CN103328693B - 具有高耐腐蚀性的多孔金属体及其制造方法 - Google Patents

具有高耐腐蚀性的多孔金属体及其制造方法 Download PDF

Info

Publication number
CN103328693B
CN103328693B CN201280005431.6A CN201280005431A CN103328693B CN 103328693 B CN103328693 B CN 103328693B CN 201280005431 A CN201280005431 A CN 201280005431A CN 103328693 B CN103328693 B CN 103328693B
Authority
CN
China
Prior art keywords
plating
heat treatment
treatment step
dimensional netted
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201280005431.6A
Other languages
English (en)
Other versions
CN103328693A (zh
Inventor
西村淳一
土田齐
齐藤英敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Publication of CN103328693A publication Critical patent/CN103328693A/zh
Application granted granted Critical
Publication of CN103328693B publication Critical patent/CN103328693B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • B22F3/1121Making porous workpieces or articles by using decomposable, meltable or sublimatable fillers
    • B22F3/1137Making porous workpieces or articles by using decomposable, meltable or sublimatable fillers by coating porous removable preforms
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/08Alloys with open or closed pores
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/02Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working in inert or controlled atmosphere or vacuum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • C23C18/1644Composition of the substrate porous substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • C23C18/1653Two or more layers with at least one layer obtained by electroless plating and one layer obtained by electroplating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1655Process features
    • C23C18/1657Electroless forming, i.e. substrate removed or destroyed at the end of the process
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/0033D structures, e.g. superposed patterned layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/08Perforated or foraminous objects, e.g. sieves
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • C25D5/12Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
    • C25D5/14Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium two or more layers being of nickel or chromium, e.g. duplex or triplex layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • H01M4/662Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0232Metals or alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2207/00Aspects of the compositions, gradients
    • B22F2207/01Composition gradients
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

一种多孔金属体,其具有由至少含有Ni和Cr的合金构成的三维网状结构,所述多孔金属体具有由中空芯部和外壳形成的骨架,其中,当将所述外壳的横截面在厚度方向上均匀分为三个部分,即外侧部分、中央部分和内侧部分时,并且当将所述外侧部分、所述中央部分和所述内侧部分中Cr的重量百分数浓度定义为符号a、b和c时,a、b和c满足由表达式(1)表示的关系:|(a+c)/2-b|/(a+b+c)/30.20(1)。

Description

具有高耐腐蚀性的多孔金属体及其制造方法
技术领域
本发明涉及具有高耐腐蚀性的多孔金属体以及制造该多孔金属体的方法,所述多孔金属体可用作锂离子电池、电容器和燃料电池等二次电池的集电体、各种过滤器、催化剂载体等。
背景技术
高度耐腐蚀的多孔金属体的例子包括在专利文献1和2中具体描述的多孔Ni-Cr合金体。也就是说,(例如)这样的多孔Ni-Cr合金体是已知的,该多孔Ni-Cr合金体由渗碳法制造,其中,将通过镀覆法形成的多孔镍体(该多孔镍体具有导电性三维网状树脂作为支持体)埋入Cr和NH4Cl粉末中,并在Ar或H2气气氛中进行热处理。但是,如图1所示,通过渗碳法所形成的多孔Ni-Cr合金体在其骨架的横截面中呈现出大的铬浓度变化。换言之,当将骨架的横截面在厚度方向上分为三个部分,即外侧、中央和内侧时,中央的铬浓度倾向于低于外侧和内侧的铬浓度。结果,在将多孔体加工为所需的形状的情况下,该多孔体不利地具有耐腐蚀性低的横截面。
所述骨架的横截面中的铬浓度的变化是由以下因素导致的:当将多孔镍体埋入比扩散到多孔镍体中的Cr的预定量更大量的Cr粉末中时,由于Ar或H2气气氛的压力以及温度,Cr从多孔镍体的骨架表层扩散到内部。因此,考虑过量地扩散Cr以提高骨架的整个横截面中的铬浓度这样的补救措施。在这种情况下,该骨架的表层部分具有极高的铬浓度,并因此变脆而剥离。
因此就需要提供一种即使在呈现出铬浓度变化的横截面上也具有高耐腐蚀性的多孔金属体,并提供一种制造该多孔金属体的方法。
引用列表
专利文献
专利文献1:日本未审查专利申请公开No.08-013129
专利文献2:日本未审查专利申请公开No.08-232003
发明内容
技术问题
鉴于上述问题,本发明旨在提供一种适合于锂离子电池、电容器和燃料电池等二次电池的集电体、各种过滤器、催化剂载体等的多孔金属体,该多孔金属体即使在其横截面上也具有高耐腐蚀性,并提供一种制造该多孔金属体的方法。
解决问题的方案
本发明人进行了深入的研究并发现:在制造多孔Ni-Cr合金体的方法中,有效的是通过镀覆在多孔镍体上形成铬层,然后通过热处理来扩散铬。此发现导致了本发明的完成。也就是说,本发明具有以下构成。
(1)一种多孔金属体,其具有由至少含有Ni和Cr的合金构成的三维网状结构,所述多孔金属体具有由中空芯部和外壳形成的骨架,其中,当将所述外壳的横截面在厚度方向上均匀分为三个部分,即外侧部分、中央部分和内侧部分时,并且当将所述外侧部分、所述中央部分和所述内侧部分中Cr的重量百分数浓度定义为符号a、b和c时,该符号a、b和c满足由表达式(1)表示的关系:
|(a+c)/2-b|/(a+b+c)/3<0.20    (1)
(2)一种制造项目(1)所述的多孔金属体的方法,包括:
对三维网状树脂进行导电处理的步骤;
对所述三维网状树脂进行镀Ni的第一镀覆步骤;
除去所述三维网状树脂的第一热处理步骤;
对Ni层进行镀Cr的第二镀覆步骤;以及
将所述Ni层和Cr层合金化的第二热处理步骤。
(3)在项目(2)所述的制造多孔金属体的方法中,在所述导电处理之后的步骤的顺序为进行镀Ni的所述第一镀覆步骤、除去所述三维网状树脂的所述第一热处理步骤、对Ni层进行镀Cr的所述第二镀覆步骤、以及将所述Ni层和Cr层合金化的所述第二热处理步骤,
所述第一热处理步骤为在不锈钢马弗炉中、在氧化气氛中、在600°C以上且800°C以下的温度下进行热处理的步骤,并且
所述第二热处理步骤为在不锈钢马弗炉中、在还原性气体气氛中、在800°C以上且1100°C以下的温度下进行热处理的步骤。
(4)在项目(2)所述的制造多孔金属体的方法中,在所述导电处理之后的步骤的顺序为进行镀Ni的所述第一镀覆步骤、对Ni层进行镀Cr的所述第二镀覆步骤、除去所述三维网状树脂的所述第一热处理步骤、以及将所述Ni层和Cr层合金化的所述第二热处理步骤,
所述第一热处理步骤为在不锈钢马弗炉中、在氧化气氛中、在600°C以上且800°C以下的温度下进行热处理的步骤,并且
所述第二热处理步骤为在碳马弗炉中、在还原性气体气氛或惰性气体气氛中、在1000°C以上且1500°C以下的温度下进行热处理的步骤。
本发明的有益效果
根据本发明,可以提供一种适合于锂离子电池、电容器和燃料电池等二次电池的集电体、各种过滤器、催化剂载体等的多孔金属体,该多孔金属体即使在其横截面上也具有高耐腐蚀性,并且可以提供一种制造该多孔金属体的方法。
附图简要说明
[图1]图1为示出了传统的多孔金属体中的铬的扩散状态的示意图。
具体实施方式
根据本发明的多孔金属体具有由至少含有Ni和Cr的合金构成的三维网状结构,所述多孔金属体具有由中空芯部和外壳形成的骨架,其中,当将外壳的横截面在厚度方向上均匀分为三个部分,即外侧部分、中央部分和内侧部分时,并且当将所述外侧部分、中央部分和内侧部分中Cr的重量百分数浓度定义为符号a、b和c时,该符号a、b和c满足由表达式(1)表示的关系:
|(a+c)/2-b|/(a+b+c)/3<0.20    (1)
也就是说,当a、b和c的关系表达式的值小于0.20时,提供了即使在其横截面上也具有高耐腐蚀性的多孔金属体。该表达式的值优选为0.1以下。
制造根据本发明的具有三维网状结构的多孔金属体的方法包括:对三维网状树脂进行导电处理的步骤,对三维网状树脂进行镀Ni的第一镀覆步骤,除去三维网状树脂的第一热处理步骤,对Ni层进行镀Cr的第二镀覆步骤,以及将Ni层和Cr层合金化的第二热处理步骤。由此可以成功制造根据本发明的骨架为中空芯部的三维网状多孔金属体。
(多孔树脂体)
作为三维网状树脂,使用树脂泡沫、无纺布、毡、织物等。它们可以根据需要组合使用。虽然对树脂的材料没有特别的限制,但是优选这样的材料:其能够通过镀覆金属后的焚烧处理而除去。考虑到多孔树脂体的可操作性,多孔树脂体优选由柔性材料构成,因为当多孔树脂体、特别是片状的多孔树脂体具有高刚度时,该多孔树脂体易碎。
在本发明中,优选将树脂泡沫用作三维网状树脂。只要该树脂泡沫是多孔的即可。可以使用公知的或市场上可买到的树脂泡沫。其例子包括聚氨酯泡沫和苯乙烯泡沫。其中,从高孔隙率的角度来说优选聚氨酯泡沫。树脂泡沫的厚度、孔隙率和平均孔径没有限制,可以根据预期用途适当地设定。
(导电处理)
对三维网状树脂进行导电处理的方法没有特别地限制,只要能够在多孔树脂体的表面上形成导电涂层即可。形成导电涂层的材料的例子包括镍、钛和不锈钢等金属,以及由(例如)无定形碳(如炭黑)、石墨等构成的碳粉。其中,尤其优选碳粉,更优选炭黑。在使用无定形碳等而不是金属的情况下,也在下述的多孔树脂体除去步骤中将该导电涂层除去。
关于导电处理的具体优选例子,当使用镍时,优选化学镀处理和溅射处理。当使用钛和不锈钢等金属以及炭黑和石墨等材料时,优选将粘结剂添加到这种材料的细粉末中、并将所得混合物涂布到多孔树脂体的表面的处理。
利用镍的化学镀处理可以通过(例如)将多孔树脂体浸渍在诸如含有次磷酸钠作为还原剂的硫酸镍水溶液等公知的化学镀镍浴中来进行。根据需要,可以将多孔树脂体在浸渍于镀浴之前浸渍在(例如)含有少量钯离子的活性溶液(由Kanigen Co.制造的清洗液)中。
利用镍的溅射处理可以通过以下方式进行:(例如)将多孔树脂体安装在基板支架(substrate holder)上,然后在导入惰性气体的同时在支架和靶(镍)之间施加直流电压,用惰性气体离子轰击镍,并且将溅射的镍颗粒沉积在多孔树脂体的表面上。
可以连续地在多孔树脂体的表面上形成导电涂层。对单位面积的重量没有限制,通常可以为约0.1g/m2以上且约20g/m2以下,并且优选为约0.5g/m2以上且约5g/m2以下。
(镍镀覆步骤)
对镍镀覆步骤没有特别的限制,只要通过公知的镍镀覆方法实施进行镍镀覆的步骤即可。优选使用电镀法。当通过上述化学镀处理和/或溅射处理增加了镀膜的厚度时,就不需要电镀处理。但是,此工艺从生产性和成本的方面考虑不是优选的。因此,优选采用前述的方法,即在对多孔树脂体进行导电处理的步骤之后通过电镀法形成镍镀膜。
镍电镀处理可通过常规的方式进行。例如,可以使用公知的或市场上可买到的镀浴。其例子包括Watts浴、氯化物浴和氨基磺酸浴。将通过化学镀、溅射等在表面上形成了导电涂层的多孔树脂体浸渍在镀浴中。将多孔树脂体与阴极相连接。将镍对电极板与阳极相连接。通入直流电流或脉冲电流以在导电涂层上形成电镀镍涂层。
该电镀镍层可以以不露出导电涂层的程度形成于导电涂层上。对电镀镍层的单位面积的重量没有限制。电镀镍层的单位面积的重量通常可为约100g/m2以上且约600g/m2以下,优选为约200g/m2以上且约500g/m2以下。
(除去三维网状树脂的第一热处理步骤)
关于除去三维网状树脂的第一热处理的条件,优选在不锈钢马弗炉中、在空气等氧化气氛中、在600°C以上且800°C以下的温度下进行热处理。低于600°C的热处理温度不能完全地除去三维网状树脂。高于800°C的热处理温度会使层变脆并大幅降低强度,从而使层不实用。
(铬镀覆步骤)
对铬镀覆步骤没有特别的限制,只要该铬镀覆步骤为通过公知的镀覆方法进行铬镀覆的步骤即可。优选采用电镀法。当通过溅射处理增加了镀膜的厚度时,就不需要电镀处理。但是,该工艺从生产性和成本的方面考虑不是优选的。
铬电镀处理可通过常规的方式进行。例如,可以使用公知的或市场上可买到的镀浴。其例子包括六价铬浴和三价铬浴。将多孔镍体浸渍在铬镀浴中。将多孔镍体与阴极相连接。将铬对电极板与阳极相连接。通入直流电流或脉冲电流以在镍层上形成电镀铬层。电镀铬层的单位面积的重量没有限制。电镀铬层的单位面积的重量通常可为约10g/m2以上且约600g/m2以下,优选为约50g/m2以上且约300g/m2以下。
对三维网状树脂进行导电处理之后,优选以镍、铬的顺序进行镀覆。如果对经过了导电处理的三维网状树脂首先进行铬镀覆,则不能在骨架内部形成铬镀层。其原因在于,只经过导电处理的三维网状树脂具有小于1S/m的低导电率,并且铬镀覆的均镀能力极度低于镍镀覆的均镀能力。与此相反,经过了导电处理和镍镀覆的三维网状树脂具有1S/m以上的导电率。然后对该树脂进行铬镀覆,使得甚至在骨架内部也能形成铬镀层。
(使镍层和铬层合金化的第二热处理步骤)
让我们来考虑当导电处理之后的步骤的顺序为进行镀Ni的第一镀覆步骤、除去三维网状树脂的第一热处理步骤、对Ni层进行镀Cr的第二镀覆步骤、以及使Ni层和Cr层合金化的第二热处理步骤的情况。关于使镍层和铬层合金化的第二热处理步骤的条件,优选在不锈钢马弗炉中、在例如CO或H2等还原性气体气氛中、在800°C以上且1100°C以下的温度下进行热处理。当热处理的温度低于800°C时,在第一热处理步骤中氧化的镍的还原和使镍层和铬层合金化需要很长的时间,导致成本上的不利。当热处理的温度高于1100°C时,热处理的炉体会在短期内损坏。因此,优选在上述温度范围内进行热处理。
同时,让我们来考虑当导电处理之后的步骤的顺序为进行镀Ni的第一镀覆步骤、对Ni层进行镀Cr的第二镀覆步骤、除去三维网状树脂的第一热处理步骤、以及使Ni层和Cr层合金化的第二热处理步骤的情况。关于使镍层和铬层合金化的第二热处理步骤的条件,优选在碳马弗炉中、在还原性气体气氛(例如CO或H2)或惰性气体气氛(例如N2或Ar)中、在1000°C以上且1500°C以下的温度下进行热处理。这是因为需要用碳来还原在第一热处理步骤中氧化的铬。当热处理的温度低于1000°C时,在第一热处理步骤中氧化的镍和铬的还原和使镍层和铬层合金化需要很长的时间,导致成本上的不利。当热处理的温度高于1500°C时,热处理的炉体会在短期内损坏。因此,优选在上述温度范围内进行热处理。
通过进行上述步骤,可以制造出在骨架的横截面中呈现出小的Cr浓度变化、并且即使在横截面上也具有高耐腐蚀性的多孔Ni-Cr合金体。只需将所需量的扩散的铬沉积到多孔镍体上,然后通过热处理进行合金化。这使得骨架的横截面中的Cr浓度的变化小。
实施例
下面将基于实施例对本发明进行更详细的说明,本发明的三维网状多孔金属体不限于这些实施例。
[实施例1]
(三维网状树脂的导电处理)
将1.5mm厚的聚氨酯片材用作三维网状树脂。然后将作为无定形碳的粒径为0.01μm至0.2μm的炭黑100g分散在0.5L的10%丙烯酸酯树脂水溶液中,从而以此比例制备粘合涂料。通过将多孔树脂片材连续地浸渍在所述涂料中、用辊挤压片材、然后干燥片材来进行导电处理。由此在三维网状树脂的表面上形成了导电涂层。
(镍镀覆步骤)
然后通过电镀在经过导电处理的三维网状树脂上沉积300g/m2的镍,由此形成电镀层。使用氨基磺酸镍镀液作为镀液。
(除去三维网状树脂的第一热处理步骤)
为了除去三维网状树脂,在不锈钢马弗炉中、在空气氧化气氛中、在700°C下进行热处理,从而制得多孔镍体。
(铬镀覆步骤)
把通过铬镀覆而将铬以90g/m2、150g/m2和230g/m2的量沉积在多孔镍体上所形成的部件分别定义为多孔Ni-Cr合金体A-1、A-2和A-3。
使用三价铬镀液作为镀液。
(使镍层和铬层合金化的第二热处理步骤)
随后,在不锈钢马弗炉中、在H2气气氛中、在1000°C下进行热处理。通过进行上述步骤,制造了本发明的多孔Ni-Cr合金体A-1、A-2和A-3,这些多孔Ni-Cr合金体即使在它们的横截面上也具有高耐腐蚀性。
[比较例1]
将在实施例1中的除去三维网状树脂的第一热处理步骤之后所得到的多孔镍体埋入Cr和NH4Cl粉末中,并在Ar气气氛中、在1100°C下、按照多孔镍体以90g/m2、150g/m2和230g/m2的重量增加的方式进行渗碳处理。将所得多孔体定义为多孔Ni-Cr合金体B-1、B-2和B-3。通过进行上述步骤,制造了具有高耐腐蚀性的多孔Ni-Cr合金体B-1、B-2和B-3。
<评价>
(骨架的横截面中的铬浓度)
利用扫描电子显微镜(SEM)-能量色散型X射线分光镜(EDX),对每个所得到的具有中空芯部的多孔Ni-Cr合金体的骨架的外壳横截面中的铬浓度进行了定量分析。
表I列出了该结果。表I证实了比较例1中的每个多孔Ni-Cr合金体B-1至B-3都在骨架的外壳横截面中呈现出大的铬浓度变化,即,中央部分的铬浓度倾向于低于外侧部分和内侧部分的铬浓度,并且|(a+c)/2-b|/(a+b+c)/3为0.20以上。此外,在整体Cr浓度高的B-3中,其骨架的表层剥离。
相比之下,我们发现实施例1中的每个多孔Ni-Cr合金体A-1至A-3都在骨架的外壳横截面中呈现出小的铬浓度变化,并且|(a+c)/2-b|/(a+b+c)/3小于0.20。这证明了本发明的多孔Ni-Cr合金体在骨架的外壳横截面中只有小的铬浓度变化,并且即使在横截面上也具有优异的耐腐蚀性。
[表I]
*表示比较例。
(耐腐蚀性的评价1)
为了检验所得的多孔Ni-Cr合金体是否能够用于锂离子电池和电容器,用循环伏安法对每个多孔Ni-Cr合金体的耐腐蚀性进行了评价。关于评价的尺寸,用辊压机将厚度调整为0.4mm。将尺寸设置为3cm×3cm的正方形。制备了具有和不具有切断面的样品(由三维网状树脂制得的3cm×3cm的正方形样品)。将作为引线的铝片(aluminumtab)焊接到样品上。堆叠样品并使微孔膜隔板置于其间,从而制得铝层压电池。使用银/氯化银电极作为参比电极。使用含有1mol/L的LiPF6的碳酸亚乙酯/碳酸二乙酯(Ec/DEC,1:1)作为电解液。
参照锂电位,测量电位在0至5V的范围内。当多孔Ni-Cr合金体用于锂离子电池和电容器时,在4.3V的电位下氧化电流不应流入。在5mV/s的电位扫描速率下对氧化电流开始流入时的电位进行测量。表II列出了该结果。
如表II所示,在根据比较例1的每个多孔Ni-Cr合金体B-1至B-3中,当没有切断面时,即使在4.3V的电位下也没有氧化电流流入,而当有切断面时,在电位达到4V之前氧化电流就开始流入。相比之下,在根据实施例1的每个多孔Ni-Cr合金体A-1至A-3中,不论是否有切断面,即使在4.3V的电位下都没有氧化电流流入。这表明根据本发明的多孔Ni-Cr合金体不论是否有切断面都能够用于需要高耐腐蚀性的锂离子电池和电容器。
[表II]
*表示比较例。
(耐腐蚀性的评价2)
为了检验所得到的多孔Ni-Cr合金体是否能够用于各种过滤器和催化剂载体,将多孔体在空气中、在800°C下加热12小时。测量每个多孔Ni-Cr合金体的重量的变化。表III示出了该结果。如表III所示,在根据比较例1的每个多孔Ni-Cr合金体B-1至B-3中,当没有切断面时,重量的变化量小于1mg/cm2,而当有切断面时,重量的变化量在5mg/cm2至6mg/cm2的范围内。也就是说,发生了氧化。相比之下,在根据实施例1的每个多孔Ni-Cr合金体A-1至A-3中,不论是否有切断面,重量的变化量都小于1mg/cm2。这证明了根据本发明的多孔Ni-Cr合金体不论是否有切断面都能够用于需要高耐腐蚀性的各种过滤器和催化剂载体。
[表III]
*表示比较例。
工业实用性
根据本发明的多孔金属体由于其优异的耐腐蚀性而适合用作锂离子电池、电容器、燃料电池等的集电体,并且由于其优异的耐热性而适合用作各种过滤器和催化剂载体。

Claims (3)

1.一种多孔金属体,其具有由至少含有Ni和Cr的合金构成的三维网状结构,其中,所述多孔金属体具有由中空芯部和外壳形成的骨架,并且其中,当将所述外壳的横截面在厚度方向上均匀分为三个部分,即外侧部分、中央部分和内侧部分时,并且当将所述外侧部分、所述中央部分和所述内侧部分中Cr的重量百分数浓度定义为符号a、b和c时,该符号a、b和c满足由表达式(1)表示的关系:
|(a+c)/2-b|/(a+b+c)/3<0.20   (1)。
2.一种制造根据权利要求1所述的多孔金属体的方法,该方法至少包括:
对三维网状树脂进行导电处理的步骤;
对所述三维网状树脂进行镀Ni的第一镀覆步骤;
除去所述三维网状树脂的第一热处理步骤;
对Ni层进行镀Cr的第二镀覆步骤;以及
将所述Ni层和Cr层合金化的第二热处理步骤,
其中,在所述导电处理之后的步骤的顺序为进行镀Ni的所述第一镀覆步骤、除去所述三维网状树脂的所述第一热处理步骤、对Ni层进行镀Cr的所述第二镀覆步骤、以及将所述Ni层和Cr层合金化的所述第二热处理步骤,
其中,所述第一热处理步骤为在不锈钢马弗炉中、在氧化气氛中、在600℃以上且800℃以下的温度下进行热处理的步骤,并且
其中,所述第二热处理步骤为在不锈钢马弗炉中、在还原性气体气氛中、在800℃以上且1100℃以下的温度下进行热处理的步骤。
3.一种制造根据权利要求1所述的多孔金属体的方法,该方法至少包括:
对三维网状树脂进行导电处理的步骤;
对所述三维网状树脂进行镀Ni的第一镀覆步骤;
除去所述三维网状树脂的第一热处理步骤;
对Ni层进行镀Cr的第二镀覆步骤;以及
将所述Ni层和Cr层合金化的第二热处理步骤,
其中,在所述导电处理之后的步骤的顺序为进行镀Ni的所述第一镀覆步骤、对Ni层进行镀Cr的所述第二镀覆步骤、除去所述三维网状树脂的所述第一热处理步骤、以及将所述Ni层和Cr层合金化的所述第二热处理步骤,
其中,所述第一热处理步骤为在不锈钢马弗炉中、在氧化气氛中、在600℃以上且800℃以下的温度下进行热处理的步骤,并且
其中,所述第二热处理步骤为在碳马弗炉中、在还原性气体气氛或惰性气体气氛中、在1000℃以上且1500℃以下的温度下进行热处理的步骤。
CN201280005431.6A 2011-01-17 2012-01-06 具有高耐腐蚀性的多孔金属体及其制造方法 Active CN103328693B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011-006878 2011-01-17
JP2011006878A JP5691107B2 (ja) 2011-01-17 2011-01-17 高耐食性を有する金属多孔体及びその製造方法
PCT/JP2012/050182 WO2012098941A1 (ja) 2011-01-17 2012-01-06 高耐食性を有する金属多孔体及びその製造方法

Publications (2)

Publication Number Publication Date
CN103328693A CN103328693A (zh) 2013-09-25
CN103328693B true CN103328693B (zh) 2015-09-02

Family

ID=46515572

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280005431.6A Active CN103328693B (zh) 2011-01-17 2012-01-06 具有高耐腐蚀性的多孔金属体及其制造方法

Country Status (5)

Country Link
US (1) US20130295459A1 (zh)
EP (1) EP2666890B1 (zh)
JP (1) JP5691107B2 (zh)
CN (1) CN103328693B (zh)
WO (1) WO2012098941A1 (zh)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5952149B2 (ja) * 2012-09-27 2016-07-13 住友電気工業株式会社 金属多孔体及びその製造方法
FR3002482B1 (fr) * 2013-02-25 2015-05-29 Commissariat Energie Atomique Procede de realisation de couches minces structurees en 3d
JP6055378B2 (ja) 2013-06-19 2016-12-27 住友電気工業株式会社 金属多孔体及びその製造方法
JP6055379B2 (ja) * 2013-06-27 2016-12-27 住友電気工業株式会社 金属多孔体、金属多孔体の製造方法、及び燃料電池
ES2638091T3 (es) * 2013-12-10 2017-10-18 Alantum Europe Gmbh Cuerpo de espuma metálica con tamaño de grano controlado en su superficie, proceso para su producción y su uso
WO2015133296A1 (ja) 2014-03-06 2015-09-11 住友電気工業株式会社 金属多孔体および金属多孔体の製造方法
JP6300315B2 (ja) 2014-03-31 2018-03-28 住友電気工業株式会社 燃料電池用集電体及び燃料電池
WO2017026291A1 (ja) 2015-08-07 2017-02-16 住友電気工業株式会社 金属多孔体、燃料電池、及び金属多孔体の製造方法
CN109414062A (zh) * 2016-06-27 2019-03-01 日本烟草产业株式会社 香味吸入器用烟弹及具有该香味吸入器用烟弹的香味吸入器
DE112018002512T5 (de) * 2017-05-16 2020-01-30 Sumitomo Electric Industries, Ltd. Aluminium-Plattierfilm und Verfahren zur Herstellung eines Aluminium-Plattierfilms
KR20200029439A (ko) 2017-07-14 2020-03-18 스미토모덴키고교가부시키가이샤 금속 다공체, 고체 산화물형 연료 전지 및 금속 다공체의 제조 방법
EP3654429A4 (en) 2017-07-14 2021-04-07 Sumitomo Electric Industries, Ltd. METAL POROUS BODY, SOLID OXIDE FUEL CELL AND PROCESS FOR MANUFACTURING METAL POROUS BODIES
CN107723519B (zh) * 2017-10-20 2019-12-24 湘潭大学 抗高温氯化腐蚀的Ni-Cr-Si多孔材料及其制备方法
WO2019244480A1 (ja) 2018-06-21 2019-12-26 住友電気工業株式会社 多孔体、それを含む集電体および燃料電池
KR20210056286A (ko) 2018-09-07 2021-05-18 도야마 스미토모 덴코우 가부시키가이샤 금속 다공체, 연료 전지 및 금속 다공체의 제조 방법
CN111295456A (zh) 2018-09-07 2020-06-16 富山住友电工株式会社 金属多孔体、燃料电池和金属多孔体的制造方法
US11938471B2 (en) 2018-09-14 2024-03-26 Sumitomo Electric Industries, Ltd. Metal porous body, water vapor reformer including the same, and method for manufacturing metal porous body
JP7355034B2 (ja) 2019-05-22 2023-10-03 住友電気工業株式会社 多孔体、それを含む燃料電池、およびそれを含む水蒸気電解装置
ES2896334T3 (es) * 2019-09-25 2022-02-24 Evonik Operations Gmbh Cuerpos esponjados metálicos y procedimiento para su producción
JP7314940B2 (ja) 2019-12-24 2023-07-26 住友電気工業株式会社 多孔体、およびそれを含む燃料電池
US20220416255A1 (en) 2019-12-24 2022-12-29 Sumitomo Electric Industries, Ltd. Porous body and fuel cell including the same
CN116033953A (zh) 2020-09-17 2023-04-28 富山住友电工株式会社 金属多孔体和金属多孔体的制造方法、以及过滤器
KR102603431B1 (ko) 2022-04-26 2023-11-17 중앙대학교 산학협력단 층상형 메조포러스 구리­크롬 이황화물 전극의 제조방법
CN115323316B (zh) * 2022-08-16 2023-05-23 沈伟 一种泡沫镍铬合金及其制备方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57174484A (en) * 1981-04-20 1982-10-27 Sumitomo Electric Ind Ltd Production of metallic porous body of micropore sized foam structure
JP3567488B2 (ja) 1994-06-28 2004-09-22 住友電気工業株式会社 高耐食性金属多孔体の製造方法
JPH08232003A (ja) 1994-08-12 1996-09-10 Sumitomo Electric Ind Ltd 耐熱性・耐食性金属多孔体の製造方法
JPH08225865A (ja) * 1995-02-21 1996-09-03 Sumitomo Electric Ind Ltd 三次元網状構造金属多孔体の製造方法
FR2737507B1 (fr) * 1995-08-04 1997-09-26 Scps Structures poreuses complexes metallisees ou metalliques, premetallisees par depot d'un polymere conducteur
JP3007868B2 (ja) * 1997-03-11 2000-02-07 マツダ株式会社 金属多孔体および軽合金複合部材並びにこれらの製造方法
FR2773173B1 (fr) * 1997-12-31 2001-05-11 Conseil Et De Prospective Scie Structures tridimensionnelles a haute porosite en alliages a base de chrome
CN1552949A (zh) * 2003-05-27 2004-12-08 江西省恒润实业发展有限公司 泡沫铁镍铬钴四元合金的制造方法
CN100557868C (zh) * 2005-01-14 2009-11-04 住友电气工业株式会社 集电极、电池电极基底、及其生产方法
CN101509085B (zh) * 2008-02-15 2011-01-26 湖南大学 泡沫镍钼钴三元合金材料的制备方法
GB0818520D0 (en) * 2008-10-09 2008-11-19 Akay Galip Preparation of nano-structured micro-porous polymeric, metallic, ceramic and composite foams
CN101831674A (zh) * 2010-02-08 2010-09-15 长沙力元新材料有限责任公司 一种多孔铬合金材料及其制备方法

Also Published As

Publication number Publication date
CN103328693A (zh) 2013-09-25
EP2666890A1 (en) 2013-11-27
WO2012098941A1 (ja) 2012-07-26
JP5691107B2 (ja) 2015-04-01
EP2666890A4 (en) 2017-08-09
US20130295459A1 (en) 2013-11-07
EP2666890B1 (en) 2020-09-02
JP2012149282A (ja) 2012-08-09

Similar Documents

Publication Publication Date Title
CN103328693B (zh) 具有高耐腐蚀性的多孔金属体及其制造方法
US20200373586A1 (en) Highly corrosion-resistant porous metal body
US20200251750A1 (en) Method for producing porous metal body
WO2013099532A1 (ja) 金属多孔体の製造方法及び金属多孔体
JP6701601B2 (ja) 金属多孔体、燃料電池、及び金属多孔体の製造方法
EP3333947A1 (en) Metal porous body, fuel cell, and method for manufacturing metal porous body
WO2014208176A1 (ja) 金属多孔体、金属多孔体の製造方法、及び燃料電池
WO2017022542A1 (ja) 金属多孔体、燃料電池、及び金属多孔体の製造方法
EP3260579B1 (en) Method for producing nickel alloy porous body
CN108172947B (zh) 一种双功能电极及其制备和应用
WO2017043365A1 (ja) 金属多孔体、燃料電池、及び金属多孔体の製造方法
JPWO2020049851A1 (ja) 金属多孔体、燃料電池および金属多孔体の製造方法
JP5735265B2 (ja) 高耐食性を有する金属多孔体の製造方法
JP5635382B2 (ja) 高耐食性を有する金属多孔体の製造方法
EP2644722B1 (en) Method for producing highly corrosion-resistant porous metal body

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant