CN1034198C - 具双层硅化物结构的半导体器件 - Google Patents

具双层硅化物结构的半导体器件 Download PDF

Info

Publication number
CN1034198C
CN1034198C CN93106512A CN93106512A CN1034198C CN 1034198 C CN1034198 C CN 1034198C CN 93106512 A CN93106512 A CN 93106512A CN 93106512 A CN93106512 A CN 93106512A CN 1034198 C CN1034198 C CN 1034198C
Authority
CN
China
Prior art keywords
silicide
semiconductor device
temperature
titanium
tantalum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CN93106512A
Other languages
English (en)
Other versions
CN1081283A (zh
Inventor
白寿铉
崔珍奭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of CN1081283A publication Critical patent/CN1081283A/zh
Application granted granted Critical
Publication of CN1034198C publication Critical patent/CN1034198C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/53204Conductive materials
    • H01L23/53271Conductive materials containing semiconductor material, e.g. polysilicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76886Modifying permanently or temporarily the pattern or the conductivity of conductive members, e.g. formation of alloys, reduction of contact resistances
    • H01L21/76889Modifying permanently or temporarily the pattern or the conductivity of conductive members, e.g. formation of alloys, reduction of contact resistances by forming silicides of refractory metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

一种具双层硅化物结构的半导体器件及其制造方法在后续的热处理过程中均质地保持硅化钛表面以改进硅化钛在高温下的稳定性。双层硅化物是多晶硅上淀积硅化物形成温度为预定的第一温度的金属形成第一金属硅化物层,并淀积硅化物形成温度为低于第一温度的第二温度的金属形成第二金属硅化物层,从而大大改善了由硅化钛构成的传统半导体器件在后续的热处理过程中出现的不稳定性,避免了晶粒生长型性变形和凝聚等现象。

Description

本发明涉及一种MOS(金属氧化物半导体)存储器,更具体地说,涉及硅化钛的高温稳定性有所改善的一种半导体器件,而硅化钛在DRAM(动态随机存储器)中是用作多晶硅化物(polycide)的选通线的。
在半导体器件中,通常是利用如硅化钛之类的高熔点金属硅化物设计出电阻低的内部布线材料的。
硅化钛是将高熔点金属的钛(Ti)与硅(Si)结合起来制取的。硅化钛的导电性能优异,耐热性能突出,因此硅化钛有利于进行微结构处理,因而适宜用作高集成度的半导体存储器件。硅化钛电阻低,所以广泛应用于自对准硅化物(SALICIDE)(参看1990年12月的IEDM9—12期,第249—252页)。
图1A、1B和1C举例说明了按传统的方法制造硅化钛的一个例子。在图1A所示的工序中,在大约920℃温度下通过氧化在比电阻率约为5—25欧姆厘米的单晶硅衬底1上生长出厚约1,000埃的二氧化硅(SiO)层2。然后,在250毫乇大气、大约625℃温度下通过低压化学汽相淀积法(LPCVD)使硅烷(SiH4)热分解,从而在二氧化硅层2的上部淀积出厚约2,500埃的多晶硅层3。淀积出多晶硅层3之后,用离子注入法将磷(P)注入多晶硅层3中。这时,离子注入能量约为30千电子伏特,注入剂量约有5×1015离子/平方厘米。为避免多晶硅层3的表面因离子注入而损伤,在大约900℃下在炉中进行热处理30分钟。热处理完毕之后,用溅射法在多晶硅3的上部分淀积厚约400—600埃的钛,再对得出的结构在大约800℃的氩(Ar)气氛中进行快速热处理,历时约20秒钟。快速热处理使多晶硅3与钛4相互进行反应,从而形成硅化钛5,如图1B中所示。
硅化钛的熔点约为1540℃,即换算成绝对温度为1813°K,而在814℃下硅化钛开始出现高温不稳定性,这个温度为该绝对温度的0.6倍。本技术领域的行家们都知道,高熔点金属硅化物开始出现不稳定的既定温度是通过其熔点的绝对温度乘以0.6求出的。硅化钛的熔点随其处理条件的不同略有变异,但硅化钛通常是在900℃开始出现不稳定。
因此,在以后900℃或更高的温度下进行的热处理的过程中,硅化钛中的晶粒生长,而且产生塑性变形。与此同时,由于硅外延生长,均质薄膜中产生凝聚现象,从而使薄膜不连续,形成半岛状的微结构。
换句话说,如图1C的结构6中所示,硅化钛成了呈半岛状的不连续薄膜,从而使多晶硅3的表面露出来。由于硅化钛的结构不连续,内部布线的电阻显著增加。上面说过,布线的电阻增加对半导存储器件的工作特性有不利的影响,同时降低工作的可靠性。
因此,本发明的目的是提供一种在以后的高温热处理过程中能匀质维持硅化钛的表面的半导体器件及其制造方法。本发明的另一个目的是提供一种供改善硅化钛因传统方法所引起的高温不稳定性的半导体器件及其制造方法。
为达到本发明的上述目的,本发明提供一种具双层硅化物结构的半导体器件,该器件包括:单晶结构预定的硅衬底;氧化物层,形成在单晶硅衬底的整个表面上;多晶硅层,生长在氧化物层的整个表面上;第一金属硅化物层,通过在多晶硅层的上部分淀积金属而形成,该金属硅化物形成温度为预定的第一温度;和第二金属硅化物层,通过在硅化物形成温度为第一温度的金属的上部分淀积另一金属而形成,该另一金属硅化物形成温度为低于第一温度的第二温度。
为达到本发明的另一个目的,本发明提供制造具双层硅化物结构的半导体器件的一种方法,该方法包括下列步骤:在单晶硅衬底的整个表面形成一层氧化物层;在氧化物层的整个表面上生长出一层多晶硅层;在多晶硅层的上部淀积上其硅化物形成温度为预定的第一温度的金属,由此形成第一金属硅化物层;在硅化物形成温度为第一温度的金属的上部淀积上其硅化物形成温度为低于第一温度的第二温度的金属,由此形成第二金属硅化物层。
参看附图详细说明本发明的一个实施例,由此可以更清楚地了解本发明的上述目的和其它好处。附图中:
图1A至1C展示用传统方法制造半导体器件过程的剖视图;
图2A至2展示本发明半导体器件制造过程一个实施例的剖视图;
图3A至3B展示本发明半导体器件制造过程另一个实施例的剖视图;
图4是传统方法和本发明的半导体器件在薄层电阻方面的比较表。
图2A和2B示出了本发明双层硅化物制造过程的一个实施例。
图2A中,在920℃电阻约为5—25欧姆厘米的单晶硅衬底7上通过热氧化生长出厚约1000埃的二氧化硅(SiO2)层8。在大约625℃和250毫乇大气下通过低压化学汽相淀积法(LPCVD)热分解硅烷(SiH4)从而在二氧化硅层8的上部淀积出厚2,500埃的多晶硅层9之后,通过离子注入法往多晶硅层9中注入磷(P)。这时,离子注入能量约30keV,离子注入剂量约5×1015离子/平方厘米。为防止多晶硅层9的表面因离子注入而损伤,用经稀释的HF溶液进行腐蚀,该HF溶液是将氟化氢(HF)按1∶100的比例溶解在水中制取的。腐蚀之后,用溅射法在多晶硅层9的上部淀积厚约100—200埃的钽10,再用溅射法在钽10上淀积厚约400—600埃的钛11。钛11淀积完毕之后,在800℃的氩(Ar)气氛中对所得出的结构进行快速热处理,历时20秒钟。通过此快速热处理,如图2B所示,多晶硅9与钽10反应从而形成硅化钽(TaSi2)12,同时多晶硅9与钛11反应从而形成硅化钛(TiSi2)13。
图3A和3B示出了本发明双层硅化物制造过程的另一个实施例。
图3A中,在920℃电阻率约为5—25欧姆厘米的单晶硅衬底14上通过热氧化生长出厚约1000埃的二氧化硅(SiO2)层15。通过LPCVD在625℃和约250毫乇大气下热分解硅烷SiH4,从而在二氧化硅层15的上部淀积厚约2,500埃的多晶硅层16之后,用离子注入法往多晶硅层16中注入磷(P)。这时,离子注入能量约为30千电子伏特,离子注入剂量为5×1015离子/平方厘米。为避免多晶硅层16的表面因离子注入而损伤,用经稀释的HF溶液进行腐蚀,该HF溶液是将氟化氢(HF)以1∶00的比例溶解入水中制取的。图3B中,腐蚀完毕时,用溅射法采用由硅化钽组成的复合靶在多晶硅层16上部分淀积厚约200—400埃的硅化钽17,再用溅射法采用由硅化钛构成的复合靶在硅化钽17上淀积存约800—1200埃的硅化钛18。硅化钛18淀积完毕之后,在800℃的氩(Ar)气氛中对所得出的结构进行快速热处理,历时20秒钟。这个快速热处理使非晶态的双层硅化物具图3B所示的晶体结构。
硅化钽的溶点为2,200℃,即换算成绝对温度为2,473°K。该绝对温度的0.6倍为1483.8°K,而硅化钽在1210.8℃开始出现高温不稳定性,这个温度比硅化钛开始不稳定的814℃高得多。由硅化钽和硅化钛构成的双层硅化构结构,即使以后的热处理是在900℃或更高的温度下进行,也可避免传统方法中出现的晶粒生长、塑性变形和凝聚等现象。
我们测定了本发明由硅化钽和硅化钛构成的双层硅化物结构的高温稳定性并将其与传统方法的硅化钛加以比较,结果如图4所示。图4的表是在氮(N2)气氛中和分别在850℃、900℃、950℃和1000℃下对本发明的双层硅化物和传统方法的硅化物层进行30分钟热处理之后编制的。从图4中可以看出,在传统方法中,硅化钛在950℃下开始凝聚、从而薄层电阻大大提高了。更详细地说,薄层电阻在850℃下为2.2Ω/□,但在950℃下为5.3℃Ω/□,即增加了两倍。另外,在1000℃下的薄层电阻非常高,达2940Ω/□。但在钽和钛的双层硅化物结构中,可以看到薄层电阻的升幅微不足道,在1000℃下的薄层电阻为5.3Ω/□,相比之下,在850℃下的薄层电阻为3.8Ω/□。
虽然本发明的一个实施例中采用硅化钽作为下面的硅化物层,但在本发明的另一个实施例中可以采用硅化钼、硅化钨等作为下面的硅化物层,其熔点比用作上面的硅化物层的硅化钛高。
硅化钨和硅化钼的熔点分别为2165℃和1980℃,换算成绝对温度分别为2438°K和2253°K。这些绝对温度的0.6倍为1462.8°K和1351.8°K。因此硅化钨在1189.8℃开始出现高温不稳定性,硅化钼在1078.8℃开始出现高温不稳定性。
这些温度都比硅化钛因温度开始出现不稳定性的814℃高得多。因此在900℃或更高温度下进行的后处理过程中可以防止凝聚现象。
如上所述,由于本发明具双层硅化物的半导体器件大大改善了在以后的热处理中出现的高温不稳定性,因而避免了晶粒生长、塑性变形和凝聚等现象,从而改善了半导体器件的工作特性。
虽然本发明特别是就本发明的一些特殊实施例进行展示和说明的,但本技术领域的行家们都知道,在不脱离本说明书所附权利要求书中所述的本发明范围的前提下是可以对这些实施例的形式和细节进行种种修改的。

Claims (6)

1.一种具双层硅化物结构的半导体器件,包括:
一个具预定单晶结构的硅衬底;
一氧化物层,形成在所述单晶硅衬底的整个表面上;
一多晶硅层,生长在所述氧化物层的整个表面上;
一钽或钼的硅化物层,在所述多晶硅层的上部部分;其特征在于,还包括
一钛的硅化物层,在所述钽或钼的硅化物上形成,其中钛的硅化物的形成温度低于钽或钼的硅化物的形成温度。
2.如权利要求1所述的半导体器件,其特征在于,所述钽或钼的硅化物是通过钽(Ta)或钼(Mo)的淀积形成的。
3.如权利要求2所述的半导体器件,其特征在于,所述钛的硅化物是通过钛(Ti)的淀积形成的。
4.如权利要求1所述的半导体器件,其特征在于,所述金属钽或钼的淀积厚度为100—200埃。
5.如权利要求4所述的半导体器件,其特征在于,所述金属钛的淀积厚度为400—600埃。
6.如权利要求5所述的半导体器件,其特征在于,所述多晶硅层的淀积厚度为2,500埃。
CN93106512A 1992-05-30 1993-05-29 具双层硅化物结构的半导体器件 Expired - Lifetime CN1034198C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR9414/92 1992-05-30
KR1019920009414A KR950003233B1 (ko) 1992-05-30 1992-05-30 이중층 실리사이드 구조를 갖는 반도체 장치 및 그 제조방법

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN95109584A Division CN1076866C (zh) 1992-05-30 1995-10-31 在多晶硅层表面上的高熔点金属硅化物层的制造方法

Publications (2)

Publication Number Publication Date
CN1081283A CN1081283A (zh) 1994-01-26
CN1034198C true CN1034198C (zh) 1997-03-05

Family

ID=19333972

Family Applications (2)

Application Number Title Priority Date Filing Date
CN93106512A Expired - Lifetime CN1034198C (zh) 1992-05-30 1993-05-29 具双层硅化物结构的半导体器件
CN95109584A Expired - Lifetime CN1076866C (zh) 1992-05-30 1995-10-31 在多晶硅层表面上的高熔点金属硅化物层的制造方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN95109584A Expired - Lifetime CN1076866C (zh) 1992-05-30 1995-10-31 在多晶硅层表面上的高熔点金属硅化物层的制造方法

Country Status (6)

Country Link
US (1) US6774023B1 (zh)
EP (1) EP0573241B1 (zh)
JP (1) JP2503187B2 (zh)
KR (1) KR950003233B1 (zh)
CN (2) CN1034198C (zh)
RU (1) RU2113034C1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6156630A (en) * 1997-08-22 2000-12-05 Micron Technology, Inc. Titanium boride gate electrode and interconnect and methods regarding same
SE515783C2 (sv) * 1997-09-11 2001-10-08 Ericsson Telefon Ab L M Elektriska anordningar jämte förfarande för deras tillverkning
US7282443B2 (en) * 2003-06-26 2007-10-16 Micron Technology, Inc. Methods of forming metal silicide
US7112483B2 (en) * 2003-08-29 2006-09-26 Taiwan Semiconductor Manufacturing Company, Ltd. Method for forming a device having multiple silicide types
US7105440B2 (en) * 2005-01-13 2006-09-12 International Business Machines Corporation Self-forming metal silicide gate for CMOS devices
US20100052072A1 (en) * 2008-08-28 2010-03-04 Taiwan Semiconductor Manufacturing Company, Ltd. Dual gate structure on a same chip for high-k metal gate technology
US8652914B2 (en) 2011-03-03 2014-02-18 International Business Machines Corporation Two-step silicide formation
CN105541337B (zh) * 2015-12-25 2017-12-08 中国科学院上海硅酸盐研究所 一种多金属硅化物粉体及其制备方法
US9837357B1 (en) 2017-02-06 2017-12-05 International Business Machines Corporation Method to reduce variability in contact resistance

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4180596A (en) * 1977-06-30 1979-12-25 International Business Machines Corporation Method for providing a metal silicide layer on a substrate
US4285761A (en) * 1980-06-30 1981-08-25 International Business Machines Corporation Process for selectively forming refractory metal silicide layers on semiconductor devices
DE3326142A1 (de) * 1983-07-20 1985-01-31 Siemens AG, 1000 Berlin und 8000 München Integrierte halbleiterschaltung mit einer aus aluminium oder aus einer aluminiumlegierung bestehenden aeusseren kontaktleiterbahnebene
JP2522924B2 (ja) * 1986-11-19 1996-08-07 三洋電機株式会社 金属シリサイド膜の形成方法
US4782380A (en) * 1987-01-22 1988-11-01 Advanced Micro Devices, Inc. Multilayer interconnection for integrated circuit structure having two or more conductive metal layers
US4974056A (en) * 1987-05-22 1990-11-27 International Business Machines Corporation Stacked metal silicide gate structure with barrier
JPS6417471A (en) * 1987-07-13 1989-01-20 Toshiba Corp Semiconductor device
JPS6417470A (en) * 1987-07-13 1989-01-20 Toshiba Corp Semiconductor device
JPH0234967A (ja) * 1988-07-25 1990-02-05 Sony Corp 半導体装置及び半導体装置の製造方法
JPH02262371A (ja) * 1989-04-03 1990-10-25 Toshiba Corp 半導体装置及びその製造方法
US5194405A (en) * 1989-07-06 1993-03-16 Sony Corporation Method of manufacturing a semiconductor device having a silicide layer
JP2616034B2 (ja) * 1989-08-23 1997-06-04 日本電気株式会社 半導体集積回路装置
US5203957A (en) * 1991-06-12 1993-04-20 Taiwan Semiconductor Manufacturing Company Contact sidewall tapering with argon sputtering

Also Published As

Publication number Publication date
US6774023B1 (en) 2004-08-10
JPH0637092A (ja) 1994-02-10
KR930024089A (ko) 1993-12-21
EP0573241A2 (en) 1993-12-08
EP0573241A3 (zh) 1994-02-16
EP0573241B1 (en) 2000-02-09
CN1076866C (zh) 2001-12-26
CN1121642A (zh) 1996-05-01
KR950003233B1 (ko) 1995-04-06
RU2113034C1 (ru) 1998-06-10
JP2503187B2 (ja) 1996-06-05
CN1081283A (zh) 1994-01-26

Similar Documents

Publication Publication Date Title
EP0159935B1 (en) Method for inhibiting dopant out-diffusion
US4359490A (en) Method for LPCVD co-deposition of metal and silicon to form metal silicide
US5633036A (en) Selective low temperature chemical vapor deposition of titanium disilicide onto silicon regions
JP3386385B2 (ja) シリコン集積回路の製造方法
US20070099421A1 (en) Methods For Forming Cobalt Layers Including Introducing Vaporized Cobalt Precursors And Methods For Manufacturing Semiconductor Devices Using The Same
CN1034198C (zh) 具双层硅化物结构的半导体器件
JP3355236B2 (ja) 半導体メモリ装置のキャパシタ製造方法
JPH08264733A (ja) 半導体メモリ素子のキャパシタ及びその製造方法
JPH08232080A (ja) 新規なタングステン溶着プロセス
KR20010078322A (ko) 1000Å 이상의 두께를 가진 낮은 잔류 할로겐 함량 TiN막의 증착 방법 및 장치
JP2001203339A (ja) 半導体素子のキャパシタ製造方法
KR100351238B1 (ko) 반도체 소자의 캐패시터 제조 방법
KR100230361B1 (ko) 요철형 금속막과 그 형성방법, 요철형 전극 및 이를 이용한 캐패시터의 제조방법
US6882052B2 (en) Plasma enhanced liner
JP2001053254A (ja) 半導体メモリ素子のキャパシタ及びその製造方法
WO2000022659A1 (en) Method of forming cobalt-disilicide contacts using a cobalt-carbon alloy thin film
US6734100B2 (en) Method of forming ruthenium thin film using plasma enhanced process
JP2908774B2 (ja) 半導体素子のビットライン及びその製造方法
JP3022328B2 (ja) 薄膜形成方法
JP3328358B2 (ja) 半導体装置の製造方法
JP3117320B2 (ja) キャパシタ及びその製造方法
Lee et al. Microstructures and electrical resistivities of the RuO2 electrode on SiO2/Si annealed in the oxygen ambient
JPS6138264B2 (zh)
US6509265B1 (en) Process for manufacturing a contact barrier
JPH0955360A (ja) 窒化チタン薄膜の作成方法及び薄膜デバイス

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CX01 Expiry of patent term

Expiration termination date: 20130529

Granted publication date: 19970305