CN1036228C - 一种多层陶瓷电容器的制造方法 - Google Patents

一种多层陶瓷电容器的制造方法 Download PDF

Info

Publication number
CN1036228C
CN1036228C CN93119062A CN93119062A CN1036228C CN 1036228 C CN1036228 C CN 1036228C CN 93119062 A CN93119062 A CN 93119062A CN 93119062 A CN93119062 A CN 93119062A CN 1036228 C CN1036228 C CN 1036228C
Authority
CN
China
Prior art keywords
voltage
electrode
pulse
ceramic capacitor
pulse voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN93119062A
Other languages
English (en)
Other versions
CN1087443A (zh
Inventor
野井庆一
上野
生越洋一
若畑康男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Publication of CN1087443A publication Critical patent/CN1087443A/zh
Application granted granted Critical
Publication of CN1036228C publication Critical patent/CN1036228C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/47Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on strontium titanates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • C01G23/006Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • C04B35/6262Milling of calcined, sintered clinker or ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/10Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material voltage responsive, i.e. varistors
    • H01C7/105Varistor cores
    • H01C7/108Metal oxide
    • H01C7/115Titanium dioxide- or titanate type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/10Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material voltage responsive, i.e. varistors
    • H01C7/12Overvoltage protection resistors
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3241Chromium oxides, chromates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6025Tape casting, e.g. with a doctor blade
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6582Hydrogen containing atmosphere
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • C04B2235/662Annealing after sintering
    • C04B2235/663Oxidative annealing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • C04B2235/662Annealing after sintering
    • C04B2235/664Reductive annealing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/79Non-stoichiometric products, e.g. perovskites (ABO3) with an A/B-ratio other than 1

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Thermistors And Varistors (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

本发明是有关用于因噪声、脉冲、静电等异常高电压需保护IC、LSI等半导体器件的多层陶瓷电容器的制造方法,并且提供了一种利用降低元件阻抗,可改善除去、抑制信号线路中的高频噪声的多层陶瓷电容器。
为达到上述目的,本发明在电极(2)之间至少施加1次脉冲电压,上述脉冲电压的条件是,最大值为50KV以下,从初始值到最大值的时间为200纳秒以下,从前述初始值经最大值回到初始值的时间为1微秒以下,能量为0.5焦耳以下。

Description

一种多层陶瓷电容器的制造方法
本发明是有关用于保护在电子仪器和电气设备中工作、承受噪声、脉冲、静电等异常高电压、高频噪声的IC和LSI等半导体器件的多层陶瓷电容元件的制造方法。
近年来,为了实现电子仪器和电气设备的小型化和多功能化,IC、LSI等的半导体器件被广泛应用,随之显出电子仪器和电气设备对噪声、脉冲、静电等的异常高电压的承受力低了。
因此,为了确保这些电子仪器和电气设备对噪声、脉冲、静电等的异常高电压的承受力,虽然应用了薄膜电容器、电解电容器、半导体陶瓷电容器、积层陶瓷电容器等,尽管这些元件对于电压较低的噪声、高频噪声的吸收显示出优异的吸收、抑制性能,但对于高电压的脉冲和静电未显示出效果,甚至曾引起半导体器件的误动作和破坏。
为了吸收和抑制高电压脉冲及静电,虽然使用了SiC、ZnO系列非线性电阻,但这些元件未显示出对电压较低的噪声和高频噪声的吸收及抑制效果,曾引起半导体器件的误动作。
于是,作为对电压较低的噪声和高频噪声以及高电压脉冲和静电有效果的元件,研制了SrTiO3系列的具有非线性电阻特性的多层陶瓷电容器。
然而由于该SrTiO3系列多层陶瓷电容器的非线性电阻所具有的阻抗也大,所以加给电压较低脉冲和信号线路的高频噪声的吸收和抑制效果差。
因此,本发明注意到前述阻抗大是由于在电极部分形成的阻挡层所至,目的在于借助破坏该电极部分阻挡层,降低前述阻抗,以显示出对于电压较低的脉冲和加给信号线路的高频噪声也有高的效果。
为了达到上述目的,本发明的多层陶瓷电容器的制造方法是:(1)对陶瓷材料的各成份称量,混合,粉碎,干燥,造粒,成形处理,形成陶瓷片;(2)用所述陶瓷片制成至少包含两个外部电极的多层陶瓷电容元件;其特征在于,(3)在所述多层陶瓷电容元件的所述外部电极之间至少施加1次脉冲电压,上述脉冲电压的条件是最大值为50KV以下,从初始值至最大值的时间为200纳秒以下,从前述初始值经最大值回到初始值的时间为1微秒以下,能量为0.5焦耳以下。
根据上述制造方法获得如下效果,即如在由SrTiO3为主成分的组成物形成的多层陶瓷电容器上形成电极层,如在还原性气氛中烧成后再在中性或氧化性气氛中同时烧成陶瓷层和电极层,使电极层表面氧化,生成高阻部分,则在电极层表面及内部形成阻挡层,使元件的阻抗变高,静电容量减少,同时tanδ变大,失去噪声的吸收及控制效果。该阻挡层是由于电极表面及内部氧化产生的,其势垒高度较低,所以通过施加较小的能量如电能即可消除,以使具有其他特性的如非线性电阻特性的非线性电阻电压不变动,或其电压非线性系数不变劣。
利用把本发明所示外加电能变成达到最大值的时间及回到初始值的时间短的尖顶波脉冲电压,在电极层界面形成的阻挡层最弱部分集中能量,突破阻挡层的一部分,可使阻挡层的阻力下降。并且,若外加的电能过大,则损坏在陶瓷层的粒子界面上形成的阻挡层,使元件所具有的功能特别是电容器功能变坏。从而,利用外加能量比较小的尖顶波脉冲电压,不使元件所具有的电容器特性变坏,并且不影响非线性电阻特性,只除去在电极层界面形成的阻挡层,可引出元件本来所具有的阻抗。据此,随着阻抗变小,可使噪声衰减率提高,可吸收、抑制侵入信号线路的高频波噪声。
图1为本发明第一实施例的制造工序图;
图2为依本发明第一实施例制造的陶瓷电容器元件的剖视图;
图3为依本发明第二实施例制造的多层陶瓷电容器的剖视图;
图4为依本发明第三实施例制造的多层陶瓷电容器的剖视图。
下面举出实施例对本发明作具体说明。
实施例一
首先,作为第1成分按组成比为(Sr0.98Ca0.02)0.995TiO3占99.2克分子%,称量SrCO3、CaCO3、TiO2;作为第2成分称量Nb2O5:0.3克分子%;作为第3成分称量MnCO3:0.2克分子%;称量Cr2O3:0.1克分子%;作为第4成分,称量SiO2:0.2克分子%,利用球磨机等混合、粉碎干烧20小时后,再在空气中以800℃焙烧2小时,又利用球磨机等粉碎20小时,使之平均粒径为2.0μm以下。在这样所获得的粉末中添加重量10%的粘合剂如聚乙烯醇等进行造粒,形成如图2所示的直径为10mm、厚度为1mm的圆板形陶瓷元件1。
其后,将该陶瓷元件在1000℃焙烧1小时,然后在该陶瓷元件1的正面和反面,利用丝网印刷等方法涂敷由Pd等组成的电极浆料,在120℃中干燥,比如在N2∶H2=9∶1的还原性气氛中在1410℃温度中焙烧5小时后,通过在空气中,温度为1080℃再氧化2小时,在陶瓷基体1的正、反面形成电极2,接着在每个电极2上用软钎焊料等的导电性连接剂4装配引线3,再用环氧树脂等树脂5涂抹其外周。这样得到的陶瓷电容器在其两电极2之间通过引线3,外加表1所示的尖顶波脉冲。外加前后的特性变化也在该表1所示。
上述工序在图1中表示。
                       表    1
  No.   前沿陡度(nsec)   后沿(μsec)   峰值电压(kV)   能量(J)   施加次数     ΔC(%)   ΔVo. mA(%)     Δa(%)  施加脉冲电压后
  tanδ(%)   ESR(mΩ)
  1*     -     -   -   -     -     -     -     -     10.0     2000
2 2 0.1 20 0.10 10 +7.2 -0.3 -0.1 3.2 75
3 10 0.1 20 0.10 10 +6.3 -0.3 -0.1 4.2 105
  4     80     0.1   20   0.11     10     +5.5     -0.3     -0.1     4.5     110
  5     170     0.1   20   0.11     10     +2.8     -0.4     -0.1     4.9     112
  6**     250     0.1   20   0.12     10     +1.4     -0.4     -0.1     8.8     280
  7     5     0.5   25   0.15     1     +7.9     -0.3     -0.1     3.0     65
  8     5     0.8   25   0.16     1     +8.2     -0.3     -0.1     2.8     60
9** 5 1.5 25 0.17 1 +9.7 -0.9 +0.2 8.5 1200
  10     3     0.1   5   0.01     5     +7.2     -0.2     -0.1     3.4     177
  11     3     0.1   10   0.02     5     +7.9     -0.2     -0.1     3.0     110
  12     3     0.1   30   0.22     5     +8.6     -0.3     -0.1     2.8     70
  13     3     0.1   40   0.40     5     +9.5     -2.5     +0.2     3.5     42
  14**     3     0.1   55   0.45     5     +15.9     -7.4     +11.0     18.9     55
  15     2     0.1   25   0.20     10     +7.5     -0.2     -0.1     3.7     60
16 2 0.1 25 0.40 10 +7.9 -0.5 -0.1 3.5 57
  17**     2     0.1   25   0.76     10     +28.4     +15.3     +15.8     26.4     1750
  18     2     0.1   25   0.15     100     +7.2     -0.1     -0.1     4.2     70
  19     2     0.1   25   0.15     1000     +7.2     -0.1     -0.1     4.2     70
  20     2     0.1   25   0.15     10000     +7.2     -0.1     -0.1     4.2     68
21 2 0.1 25 0.15 50000 +7.3 -0.1 -0.1 4.2 72
(1)*表示不施加脉冲电压。
(2)**表示对比例。
(3)前沿陡度:从脉冲电压初始值到量大值的时间。
(4)后沿:从脉冲电压初始值经最大值再回到初始值的时间。
(5)峰值电压:脉冲电压的最大值。
(6)能量:一个脉冲电压的能量。
(7)ΔC:施加脉冲电压前后的静电容量变化率。
(8)ΔV0.1mA:施加脉冲电压前后非线性电阻电压变化率。
(9)Δα:施加脉冲电压前后的非线性指数变化率。
(10)ESR:谐振波的等效串联电阻。
实施例二
首先,作为第1组成比按组成比为(Sr0.85Ca0.15)0.985TiO3占99.2克分子%,称量SrCO3、CaCO3、TiO2;为第2成分称量Nb2O5:0.3克分子;作为第3成分称量MnCO3:0.2克分%,Cr2O3:0.1克分子%;作为第4成分称量SiO2:0.2克分子。用球磨机等混合、粉碎、干燥20小时后,在空气中,温度为800℃焙烧4小时;再用球磨机等混合、粉碎80小时,使平均粒径成为1.0μm以下。将这样获得的粉末中混添丁缩醛系列树脂等有机粘合剂和有机溶剂,作成浆料状。再用刮浆刀片法等薄片成形法得到图3所示厚度为50μm的原始薄片6。
然后将前述原始薄片6按一定的张数迭合,最下层成无效层,用丝网印刷等印刷、干燥,在无效层上由Pd等构成的内部电极7;再在电极7上按一定张数迭合前述原始薄片6后,进一步用丝网法使由Pd构成的内部电极7得到印刷、干燥。这时,印刷内部电极7使之相向到达不同的边缘。这样使原始薄片6和内部电极7按一定的张数迭合,最后使前述原始薄片6按一定的张数迭合,形成最上层无效层,一边加热一边加压压紧迭合为一体。再把上述制成物切成一定形状,形成图3的迭层结构8。
接着把该迭层结构8在空气环境下、800℃温度中作脱脂焙烧40小时。再比如在N2∶H2=9∶1的还原性气氛中,温度为1310℃焙烧5小时后,进一步在空气中温度为980℃再氧化2小时。之后,在不同边缘上露出的内部电极7的端面,涂敷由Ag等构成的电极浆料,完后在空气中,温度为700℃烧烤10分钟形成外部电极9。在这样制得的多层陶瓷电容器外部电极9之间,施加如表2所示的尖顶波脉冲电压。施加后的特性变化也在表2中显示。
                                     表  2
No. 前沿陡度*(nsec)    后沿(μsec) 峰值电压(kV)    能量(J)     施加脉冲电压前     施加脉冲电压后     ΔC(%)    施加脉冲电压后
        Vo.lmA(V)           Vo.lmA(V)   tanδ(%)   ESR(mΩ)
x σ x σ
1*     -     -   -     -   12.5   2.25   -   -   -     25.8     1850
2     5     0.1   25     0.20   6.0   2.45   6.0   2.46   +7.5     10.1     90
3     5     0.1   25     0.20   8.2   1.88   8.2   1.87   +7.9     8.5     75
4 3 0.1 25 0.20 9.5 1.71 9.5 -1.71 +6.3 7.6 70
5     3     0.1   25     0.20   10.7   1.86   10.7   1.85   +6.5     6.8     68
6     3     0.1   25     0.20   12.3   1.82   12.3   1.83   +7.0     6.5     55
7     2     0.1   30     0.20   14.8   2.12   14.7   2.13   +7.4     5.0     50
8 2 0.1 30 0.20 16.2 2.34 16.1 2-35 +7.6 4.8 72
9 2 0.1 30 0.20 20.7 3.21 20.6 3.23 +7.8 4.3 85
*表示不施加脉冲电压。
施加脉冲电压次数为10。
实施例三
与实施例一样制得原始薄片6。接着把前述原始薄片6按一定的张数迭合,形成最下层无效层,在无效层上用丝网印刷等印刷、干燥由NiO等构成的内部电极10,再在电极10上按一定的张数迭合前述原始薄片6。进一步用丝网印刷等印制、干燥由NiO等组成的内部电极10。这时,印刷内部电极10使之达到相向不同的边缘。象这样完成后,把原始薄片6和内部电极10按一定张数迭合,最后按一定张数迭合原始薄片6,最上层形成无效层,进行边加压边加热迭合为一体,再将上述产品切成一定形状,形成图4所示的迭层结构11。
接着将该迭层结构11在900℃的空气中作20小时的脱脂焙烧,其后在不同边缘上露出的内部电极10上涂敷由NiO等构成的电极浆料,在如N2∶H2=9∶1的还原性气氛中,温度为1210℃烧制10小时,同时作迭层结构11还原和由NiO等构成的外部电极12的还原。
其后,在前述外部电极9表示涂敷由Ag构成的电极浆料,再在900℃的空气中氧化3小时,以形成外部电极9。然后在前述外部电极9上,如用电解法等镀Ni后再镀软钎焊料(图中未示)。在这样获得的多层陶瓷电容器的外电极9之间,施加表3所示的尖顶波脉冲电压。施加后的特性变化也在表3中展示。
                                 表    3
  No. 前沿陡度(nsec) 后沿(μsec) 峰值电压(KV)    能量(J)   施加脉冲电压前     施加脉冲电压后     ΔC(%)     施加脉冲电压后
        Vo.lmA(V)          Vo.lmA(V)   tanδ(%)    ESR(mΩ)
x σ x σ
1* - - - - 12.9 2.19 - - - 28.9 6500
  2     2     0.1   25     0.20     5.5   2.52     5.5     2.53     +6.5     12.3     50
  3     2     0.1   25     0.20     7.4   1.93     7.4     1.93     +7.2     10.1     55
  4     3     0.2   25     0.20     9.5   1.84     9.5     1.83    -+7.0     10.2     54
5 3 0.2 25 0.20 11.0 1.76 11.0 1.75 +6.4 9.9 52
6 5 0.2 25 0.20 13.6 1.80 13.5 1.80 +6.2 9.2 60
7 5 0.2 25 0.20 18.9 2.14 18.8 2.16 +6.0 8.6 75
8 2 0.1 55 0.45 25.4 2.36 21.7 2.52 +30.4 35.2 1980
*表示不施加脉冲电压。
**表示对比例。
施加脉冲电压次数为10。
在上述1-3的实施例中,关于陶瓷粉末体的组成虽然只表示了一部分搭配,即用Ba、Ca、Mg之中至少1个以上元素置换用ABO3表示基本组成的SrTiO3的Sr的一部分。但是若是SrTiO3为主成分,具有电容和非线性电阻两者功能,任意组成皆可。这时A/B比值为0.95≤(A/B)≤1.05。其理由是若小于0.95,则形成以Ti为主成分的第2相、非线性电阻特性变坏;若超过1.05,则电容率变小,电容特性劣化。还有陶瓷粉末可以是ZnO、TiO2。并且电极2、内部电极7、10,外部电极9、12至少用Au、Pt、Rh、Pd、Ni、Cr、Zn、Cu中一种或其合金形成也可。虽然图3、4的无效层以及有效层用薄原始薄片迭层形成,但也可用厚的原始薄片1张形成。如表1、2、3所表明,外加脉冲电压,所谓静电容量、tanδ、ESR的电容特性变化虽然大,但非线性电阻特性的绝对值、标准偏差几乎没有变化。另外规定使外加尖顶波脉冲电压波形达到最大电压的时间为200纳秒以下使脉冲电压上升陡度(尖顶波陡度)急剧,是为了有效破坏电极表面及内部氧化层,若前沿陡度超过200纳秒,则是由于效果显著下降。使回到初期电压的时间(后沿)定在1微秒以下只因为若后沿超过1微秒,波尾变长,在特性方面,特别是电容特性易受影响,则静电容量显著下降。
并且把外加电压最大值定为50KV以下,是由于当外加电压超过50KV时,外加电压高至在陶瓷基体粒子界面上形成的非线性电阻劣化变大,则电容特性与非线性电阻同时变坏。另外把外加脉冲能量定为0.5焦耳以下是由于当大于0.5焦耳时,元件发热显著,电容特性、非线性电阻特性同时变坏。而且该脉冲施加的理想条件是达到最大电压的时间在50纳秒以下,回到初始电压的时间为500纳秒以下,外加电压为3-25KV,能量为0.3焦耳以下。
根据如上所述的发明,利用施加在多层陶瓷电容器上达到最大电压的时间及回到初始电压的时间短的尖顶波脉冲,通过电极表面及电极内部形成的氧化层,在生成阻挡层最弱的部分使能量集中,突破阻挡层的一部分,可使阻挡层的电阻降低。因此多层陶瓷电容器具有的电容特性不变坏,不影响非线性电阻的特性,只是局部破坏在电极层界面形成的阻挡层,可使阻抗降低。
并且随着阻抗的减少,可使噪声衰减增加,能有效地吸收、抑制侵入信号线路的高频噪声。

Claims (3)

1.一种多层陶瓷电容器的制造方法,工序如下:(1)对陶瓷材料的各成份称量,混合,粉碎,干燥,造粒,成形处理,形成陶瓷片;(2)用所述陶瓷片制成至少包含两个外部电极的多层陶瓷电容器;其特征在于,(3)在所述多层陶瓷电容器的所述外部电极之间至少施加1次脉冲电压,上述脉冲电压的条件是最大值为50KV以下,从初始值至最大值的时间为200纳秒以下,从前述初始值经最大值回到初始值的时间为1微秒以下,能量为0.5焦耳以下。
2.如权利要求1所述的制造方法,其特征在于,所述陶瓷材料为SrTiO3、CaTiO3、BaTiO3、ZnO、TiO2、MgTiO3中一种作为主成份。
3.如权利要求1所述的制造方法,其特征在于在于所述电极至少为Au、Pt、Rh、Pd、Ni、Cr、Zn、Cu中一种材料。
CN93119062A 1992-09-03 1993-09-03 一种多层陶瓷电容器的制造方法 Expired - Fee Related CN1036228C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP4235546A JP2870317B2 (ja) 1992-09-03 1992-09-03 セラミック磁器素子の製造方法
JP235546/92 1992-09-03

Publications (2)

Publication Number Publication Date
CN1087443A CN1087443A (zh) 1994-06-01
CN1036228C true CN1036228C (zh) 1997-10-22

Family

ID=16987587

Family Applications (1)

Application Number Title Priority Date Filing Date
CN93119062A Expired - Fee Related CN1036228C (zh) 1992-09-03 1993-09-03 一种多层陶瓷电容器的制造方法

Country Status (8)

Country Link
US (1) US5520759A (zh)
EP (1) EP0610516B1 (zh)
JP (1) JP2870317B2 (zh)
KR (1) KR100217012B1 (zh)
CN (1) CN1036228C (zh)
DE (1) DE69315975T2 (zh)
TW (1) TW240328B (zh)
WO (1) WO1994006129A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0357091A (ja) * 1989-07-26 1991-03-12 N T T Data Tsushin Kk Icカード内の破損データ復元装置
DE69632659T2 (de) * 1995-03-24 2005-06-09 Tdk Corp. Vielschichtvaristor
JP2002260951A (ja) * 2000-12-28 2002-09-13 Denso Corp 積層型誘電素子及びその製造方法,並びに電極用ペースト材料
JP5251589B2 (ja) * 2009-02-24 2013-07-31 株式会社村田製作所 セラミックコンデンサの製造方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5075818A (en) * 1989-02-16 1991-12-24 Matsushita Electric Industrial Co., Ltd. Semiconductor-type laminated ceramic capacitor with a grain boundary-insulated structure and a method for producing the same

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3342655A (en) * 1962-12-03 1967-09-19 Electro Materials Composition and method for electroding dielectric ceramics
US4046847A (en) * 1975-12-22 1977-09-06 General Electric Company Process for improving the stability of sintered zinc oxide varistors
US4082906A (en) * 1977-02-14 1978-04-04 San Fernando Electric Manufacturing Company Low temperature fired ceramic capacitors
US4325763A (en) * 1978-04-25 1982-04-20 Nippon Electric Company, Ltd. Method of manufacturing ceramic capacitors
US4296002A (en) * 1979-06-25 1981-10-20 Mcgraw-Edison Company Metal oxide varistor manufacture
DE3121290A1 (de) * 1981-05-29 1983-01-05 Philips Patentverwaltung Gmbh, 2000 Hamburg "nichtlinearer widerstand und verfahren zu seiner herstellung"
JPS60250602A (ja) * 1984-05-25 1985-12-11 株式会社村田製作所 電圧非直線抵抗素子の製造方法
US4571276A (en) * 1984-06-22 1986-02-18 North American Philips Corporation Method for strengthening terminations on reduction fired multilayer capacitors
JPS61147404A (ja) * 1984-12-18 1986-07-05 太陽誘電株式会社 誘電体磁器組成物
JPH01289204A (ja) * 1988-05-17 1989-11-21 Matsushita Electric Ind Co Ltd 電圧依存性非直線抵抗体素子及びその製造方法
JPH02213101A (ja) * 1989-02-14 1990-08-24 Matsushita Electric Ind Co Ltd 粒界バリア型高静電容量セラミックバリスタの製造方法
US5268006A (en) * 1989-03-15 1993-12-07 Matsushita Electric Industrial Co., Ltd. Ceramic capacitor with a grain boundary-insulated structure
JP2705221B2 (ja) * 1989-06-09 1998-01-28 松下電器産業株式会社 セラミックコンデンサ及びその製造方法
EP0437613B1 (en) * 1989-03-15 1995-12-20 Matsushita Electric Industrial Co., Ltd. Laminated and grain boundary insulated type semiconductor ceramic capacitor and method of producing the same
JP2556151B2 (ja) * 1989-11-21 1996-11-20 株式会社村田製作所 積層型バリスタ

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5075818A (en) * 1989-02-16 1991-12-24 Matsushita Electric Industrial Co., Ltd. Semiconductor-type laminated ceramic capacitor with a grain boundary-insulated structure and a method for producing the same

Also Published As

Publication number Publication date
KR100217012B1 (ko) 1999-09-01
JPH0684686A (ja) 1994-03-25
DE69315975T2 (de) 1998-07-16
TW240328B (zh) 1995-02-11
JP2870317B2 (ja) 1999-03-17
EP0610516A1 (en) 1994-08-17
WO1994006129A1 (en) 1994-03-17
CN1087443A (zh) 1994-06-01
EP0610516A4 (en) 1995-08-02
US5520759A (en) 1996-05-28
EP0610516B1 (en) 1997-12-29
DE69315975D1 (de) 1998-02-05

Similar Documents

Publication Publication Date Title
US5835338A (en) Multilayer ceramic capacitor
KR100674848B1 (ko) 고유전율 금속-세라믹-폴리머 복합 유전체 및 이를 이용한임베디드 커패시터의 제조 방법
US5561587A (en) Conductive paste and multilayer ceramic capacitor
US9019690B2 (en) Conductive resin composition, multilayer ceramic capacitor having the same, and method of manufacturing the multilayer ceramic capacitor
KR101462798B1 (ko) 외부 전극용 도전성 페이스트 조성물 및 이를 포함하는 적층 세라믹 전자 부품
JPH10125557A (ja) 積層型複合機能素子およびその製造方法
US4854936A (en) Semiconductive ceramic composition and semiconductive ceramic capacitor
KR20140032212A (ko) 도전성 수지 조성물 및 이를 포함하는 적층 세라믹 전자 부품
KR100976070B1 (ko) 전도성 조성물 및 세라믹 전자 부품
CN1036228C (zh) 一种多层陶瓷电容器的制造方法
US11017953B2 (en) Multilayer ceramic electronic component
JP3471839B2 (ja) 誘電体磁器組成物
JP3064659B2 (ja) 積層型セラミック素子の製造方法
US20020043698A1 (en) Integrated passive device and method for producing such a device
JPH025019B2 (zh)
JP3296573B2 (ja) セラミックコンデンサー電極用導体ペースト及びその導体ペーストを用いたセラミックコンデンサーの製造方法。
JP2001338828A (ja) 積層型電子部品
JP3190177B2 (ja) 積層型セラミックチップコンデンサの製造方法
JPH0721832A (ja) 導電性ペーストおよびそれを用いた多層セラミック電子部品の製造方法
JP3030557B2 (ja) 誘電体磁器材料を用いた電子部品
JP3064676B2 (ja) 積層セラミック磁器素子
JPH0555077A (ja) セラミツクコンデンサー電極用導体ペースト
JP3064668B2 (ja) 積層セラミック磁器素子の製造方法
JP3070238B2 (ja) 積層型セラミック素子の製造方法
JPH09134839A (ja) 積層セラミック受動素子

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 19971022

Termination date: 20100903