CN103433135B - 用于磁场梯度增强离心的设备 - Google Patents

用于磁场梯度增强离心的设备 Download PDF

Info

Publication number
CN103433135B
CN103433135B CN201310372937.7A CN201310372937A CN103433135B CN 103433135 B CN103433135 B CN 103433135B CN 201310372937 A CN201310372937 A CN 201310372937A CN 103433135 B CN103433135 B CN 103433135B
Authority
CN
China
Prior art keywords
magnetic
container
equipment
matrix
particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201310372937.7A
Other languages
English (en)
Other versions
CN103433135A (zh
Inventor
B.富赫斯
C.K.霍夫曼
K.克勒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EIDP Inc
Original Assignee
EI Du Pont de Nemours and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EI Du Pont de Nemours and Co filed Critical EI Du Pont de Nemours and Co
Publication of CN103433135A publication Critical patent/CN103433135A/zh
Application granted granted Critical
Publication of CN103433135B publication Critical patent/CN103433135B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/02Plant or installations having external electricity supply
    • B03C3/04Plant or installations having external electricity supply dry type
    • B03C3/14Plant or installations having external electricity supply dry type characterised by the additional use of mechanical effects, e.g. gravity
    • B03C3/15Centrifugal forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/025High gradient magnetic separators
    • B03C1/029High gradient magnetic separators with circulating matrix or matrix elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/025High gradient magnetic separators
    • B03C1/029High gradient magnetic separators with circulating matrix or matrix elements
    • B03C1/03High gradient magnetic separators with circulating matrix or matrix elements rotating, e.g. of the carousel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/025High gradient magnetic separators
    • B03C1/031Component parts; Auxiliary operations
    • B03C1/033Component parts; Auxiliary operations characterised by the magnetic circuit
    • B03C1/034Component parts; Auxiliary operations characterised by the magnetic circuit characterised by the matrix elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/30Combinations with other devices, not otherwise provided for
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/38Treatment of water, waste water, or sewage by centrifugal separation
    • C02F1/385Treatment of water, waste water, or sewage by centrifugal separation by centrifuging suspensions
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/48Treatment of water, waste water, or sewage with magnetic or electric fields
    • C02F1/488Treatment of water, waste water, or sewage with magnetic or electric fields for separation of magnetic materials, e.g. magnetic flocculation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B5/00Drying solid materials or objects by processes not involving the application of heat
    • F26B5/08Drying solid materials or objects by processes not involving the application of heat by centrifugal treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/18Magnetic separation whereby the particles are suspended in a liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/20Magnetic separation of bulk or dry particles in mixtures

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Centrifugal Separators (AREA)
  • Separation Of Solids By Using Liquids Or Pneumatic Power (AREA)

Abstract

本发明涉及用于磁场梯度增强离心的设备。本发明涉及一种进行连续或分批离心固‑液分离过程的设备,其中所述固‑液混合物经受磁场梯度和离心作用。

Description

用于磁场梯度增强离心的设备
本申请是申请号为200680012796.6母案的分案申请。该母案的申请日为2006年2月17日;发明名称为“用于磁场梯度增强离心的设备”。本申请要求2005年2月17日提交的美国临时申请60/653,701的权利,其全文通过引用结合到本文中。
技术领域
本发明涉及一种由存在磁场梯度增强的离心设备。
背景技术
从固-液混合物大体积分离矿物到生物技术或制药工业中的高价值产物的小批量分离,固-液分离广泛应用。在过去的50年里,重力、压力、温度、离心和流体动力一直是常规固-液分离的主要方面。常规固-液分离通常由两个主要步骤组成。在第一步骤中,通过施加压力使固体颗粒从液体分离。压力可通过机械施加压力的方法施加,这可包括活塞、气体压力、流体动力压力、重力压力、离心压力或其组合,其中液体通过滤器,而固体由滤器保留。所遇到的一个问题是由于固体“穿透”(即通过)滤器发生固体损失。一个更严重的问题是机械分离步骤不产生完全分离。这必然要增加第二步骤,热干燥过程。
热干燥过程的能量效率比机械步骤低得多,能量效率低100-200倍。由于每年要处理大量材料,通过降低下游干燥需求,更有效的机械固-液分离将使总体能耗显著降低。由于热干燥占全世界能量消耗的相当大部分,因此这会影响能量消耗。
在某些情况下,已经用高梯度磁场分离从固体与液体的混合物分离特定磁性固体。
本发明的目的就是提供一种能够更有效地分离包含磁性颗粒的固-液混合物的设备。
发明内容
本发明提供一种离心分离包含磁性颗粒的固-液混合物的设备,所述设备包括在其内部进行离心的容器和在容器内的旋转的磁性基体(magnetic matrix)。此设备进行的分离过程通过存在磁场梯度得以增强。旋转的磁性基体为磁场梯度源。由这些定域磁场梯度提供的磁力将磁性颗粒吸引到旋转的磁性基体。本发明提供一种可用于连续方法的设备和可用于分批方法的设备。
所述设备进一步包括在由磁性基体占据的设备区域提供磁场的装置。
在固-液混合物包含铁磁性、亚铁磁性、反铁磁性、顺磁性或抗磁性固体时,或者固-液混合物用铁磁性或顺磁性颗粒接种时,可使用本发明的设备。在磁性颗粒结合到要被分离的目标物质时,即在“官能化的磁性球粒”被使用并且结合到高价值目标物质时,如蛋白质、DNA质粒及其他生物物质,也可使用此设备。
已发现产生≥100T/m场梯度的磁性基体可用于此设备。产生高磁场梯度如≥5000T/m梯度的磁性基体是优选的。
附图说明
图1显示磁性基体元件的结构的一些实例。
图2为显示进行连续分离方法的磁场梯度增强离心设备的一个实施方案的示意图。
具体实施方式
本发明提供一种对包含磁性颗粒的固-液混合物进行连续或分批离心固-液分离的设备,其中所述设备的性能通过存在磁场梯度增强。
本发明的设备使固-液混合物同时经受离心和磁场梯度。在这些梯度于其中进行分离的设备内起作用并因此使磁性颗粒在设备内经历移动的意义上,这些梯度可以为定域磁场梯度。磁场梯度对固-液混合物中存在的磁性颗粒提供磁力。磁性颗粒可以为铁磁性、亚铁磁性、反铁磁性、顺磁性或抗磁性颗粒。旋转的磁性基体产生磁场梯度,而由磁场梯度提供的磁力将磁性颗粒吸引到磁性基体。磁场梯度优选≥100T/m。高磁场梯度如≥5000T/m的梯度是最优选的。
磁性基体可由任何在磁场中提供磁场梯度的材料构成。通常由在放入磁场时提供磁场梯度的材料构成,如钢线、钢棒、钢棉和/或钢筛网。磁性基体可包括一个元件,所述元件包括一组磁线,或可包括相同或不同的多个此类元件。元件可以多种结构布置于容器内。在一个实施方案中,该元件是平面的,并且平面与容器的轴线垂直。
图1显示基体的元件可采取的一些结构的实例。图1a显示包括从中心径向向外延伸的线或棒的基体。图1b显示包括径向向外延伸的线和呈同心圆的线的基体。图1c显示包括向外延伸的支化线的基体。图1d显示包括从中心向外延伸的弯线的基体。图1e显示包括筛网的基体。线的形状和尺寸可以变化。基体的元件直径可相对于容器的直径改变。在一个实施方案中,可使基体的元件构成为使它们从容器的中心(例如轴线)延伸到容器的边缘(例如内壁)。作为磁性基体元件的线可以独立或者可被支撑。在另一个实施方案中,元件非平面状,而是可以为其轴线沿着容器轴线的锥形。
因此,所述设备也可以包括提供作用于磁性基体的磁场的装置。提供磁场的装置可包括其内磁性基体旋转的容器的内部或外部的螺线管或永久磁铁。
磁性基体在容器内旋转,并且在容器内加入固-液混合物。其内磁性基体旋转的容器可以为具有旋转部件的离心机,在此情况下,离心机的旋转部件和旋转的磁性基体均有贡献于磁性颗粒所受的离心力。本文所述术语“离心机”包括任何具有旋转转子、旋转螺杆或提供离心力的其它旋转部件的容器。它可包括提供离心力的滗析器、分离器和水力旋流器。在此情况下,可将磁性基体固定到离心机的转子、螺杆或轴上,并以与离心机相同的频率旋转,或者连接到具有单独驱动的单独的轴上,以便独立调节旋转频率。可用离心机和磁性基体的旋转频率差作为参数调节分离过程的操作。术语“离心机”也包括具有产生固-液混合物螺旋运动和离心力的切向(例如径向)入口的静态离心机。
或者,其内磁性基体旋转的容器可以为静止的容器,即容器不旋转。在这种情况下,旋转的磁性基体为作用于磁性颗粒的离心力的唯一来源。
固-液混合物中的磁性颗粒可以为铁磁性、亚铁磁性、反铁磁性、顺磁性或抗磁性颗粒。固-液混合物也可用铁磁性或顺磁性颗粒接种以促进分离。在使用“官能化磁性球粒”时,即在磁性颗粒结合到要被分离的目标固体时,本发明设备也有效。高价值目标物质,如昂贵的生物物质,可结合到此类磁性颗粒,以促进分离过程和减少昂贵生物物质的损失。“官能化磁性球粒”为通过用已知结合到目标生物物质的生物或化学实体处理其表面而“官能化”的磁性颗粒。在结合目标物质的“官能化磁性球粒”被分离后,一个分离步骤可使目标物质从官能化磁性球粒分离。磁性球粒可重新利用。本文所用“磁性颗粒”包括本段落以上提到的所有类型磁性物质。
由于磁场作用于基体,磁性颗粒被吸引并附着到磁性基体上。由于离心力,磁性颗粒径向向外移向容器的内壁或其它边缘。磁性颗粒径向向外移动并且聚集在磁性基体的外端导致磁性基体自身清洁,以便能够收集其它磁性颗粒。
在旋转的磁性基体为唯一离心力源时,由于磁性颗粒附着到旋转的磁性基体上,因此基本上只有磁性颗粒受到离心力。这些磁性颗粒向外移向能够收集它们的容器的内壁或其它边缘。具有静止容器和为唯一离心力源的旋转磁性基体的设备尤其适用于从固-液混合物分离磁性颗粒,其中将所含的磁性颗粒回收,并且将非磁性颗粒认作为废产物的部分。
设备包含入口,可通过入口加入固-液混合物。可将固-液混合物轴向或切向(即径向)加入容器。固-液混合物可视需要包含絮凝剂、表面活性剂和溶胶。固-液混合物通常具有很多与悬浮液相同的性质。
在一个实施方案中,将设备设计成能够使分离作为连续过程进行。可将固-液混合物通过入口连续加入其内磁性基体旋转的容器。其中还提供了在磁性基体外端收集磁性颗粒和从容器通过产物出口移除这些磁性颗粒的装置。固-液混合物中任何非磁性颗粒不被吸引到磁性基体,而是随液体流动通过容器,并从容器随废物流中的液体排出废物出口。
在连续运行设备中,将固-液混合物通过进料入口加入容器的一端,并且将固-液混合物的残余物在磁性颗粒已自其分离后从容器移除。残余物可以只为液体,或者可以为液体和非磁性颗粒的混合物。在此实施方案中,所述设备进一步包括进料入口,可通过所述进料入口将固-液混合物连续加入容器中;产物出口,可通过所述产物出口使被分离的磁性颗粒从容器排出;和废产物出口,固-液混合物的残余物在已通过旋转的磁性基体后可通过所述废产物出口从容器出口排出。
在进行连续分离方法的不同实施方案中,容器自身没有旋转部件,而旋转的磁性基体为唯一的离心力源。在这样一个实施方案中,容器包含一套两个不同直径的同心正圆形圆筒,其中较小直径的圆筒壁包围一个圆柱形区域,并且此组圆筒的两个壁包围具有圆柱壳形或环形环区域。旋转的磁性基体的各元件从容器的轴线延伸通过较小直径圆筒壁中的开口,提供开口使各元件伸入圆柱壳区域。
在此实施方案中,设备也可包括进入圆柱壳区域一端的缓冲溶液入口。固-液混合物的进料入口在与缓冲溶液入口相同的容器末端进入较小直径圆筒内的圆柱形区域。废物出口在较小直径圆筒内的圆柱形区域末端离开,这一端与其中进料入口进入的一端相对。产物出口在圆柱壳区域的末端离开,这一端与其中缓冲溶液入口进入的一端相对。
进行连续方法并且其中旋转的磁性基体为作用于固-液混合物的唯一离心力源的设备的此实施方案的示意图显示于图2中。图2a显示其中布置较小直径圆筒的正圆形圆筒形式的容器1的垂直截面图。较小直径圆筒的垂直壁2包围一个内部圆柱形空间,并且壁2和壁3包围一个外部圆柱壳。旋转的磁性基体4结合到沿着容器的轴线的轴杆5上。使轴杆5旋转的装置如箭头6所示提供。使轴杆5旋转的装置可包括例如连接到轴杆的马达。所述设备还包括提供作用于磁性基体的磁场的装置,标注的箭头B指示磁场的存在和方向。磁场可指向其它方向,但优选平行于容器的轴线,或者具有平行于容器轴线的主要分量。
图2b为显示旋转磁性基体4的结构的水平横截面图。在此例中,磁性基体只包含一种类型的元件,为所示的线或棒,但可将相似或不同的元件连接到轴杆5上并由轴杆5旋转。对元件所示的结构与图1a所示的结构类似,即线或棒从中心径向向外延伸。线或棒从轴杆延伸通过壁2中的开口,并且伸入外部圆柱壳。
可将固-液混合物通过入口连续加入内部圆筒,如箭头7所示。固-液混合物包含显示为具有白色中心区的球粒的磁性颗粒8和显示为具有黑色线纹的球粒的非磁性固体9及液体。固-液混合物由于施加的压力和重力从内部圆筒顶部流向底部。由于在磁性基体的磁场梯度和所产生的磁力,磁性颗粒被吸引并附着到磁性基体上。高磁场梯度是优选的,因为它们产生较大力并且使磁性颗粒更强力附着到磁性基体上。由于由旋转的磁性基体提供的离心力,磁性颗粒径向向外移向壁2。它们通过壁2中的开口进入外部圆柱壳。
在此实施方案中收集和移除磁性颗粒的方式由液相缓冲溶液提供。液相缓冲溶液如箭头10所示通过入口进入外部圆柱壳。液相缓冲溶液由于施加的压力和重力从圆柱壳的顶部流向底部。在磁性颗粒通过壁2中的开口并进入外部圆柱壳时,它们被夹带到缓冲溶液流中,并且如箭头11所示通过产物出口从设备排出。应选择缓冲溶液以便促进磁性颗粒从溶液分离。在磁性颗粒为结合目标产物的官能化磁性球粒时,使目标产物从磁性球粒分离,并重新使用磁性球粒。非磁性颗粒不被吸引到磁性基体,基本上不受到离心力,而是继续随固-液混合物中的液体流动通过内部圆筒,并且如箭头12所示从内部圆筒随液体通过废物出口排出。
可用本发明的设备选择性分离,即从非磁性颗粒和液体分离磁性颗粒。也可用所述设备使磁性颗粒从液体分离或将不同大小的磁性颗粒分级。高梯度磁场产生高磁力,高磁力允许分离较小的磁性颗粒,因此能够用较小颗粒作为磁性球粒。由存在磁场产生的聚集作用促进此分离。可由本发明的设备分离磁性纳米颗粒。
适用于本发明的其它分离设备和使用方法描述于2005年2月17日同时提交的美国申请SN11/060,001和SN11/060,004,各申请全文通过引用结合到本文中。

Claims (8)

1.一种用于离心分离包含磁性颗粒的固-液混合物的设备,所述设备包括(a)在内部进行离心的容器,其在轴上旋转,(b)在容器内的轴上旋转的磁性基体和(c)在所述容器外部提供磁场梯度的源,这些磁场梯度于设备内起作用;
其中所述容器与磁性基体在相同或不同的轴上旋转;
其中所述磁性基体由钢线构成,钢线的形状选自同心圆、支化线、弯线、筛网和锥形中的任一种;和
其中所述设备包括(i)进料入口,通过所述进料入口将所述固-液混合物加入所述容器中;(ii)产物出口,通过所述产物出口使被分离的所述磁性颗粒从所述容器排出;和(iii)废产物出口,所述固-液混合物的残余物在已通过旋转的所述磁性基体后通过所述废产物出口从所述容器出口排出。
2.根据权利要求1的设备,所述旋转的磁性基体包括一组磁性线。
3.根据权利要求1的设备,其中所述容器和所述磁性基体以不同速度旋转。
4.根据权利要求1的设备,其中所述容器具有壁并且所述磁性基体延伸或突出通过在该壁中的开口。
5.一种用于离心分离包含磁性颗粒的固-液混合物的设备,所述设备包括(a)在内部进行离心的容器,该容器在轴线上旋转并具有壁,(b)在容器内的轴上旋转的并吸引磁性颗粒的磁性基体和(c)在所述壁的开口,所述磁性颗粒从所述磁性基体通过该开口,
其中所述容器与磁性基体在相同或不同的轴上旋转;并且
其中所述磁性基体由钢线构成,钢线的形状选自同心圆、支化线、弯线、筛网和锥形中的任一种。
6.根据权利要求5的设备,所述磁性基体包括一组磁性线。
7.根据权利要求5的设备,其中所述容器是能够旋转的并且所述容器和所述磁性基体以不同速度旋转。
8.根据权利要求5的设备,其中所述磁性基体突出通过在该壁中的开口。
CN201310372937.7A 2005-02-17 2006-02-17 用于磁场梯度增强离心的设备 Expired - Fee Related CN103433135B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US65370105P 2005-02-17 2005-02-17
US60/653701 2005-02-17
US60/653,701 2005-02-17
CNA2006800127966A CN101160176A (zh) 2005-02-17 2006-02-17 用于磁场梯度增强离心的设备

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CNA2006800127966A Division CN101160176A (zh) 2005-02-17 2006-02-17 用于磁场梯度增强离心的设备

Publications (2)

Publication Number Publication Date
CN103433135A CN103433135A (zh) 2013-12-11
CN103433135B true CN103433135B (zh) 2016-09-21

Family

ID=36580405

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201310372937.7A Expired - Fee Related CN103433135B (zh) 2005-02-17 2006-02-17 用于磁场梯度增强离心的设备
CNA2006800127966A Pending CN101160176A (zh) 2005-02-17 2006-02-17 用于磁场梯度增强离心的设备

Family Applications After (1)

Application Number Title Priority Date Filing Date
CNA2006800127966A Pending CN101160176A (zh) 2005-02-17 2006-02-17 用于磁场梯度增强离心的设备

Country Status (6)

Country Link
US (1) US8075771B2 (zh)
EP (1) EP1848539A1 (zh)
JP (2) JP5670012B2 (zh)
KR (1) KR101334454B1 (zh)
CN (2) CN103433135B (zh)
WO (1) WO2006089187A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006107288A2 (en) * 2004-02-17 2006-10-12 E.I.Dupont De Nemours And Company Magnetic field enhanced cake-filtration solid-liquid separations
US8066877B2 (en) 2005-02-17 2011-11-29 E. I. Du Pont De Nemours And Company Apparatus for magnetic field and magnetic gradient enhanced filtration
US8075771B2 (en) 2005-02-17 2011-12-13 E. I. Du Pont De Nemours And Company Apparatus for magnetic field gradient enhanced centrifugation
JP5532196B2 (ja) * 2008-08-12 2014-06-25 独立行政法人産業技術総合研究所 高勾配磁気分離用フィルター
FI126460B (en) 2013-05-31 2016-12-30 Outotec Finland Oy Filter element, filter apparatus and method for making the filter element
JP2016013522A (ja) * 2014-07-02 2016-01-28 株式会社東芝 水処理システムおよび水処理方法
CN104689906B (zh) * 2015-03-18 2016-09-07 延边大学 利用电磁场的柱内分离微尺度磁性物质的方法
JP6662387B2 (ja) * 2015-11-12 2020-03-11 ソニー株式会社 磁気記録用磁性粉の分別方法、磁気記録用磁性粉の分別装置、および磁気記録媒体の製造方法
US20220260557A1 (en) * 2018-07-27 2022-08-18 Veravas, Inc. Methods for depletion and enrichment
CN110605179B (zh) * 2019-10-16 2024-06-14 中南大学 一种高梯度磁选实验装置
CN111141133A (zh) * 2020-01-16 2020-05-12 江西理工大学 一种岩石物料输送、烘干、除铁一体化装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4116839A (en) * 1976-02-18 1978-09-26 Klockner-Humboldt-Deutz Aktiengesellschaft High intensity magnetic separator for wet separation of magnetizable particles of solids
CN88103219A (zh) * 1988-06-02 1988-11-30 中国人民解放军空军第四研究所 超强永磁快速沉降吸盘
CN1297379A (zh) * 1998-04-16 2001-05-30 小嶋春夫 混入流体的磁性粒子的分离方法及分离系统和分离装置

Family Cites Families (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US628118A (en) * 1898-09-14 1899-07-04 John Rommel Necktie-fastener.
US1527069A (en) 1923-09-06 1925-02-17 Jr Orrin B Peck Process or method of and apparatus for magnetic centrifugal separation
US1527070A (en) 1923-10-03 1925-02-17 Jr Orrin B Peck Magnetic centrifugal separator
US2648636A (en) 1951-03-30 1953-08-11 Rca Corp Method and apparatus for separation of colloids in a colloid solution
NL256788A (zh) 1958-09-12
US3534902A (en) 1969-02-07 1970-10-20 Lafayette E Gilreath Combined centrifugal and magnetic separator mechanism
US3696932A (en) 1970-09-30 1972-10-10 Pall Corp Disposable filter assembly
FR2128128A3 (en) 1971-03-05 1972-10-20 Lalanne Jean Pierre Magnetic separator - uses permanent magnet to remove ferrous impurities from liquid
DE2138361C3 (de) * 1971-07-31 1974-03-07 Preussag Ag, 3000 Hannover Verfahren zur Trennung magnetisierbarer Teilchen
US3902994A (en) * 1973-05-16 1975-09-02 Emanuel Maxwell High gradient type magnetic separator with continuously moving matrix
US4017385A (en) 1973-07-17 1977-04-12 Peter Harlow Morton Magnetic separator systems
JPS5139456A (en) 1974-09-30 1976-04-02 Mitsubishi Heavy Ind Ltd Jiseibutsushitsuno bunrihohooyobi sochi
US4144163A (en) 1975-06-05 1979-03-13 Sala Magnetics, Inc. Magnetodensity separation method and apparatus
JPS598731Y2 (ja) * 1976-05-28 1984-03-19 日立金属株式会社 磁気フイルタ−
JPS5348971A (en) * 1976-10-18 1978-05-02 Nippon Atom Ind Group Co Ltd Method and apparatus for removing minute solid matters
US4166788A (en) 1976-12-08 1979-09-04 Druz Efim L Method of concentrating magnetic ore and magnetic centrifugal separator for effecting the method
JPS60106B2 (ja) 1977-03-04 1985-01-05 日本電気株式会社 磁気分離装置
JPS54105371A (en) * 1978-02-06 1979-08-18 Nec Corp Magnetic separator
US4279748A (en) 1978-03-08 1981-07-21 Inoue-Japax Research Incorporated High-field gradient magnetic separator
US4238326A (en) 1979-09-21 1980-12-09 Wolf Bernard A Fluid processor apparatus and method
JPS5888043A (ja) 1981-11-17 1983-05-26 Ishikawajima Harima Heavy Ind Co Ltd 磁性粉粒体の分離装置
JPS5912722A (ja) * 1982-07-12 1984-01-23 Daido Steel Co Ltd 磁気分離装置
GB2153707B (en) 1984-02-10 1987-04-29 Frederick Thomas Barwell Electromagnetic rotary separator
JPS61106519A (ja) 1984-10-30 1986-05-24 Nippon Zenyaku Kogyo Kk 生理活性物質の精製方法及びそれに使用する吸着用担体並びに装置
JPS6279861A (ja) 1985-10-01 1987-04-13 Jeol Ltd 磁場と遠心力場を用いた連続流体分離装置
US4784758A (en) 1986-08-27 1988-11-15 Engelhard Corporation Process for removing magnetic particles from a suspension of solids in a liquid
EP0318913B1 (en) * 1987-11-30 1994-03-30 Nippon Steel Corporation Method of washing off magnetically separated particles
US5183638A (en) 1989-12-04 1993-02-02 Kabushiki Kaisha Nittec Automatic immunity analysis apparatus with magnetic particle separation
US5843701A (en) * 1990-08-02 1998-12-01 Nexstar Pharmaceticals, Inc. Systematic polypeptide evolution by reverse translation
US6063755A (en) * 1991-02-14 2000-05-16 The General Hospital Corporation Intestinal trefoil proteins
US5244580A (en) 1992-01-10 1993-09-14 Li Chung Lee Method of removal and recovery of oil and grease from wastewater
US5703047A (en) * 1992-09-21 1997-12-30 Board Of Regents, The University Of Texas System Methods and treatments for corneal healing with growth factors
US5565105A (en) 1993-09-30 1996-10-15 The Johns Hopkins University Magnetocentrifugation
CA2123328A1 (en) 1993-12-13 1995-06-14 Kimberly-Clark Worldwide, Inc. Magnetic deinking
US5478858A (en) * 1993-12-17 1995-12-26 The Procter & Gamble Company 5-(2-imidazolinylamino) benzimidazole compounds useful as alpha-2 adrenoceptor agonists
US6525018B1 (en) * 1999-05-17 2003-02-25 The General Hospital Corp. Treating eye disorders using intestinal trefoil proteins
JPH09276624A (ja) 1996-04-19 1997-10-28 Mitsubishi Heavy Ind Ltd 磁気フィルタ装置
WO1998005430A1 (de) 1996-08-05 1998-02-12 Schering Aktiengesellschaft Vorrichtung und verfahren zur abtrennung magnetischer materialien aus pharmazeutischen zubereitungen, deren ausgangs- oder zwischenprodukten sowie mit hilfe dieser vorrichtung hergestellte mittel
US20030186882A1 (en) * 2001-07-31 2003-10-02 Podolsky Daniel K. Methods and compositions for treating and preventing distal bowel lesions
US20030185838A1 (en) * 2001-11-28 2003-10-02 Podolsky Daniel K. Methods and compositions for treating lesions of the respiratory epithelium
US5958205A (en) 1997-05-21 1999-09-28 Vipur Apparatus for a fluid filtration system
WO2000000293A1 (de) 1998-06-26 2000-01-06 Evotec Biosystems Ag Elektrodenanordnungen zur erzeugung funktioneller feldbarrieren in mikrosystemen
JP2002519183A (ja) * 1998-06-29 2002-07-02 エボテック バイオシステムズ アクチェン ゲゼルシャフト マイクロシステム内の粒子を操作する方法と装置
US6150182A (en) * 1998-11-30 2000-11-21 Cassaday; Michael M. Method for separation of components in a biochemical reaction utilizing a combination of magnetic and centrifugal processes
JP2000312838A (ja) 1999-04-28 2000-11-14 Hitachi Ltd 磁気分離装置
US6273265B1 (en) 1999-07-13 2001-08-14 Bechtel Corporation Magnetically enhanced gravity separator
WO2002041837A2 (en) * 2000-11-22 2002-05-30 Rxkinetix, Inc. Treatment of mucositis
EP1341817A2 (en) * 2000-12-08 2003-09-10 Novo Nordisk A/S Tff peptides
US20040171544A1 (en) * 2001-04-24 2004-09-02 Barker Nicholas P. Trefoil domain-containing polypeptides and uses thereof
US7538082B2 (en) * 2001-04-24 2009-05-26 The General Hospital Corporation Methods and compositions for treating oral and esophageal lesions
US20030186880A1 (en) * 2002-03-26 2003-10-02 Podolsky Daniel K. Combination therapy using trefoil peptides
WO2002085402A1 (en) * 2001-04-24 2002-10-31 The General Hospital Corporation Methods and compositions for treating oral and eosophageal lesions
US20030105016A1 (en) * 2001-09-06 2003-06-05 Podolsky Daniel K. Methods and compositions for treating vaginal, cervical, and uterine epithelial lesions
US20060189526A1 (en) * 2002-04-24 2006-08-24 Podolsky Daniel K Compositions containing an intestinal trefoil peptide and a mucoadhesive
JP2004534801A (ja) * 2001-06-14 2004-11-18 ノボ ノルディスク アクティーゼルスカブ Tff2ペプチドによる粘膜修復
AU2002318935A1 (en) * 2001-07-31 2003-02-17 The General Hospital Corporation Methods and compositions for treating and preventing distal bowel lesions
JP2005508937A (ja) * 2001-10-05 2005-04-07 ザ ジェネラル ホスピタル コーポレーション 皮膚病変を治療するための方法および組成物
US20030185839A1 (en) * 2001-10-05 2003-10-02 Podolsky Daniel K. Methods and compositions for treating dermal lesions
US6464863B1 (en) 2001-10-10 2002-10-15 Arvin Technologies, Inc. Transmission fluid filter assembly
JP2003144973A (ja) 2001-11-09 2003-05-20 Horyo Corp 遠心分離装置
JP2005532988A (ja) * 2001-11-28 2005-11-04 ザ ジェネラル ホスピタル コーポレーション 呼吸上皮の病変を治療するための方法および組成物
US7651619B2 (en) 2001-12-28 2010-01-26 Danmarks Tekniske Universitet (Dtu) Filtration method and apparatus
JP4210831B2 (ja) * 2002-03-27 2009-01-21 豊菱産業株式会社 液体処理装置
US20060188471A1 (en) * 2002-10-31 2006-08-24 Podolsky Daniel K Methods of treating epithelial lesions
JP2005021801A (ja) * 2003-07-02 2005-01-27 Nakajima Masatoshi 超伝導磁界を用いた物質分離回収方法および物質分離回収装置
WO2006107288A2 (en) 2004-02-17 2006-10-12 E.I.Dupont De Nemours And Company Magnetic field enhanced cake-filtration solid-liquid separations
US20050261479A1 (en) 2004-04-29 2005-11-24 Christian Hoffmann Method for purifying and recovering silk proteins using magnetic affinity separation
DE102004034541B3 (de) * 2004-07-16 2006-02-02 Forschungszentrum Karlsruhe Gmbh Hochgradienten-Magnetabscheider
US8075771B2 (en) 2005-02-17 2011-12-13 E. I. Du Pont De Nemours And Company Apparatus for magnetic field gradient enhanced centrifugation
US8066877B2 (en) 2005-02-17 2011-11-29 E. I. Du Pont De Nemours And Company Apparatus for magnetic field and magnetic gradient enhanced filtration

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4116839A (en) * 1976-02-18 1978-09-26 Klockner-Humboldt-Deutz Aktiengesellschaft High intensity magnetic separator for wet separation of magnetizable particles of solids
CN88103219A (zh) * 1988-06-02 1988-11-30 中国人民解放军空军第四研究所 超强永磁快速沉降吸盘
CN1297379A (zh) * 1998-04-16 2001-05-30 小嶋春夫 混入流体的磁性粒子的分离方法及分离系统和分离装置

Also Published As

Publication number Publication date
JP5670012B2 (ja) 2015-02-18
US8075771B2 (en) 2011-12-13
WO2006089187A1 (en) 2006-08-24
US20060180538A1 (en) 2006-08-17
CN101160176A (zh) 2008-04-09
JP2008529795A (ja) 2008-08-07
KR101334454B1 (ko) 2013-11-29
EP1848539A1 (en) 2007-10-31
KR20070107127A (ko) 2007-11-06
JP2013237047A (ja) 2013-11-28
CN103433135A (zh) 2013-12-11

Similar Documents

Publication Publication Date Title
CN103433135B (zh) 用于磁场梯度增强离心的设备
CN1917959B (zh) 磁场和磁场梯度增强的离心固-液分离
WO2017000757A1 (zh) 具有双重分离系统的超级砂磨机
CN105396650A (zh) 无筛网式智能纳米研磨系统
JP2006212489A (ja) 媒体攪拌型粉砕装置を用いる粉砕方法
CN106040443B (zh) 超高速磁悬浮固液分离装置
CN103252124A (zh) 一种用于核桃浆料过滤的转笼式过滤器
CN106076510A (zh) 内置式动态离心分离装置
CN2649181Y (zh) 高效磁力脱水槽
CN102626671B (zh) 磁场选矿方法及其选矿设备
CN204996494U (zh) 无筛网式智能纳米研磨系统
CN105214790B (zh) 智能纳米动态离心旋转分离装置
CN207655243U (zh) 一种水性环保涂料卧式砂磨机
CN202078963U (zh) 磁场选矿设备
CN210411163U (zh) 适用于水合物出砂实验的立式砂水分离装置
CN206304917U (zh) 一种简单实用的离心机
RU2389555C1 (ru) Лабораторная бисерная мельница
CN205815932U (zh) 超高速磁悬浮固液分离装置
CN214347258U (zh) 一种旋流器
CN206509218U (zh) 筛分装置
JPS6040595B2 (ja) 脱水機
CN109731375A (zh) 一种悬挂式机械旋流浓缩器
JP2001323303A (ja) 金属粉末の製造方法
JPS58163457A (ja) 粉体選別装置
JPS5959260A (ja) 粉体選別装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1191896

Country of ref document: HK

C14 Grant of patent or utility model
GR01 Patent grant
REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1191896

Country of ref document: HK

CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160921

Termination date: 20190217

CF01 Termination of patent right due to non-payment of annual fee