化酶的研究", 《万方数据库硕士学位论文》 *
史清洪 等: "环氧氯丙烷活化琼脂糖凝胶过程强化及性能评价", 《过程工程学报》 *
程旺开: "金属离子对纤维素酶活性影响的研究", 《安徽农学通报》 *

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104525129B (zh) * 2014-12-31 2016-10-05 湖南科技大学 一种用于重金属废水处理的改性活性炭的制备方法
CN104525129A (zh) * 2014-12-31 2015-04-22 湖南科技大学 一种用于重金属废水处理的改性活性炭的制备方法
CN108028113A (zh) * 2015-06-26 2018-05-11 Mag基因技术私人有限公司 不影响蛋白质功能性质的磁性纳米颗粒在交联蛋白质基质中的包埋
CN108028113B (zh) * 2015-06-26 2020-08-25 Mag基因技术私人有限公司 不影响蛋白质功能性质的磁性纳米颗粒在交联蛋白质基质中的包埋
CN105056912A (zh) * 2015-07-23 2015-11-18 江苏大学 固定化金属离子亲和磁性纳米颗粒的制备方法及其应用
CN106011206A (zh) * 2016-05-19 2016-10-12 天津大学 用复合载体磁性纳米颗粒固定化双酶制备活性肽的方法
CN105779428A (zh) * 2016-05-24 2016-07-20 南京财经大学 一种用纤维素载体固定β-葡萄糖苷酶的方法及应用
CN107326021A (zh) * 2016-10-27 2017-11-07 东北林业大学 一种磁性纤维素微球固定化脂肪酶催化剂的制备方法
CN106754861A (zh) * 2016-12-26 2017-05-31 浙江工商大学 一种多孔磁性铜离子金属螯合载体及其制备方法、利用载体固定化木瓜酶的方法及其应用
CN106754861B (zh) * 2016-12-26 2020-09-25 浙江工商大学 一种多孔磁性铜离子金属螯合载体及其制备方法、利用载体固定化木瓜酶的方法及其应用
CN107828776A (zh) * 2017-12-13 2018-03-23 沈阳农业大学 一种双功能离子螯合磁性载体及其应用
CN107828776B (zh) * 2017-12-13 2020-09-18 沈阳农业大学 一种双功能离子螯合磁性载体及其应用
CN108715842A (zh) * 2018-06-04 2018-10-30 浙江工业大学 一种高活性β-葡萄糖苷酶的制备方法
CN108715842B (zh) * 2018-06-04 2021-06-01 浙江工业大学 一种高活性β-葡萄糖苷酶的制备方法
CN109082420A (zh) * 2018-08-21 2018-12-25 江苏大学 金属有机框架材料固定化β-葡萄糖苷酶及其制备方法和应用
CN109082420B (zh) * 2018-08-21 2021-08-03 江苏大学 金属有机框架材料固定化β-葡萄糖苷酶及其制备方法和应用
CN112458076A (zh) * 2020-11-30 2021-03-09 中国农业科学院油料作物研究所 一种纤维素基磁性微球固定化磷脂酶的制备方法
CN112679701A (zh) * 2020-12-28 2021-04-20 重庆宸安生物制药有限公司 一种固定化赖氨酸内肽酶及其制备方法与用途
CN113181883A (zh) * 2021-05-08 2021-07-30 苏州英芮诚生化科技有限公司 一种小粒径琼脂糖羧基磁珠及其制备方法
CN114836394A (zh) * 2022-04-27 2022-08-02 华中科技大学 一种酪氨酸酶定向固定化方法及载体制备
CN115007118A (zh) * 2022-08-08 2022-09-06 康盈红莓(中山)生物科技有限公司 蛋白质分离纯化用磁珠和其交联壳聚糖及其制备使用方法
CN115007118B (zh) * 2022-08-08 2022-11-08 康盈红莓(中山)生物科技有限公司 蛋白质分离纯化用磁珠和其交联壳聚糖及其制备使用方法

Similar Documents

Publication Publication Date Title
CN103710333A (zh) 一种固定化载体及其制备方法和固定化β-葡萄糖苷酶
Nadar et al. Magnetic-metal organic framework (magnetic-MOF): A novel platform for enzyme immobilization and nanozyme applications
Wang et al. Reversible immobilization of glucoamylase onto magnetic chitosan nanocarriers
Zhao et al. Reversible immobilization of glucoamylase onto magnetic carbon nanotubes functionalized with dendrimer
Mo et al. Preparation and characterization of magnetic polyporous biochar for cellulase immobilization by physical adsorption
CN102814199B (zh) 用于贵金属催化剂原位固载的磁性聚合物微球的制备方法
CN102658144A (zh) 氧化石墨烯层间负载纳米四氧化三钴催化剂及其制备方法
CN102847533B (zh) 微波法合成凹土/钯纳米复合材料催化剂的方法
CN103920536B (zh) 一种催化氨硼烷脱氢的高效钴催化剂的制备方法
CN104099317A (zh) 一种壳聚糖磁性纳米粒子固定普鲁兰酶的方法
CN107140750A (zh) 一种多功能模拟酶复合球的制备方法及其应用
CN101748113B (zh) 磁性壳聚糖复合微球制备固定化葡萄糖异构酶的方法
CN104971778A (zh) 一种四氧化三铁-聚苯胺-金纳米复合材料的制备方法及其应用
Liu et al. Progress of recyclable magnetic particles for biomedical applications
CN106582810A (zh) 一种石墨烯固定酶催化剂的制备方法
CN106040307B (zh) 一步水热法合成Fe3O4(PAA)@C-Au核壳结构微球的制备方法
CN104475749A (zh) β-环糊精稳定化包埋纳米零价铁的制备方法
KR101347205B1 (ko) 맞춤형 효소고정 금-자성 실리카나노입자, 상기 입자의 제조방법 및 상기 입자를 이용한 연속식 바이오매스 가수분해방법
Narisetty et al. An overview of cellulase immobilization strategies for biofuel production
CN110534754B (zh) 一种包裹Fe3C纳米晶的碳纳米管及其制备方法和应用
CN106542568A (zh) 一种固定化酶、固定化酶载体及其制备方法
KR100932980B1 (ko) 연료전지용 캐소드 촉매, 그 제조 방법 및 고정화 방법, 및연료전지
CN105289748A (zh) 一种软模板辅助合成磁性限域贵金属催化剂的制备方法
CN107774227A (zh) 一种铁锰复合氧化物/四氧化三铁核壳纳米材料的制备方法
Samoilova et al. Eco-friendly preparation of a magnetic catalyst for glucose oxidation combining the properties of nanometal particles and specific enzyme

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20140409