WO2019244480A1 - 多孔体、それを含む集電体および燃料電池 - Google Patents

多孔体、それを含む集電体および燃料電池 Download PDF

Info

Publication number
WO2019244480A1
WO2019244480A1 PCT/JP2019/017552 JP2019017552W WO2019244480A1 WO 2019244480 A1 WO2019244480 A1 WO 2019244480A1 JP 2019017552 W JP2019017552 W JP 2019017552W WO 2019244480 A1 WO2019244480 A1 WO 2019244480A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous body
ppm
outer shell
cobalt
sample
Prior art date
Application number
PCT/JP2019/017552
Other languages
English (en)
French (fr)
Inventor
昂真 沼田
真嶋 正利
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to EP19812896.9A priority Critical patent/EP3812476B1/en
Priority to JP2019559124A priority patent/JP7230826B2/ja
Priority to KR1020197038195A priority patent/KR20210021891A/ko
Priority to CN201980003260.5A priority patent/CN110856447B/zh
Priority to US16/627,672 priority patent/US11329295B2/en
Publication of WO2019244480A1 publication Critical patent/WO2019244480A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0232Metals or alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/08Alloys with open or closed pores
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/07Alloys based on nickel or cobalt based on cobalt
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0241Composites
    • H01M8/0245Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present disclosure relates to a porous body, a current collector including the porous body, and a fuel cell.
  • This application claims the priority based on Japanese Patent Application No. 2018-118044 filed on June 21, 2018, and incorporates all the contents described in the Japanese application.
  • Patent Document 1 As a method for manufacturing a porous body, for example, in Japanese Patent Application Laid-Open No. H11-154517 (Patent Document 1), after a treatment for imparting conductivity to a foamed resin or the like is performed, an electroplating layer made of a metal is formed on the foamed resin.
  • Patent Document 1 A method for producing a porous metal body by forming and, if necessary, burning and removing the foamed resin is disclosed.
  • Patent Document 2 discloses a metal porous body having a skeleton mainly composed of a nickel-tin alloy as a metal porous body having oxidation resistance and corrosion resistance characteristics. I have.
  • Patent Document 3 discloses a porous metal body having a skeleton mainly composed of a nickel-chromium alloy as a porous metal body having high corrosion resistance.
  • a porous body is a porous body having a three-dimensional network structure in which a skeleton is integrally continuous, and the skeleton includes one or both of an outer shell and a hollow or conductive material.
  • a current collector according to an aspect of the present disclosure includes the above porous body.
  • a fuel cell according to an aspect of the present disclosure includes the current collector.
  • FIG. 1 is an appearance photograph showing the entire appearance of a porous body according to an embodiment of the present disclosure.
  • FIG. 2 is an enlarged photograph showing an enlarged appearance of the porous body according to one embodiment of the present disclosure.
  • FIG. 3 is a schematic partial cross-sectional view schematically illustrating a partial cross section of the skeleton in the porous body according to an embodiment of the present disclosure.
  • FIG. 4 is a sectional view taken along line AA of FIG.
  • FIG. 5A is an enlarged schematic diagram that focuses on one of the cell portions in the porous body to explain the three-dimensional network structure of the porous body according to an embodiment of the present disclosure.
  • FIG. 5B is a schematic view showing one mode of the shape of the cell portion.
  • FIG. 6A is a schematic view showing another embodiment of the shape of the cell portion.
  • FIG. 6B is a schematic diagram showing still another aspect of the shape of the cell portion.
  • FIG. 7 is a schematic view illustrating an aspect of two cell portions joined to each other.
  • FIG. 8 is a schematic diagram illustrating an aspect of the four bonded cell parts.
  • FIG. 9 is a schematic diagram showing one embodiment of a three-dimensional network structure formed by joining a plurality of cell parts.
  • FIG. 10 shows the composition of the porous body of Sample 1-3 after heat treatment simulating its use in an SOFC.
  • 7 is a photograph as a substitute of a drawing for explaining that a part to be measured was used for analysis using energy dispersive X-ray analysis (EDX).
  • EDX energy dispersive X-ray analysis
  • FIG. 11 shows the composition of the porous body of Sample 1-3 after heat treatment simulating use in an SOFC. In the electron microscope of the cross section of the skeleton of the porous body, the center of the outer shell in the thickness direction is shown. 4 is a photograph as a substitute of a drawing for explaining that a portion to be measured in analysis using EDX was used.
  • FIG. 12 shows the composition of the porous body of Sample 1-3 after heat treatment simulating its use in an SOFC. 4 is a photograph as a substitute of a drawing for explaining that a portion to be measured in analysis using EDX was used.
  • FIG. 13 is a cross-sectional view schematically illustrating a fuel cell according to an embodiment of the present disclosure.
  • the porous body When the porous body is used as a current collector for a battery, particularly a current collector for a solid oxide fuel cell (SOFC), the porous body is exposed to a high temperature environment of 700 to 1000 ° C. And the conductivity tends to deteriorate. For this reason, there is a strong demand for the porous body to have a performance of maintaining high conductivity under a high temperature environment. Since the porous bodies of Patent Documents 2 and 3 each have excellent oxidation resistance, the conductivity is relatively maintained in a high-temperature environment. However, it may be required to maintain the conductivity higher. Further, chromium is volatilized in a high-temperature environment of about 800 ° C., and there is a possibility of so-called Cr poisoning that lowers the catalytic performance of the fuel cell. There is room for improvement.
  • SOFC solid oxide fuel cell
  • an object of the present disclosure is to provide a porous body capable of maintaining high conductivity under a high-temperature environment, a current collector including the porous body, and a fuel cell.
  • the present inventors have studied a porous body that can maintain high conductivity under a high-temperature environment.
  • nickel and cobalt in a skeleton having a three-dimensional network structure are present at a specific mass ratio, it has been found that the porous body maintains excellent conductivity despite use in a high-temperature environment. did. Thereby, the porous body according to the present disclosure has been reached.
  • a porous body is a porous body having a three-dimensional network structure in which a skeleton is integrally continuous, and the skeleton includes an outer shell, one of a hollow or conductive material, A core containing both, the outer shell contains nickel and cobalt, and the mass ratio of the cobalt to the total mass of the nickel and the cobalt is 0.2 or more and 0.4 or less or 0.6 or more. 0.8 or less.
  • the porous body having such characteristics can maintain high conductivity under a high temperature environment.
  • the outer shell further contains at least one additional element selected from the group consisting of nitrogen, sulfur, fluorine, and chlorine, and the additional element is preferably 5 ppm or more and 10,000 ppm or less. In this case, high strength can be secured while maintaining high conductivity in a high-temperature environment.
  • the outer shell further contains phosphorus as an additional element, and the additional element has a content of 5 ppm or more and 50,000 ppm or less. In this case, high strength can be secured while maintaining high conductivity in a high-temperature environment.
  • the outer shell further contains at least two or more additional elements selected from the group consisting of nitrogen, sulfur, fluorine, chlorine, and phosphorus, and the total of the additional elements is preferably 5 ppm or more and 50,000 ppm or less. . In this case, high strength can be secured while maintaining high conductivity in a high-temperature environment.
  • the outer shell preferably further contains oxygen. This aspect means that the porous body is in a state of being oxidized by use. Even in such a state, the porous body can maintain high conductivity under a high temperature environment.
  • the oxygen is preferably contained in the outer shell in an amount of 0.1% by mass or more and 35% by mass or less. In this case, high conductivity can be more effectively maintained in a high-temperature environment.
  • the outer shell preferably contains a spinel oxide. Also in this case, high conductivity can be maintained more effectively in a high temperature environment.
  • the number of voids having a major axis of 1 ⁇ m or more and appearing in an arbitrary 10 ⁇ m square area of the observation image is 5 or less. Is preferred. Thereby, the strength can be sufficiently improved.
  • the core is preferably hollow. This makes it possible to reduce the weight of the porous body and to reduce the required amount of metal.
  • the porous body preferably has a sheet-like appearance and a thickness of 0.2 mm or more and 2 mm or less. As a result, a porous body having a smaller thickness can be formed as compared with the related art, and the required amount of metal can be reduced.
  • a current collector according to an embodiment of the present disclosure includes the porous body.
  • a current collector having such characteristics can maintain high conductivity in a high-temperature environment.
  • a fuel cell according to an embodiment of the present disclosure includes the current collector.
  • the fuel cell having such characteristics can maintain high conductivity in a high-temperature environment, and can efficiently generate power.
  • the present embodiment is not limited to this.
  • the notation in the form of “A to B” means the upper and lower limits of the range (that is, A or more and B or less).
  • the porous body according to the present embodiment is a porous body having a three-dimensional network structure in which a skeleton is continuously integrated, and the skeleton includes an outer shell and a hollow or conductive material.
  • a core portion including one or both of the above, and the outer shell contains nickel and cobalt, and a mass ratio of the cobalt to the total mass of the nickel and the cobalt is 0.2 or more and 0.4 or less or 0.1 to 0.4. It is 6 or more and 0.8 or less.
  • the porous body having such characteristics can maintain high conductivity under a high temperature environment.
  • the outer shell further contains at least one additional element selected from the group consisting of nitrogen, sulfur, fluorine, and chlorine, and the additional element is at least 5 ppm and no more than 10,000 ppm. More preferably, it is 10 ppm or more and 8000 ppm or less. Further, the outer shell may contain phosphorus as an additive element, and in this case, the additive element is at least 5 ppm and at most 50,000 ppm. More preferably, it is 10 ppm or more and 40,000 ppm or less.
  • the outer shell preferably further contains at least two or more additional elements selected from the group consisting of nitrogen, sulfur, fluorine, chlorine, and phosphorus, and the total of the additional elements is preferably 5 ppm or more and 50,000 ppm or less. More preferably, it is 10 ppm or more and 10,000 ppm or less.
  • the porous body When the porous body is used as a current collector material for an SOFC, the porous body is exposed to a high temperature environment of 700 to 1000 ° C. as described above. However, since the outer shell contains the additional element, a high strength ( Creep characteristics) can be maintained.
  • an oxide composed of at least one of nickel and cobalt and oxygen and having a spinel-type three-dimensional structure is generated by the oxidation.
  • Ni x Co 3-x O 4 (where 0.6 ⁇ x ⁇ 1.2 or 1.8 ⁇ x ⁇ 2.4), typically NiCo 2 O 4 or Ni 2 CoO 4
  • An oxide represented by a chemical formula is generated in the outer shell by oxidation. Oxidation of the outer shell may generate a spinel oxide represented by the chemical formula of CoCo 2 O 4 .
  • the spinel-type oxide represented by these chemical formulas is known as a highly conductive oxide of the same type as an oxide (for example, LiMn 2 O 4 ) that is widely used as an electrode material of a secondary battery, for example. From the above, it is considered that the porous body can maintain high conductivity even when the entire outer shell is oxidized by use in a high temperature environment.
  • the porous body can have various shapes such as a sheet, a rectangular parallelepiped, a sphere, and a column. Above all, the porous body preferably has a sheet-like appearance as shown in FIG. 2 and has a thickness of 0.2 mm or more and 2 mm or less. The thickness of the porous body is more preferably 0.5 mm or more and 1 mm or less. When the thickness of the porous body is 2 mm or less, it is possible to form a porous body having a smaller thickness than before, and it is possible to reduce the required amount of metal. The required strength can be provided by the porous body having a thickness of 0.2 mm or more. The thickness can be measured by, for example, a commercially available digital thickness gauge (Teklock Corporation).
  • outer shell of the porous body may be entirely made of metal, or a part of the outer shell may contain the oxide. Further, the entire outer shell may be made of the above oxide.
  • the porous body has a three-dimensional network structure having a skeleton 12 and pores 14, as shown in FIG. Details of the three-dimensional network structure will be described later.
  • the skeleton 12 includes an outer shell 11 containing nickel and cobalt, and a core 13 containing one or both of a hollow or conductive material surrounded by the outer shell 11.
  • the skeleton 12 forms a pillar portion and a node portion described later.
  • the skeleton 12 preferably has a triangular cross section perpendicular to the longitudinal direction.
  • the cross-sectional shape of the skeleton 12 should not be limited to this.
  • the cross-sectional shape of the skeleton 12 may be a polygon other than a triangle such as a quadrangle or a hexagon.
  • the cross-sectional shape of the skeleton 12 may be circular.
  • the skeleton 12 has a core 13 surrounded by the outer shell 11 having a hollow cylindrical shape, and a cross section orthogonal to the longitudinal direction being a triangle, another polygon, or a circle. Since the skeleton 12 has a cylindrical shape, the skeleton 12 has an inner wall forming the inner surface of the tube in the outer shell 11 and an outer wall forming the outer surface of the tube. In the skeleton 12, since the core 13 surrounded by the outer shell 11 is hollow, the porous body can be made extremely lightweight. However, the skeleton is not limited to being hollow, and may be solid. In this case, the strength of the porous body can be improved.
  • the porous body preferably has a total basis weight of nickel and cobalt of 200 g / m 2 or more and 1000 g / m 2 or less.
  • the basis weight is more preferably 250 g / m 2 or more and 900 g / m 2 or less.
  • the above-mentioned basis weight can be appropriately adjusted when, for example, nickel-cobalt alloy plating is performed on a conductive resin molded body that has been subjected to a conductive treatment for imparting conductivity.
  • the above-mentioned total weight of nickel and cobalt is converted into the mass per unit volume (apparent density of the porous body) as follows. That apparent density of the porous body is preferably from 0.14 g / cm 3 or more 0.75 g / cm 3, more preferably at most 0.18 g / cm 3 or more 0.65 g / cm 3 .
  • the porous body preferably has a porosity of 40% to 98%, more preferably 45% to 98%, and most preferably 50% to 98%.
  • the porosity of the porous body is 40% or more, the porous body can be made extremely lightweight and the surface area of the porous body can be increased.
  • the porosity of the porous body is 98% or less, the porous body can have sufficient strength.
  • the porous body preferably has an average pore diameter of 350 ⁇ m or more and 3500 ⁇ m or less.
  • the average pore diameter of the porous body is 350 ⁇ m or more, the gas easily flows through the porous body.
  • the average pore diameter of the skeleton is 3500 ⁇ m or less, the bendability (bendability) of the porous body can be improved.
  • the average pore diameter of the porous body is more preferably 350 ⁇ m or more and 1000 ⁇ m or less, and most preferably 350 ⁇ m or more and 850 ⁇ m or less.
  • the number of voids having a major axis of 1 ⁇ m or more appearing in an arbitrary 10 ⁇ m square region of the observation image may be 5 or less. preferable. More preferably, the number of the voids is three or less. Thereby, the strength of the porous body can be sufficiently improved. Further, it is understood that when the number of the voids is 5 or less, it is different from a compact obtained by sintering fine powder.
  • the lower limit of the number of observed voids is, for example, zero.
  • the “number of voids” means the number average of voids obtained by observing a plurality of “10 ⁇ m square regions” in the cross section of the outer shell.
  • the cross section of the outer shell can be observed by using an electron microscope. Specifically, it is preferable to obtain the above “number of voids” by observing the cross section of the outer shell in 10 visual fields.
  • the cross section of the outer shell may be a cross section orthogonal to the longitudinal direction of the skeleton, or may be a cross section parallel to the longitudinal direction of the skeleton.
  • the voids in the observed image can be distinguished from others by the color contrast (difference in brightness).
  • the upper limit of the major axis of the void should not be limited, but is, for example, 10,000 ⁇ m.
  • the outer shell preferably has an average thickness of 10 ⁇ m or more and 50 ⁇ m or less.
  • the thickness of the outer shell means the shortest distance from the inner wall, which is the interface with the hollow of the core of the skeleton, to the outer outer wall of the outer shell, and the average value is referred to as the “average thickness of the outer shell”.
  • the thickness of the outer shell can be determined by observing the cross section of the skeleton with an electron microscope.
  • the average thickness of the outer shell can be specifically determined by the following method. First, a sheet-like porous body is cut. In this case, one observation section is obtained by selecting one section cut perpendicular to the longitudinal direction of the skeleton, enlarging the section at a magnification of 3000 times, and observing the section with an electron microscope. Next, the thickness t of an arbitrary side of a polygon (for example, the triangle in FIG. 4) forming one skeleton appearing in this observation image is measured at the center of the side, and this is measured. The thickness of the shell. Further, by performing such a measurement on 10 observation images (10 visual fields), the thickness of the outer shell at 10 points is obtained. Finally, by calculating these average values, the average thickness of the outer shell can be obtained.
  • the porous body has a skeleton having a three-dimensional network structure.
  • the “three-dimensional network structure” means a structure in which metal components (for example, an alloy made of nickel and cobalt) constituting the three-dimensional network structure are three-dimensionally spread in a network.
  • the three-dimensional network is formed by a skeleton.
  • the three-dimensional network structure will be described in detail.
  • the three-dimensional network structure 30 has a cell unit 20 as a basic unit, and is formed by joining a plurality of cell units 20 together.
  • the cell unit 20 includes a column 1 and a node 2 that connects the columns 1.
  • the support part 1 and the node part 2 are separately described in terms of the terms for convenience, but there is no clear boundary between them. That is, in the three-dimensional network structure 30, the plurality of support portions 1 and the plurality of node portions 2 are integrated to form the cell portion 20, and the cell portion 20 is formed as a constituent unit.
  • the cell part of FIG. 5A will be described as a regular dodecahedron of FIG. 5B.
  • the column portion 1 and the node portion 2 form a frame portion 10 which is a planar polygonal structure by using a plurality of each.
  • the polygonal structure of the frame portion 10 is a regular pentagon, but may be a polygon other than a regular pentagon such as a triangle, a quadrangle, or a hexagon.
  • a plurality of pillar portions 1 and a plurality of node portions 2 form a planar polygonal hole.
  • the hole diameter of the planar polygonal hole means the diameter of a circle circumscribing the planar polygonal hole defined by the frame portion 10.
  • the frame part 10 forms the cell part 20 which is a three-dimensional polyhedral structure by combining a plurality of them. At this time, one support 1 and one node 2 are shared by the plurality of frames 10.
  • the column portion 1 preferably has a hollow cylindrical shape and a triangular cross section, but is not limited thereto.
  • the column 1 may have a cross-sectional shape of a polygon other than a triangle such as a square or a hexagon, or a circle.
  • the shape of the node portion 2 may be a sharp edge having a vertex, a flat shape having a chamfered vertex, or a shape having a radius at the vertex. It may be a curved surface.
  • the polyhedron structure of the cell unit 20 is a dodecahedron in FIG. 5B, but may be another polyhedron such as a cube, an icosahedron (FIG. 6A), or a truncated icosahedron (FIG. 6B).
  • FIG. 6A an icosahedron
  • FIG. 6B a truncated icosahedron
  • the structure of the cell unit 20 it can be understood that a three-dimensional space surrounded by the virtual plane A defined by each of the plurality of frame units 10 is formed.
  • the pore diameter of the three-dimensional space (hereinafter also referred to as “pore diameter”) can be grasped as the diameter of a sphere circumscribing the three-dimensional space defined by the cell unit 20.
  • the pore diameter of the porous body in the present embodiment is calculated based on the above-described calculation formula for convenience. That is, the pore diameter (pore diameter) of the three-dimensional space defined by the cell portion 20 indicates the same as the porosity and the average pore diameter of the porous body.
  • the cell section 20 forms a three-dimensional network structure 30 by combining a plurality of the cell sections 20 (FIGS. 7 to 9). At this time, the frame unit 10 is shared by the two cell units 20.
  • the three-dimensional mesh structure 30 can be understood to include the frame unit 10 or can be understood to include the cell unit 20.
  • the porous body has a three-dimensional network structure that forms a planar polygonal hole (frame portion) and a three-dimensional space (cell portion) as described above. Therefore, it can be clearly distinguished from a two-dimensional network structure having only planar holes (for example, a punched metal, a mesh, or the like). Further, since the porous body has a three-dimensional network structure in which a plurality of pillar portions and a plurality of node portions are integrated, such as a nonwoven fabric formed by entanglement of fibers as constituent units. It can be clearly distinguished from a structure. Since the porous body has such a three-dimensional network structure, it can have continuous ventilation holes.
  • the three-dimensional network structure is not limited to the above-described structure.
  • the cell section may be formed by a plurality of frame sections having different sizes and planar shapes.
  • the three-dimensional network structure may be formed by a plurality of cell portions having different sizes and three-dimensional shapes.
  • the three-dimensional network structure may partially include a frame portion in which a planar polygonal hole is not formed, or a cell portion in which a three-dimensional space is not formed (a cell portion having a solid inside). ) May be partially included.
  • the outer shell of the skeleton contains nickel and cobalt as described above.
  • the outer shell may contain additional elements and unavoidable impurities other than nickel and cobalt, as long as the effects of the porous body of the present disclosure are not affected.
  • the nickel-cobalt alloy is preferably the main component in the shell.
  • the “main component” in the outer shell refers to a component having the largest mass ratio in the skeleton. More specifically, it refers to a component whose content in the outer shell exceeds 50% by mass.
  • the total content of nickel and cobalt in the outer shell is 80% by mass or more in a state before the porous body is used as a current collector of the SOFC, that is, in a state before the porous body is exposed to a high temperature of 700 ° C or more. Is preferably 90% by mass or more, and most preferably 95% by mass or more.
  • the total content of nickel and cobalt may be 100% by mass.
  • Ni s Co t (where 0.6 ⁇ s ⁇ 1.2, 1.8 ⁇ t ⁇ 2.4)
  • Ni m Co n (however, 1.8 ⁇ m ⁇ 2.4,0.6 ⁇ n ⁇ 1.2) can be represented by the chemical formula.
  • the outer shell has a mass ratio of cobalt to the total mass of nickel and cobalt of 0.2 to 0.4 or 0.6 to 0.8.
  • Ni x Co 3-x O 4 (provided that 0.6 ⁇ x ⁇ 1.2 or 1.8 ⁇ x ⁇ 2.4), typically a spinel-type oxide represented by the chemical formula of NiCo 2 O 4 or Ni 2 CoO 4 is formed in the outer shell. Oxidation of the outer shell may produce a spinel-type oxide represented by the chemical formula of CoCo 2 O 4 .
  • the spinel-type oxide shows high conductivity, and thus the porous body can maintain high conductivity even when the entire outer shell is oxidized by use in a high-temperature environment.
  • the mass ratio of cobalt to the total mass of nickel and cobalt is less than 0.2, more than 0.4 and less than 0.6, and more than 0.8, both are oxidized.
  • the proportion of the spinel oxide represented by the chemical formula such as Ni x Co y O 4 or CoCo 2 O 4 generated in the skeleton is reduced. Therefore, when the porous body is used as a current collector of an SOFC or the like, it tends to be difficult to maintain high conductivity by oxidation.
  • the mass ratio of cobalt to the total mass of nickel and cobalt in the outer shell is 0.28 or more and 0.38 or less or 0.62 or more. It is preferably 72 or less.
  • the outer shell further contains at least one additional element selected from the group consisting of nitrogen, sulfur, fluorine, and chlorine, and the additional element is at least 5 ppm and at most 10,000 ppm. More preferably, it is 10 ppm or more and 8000 ppm or less. Further, the outer shell may contain phosphorus as an additive element, and in this case, the additive element is at least 5 ppm and at most 50,000 ppm. More preferably, it is 10 ppm or more and 40,000 ppm or less.
  • the outer shell preferably further contains at least two or more additional elements selected from the group consisting of nitrogen, sulfur, fluorine, chlorine, and phosphorus, and the total of the additional elements is preferably 5 ppm or more and 50,000 ppm or less. More preferably, it is 10 ppm or more and 10,000 ppm or less.
  • the porous body When the porous body is used as a current collector material for an SOFC, the porous body is exposed to a high temperature environment of 700 to 1000 ° C. as described above. However, since the outer shell contains the additional element, a high strength ( Creep characteristics) can be maintained.
  • the outer shell preferably further contains oxygen. Specifically, oxygen is more preferably contained in the outer shell in an amount of 0.1% by mass or more and 35% by mass or less. Oxygen in the outer shell can be detected, for example, after using the porous body as a current collector of the SOFC. That is, after the porous body is exposed to a high temperature of 700 ° C. or more, it is preferable that oxygen be contained in the outer shell in an amount of 0.1% by mass or more and 35% by mass or less. Oxygen is more preferably from 10 to 30% by mass, and even more preferably from 25 to 28% by mass, in the outer shell.
  • oxygen is contained in the outer shell in an amount of 0.1% by mass or more and 35% by mass or less, it is possible to know the thermal history that the porous body was exposed to a high temperature of 700 ° C. or more and 1100 ° C. or more for 1 hour or more. Further, when the porous body is exposed to a high temperature of 700 ° C. or more by being used as a current collector of an SOFC, and a spinel-type oxide including at least one of nickel and cobalt and oxygen is generated in an outer shell, The outer shell tends to contain oxygen in a range of 0.1% by mass to 35% by mass.
  • the outer shell preferably contains a spinel-type oxide. This allows the porous body to more effectively maintain high conductivity even when oxidized. When the oxygen content in the outer shell is out of the above range, the porous body tends not to obtain the desired performance of more effectively maintaining high conductivity when oxidized.
  • the outer shell may contain unavoidable impurities as described above, as long as the outer shell does not affect the function and effect of the porous body of the present disclosure.
  • the outer shell may contain, for example, silicon, magnesium, carbon, tin, aluminum, sodium, iron, tungsten, titanium, boron, silver, gold, chromium, molybdenum, and the like as components of inevitable impurities.
  • These components may be included, for example, as inevitable impurities that are inevitable to be mixed in a manufacturing method described later.
  • an inevitable impurity an element included in a conductive coating layer formed by a conductive treatment described later can be given.
  • the outer shell may contain the above-described oxygen as a component of inevitable impurities in a state before the porous body is used as a current collector of the SOFC.
  • the unavoidable impurities in the outer shell are preferably individually 5% by mass or less, and preferably 10% by mass or less in total.
  • the porous body was dissolved in aqua regia, and the composition of the metal in this solution was measured by a high-frequency inductively coupled mass spectrometer (ICP-MS apparatus, for example, trade name: “ICPMS-2030”). , Manufactured by Shimadzu Corporation). Specifically, the respective contents (% by mass) of nickel and cobalt in the outer shell, the mass ratio of cobalt to the total mass of nickel and cobalt, and the like can be determined.
  • an EDX device attached to an electron microscope (SEM) is used for an observation image (electron microscope image) of a cross section cut perpendicular to the longitudinal direction of the skeleton described above.
  • SEM part trade name "SUPRA35VP", manufactured by Carl Zeiss Microscopy Co., Ltd.
  • EDX part trade name "octane @ super”, manufactured by Ametech Co., Ltd.
  • the EDX device it is also possible to determine the content of nickel and cobalt in the outer shell.
  • the mass%, mass ratio, and the like of oxygen, nickel, and cobalt in the outer shell can be obtained. Further, as to whether or not the skeleton has a spinel oxide composed of at least one of nickel and cobalt and oxygen, the cross section is irradiated with X-rays and X-ray diffraction (XRD) for analyzing the diffraction pattern. ) Method.
  • a measuring device for specifying whether or not the outer shell has a spinel-type oxide for example, an X-ray diffractometer (for example, trade name (model number): “Empyrean”, manufactured by Spectris, Inc., analysis software: “Integrated powder X Line analysis software PDXL ").
  • the measurement conditions may be, for example, as follows.
  • X-ray diffraction method ⁇ -2 ⁇ method
  • Measurement system Parallel beam optical system mirror Scanning range (2 ⁇ ): 10 to 90 °, integration time: 1 second / step, step: 0.03 °.
  • the current collector according to the present embodiment includes the above-described porous body. As described above, the porous body can maintain high conductivity under a high temperature environment. Therefore, the above current collector can be suitably used as a current collector material of an SOFC, for example, which has a high temperature of 700 ° C. or more during operation.
  • the fuel cell 40 includes a cathode 41, a cathode-side current collector 44, an anode 42, an anode-side current collector 45, and a space between the cathode 41 and the anode 42. And a solid electrolyte layer 43.
  • a cathode separator 46 and an anode separator 47 are arranged on the cathode current collector 44 and the anode current collector 45 so as to face the solid electrolyte layer 43, respectively.
  • An oxidant channel 48 for supplying an oxidant to the cathode 41 is formed by a cathode-side separator 46, and a fuel channel 49 for supplying fuel to the anode 42 is formed by an anode-side separator 47.
  • the fuel cell according to the present embodiment includes at least one of the cathode-side current collector 44 and the anode-side current collector 45.
  • This current collector includes a porous body capable of maintaining high conductivity under a high-temperature environment as described above. Therefore, the above-mentioned current collector can be suitably used as at least one of a cathode-side current collector and an anode-side current collector of an SOFC that is heated to 700 ° C. or higher during operation.
  • the porous body contains nickel and cobalt, it is more preferable to use the current collector as a cathode-side current collector.
  • the porous body according to the present embodiment can be manufactured by appropriately using a conventionally known technique.
  • the method for producing the porous body is not particularly limited, but the following method is preferable.
  • the porous body is preferably produced by a method for producing a porous body including a step of obtaining a body (third step).
  • a sheet of a resin molded body having a three-dimensional network structure (hereinafter, also simply referred to as “resin molded body”) is prepared.
  • a polyurethane resin, a melamine resin, or the like can be used as the resin molded body.
  • a conductive coating layer is formed on the surface of the resin molded body as a conductive treatment for imparting conductivity to the resin molded body.
  • the conductive treatment includes, for example, applying a conductive paint containing conductive particles such as carbon and conductive ceramics and a binder to the surface of the resin molded body by means such as application and impregnation, and nickel by electroless plating.
  • a nickel-cobalt alloy plating is performed on the conductive resin molded body to obtain a porous precursor.
  • electroless plating can be applied, but from the viewpoint of efficiency, it is preferable to use electrolytic plating (so-called nickel-cobalt alloy electroplating).
  • electrolytic plating of a nickel-cobalt alloy a conductive resin molded body is used as a cathode.
  • a known plating bath can be used for electrolytic plating of a nickel-cobalt alloy.
  • a Watts bath, a chloride bath, a sulfamic acid bath, or the like can be used.
  • Examples of the bath composition and electrolysis conditions for electrolytic plating of a nickel-cobalt alloy include the following examples.
  • a porous precursor in which a nickel-cobalt alloy is plated on a conductive resin molded body can be obtained.
  • an additional element such as nitrogen, sulfur, fluorine, chlorine, and phosphorus
  • various additives can be added to the plating bath to be contained in the porous precursor.
  • the various additives include sodium nitrate, sodium sulfate, sodium fluoride, sodium chloride, and sodium phosphate.
  • the additives are not limited to these, and it is sufficient that each element is included.
  • ⁇ Third step> Subsequently, a heat treatment is performed on the porous body precursor to incinerate the resin component in the conductive resin molded body and remove the resin component to obtain a porous body.
  • a porous body having a skeleton having a three-dimensional network structure can be obtained.
  • the temperature and atmosphere of the heat treatment for removing the resin component may be, for example, 600 ° C. or higher, and may be an oxidizing atmosphere such as air.
  • the average pore diameter of the porous body obtained by the above method is substantially equal to the average pore diameter of the resin molded body.
  • the average pore diameter of the resin molded body used to obtain the porous body may be appropriately selected according to the application to which the porous body is applied. Since the porosity of the porous body is ultimately determined by the amount of metal to be plated (basis weight), the basis weight of the nickel-cobalt alloy to be plated is determined in accordance with the porosity required for the final porous body. What is necessary is just to select suitably.
  • the porosity and the average porosity of the resin molded body are defined in the same manner as the porosity and the average porosity of the porous body described above, and the above calculation is performed by replacing "skeleton" with “resin molded body” and applying the same. It can be obtained based on the formula.
  • the porous body includes a skeleton having a three-dimensional network structure, and an outer shell of the skeleton includes nickel and cobalt. Further, the outer shell has a mass ratio of cobalt to the total mass of nickel and cobalt of 0.2 to 0.4 or 0.6 to 0.8. Accordingly, the porous body can maintain high conductivity under a high temperature environment.
  • Example 1-2 Regarding the bath composition used in the second step, the total amount of Ni and Co contained in nickel sulfamate and cobalt sulfamate was set to 400 g / L, the mass ratio of Co / (Ni + Co) was set to 0.2, and the rest was sample 1 By setting the same as -1, a porous body of Sample 1-2 was prepared.
  • Example 1-3 Regarding the bath composition used in the second step, the total amount of Ni and Co contained in nickel sulfamate and cobalt sulfamate was set to 400 g / L, the mass ratio of Co / (Ni + Co) was set to 0.33, and the rest was sample 1 By setting the same as -1, a porous body of Sample 1-3 was prepared.
  • Example 1-4 Regarding the bath composition used in the second step, the total amount of Ni and Co contained in nickel sulfamate and cobalt sulfamate was set to 400 g / L, the mass ratio of Co / (Ni + Co) was set to 0.4, and the rest was sample 1 By setting the same as -1, a porous body of Sample 1-4 was prepared.
  • Example 1-5 Regarding the bath composition used in the second step, the total amount of Ni and Co contained in nickel sulfamate and cobalt sulfamate was set to 400 g / L, the mass ratio of Co / (Ni + Co) was set to 0.5, and the rest was sample 1 By setting the same as -1, a porous body of Sample 1-5 was prepared.
  • Example 1-6 Regarding the bath composition used in the second step, the total amount of Ni and Co contained in nickel sulfamate and cobalt sulfamate was set to 400 g / L, the mass ratio of Co / (Ni + Co) was set to 0.6, and the rest was sample 1 By setting the same as -1, a porous body of Sample 1-6 was prepared.
  • Example 1-7 Regarding the bath composition used in the second step, the total amount of Ni and Co contained in nickel sulfamate and cobalt sulfamate was set to 400 g / L, the mass ratio of Co / (Ni + Co) was set to 0.67, and the other components were sample 1 By setting the same as -1, a porous body of Sample 1-7 was prepared.
  • Example 1-8 Regarding the bath composition used in the second step, the total amount of Ni and Co contained in nickel sulfamate and cobalt sulfamate was set to 400 g / L, the mass ratio of Co / (Ni + Co) was set to 0.8, and the rest was sample 1 By setting the same as -1, a porous body of Sample 1-8 was prepared.
  • Example 1-9 Regarding the bath composition used in the second step, the total amount of Ni and Co contained in nickel sulfamate and cobalt sulfamate was set to 400 g / L, the mass ratio of Co / (Ni + Co) was set to 0.9, and the rest was sample 1 By setting the same as -1, the porous body of sample 1-9 was prepared.
  • the mass ratio of cobalt to the total mass of nickel and cobalt in the outer shell of the skeleton of the porous body of Sample 1-1 to Sample 1-9 was determined by the ratio of nickel contained in the plating bath used for producing them. And the mass ratio of cobalt to the total mass of cobalt (mass ratio of Co / (Ni + Co)).
  • the average pore diameter and the porosity of the porous bodies were determined in accordance with the above-described formulas.
  • the porosity and the average porosity of the resin molded article were the same, the porosity was 96%, and the average porosity was 450 ⁇ m.
  • the porous bodies of Samples 1-1 to 1-9 had a thickness of 1.4 mm.
  • the total basis weight of nickel and cobalt in the porous bodies of Samples 1 to 9 is 660 g / m 2 as described above.
  • the porous bodies of Samples 1-1 to 1-9 are continuously subjected to a heat treatment at 800 ° C. in an air atmosphere, and before and after the heat treatment (0 hour) using a four-terminal method.
  • a heat treatment at 800 ° C. in an air atmosphere, and before and after the heat treatment (0 hour) using a four-terminal method.
  • the measurement direction of the electric resistivity is the direction of the film thickness of the porous body.
  • the porous body was regarded as a non-defective product (determination: A).
  • the cross section of the porous body of the sample 1-3 subjected to the above-mentioned heat treatment was analyzed using the above-mentioned X-ray diffractometer, and as a result, the outer shell of the skeleton of the porous body of the sample 1-3 was Ni 2 CoO 4 It was presumed to have a spinel-type oxide.
  • Example 2-1> to ⁇ Sample 2-4> Regarding the bath composition used in the second step of Example 1, the total amount of Ni and Co contained in nickel sulfamate and cobalt sulfamate was 400 g / L, and the mass ratio of Co / (Ni + Co) was 0.33; Other than that were the same as Sample 1-1. Also, by adding sodium nitrate to the plating bath, nitrogen as an additional element was added at 3 ppm, 5 pm, 9000 ppm, and 11000 ppm, respectively, to produce porous bodies of Samples 2-1 to 2-4.
  • Example 2-5> to ⁇ Sample 2-8> Regarding the bath composition used in the second step of Example 1, the total amount of Ni and Co contained in nickel sulfamate and cobalt sulfamate was 400 g / L, and the mass ratio of Co / (Ni + Co) was 0.66, Other than that were the same as Sample 1-1. Further, by adding sodium nitrate to the plating bath, nitrogen as an additional element was added at 3 ppm, 5 pm, 9000 ppm, and 11000 ppm, respectively, to produce porous bodies of Samples 2-5 to 2-8.
  • ⁇ Sample 3-1> to ⁇ Sample 3-4> Regarding the bath composition used in the second step of Example 1, the total amount of Ni and Co contained in nickel sulfamate and cobalt sulfamate was 400 g / L, and the mass ratio of Co / (Ni + Co) was 0.33; Other than that were the same as Sample 1-1. Further, by adding sodium sulfate to the plating bath, sulfur as an additional element was added at 3 ppm, 5 pm, 9000 ppm, and 11000 ppm, respectively, to produce porous bodies of Samples 3-1 to 3-4.
  • ⁇ Sample 3-5> to ⁇ Sample 3-8> Regarding the bath composition used in the second step of Example 1, the total amount of Ni and Co contained in nickel sulfamate and cobalt sulfamate was 400 g / L, and the mass ratio of Co / (Ni + Co) was 0.66, Other than that were the same as Sample 1-1. Also, by adding sodium sulfate to the plating bath, sulfur as an additional element was added at 3 ppm, 5 pm, 9000 ppm, and 11000 ppm, respectively, to produce porous bodies of Samples 3-5 to 3-8.
  • ⁇ Sample 4-1> to ⁇ Sample 4-4> Regarding the bath composition used in the second step of Example 1, the total amount of Ni and Co contained in nickel sulfamate and cobalt sulfamate was 400 g / L, and the mass ratio of Co / (Ni + Co) was 0.33; Other than that were the same as Sample 1-1. Further, by adding sodium phosphate to the plating bath, phosphorus as an additional element was added at 3 ppm, 5 pm, 50,000 ppm, and 55000 ppm, respectively, to produce porous bodies of Samples 4-1 to 4-4.
  • ⁇ Sample 4-5> to ⁇ Sample 4-8> Regarding the bath composition used in the second step of Example 1, the total amount of Ni and Co contained in nickel sulfamate and cobalt sulfamate was 400 g / L, and the mass ratio of Co / (Ni + Co) was 0.66, Other than that were the same as Sample 1-1. Further, by adding sodium phosphate to the plating bath, phosphorus as an additional element was added at 3 ppm, 5 pm, 50,000 ppm, and 55000 ppm, respectively, to produce porous bodies of Samples 4-5 to 4-8.
  • ⁇ Sample 5-1> to ⁇ Sample 5-4> Regarding the bath composition used in the second step of Example 1, the total amount of Ni and Co contained in nickel sulfamate and cobalt sulfamate was 400 g / L, and the mass ratio of Co / (Ni + Co) was 0.33; Other than that were the same as Sample 1-1. Further, by adding sodium fluoride to the plating bath, fluorine as an additional element was added at 3 ppm, 5 pm, 9000 ppm, and 11000 ppm, respectively, to produce porous bodies of Samples 5-1 to 5-4.
  • ⁇ Sample 5-5> to ⁇ Sample 5-8> Regarding the bath composition used in the second step of Example 1, the total amount of Ni and Co contained in nickel sulfamate and cobalt sulfamate was 400 g / L, and the mass ratio of Co / (Ni + Co) was 0.66, Other than that were the same as Sample 1-1. Further, by adding sodium fluoride to the plating bath, fluorine as an additional element was added at 3 ppm, 5 pm, 9000 ppm, and 11000 ppm, respectively, to produce porous bodies of Samples 5-5 to 5-8.
  • ⁇ Sample 6-1> to ⁇ Sample 6-4> Regarding the bath composition used in the second step of Example 1, the total amount of Ni and Co contained in nickel sulfamate and cobalt sulfamate was 400 g / L, and the mass ratio of Co / (Ni + Co) was 0.33; Other than that were the same as Sample 1-1. Further, by adding sodium chloride to the plating bath, chlorine as an additional element was added at 3 ppm, 5 pm, 9000 ppm, and 11000 ppm, respectively, to produce porous bodies of Samples 6-1 to 6-4.
  • Example 7-1 Regarding the bath composition used in the second step of Example 1, the total amount of Ni and Co contained in nickel sulfamate and cobalt sulfamate was 400 g / L, and the mass ratio of Co / (Ni + Co) was 0.33; Other than that were the same as Sample 1-1. Further, by adding sodium chloride to the plating bath, 2 ppm of chlorine as an additional element is added, and by adding sodium phosphate to the plating bath, 1 ppm of phosphorus as an additional element is added. A 3 ppm sample 7-1 porous body was prepared.
  • Example 7-2 Regarding the bath composition used in the second step of Example 1, the total amount of Ni and Co contained in nickel sulfamate and cobalt sulfamate was 400 g / L, and the mass ratio of Co / (Ni + Co) was 0.33; Other than that were the same as Sample 1-1. Further, by adding sodium chloride to the plating bath, 2 ppm of chlorine as an additional element, and by adding sodium phosphate to the plating bath, 3 ppm of phosphorus as an additional element are added. A porous body of Sample 7-2 at 5 ppm was produced.
  • Example 7-3 Regarding the bath composition used in the second step of Example 1, the total amount of Ni and Co contained in nickel sulfamate and cobalt sulfamate was 400 g / L, and the mass ratio of Co / (Ni + Co) was 0.33; Other than that were the same as Sample 1-1. Also, adding 2 ppm of nitrogen as an additional element by adding sodium nitrate to the plating bath, and adding 3 ppm of sulfur as an additional element by adding sodium sulfate to the plating bath, and the total concentration of the additional elements is 5 ppm. The porous body of Sample 7-3 was prepared.
  • Example 7-4 Regarding the bath composition used in the second step of Example 1, the total amount of Ni and Co contained in nickel sulfamate and cobalt sulfamate was 400 g / L, and the mass ratio of Co / (Ni + Co) was 0.33; Other than that were the same as Sample 1-1. Also, by adding sodium fluoride to the plating bath, 10000 ppm of fluorine as an additional element, by adding sodium phosphate to the plating bath, 30000 ppm of phosphorus as an additional element, and adding sodium sulfate to the plating bath. As a result, 10000 ppm of sulfur as an additional element was added, and a porous body of Sample 7-4 having a total concentration of the additional element of 50,000 ppm was produced.
  • Example 7-5 Regarding the bath composition used in the second step of Example 1, the total amount of Ni and Co contained in nickel sulfamate and cobalt sulfamate was 400 g / L, and the mass ratio of Co / (Ni + Co) was 0.33; Other than that were the same as Sample 1-1.
  • 5,000 ppm of fluorine as an additional element is added by adding sodium fluoride into the plating bath, 30,000 ppm of phosphorus is added as an additional element by adding sodium phosphate to the plating bath, and sodium sulfate is added to the plating bath.
  • 20,000 ppm of sulfur as an additional element was added, and a porous body of Sample 7-5 in which the total concentration of the additional elements was 55000 ppm was produced.
  • Example 7-6 Regarding the bath composition used in the second step of Example 1, the total amount of Ni and Co contained in nickel sulfamate and cobalt sulfamate was 400 g / L, and the mass ratio of Co / (Ni + Co) was 0.66, Other than that were the same as Sample 1-1. Further, by adding sodium chloride to the plating bath, 2 ppm of chlorine as an additional element is added, and by adding sodium phosphate to the plating bath, 1 ppm of phosphorus as an additional element is added. A 3 ppm porous body of Sample 7-6 was prepared.
  • Example 7-7 Regarding the bath composition used in the second step of Example 1, the total amount of Ni and Co contained in nickel sulfamate and cobalt sulfamate was 400 g / L, and the mass ratio of Co / (Ni + Co) was 0.66, Other than that were the same as Sample 1-1. Further, by adding sodium chloride to the plating bath, 2 ppm of chlorine as an additional element, and by adding sodium phosphate to the plating bath, 3 ppm of phosphorus as an additional element are added. A 5 ppm porous material of Sample 7-7 was prepared.
  • Example 7-8> Regarding the bath composition used in the second step of Example 1, the total amount of Ni and Co contained in nickel sulfamate and cobalt sulfamate was 400 g / L, and the mass ratio of Co / (Ni + Co) was 0.66, Other than that were the same as Sample 1-1. Also, adding 2 ppm of nitrogen as an additional element by adding sodium nitrate to the plating bath, and adding 3 ppm of sulfur as an additional element by adding sodium sulfate to the plating bath, and the total concentration of the additional elements is 5 ppm. The porous bodies of Samples 7 to 8 were prepared.
  • Example 7-9 Regarding the bath composition used in the second step of Example 1, the total amount of Ni and Co contained in nickel sulfamate and cobalt sulfamate was 400 g / L, and the mass ratio of Co / (Ni + Co) was 0.66, Other than that were the same as Sample 1-1. Also, by adding sodium fluoride to the plating bath, 10000 ppm of fluorine as an additional element, and by adding sodium phosphate to the plating bath, 45,000 ppm of phosphorus as an additional element, and sodium sulfate to the plating bath. As a result, 5000 ppm of sulfur as an additional element was added, and a porous body of Sample 7-9 in which the total concentration of the additional elements was 60000 ppm was produced.
  • the additive element is nitrogen, good creep characteristics are exhibited in the range of 5 ppm to 9000 ppm.
  • the additive element is sulfur, good creep characteristics are exhibited in the range of 5 ppm or more and 9000 ppm or less.
  • the additive element is phosphorus, good creep characteristics are exhibited in the range of 5 ppm to 50,000 ppm.
  • the additive element is fluorine, good creep characteristics are exhibited in the range of 5 ppm to 9000 ppm.
  • the additive element is chlorine, good creep characteristics are exhibited in the range of 5 ppm to 9000 ppm.
  • REFERENCE SIGNS LIST 1 support part 2 node part 10 frame part 11 outer shell 12 skeleton 13 core part 14 pore part 20 cell part 30 three-dimensional mesh structure 40 fuel cell 41 cathode 42 anode 43 solid electrolyte layer 44 cathode-side current collector 45 anode-side collector Electric body 46 Cathode-side separator 47 Anode-side separator 48 Oxidant flow path 49 Fuel flow path A Virtual plane t Thickness

Abstract

骨格が一体的に連続した三次元網目状構造を有する多孔体であって、前記骨格は、外殻と、中空又は導電性材料の一方または双方を含む芯部と、を備え、前記外殻は、ニッケルとコバルトとを含み、前記ニッケルおよび前記コバルトの合計質量に対する前記コバルトの質量比率が0.2以上0.4以下または0.6以上0.8以下である、多孔体。

Description

多孔体、それを含む集電体および燃料電池
 本開示は、多孔体、それを含む集電体および燃料電池に関する。
本出願は、2018年6月21日出願の日本出願第2018-118044号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。
 多孔体の製造方法としては、たとえば特開平11-154517号公報(特許文献1)において、発泡樹脂などに導電性を付与する処理を施した後、この発泡樹脂上に金属からなる電気めっき層を形成し、必要に応じて発泡樹脂を焼却し、除去することによって金属多孔体を製造する方法が開示されている。
 さらに特開2012-132083号公報(特許文献2)には、耐酸化性および耐食性の特性を備えた金属多孔体として、ニッケル-スズ合金を主成分とする骨格を有する金属多孔体が開示されている。特開2012-149282号公報(特許文献3)には、高い耐食性を備えた金属多孔体として、ニッケル-クロム合金を主成分とする骨格を有する金属多孔体が開示されている。
特開平11-154517号公報 特開2012-132083号公報 特開2012-149282号公報
 本開示の一態様に係る多孔体は、骨格が一体的に連続した三次元網目状構造を有する多孔体であって、上記骨格は、外殻と、中空又は導電性材料の一方または双方を含む芯部と、を備え、上記外殻は、ニッケルとコバルトとを含み、上記ニッケルおよび上記コバルトの合計質量に対する上記コバルトの質量比率が0.2以上0.4以下または0.6以上0.8以下である。
 本開示の一態様に係る集電体は、上記多孔体を含む。
 本開示の一態様に係る燃料電池は、上記集電体を含む。
図1は、本開示の一態様に係る多孔体における全体の外観を示す外観写真である。 図2は、本開示の一態様に係る多孔体の外観を拡大して示す拡大写真である。 図3は、本開示の一態様に係る多孔体における骨格の部分断面の概略を示す概略部分断面図である。 図4は、図3のA-A線断面図である。 図5Aは、本開示の一態様に係る多孔体の三次元網目状構造を説明するため、多孔体におけるセル部の1つに着目した拡大模式図である。 図5Bは、セル部の形状の一態様を示す模式図である。 図6Aは、セル部の形状の他の態様を示す模式図である。 図6Bは、セル部の形状のさらに他の態様を示す模式図である。 図7は、接合した2つのセル部の態様を示す模式図である。 図8は、接合した4つのセル部の態様を示す模式図である。 図9は、複数のセル部が接合することによって形成された三次元網目状構造の一態様を示す模式図である。 図10は、試料1-3の多孔体に関し、SOFCでの使用を模擬した熱処理後の組成を説明するため、上記多孔体の骨格の断面の電子顕微鏡において、外殻の厚み方向の外側部を、エネルギー分散型X線分析法(EDX)を用いた分析の被測定部としたことを説明する図面代用写真である。 図11は、試料1-3の多孔体に関し、SOFCでの使用を模擬した熱処理後の組成を説明するため、上記多孔体の骨格の断面の電子顕微鏡において、外殻の厚み方向の中心部を、EDXを用いた分析の被測定部としたことを説明する図面代用写真である。 図12は、試料1-3の多孔体に関し、SOFCでの使用を模擬した熱処理後の組成を説明するため、上記多孔体の骨格の断面の電子顕微鏡において、外殻の厚み方向の内側部を、EDXを用いた分析の被測定部としたことを説明する図面代用写真である。 図13は、本開示の一態様に係る燃料電池を模式的に示す断面図である。
[本開示が解決しようとする課題]
 多孔体は、これを電池用集電体、特に固体酸化物型燃料電池(SOFC)の集電体として用いる場合、700~1000℃という高温環境に曝されることから、使用すればするほど酸化が進み、導電性が劣化する傾向がある。このため多孔体に対し、高温環境下で高い導電性を維持する性能を備えることについて強い要請がある。上記特許文献2および3の多孔体は、いずれも耐酸化性に優れるため高温環境下で導電性が比較的維持されるが、これをより高く維持することが要求される場合がある。さらにクロムは、800℃程度の高温環境下において揮発し、燃料電池の触媒性能を低下させてしまう所謂Cr被毒の恐れがあるため、クロムを含む多孔体をSOFCの集電体として用いる場合、改善の余地がある。
 上記実情に鑑み、本開示は、高温環境下で高い導電性を維持することが可能な多孔体、それを含む集電体および燃料電池を提供することを目的とする。
[本開示の効果]
 上記によれば、高温環境下で高い導電性を維持することが可能な多孔体、それを含む集電体および燃料電池を提供することができる。
 [本開示の実施形態の説明]
 本発明者らは、高温環境下で高い導電性を維持することができる多孔体を検討した。その過程で、三次元網目状構造を有する骨格中のニッケルおよびコバルトが特定の質量比で存在する場合、多孔体は、高温環境下における使用にもかかわらず優れた導電性を維持することを知見した。これにより、本開示に係る多孔体に到達した。
 最初に本開示の実施態様を列記して説明する。
 [1]本開示の一態様に係る多孔体は、骨格が一体的に連続した三次元網目状構造を有する多孔体であって、上記骨格は、外殻と、中空又は導電性材料の一方または双方を含む芯部と、を備え、上記外殻は、ニッケルとコバルトとを含み、上記ニッケルおよび上記コバルトの合計質量に対する上記コバルトの質量比率が0.2以上0.4以下または0.6以上0.8以下である。このような特徴を有する多孔体は、高温環境下で高い導電性を維持することができる。
 [2]上記外殻は、さらに窒素、硫黄、フッ素、塩素からなる群から選ばれる少なくとも1つの添加元素を含み、上記添加元素は、5ppm以上10000ppm以下であることが好ましい。この場合、高温環境下で高い導電性を維持しながらも高い強度を確保することができる。
 [3]上記外殻は、さらに添加元素としてリンを含み、前記添加元素は、5ppm以上50000ppm以下であることが好ましい。この場合、高温環境下で高い導電性を維持しながらも高い強度を確保することができる。
 [4]上記外殻は、さらに窒素、硫黄、フッ素、塩素、リンからなる群から選ばれる少なくとも2つ以上の添加元素を含み、前記添加元素の合計が、5ppm以上50000ppm以下であることが好ましい。この場合、高温環境下で高い導電性を維持しながらも高い強度を確保することができる。
 [5]上記外殻は、さらに酸素を含むことが好ましい。この態様は、多孔体が使用により酸化された状態にあることを意味するが、このような状態においても多孔体は、高温環境下で高い導電性を維持することができる。
 [6]上記酸素は、上記外殻において0.1質量%以上35質量%以下含まれることが好ましい。この場合、高温環境下で高い導電性をより効果的に維持することができる。
 [7]上記外殻は、スピネル型酸化物を含むことが好ましい。この場合も、高温環境下で高い導電性をより効果的に維持することができる。
 [8]上記外殻の断面を3000倍の倍率で観察することにより観察像を得た場合、上記観察像の任意の10μm四方の領域において現われる長径1μm以上の空隙の数が5個以下であることが好ましい。これにより、強度を十分に向上させることができる。
 [9]上記芯部は、中空であることが好ましい。これにより、多孔体を軽量とすることができ、かつ必要な金属量を低減することができる。
 [10]上記多孔体は、シート状の外観を有し、厚みが0.2mm以上2mm以下であることが好ましい。これにより従来に比べ、厚みの薄い多孔体を形成可能となり、もって必要な金属量を低減することができる。
 [11]本開示の一態様に係る集電体は、上記多孔体を含む。このような特徴を有する集電体は、高温環境下で高い導電性を維持することができる。
 [12]本開示の一態様に係る燃料電池は、上記集電体を含む。このような特徴を有する燃料電池は、高温環境下で高い導電性を維持することができ、もって効率よく発電することができる。
 [本開示の実施形態の詳細]
 以下、本開示の一実施形態(以下、「本実施形態」とも記す)について説明する。ただし、本実施形態はこれに限定されるものではない。本明細書において「A~B」という形式の表記は、範囲の上限下限(すなわちA以上B以下)を意味し、Aにおいて単位の記載がなく、Bにおいてのみ単位が記載されている場合、Aの単位とBの単位とは同じである。
 ≪多孔体≫
 本実施形態に係る多孔体は、図1に示すように、骨格が一体的に連続した三次元網目状構造を有する多孔体であって、上記骨格は、外殻と、中空又は導電性材料の一方または双方を含む芯部と、を備え、上記外殻は、ニッケルとコバルトとを含み、上記ニッケルおよび上記コバルトの合計質量に対する上記コバルトの質量比率が0.2以上0.4以下または0.6以上0.8以下である。このような特徴を有する多孔体は、高温環境下で高い導電性を維持することができる。
 上記多孔体が、高温環境下で高い導電性を維持することができるメカニズムの詳細は不明であるが、次の理由が考えられる。すなわち多孔体が固体酸化物型燃料電池(SOFC)の集電体などとして700~1000℃という高温環境に曝された場合、上記多孔体は、三次元網目状構造を有する骨格の全体が酸化される。しかしながら上記骨格の外殻の上記ニッケルおよび上記コバルトの合計質量に対する上記コバルトの質量比率が0.2以上0.4以下または0.6以上0.8以下である。
 ここで、上記外殻は、さらに窒素、硫黄、フッ素、塩素からなる群から選ばれた少なくとも1つの添加元素を含んでおり、上記添加元素は、5ppm以上10000ppm以下である。より好ましくは、10ppm以上8000ppm以下である。また、上記外殻は、添加元素としてリンを含んでいてもよく、その場合の上記添加元素は、5ppm以上50000ppm以下である。より好ましくは、10ppm以上40000ppm以下である。
また、上記外殻は、さらに窒素、硫黄、フッ素、塩素、リンからなる群から選ばれる少なくとも2つ以上の添加元素を含み、前記添加元素の合計が、5ppm以上50000ppm以下であることが好ましい。より好ましくは、10ppm以上10000ppm以下である。
 上記多孔体をSOFCの集電体材料として使用された場合、上述のように700~1000℃という高温環境に曝されるが、上記外殻が上記添加元素を含んでいることにより、高い強度(クリープ特性)を維持することができる。
 また、上記外殻では酸化によって、ニッケルおよびコバルトの少なくとも一方、ならびに酸素で構成され、かつスピネル型の立体構造を有する酸化物(以下、「スピネル型酸化物」とも記す)が生成される。具体的にはNixCo3-x4(ただし、0.6≦x≦1.2または1.8≦x≦2.4)、典型的にはNiCo24またはNi2CoO4の化学式で示される酸化物が、酸化によって上記外殻に生成されることとなる。上記外殻の酸化により、CoCo24の化学式で示されるスピネル型酸化物が生成される場合もある。これらの化学式で示されるスピネル型酸化物は、たとえば二次電池の電極材料などとしても汎用されている酸化物(たとえばLiMn24)と同種の導電性の高い酸化物として知られる。以上から多孔体は、高温環境下での使用によって外殻の全体が酸化された場合であっても、高い導電性を維持することができると考えられる。
 上記多孔体は、その外観がシート状、直方体状、球状および円柱状などの各種の形状を有することができる。なかでも多孔体は、図2に示すように、シート状の外観を有し、厚みが0.2mm以上2mm以下であることが好ましい。多孔体の厚みは、0.5mm以上1mm以下であることがより好ましい。多孔体の厚みが2mm以下であることより、従来に比べ厚みの薄い多孔体を形成可能となって必要な金属量を低減することができる。多孔体の厚みが0.2mm以上であることより必要な強度を備えることができる。上記厚みは、たとえば市販のデジタルシックネスゲージ(株式会社テクロック社)によって測定が可能である。
 なお、上記多孔体の外殻は、全体が金属のみから構成されていてもよいし、その一部は上記酸化物を含んでいてもよい。また、外殻の全体が上記酸化物から構成されていてもよい。
 <骨格>
 多孔体は、図3に示すように、骨格12と気孔部14を有する三次元網目状構造を有する。三次元網目構造の詳細については、後述する。骨格12は、ニッケルとコバルトとを含む外殻11、およびこの外殻11に囲まれた中空又は導電性材料の一方または双方を含む芯部13とからなる。骨格12は、後述する支柱部およびノード部を形成している。
 さらに骨格12は、図4に示すように、その長手方向に直交する断面の形状が三角形であることが好ましい。しかし骨格12の断面形状は、これに限定されるべきではない。骨格12の断面形状は、四角形、六角形などの三角形以外の多角形であってもよい。さらに、骨格12の断面形状が円形であってもよい。
 すなわち骨格12は、外殻11に囲まれた芯部13が中空の筒形状を有し、長手方向に直交する断面が三角形またはその他の多角形、あるいは円形であることが好ましい。骨格12は、筒形状であるので外殻11において筒の内側面をなす内壁、および筒の外側面をなす外壁を有している。骨格12は、外殻11に囲まれた芯部13が中空であることにより、多孔体を非常に軽量とすることができる。ただし骨格は、中空であることに限定されず、中実であってもよい。この場合、多孔体の強度を向上することができる。
 多孔体は、ニッケルおよびコバルトの合計の目付量が200g/m2以上1000g/m2以下であることが好ましい。上記目付量は、250g/m2以上900g/m2以下であることがより好ましい。後述するように、上記目付量は、導電性を付与する導電化処理を施した導電性樹脂成形体上にニッケル-コバルト合金めっきを行なう時などに、その量を適宜調整することができる。
 上述したニッケルおよびコバルトの合計の目付量を、多孔体の単位体積当たりの質量(多孔体の見かけの密度)に換算すると次のとおりとなる。すなわち上記多孔体の見かけの密度は、0.14g/cm3以上0.75g/cm3以下であることが好ましく、0.18g/cm3以上0.65g/cm3以下であることがより好ましい。ここで「多孔体の見かけの密度」は、次式で定義される。
多孔体の見かけの密度(g/cm3)=M(g)/V(cm3
M:多孔体の質量[g]
V:多孔体における外観の形状の体積[cm3]。
 多孔体は、その気孔率が40%以上98%以下であることが好ましく、45%以上98%以下であることがより好ましく、50%以上98%以下であることが最も好ましい。多孔体の気孔率が40%以上であることにより、多孔体を非常に軽量なものとすることができ、かつ多孔体の表面積を大きくすることができる。多孔体の気孔率が98%以下であることにより、多孔体に十分な強度を備えさせることができる。
 多孔体の気孔率は、次式で定義される。
気孔率(%)=[1-{M/(V×d)}]×100
M:多孔体の質量[g]
V:多孔体における外観の形状の体積[cm3
d:多孔体を構成する金属の密度[g/cm3]。
 多孔体は、その平均気孔径が350μm以上3500μm以下であることが好ましい。多孔体の平均気孔径が350μm以上であることにより、多孔体中にガスが流れやすくなる。骨格の平均気孔径が3500μm以下であることにより、多孔体の曲げ性(曲げ加工性)を高めることができる。これらの観点から、多孔体の平均気孔径は350μm以上1000μm以下であることがより好ましく、350μm以上850μm以下であることが最も好ましい。
 多孔体の平均気孔径は、次の方法により求めることができる。すなわち、まず顕微鏡を用いて多孔体の表面を3000倍の倍率で拡大した観察像を少なくとも10視野準備し、この10視野のそれぞれにおいて後述するセル部における1インチ(25.4mm=25400μm)あたりの気孔の数を求める。さらに、この10視野における気孔の数を平均値(n)とした上で、これを次式に代入することより算出される数値を、多孔体の平均気孔径とここでは定義する。
平均気孔径(μm)=25400μm/nc。
 骨格の外殻の断面を3000倍の倍率で観察することにより観察像を得た場合、上記観察像の任意の10μm四方の領域において現われる長径1μm以上の空隙の数が5個以下であることが好ましい。この空隙の数は、3個以下であることがより好ましい。これにより多孔体の強度を十分に向上させることができる。さらに上記空隙の数が5個以下であることにより、微粉を焼結してなる成形体とは異なることが理解される。観察される空隙の数の下限は、たとえば0個である。ここで「空隙の数」とは、外殻の断面における複数の「10μm四方の領域」をそれぞれ観察することにより求められる空隙の数平均を意味する。
 外殻の断面の観察は、電子顕微鏡を用いることにより行うことができる。具体的には、10視野において外殻の断面の観察を行なうことにより、上述の「空隙の数」を求めることが好ましい。外殻の断面は、骨格の長手方向に直交する断面であってもよく、骨格の長手方向と平行な断面であってもよい。観察像において空隙は、色のコントラスト(明暗の差)によってその他と区別することができる。空隙の長径の上限は制限されるべきではないが、たとえば10000μmである。
 外殻は、その平均厚みが10μm以上50μm以下であることが好ましい。ここで「外殻の厚み」とは、上記骨格の芯部の中空との界面である内壁から外殻の外側の外壁までの最短距離を意味し、その平均値を「外殻の平均厚み」とする。外殻の厚みは、骨格の断面を電子顕微鏡で観察することにより求めることができる。
 外殻の平均厚みは、具体的には以下の方法により求めることができる。まずシート状の多孔体を切断する。この場合において、骨格の長手方向に対して垂直に切断された断面を一つ選択し、これを3000倍の倍率で拡大して電子顕微鏡により観察することにより観察像を得る。次に、この観察像に現れた1個の骨格を形成する多角形(たとえば、図4の三角形)のうちの任意の1辺の厚みtを、その辺の中央部において測定し、これを外殻の厚みとする。さらに、このような測定を10枚(10視野)の観察像に対して行なうことにより、10点の外殻の厚みを得る。最後に、これらの平均値を算出することにより、外殻の平均厚みを求めることができる。
 (三次元網目状構造)
 多孔体は、三次元網目状構造を有する骨格を備える。本実施形態において「三次元網目状構造」とは、それを構成する金属成分(たとえばニッケルおよびコバルトからなる合金など)が立体的に網目状に広がっている構造を意味する。三次元網目状構造は、骨格によって形成される。以下、三次元網目状構造について詳細に説明する。
 三次元網目状構造30は、図9に示すように、セル部20を基本の単位としており、複数のセル部20が接合することによって形成される。セル部20は、図5Aおよび図5Bに示すように、支柱部1と、複数の支柱部1を繋ぐノード部2とを備える。支柱部1とノード部2とは、便宜上その用語について分けて説明されるが、両者の間に明確な境界はない。すなわち三次元網目状構造30は、複数の支柱部1と複数のノード部2とが一体となってセル部20が形成され、このセル部20を構成単位として形成される。以下、理解を容易にするため、図5Aのセル部を図5Bの正十二面体に見立てて説明する。
 まず支柱部1およびノード部2は、それぞれが複数用いられることによって、平面状の多角形構造体であるフレーム部10を形成する。図5Bにおいて、フレーム部10の多角形構造体は正五角形であるが、三角形、四角形、六角形などの正五角形以外の多角形であってもよい。ここでフレーム部10の構造について、複数の支柱部1と複数のノード部2とによって平面多角形状の孔が形成されていると把握することもできる。本実施形態において、平面多角形状の孔の孔径は、フレーム部10によって画定する平面多角形状の孔に外接する円の直径を意味する。フレーム部10は、その複数が組み合わせられることによって、立体状の多面体構造体であるセル部20を形成する。このとき、1個の支柱部1および1個のノード部2は、複数のフレーム部10で共有される。
 支柱部1は、上述した図4の模式図で示すように、中空の筒形状を有し、断面が三角形であることが好ましいが、これに限定されるべきではない。支柱部1は、断面形状が四角形、六角形などの三角形以外の多角形、あるいは円形であってもよい。ノード部2の形状は、頂点を有するようなシャープエッジの形状であってもよいし、当該頂点が面取りされているような平面状であってもよいし、当該頂点にアールが付与されたような曲面状であってもよい。
 セル部20の多面体構造体は、図5Bにおいて十二面体であるが、立方体、二十面体(図6A)、切頂二十面体(図6B)などの他の多面体であってもよい。ここでセル部20の構造について、複数のフレーム部10のそれぞれによって画定する仮想平面Aによって囲まれた立体状の空間が形成されていると把握することもできる。本実施形態において、上記立体状の空間の孔径(以下、「気孔径」とも記す)は、セル部20によって画定する上記立体状の空間に外接する球の直径)と把握することができる。ただし、本実施形態における多孔体の気孔径は、便宜的に上述した計算式に基づいて算出される。すなわちセル部20によって画定する立体状の空間の孔径(気孔径)は、上記多孔体の気孔率および平均気孔径と同じものを指す。
 セル部20は、これが複数組み合わせられることによって三次元網目状構造30を形成する(図7~図9)。このとき、フレーム部10は2つのセル部20で共有されている。
三次元網目状構造30は、フレーム部10を備えると把握することもできるし、セル部20を備えると把握することもできる。
 多孔体は、上述したように平面多角形状の孔(フレーム部)と立体状の空間(セル部)とを形成する三次元網目状構造を有している。このため平面状の孔のみを有する二次元網目状構造体(たとえばパンチングメタル、メッシュなど)と明確に区別することができる。さらに多孔体は、複数の支柱部と複数のノード部とが一体となって三次元網目状構造を形成しているため、構成単位である繊維同士が絡み合わされて形成された不織布などのような構造体と明確に区別することができる。多孔体は、このような三次元網目状構造を有することから、連通気孔を有することができる。
 本実施形態において三次元網目状構造は、上述の構造に限定されない。たとえばセル部は、その大きさおよび平面的形状がそれぞれ異なる複数のフレーム部によって形成されていてもよい。さらに三次元網目状構造は、その大きさおよび立体的形状がそれぞれ異なる複数のセル部によって形成されていてもよい。三次元網目状構造は、平面多角形状の孔が形成されていないフレーム部を一部に含んでいてもよいし、立体状の空間が形成されていないセル部(内部が中実であるセル部)を一部に含んでいてもよい。
 (ニッケルおよびコバルト)
 骨格の外殻は、上述のとおりニッケルとコバルトとを含む、外殻は、本開示の多孔体が有する作用効果に影響を与えない限り、ニッケルおよびコバルト以外の添加元素および不可避不純物を含むことを除外するものではない。しかしながらニッケル-コバルト合金は、外殻における主成分であることが好ましい。ここで外殻における「主成分」とは、骨格において占める質量割合が最も多い成分をいう。より具体的には、外殻における含有量が50質量%を超える成分をいう。
 外殻におけるニッケルおよびコバルトの合計の含有量は、たとえば多孔体をSOFCの集電体として用いる前の状態、すなわち多孔体を700℃以上の高温に曝す前の状態において、80質量%以上であることが好ましく、90質量%以上であることがより好ましく、95質量%以上であることが最も好ましい。ニッケルおよびコバルトの合計の含有量は、100質量%であってもよい。ニッケルおよびコバルトの合計の含有量が100質量%である場合、外殻の組成は、NisCot(ただし、0.6≦s≦1.2、1.8≦t≦2.4)、あるいはNimCon(ただし、1.8≦m≦2.4、0.6≦n≦1.2)の化学式で表すことができる。
 ニッケルおよびコバルトは、その合計の含有量が高いほど、多孔体をSOFCの集電体などに用いた場合、生成される酸化物がニッケルおよびコバルトの少なくとも一方、ならびに酸素からなるスピネル型酸化物となる割合が高まる傾向がある。これにより多孔体は、高温環境下で使用された場合にも高い導電性を維持することができる。
 (ニッケルおよびコバルトの合計質量に対するコバルトの質量比率)
 外殻は、ニッケルおよびコバルトの合計質量に対するコバルトの質量比率が0.2以上0.4以下または0.6以上0.8以下である。このような組成を有する骨格の外殻を備える多孔体をSOFCの集電体などに用いた場合、上述のように、酸化によってNixCo3-x4(ただし、0.6≦x≦1.2または1.8≦x≦2.4)、典型的にはNiCo24またはNi2CoO4の化学式で示されるスピネル型酸化物が外殻中に生成される。外殻の酸化によりCoCo24の化学式で示されるスピネル型酸化物が生成される場合もある。スピネル型酸化物は、高い導電性を示し、もって多孔体は、高温環境下での使用によって外殻の全体が酸化された場合にも高い導電性を維持することができる。
 上記外殻において、ニッケルおよびコバルトの合計質量に対するコバルトの質量比率が0.2未満である場合、0.4を超え0.6未満である場合、および0.8を超える場合、いずれも酸化によって上記NixCoy4またはCoCo24などの化学式で示されるスピネル型酸化物が骨格中に生成される割合が少なくなる。このため、多孔体をSOFCの集電体などに用いた場合、酸化によって高い導電性を維持することが難しくなる傾向がある。スピネル型酸化物が外殻中に生成される割合を高める観点から、上記外殻におけるニッケルおよびコバルトの合計質量に対するコバルトの質量比率は、0.28以上0.38以下または0.62以上0.72以下であることが好ましい。
 (添加元素)
 ここで、上記外殻は、さらに窒素、硫黄、フッ素、塩素からなる群から選ばれた少なくとも1つの添加元素を含んでおり、上記添加元素は、5ppm以上10000ppm以下である。より好ましくは、10ppm以上8000ppm以下である。また、上記外殻は、添加元素としてリンを含んでいてもよく、その場合の上記添加元素は、5ppm以上50000ppm以下である。より好ましくは、10ppm以上40000ppm以下である。
また、上記外殻は、さらに窒素、硫黄、フッ素、塩素、リンからなる群から選ばれる少なくとも2つ以上の添加元素を含み、前記添加元素の合計が、5ppm以上50000ppm以下であることが好ましい。より好ましくは、10ppm以上10000ppm以下である。
 上記多孔体をSOFCの集電体材料として使用された場合、上述のように700~1000℃という高温環境に曝されるが、上記外殻が上記添加元素を含んでいることにより、高い強度(クリープ特性)を維持することができる。
 (酸素)
 外殻は、さらに酸素を含むことが好ましい。具体的には、酸素は、上記外殻において0.1質量%以上35質量%以下含まれることがより好ましい。外殻中の酸素は、たとえば多孔体をSOFCの集電体として用いた後に検出され得る。すなわち多孔体を700℃以上の高温に曝した後の状態で、酸素は、上記外殻において0.1質量%以上35質量%以下含まれることが好ましい。酸素は、上記外殻において10~30質量%であることがより好ましく、25~28質量%であることがさらに好ましい。
 上記外殻において酸素が0.1質量%以上35質量%以下含まれる場合、多孔体が700℃以上1100℃以下の高温に1時間以上曝されたという熱履歴を伺い知ることができる。さらに、多孔体がSOFCの集電体などに用いられることにより700℃以上の高温に曝され、外殻中にニッケルおよびコバルトの少なくとも一方、ならびに酸素からなるスピネル型酸化物が生成された場合、上記外殻には酸素が0.1質量%以上35質量%以下含まれる傾向がある。
 すなわち外殻は、スピネル型酸化物を含むことが好ましい。これにより多孔体は、酸化された場合にも高い導電性をより効果的に維持することができる。上記外殻において酸素の含有量が上述の範囲を外れる場合、多孔体は、酸化された場合において高い導電性をより効果的に維持する性能が、所望のとおりに得られない傾向がある。
 (不可避不純物)
 外殻は、本開示の多孔体が有する作用効果に影響を与えない限り、上述のように不可避不純物を含むことができる。外殻は、不可避不純物の成分としてたとえばケイ素、マグネシウム、炭素、スズ、アルミニウム、ナトリウム、鉄、タングステン、チタン、ホウ素、銀、金、クロム、モリブデンなどが含まれていてもよい。これらの成分は、たとえば後述する製造方法において混入が不可避となる不可避不純物として含まれる場合がある。たとえば不可避不純物の一例として、後述の導電化処理により形成される導電被覆層に含まれる元素などを挙げることができる。さらに外殻は、不可避不純物の成分として上述の酸素が、多孔体をSOFCの集電体として用いる前の状態において含まれていてもよい。外殻中において不可避不純物は、これら単独で5質量%以下であることが好ましく、これらの合計で10質量%以下であることが好ましい。
 外殻におけるニッケルおよびコバルトの含有量については、多孔体を王水に溶解し、この溶液中の金属の組成を高周波誘導結合質量分析装置(ICP-MS装置、たとえば商品名:「ICPMS-2030」、株式会社島津製作所製)を用いて分析することにより求めることができる。具体的には、外殻におけるニッケルおよびコバルトのそれぞれの含有量(質量%)、ニッケルおよびコバルトの合計質量に対するコバルトの質量比率などを求めることができる。
 外殻における酸素の含有量(質量%)については、上述した骨格の長手方向に対して垂直に切断された断面の観察像(電子顕微鏡像)に対し、電子顕微鏡(SEM)に付帯のEDX装置(たとえばSEM部分:商品名「SUPRA35VP」、カールツァイスマイクロスコピー株式会社製、EDX部分:商品名「octane super」、アメテック株式会社製)を用いて分析することにより求めることができる。上記EDX装置により、外殻におけるニッケルおよびコバルトの含有量を求めることも可能である。具体的には、上記EDX装置により検出された各元素の原子濃度に基づいて、外殻における酸素、ニッケルおよびコバルトの質量%、質量比などをそれぞれ求めることができる。さらに、上記骨格がニッケルおよびコバルトの少なくとも一方、ならびに酸素からなるスピネル型酸化物を有するか否かについては、上記断面に対してX線を照射し、その回折パターンを解析するX線回折(XRD)法を用いることによって特定することができる。
 上記外殻がスピネル型酸化物を有するか否かを特定する測定装置については、たとえばX線回折装置(たとえば商品名(型番):「Empyrean」、スペクトリス株式会社製、解析ソフト:「統合粉末X線解析ソフトウェアPDXL」)を用いることができる。
測定条件は、たとえば次のとおりとすればよい。
 (測定条件)
 X線回折法: θ-2θ法
 測定系: 平行ビーム光学系ミラー
 スキャン範囲(2θ): 10~90°、積算時間: 1秒/ステップ、ステップ: 0.03°。
 ≪集電体≫
 本実施形態に係る集電体は、上述した多孔体を含む。上記多孔体は、上述したように高温環境下で高い導電性を維持することができる。そのため上記集電体は、たとえば作動時に700℃以上の高温となるSOFCの集電体材料として好適に用いることができる。
 ≪燃料電池≫
 本実施形態に係る燃料電池40は、図13に示すように、カソード41と、カソード側集電体44と、アノード42と、アノード側集電体45と、カソード41とアノード42の間に介在する固体電解質層43とを含む。また、カソード側集電体44およびアノード側集電体45上にはそれぞれ固体電解質層43に対向するようにカソード側セパレータ46とアノード側セパレータ47が配置されている。カソード41に酸化剤を供給するための酸化剤流路48はカソード側セパレータ46によって形成され、アノード42に燃料を供給するための燃料流路49はアノード側セパレータ47によって形成されている。
本実施形態に係る燃料電池は、上記カソード側集電体44またはアノード側集電体45の少なくとも一方の集電体を含む。この集電体は、上述のように高温環境下で高い導電性を維持することができる多孔体を含む。そのため上記集電体は、作動時に700℃以上の高温となるSOFCのカソード側集電体またはアノード側集電体の少なくとも一方として好適に用いることができる。上記燃料電池は、多孔体がニッケルおよびコバルトを含むため、上記集電体をカソード側集電体として用いることがより好適である。
 ≪多孔体の製造方法≫
 本実施形態に係る多孔体は、従来公知の手法を適宜用いることにより製造することができる。このため上記多孔体の製造方法は、特に制限されるべきではないが、次の方法とすることが好ましい。
 すなわち、三次元網目状構造を有する樹脂成形体に導電被覆層を形成することにより導電性樹脂成形体を得る工程(第1工程)と、上記導電性樹脂成形体上にニッケル-コバルト合金めっきを行なうことにより多孔体前駆体を得る工程(第2工程)と、上記多孔体前駆体に対して熱処理を行なって、導電性樹脂成形体中の樹脂成分を焼却し、これを除去することにより多孔体を得る工程(第3工程)とを含む多孔体の製造方法により、多孔体を製造することが好ましい。
 <第1工程>
 まず、三次元網目状構造を有する樹脂成形体(以下、単に「樹脂成形体」とも記す)のシートを準備する。樹脂成形体としてポリウレタン樹脂、メラミン樹脂などを用いることができる。さらに、樹脂成形体に導電性を付与する導電化処理として、樹脂成形体の表面に導電被覆層を形成する。この導電化処理としては、たとえばカーボン、導電性セラミックなどの導電性粒子およびバインダーを含有した導電性塗料を塗布、含浸などの手段により樹脂成形体の表面に含ませること、無電解めっき法によってニッケルおよび銅などの導電性金属による層を樹脂成形体の表面に形成すること、蒸着法またはスパッタリング法によって導電性金属による層を樹脂成形体の表面に形成することなどを挙げることができる。これにより、導電性樹脂成形体を得ることができる。
 <第2工程>
 次に、上記導電性樹脂成形体上にニッケル-コバルト合金めっきを行なうことにより多孔体前駆体を得る。ニッケル-コバルト合金めっきの方法は、無電解めっきを適用することもできるが、効率の観点から電解めっき(所謂ニッケル-コバルト合金の電気めっき)を用いることが好ましい。ニッケル-コバルト合金の電解めっきでは、導電性樹脂成形体をカソードとして用いる。
 ニッケル-コバルト合金の電解めっきに用いるめっき浴としては、公知のものを使用することができる。たとえばワット浴、塩化浴、スルファミン酸浴などを用いることができる。ニッケル-コバルト合金の電解めっきの浴組成および電解条件は、たとえば以下の例を挙げることができる。
 (浴組成)
 塩(水溶液): スルファミン酸ニッケルおよびスルファミン酸コバルト: NiおよびCoの合計量として350~450g/L(ただしNi/Coの質量比については、所望するNiおよびCoの合計質量に対するCoの質量比率により、Co/(Ni+Co)=0.2~0.4またはCo/(Ni+Co)=0.6~0.8から調整する)
 ホウ酸: 30~40g/L
 pH: 4~4.5。
 (電解条件)
 温度: 40~60℃
 電流密度: 0.5~10A/dm2
 アノード: 不溶性陽極。
 以上により、導電性樹脂成形体上にニッケル-コバルト合金がめっきされた多孔体前駆体を得ることができる。また、窒素、硫黄、フッ素、塩素、リンといった添加元素を添加したい場合は、めっき浴中に各種添加物を投入することで、多孔体前駆体中に含有させることができる。各種添加物の例として、硝酸ナトリウム、硫酸ナトリウム、フッ化ナトリウム、塩化ナトリウム、リン酸ナトリウムが挙げられるが、必ずしもこれらに限定されるものではなく、各元素が含まれていればよい。
 <第3工程>
 続いて、上記多孔体前駆体に対して熱処理を行なって、導電性樹脂成形体中の樹脂成分を焼却し、これを除去することにより多孔体を得る。これにより、三次元網目状構造を有する骨格を備えた多孔体を得ることができる。上記樹脂成分を除去するための熱処理の温度および雰囲気は、たとえば600℃以上とし、大気などの酸化性雰囲気とすればよい。
 ここで上記の方法により得た多孔体の平均気孔径は、樹脂成形体の平均気孔径とほぼ等しくなる。このため多孔体を適用する用途に応じ、多孔体を得るために用いる樹脂成形体の平均気孔径を適宜選択すればよい。多孔体の気孔率は、最終的にはめっきされる金属量(目付量)で決定されるため、最終製品である多孔体において求められる気孔率に応じ、めっきするニッケル-コバルト合金の目付量を適宜選択すればよい。樹脂成形体の気孔率および平均気孔径は、上述した多孔体の気孔率および平均気孔径と同様に定義され、かつ「骨格」を「樹脂成形体」に読み替えて適用することにより、上述の計算式に基づいて求めることができる。
 以上の工程を経ることより、本実施形態に係る多孔体を製造することができる。上記多孔体は、三次元網目構造を有する骨格を備え、上記骨格の外殻は、ニッケルとコバルトとを含む。さらに外殻は、ニッケルおよびコバルトの合計質量に対するコバルトの質量比率が0.2以上0.4以下または0.6以上0.8以下となる。もって多孔体は、高温環境下で高い導電性を維持することができる。
 以下、実施例を挙げて本発明を詳細に説明するが、本発明はこれらに限定されるものではない。
 ≪多孔体の作製≫
 <試料1-1>
 以下の手順で試料1-1の多孔体を作製した。
 (第1工程)
 まず三次元網目状構造を有する樹脂成形体として1.5mm厚のポリウレタン樹脂製シートを準備した。このポリウレタン樹脂製シートの気孔率および平均気孔径を上述の計算式に基づいて求めたところ、上記気孔率は96%であり、上記平均気孔径は450μmであった。
 次に、粒径0.01~0.2μmの非晶性炭素であるカーボンブラック100gを0.5Lの10質量%アクリル酸エステル系樹脂水溶液に分散することにより、導電性塗料を作製した。この導電性塗料を上記樹脂成形体に含浸し、その後ロールで絞って乾燥させることにより、樹脂成形体の表面に導電被覆層を形成した。これにより導電性樹脂成形体を得た。
 (第2工程)
 上記導電性樹脂成形体をカソードとし、下記の浴組成および電解条件の下でニッケル-コバルト合金の電解めっきを行なった。これにより、導電性樹脂成形体上にニッケル-コバルト合金を660g/m2付着させ、もって多孔体前駆体を得た。
 〈浴組成〉
 塩(水溶液): スルファミン酸ニッケルおよびスルファミン酸コバルト: NiおよびCoの合計量として400g/L(ただしCo/(Ni+Co)の質量比は、0.1
 ホウ酸: 35g/L
 pH: 4.5。
 〈電解条件〉
 温度: 50℃
 電流密度: 5A/dm2
 アノード: 不溶性陽極。
 (第3工程)
 上記多孔体前駆体に対して熱処理を行なって、導電性樹脂成形体中の樹脂成分を焼却し、これを除去することにより試料1の多孔体を得た。上記樹脂成分を除去するための熱処理の温度を650℃とし、その雰囲気を大気雰囲気とした。
 <試料1-2>
 第2工程において用いる浴組成に関し、スルファミン酸ニッケルおよびスルファミン酸コバルトに含まれるNiおよびCoの合計量を400g/Lとし、Co/(Ni+Co)の質量比を0.2とし、それ以外を試料1-1と同じとすることにより、試料1-2の多孔体を作製した。
 <試料1-3>
 第2工程において用いる浴組成に関し、スルファミン酸ニッケルおよびスルファミン酸コバルトに含まれるNiおよびCoの合計量を400g/Lとし、Co/(Ni+Co)の質量比を0.33とし、それ以外を試料1-1と同じとすることにより、試料1-3の多孔体を作製した。
 <試料1-4>
 第2工程において用いる浴組成に関し、スルファミン酸ニッケルおよびスルファミン酸コバルトに含まれるNiおよびCoの合計量を400g/Lとし、Co/(Ni+Co)の質量比を0.4とし、それ以外を試料1-1と同じとすることにより、試料1-4の多孔体を作製した。
 <試料1-5>
 第2工程において用いる浴組成に関し、スルファミン酸ニッケルおよびスルファミン酸コバルトに含まれるNiおよびCoの合計量を400g/Lとし、Co/(Ni+Co)の質量比を0.5とし、それ以外を試料1-1と同じとすることにより、試料1-5の多孔体を作製した。
 <試料1-6>
 第2工程において用いる浴組成に関し、スルファミン酸ニッケルおよびスルファミン酸コバルトに含まれるNiおよびCoの合計量を400g/Lとし、Co/(Ni+Co)の質量比を0.6とし、それ以外を試料1-1と同じとすることにより、試料1-6の多孔体を作製した。
 <試料1-7>
 第2工程において用いる浴組成に関し、スルファミン酸ニッケルおよびスルファミン酸コバルトに含まれるNiおよびCoの合計量を400g/Lとし、Co/(Ni+Co)の質量比を0.67とし、それ以外を試料1-1と同じとすることにより、試料1-7の多孔体を作製した。
 <試料1-8>
 第2工程において用いる浴組成に関し、スルファミン酸ニッケルおよびスルファミン酸コバルトに含まれるNiおよびCoの合計量を400g/Lとし、Co/(Ni+Co)の質量比を0.8とし、それ以外を試料1-1と同じとすることにより、試料1-8の多孔体を作製した。
 <試料1-9>
 第2工程において用いる浴組成に関し、スルファミン酸ニッケルおよびスルファミン酸コバルトに含まれるNiおよびCoの合計量を400g/Lとし、Co/(Ni+Co)の質量比を0.9とし、それ以外を試料1-1と同じとすることにより、試料1-9の多孔体を作製した。
 ≪多孔体の性能評価≫
 <多孔体の物性分析>
 上述の方法により得た試料1-1~試料1-9の多孔体に関し、これらのニッケルおよびコバルトの合計質量に対するコバルトの質量比率を、それぞれ上記ICP-MS装置(商品名:「ICPMS-2030」、株式会社島津製作所製)を用いて調べた。
具体的には、各試料の多孔体を王水に溶解し、この溶液中の金属の組成を上記ICP-MS装置を用いて調べた。その結果、試料1-1~試料1-9の多孔体の骨格の外殻におけるニッケルおよびコバルトの合計質量に対するコバルトの質量比率はいずれも、これらを作製するのに用いためっき浴に含まれるニッケルおよびコバルトの合計質量に対するコバルトの質量比率(Co/(Ni+Co)の質量比)と一致した。
 さらに試料1-1~試料1-9の多孔体に対し、上述した計算式に従って多孔体の平均気孔径および気孔率を求めた。その結果、上記樹脂成形体の気孔率および平均気孔径と一致し、気孔率は96%であり、平均気孔径は450μmであった。さらに試料1-1~試料1-9の多孔体は、厚みが1.4mmであった。試料1~試料9の多孔体においてニッケルおよびコバルトの合計の目付量は、上述のとおり660g/m2である。
 <電気抵抗率の評価>
 さらに高温環境下での導電性を評価するため、試料1-1~試料1-9の多孔体に対し、その電気抵抗率を次の方法を用いて測定した。
 具体的には、試料1-1~試料1-9の多孔体に対し、大気雰囲気下で800℃の熱処理を連続的に行ない、四端子法を用いて熱処理前(0時間)と、上記熱処理を所定時間(144時間、500時間、1000時間)にわたり継続した時点とにおける電気抵抗率(単位は、mΩ・cm2)を測定した。電気抵抗率の測定方向は、多孔体の膜厚方向である。評価としては、熱処理の継続時間が1000時間となった時点での電気抵抗率が400mΩ・cm2を下回った場合、その多孔体を良品(判定:A)とした。さらに、熱処理の継続時間が所定時間となった時点における電気抵抗率が800mΩ・cm2を超えた場合、その多孔体を不良品(判定:B)とし、それ以降の測定を中止した。結果を、表1に示す。
Figure JPOXMLDOC01-appb-T000001
 <考察>
 表1によれば、外殻におけるニッケルおよびコバルトの合計質量に対するコバルトの質量比率が0.2以上0.4以下または0.6以上0.8以下である試料1-2、試料1-3、試料1-4、試料1-6、試料1-7および試料1-8の多孔体は、上記質量比率を満たさない試料1-1、試料1-5および試料1-9の多孔体に比し、高温環境下において高い導電性が維持されることが分かった。
 ≪熱処理後の多孔体の組成≫
 試料1-3の多孔体について、大気雰囲気下で800℃の熱処理を500時間行なった時点における多孔体の断面を電子顕微鏡(商品名:「SUPRA35VP」、カールツァイスマイクロスコピー株式会社製)を用いて撮影した。その顕微鏡像(電子顕微鏡像)を図10~12に示す。上記電子顕微鏡に付帯するEDX装置(商品名:「octane super」、アメテック株式会社製)を用い、上記断面に現れた多孔体の骨格の外殻の厚み方向の外側部(図10における+位置)、厚み方向の中心部(図11における+位置)、および厚み方向の内側部(図12における+位置)を被測定部として、それぞれ組成分析を行なった。結果を表2に示す。表2において炭素(C)が検出されている理由は、焼却された樹脂成分の残留物によるものと考えられる。アルミニウム(Al)が検出された理由は、その詳細は不明であるが、多孔体の断面の形成時に研磨砥粒残渣が混入したためであると考えられる。
Figure JPOXMLDOC01-appb-T000002
 表2によれば、多孔体の骨格の外殻が全体にわたって、およそNi:Co:O=2:1:4の原子比の関係を有していることが分かり、もってNi2CoO4のスピネル型酸化物が生成していることが示唆された。すなわち試料3の多孔体は、高温環境下での使用によって骨格の全体が酸化された場合であっても、Ni2CoO4のスピネル型酸化物が生成されることにより、高い導電性が維持されていると理解することができる。さらに上述の熱処理を行なった試料1-3の多孔体の断面に対し、上述したX線回折装置を用いて分析した結果、試料1-3の多孔体の骨格の外殻は、Ni2CoO4のスピネル型酸化物を有していると推定された。
 試料1-3に関する各種の解析を鑑みれば、試料1-2、試料1-4および試料1-6~試料1-8の多孔体は、試料1-3と同様にスピネル型酸化物が生成され、もって高温環境下での使用によって骨格の外殻の全体が酸化された場合であっても高い導電性が維持されていると考えられる。
 以下、添加元素として窒素、硫黄、リン、フッ素、塩素を添加した実施例について説明する。
 ≪多孔体の作製≫
 <試料2-1>~<試料2-4>
上記実施例1の第2工程に用いる浴組成に関し、スルファミン酸ニッケルおよびスルファミン酸コバルトに含まれるNiおよびCoの合計量を400g/Lとし、Co/(Ni+Co)の質量比を0.33とし、それ以外を試料1-1と同じとした。また、めっき浴中に硝酸ナトリウムを添加することにより添加元素としての窒素をそれぞれ、3ppm、5pm、9000ppm、11000ppm添加し、試料2-1~試料2-4の多孔体を作製した。
 <試料2-5>~<試料2-8>
上記実施例1の第2工程に用いる浴組成に関し、スルファミン酸ニッケルおよびスルファミン酸コバルトに含まれるNiおよびCoの合計量を400g/Lとし、Co/(Ni+Co)の質量比を0.66とし、それ以外を試料1-1と同じとした。まためっき浴中に硝酸ナトリウムを添加することにより添加元素としての窒素をそれぞれ、3ppm、5pm、9000ppm、11000ppm添加し、試料2-5~試料2-8の多孔体を作製した。
 <試料3-1>~<試料3-4>
上記実施例1の第2工程に用いる浴組成に関し、スルファミン酸ニッケルおよびスルファミン酸コバルトに含まれるNiおよびCoの合計量を400g/Lとし、Co/(Ni+Co)の質量比を0.33とし、それ以外を試料1-1と同じとした。また、めっき浴中に硫酸ナトリウムを添加することにより添加元素としての硫黄をそれぞれ、3ppm、5pm、9000ppm、11000ppm添加し、試料3-1~試料3-4の多孔体を作製した。
 <試料3-5>~<試料3-8>
上記実施例1の第2工程に用いる浴組成に関し、スルファミン酸ニッケルおよびスルファミン酸コバルトに含まれるNiおよびCoの合計量を400g/Lとし、Co/(Ni+Co)の質量比を0.66とし、それ以外を試料1-1と同じとした。また、めっき浴中に硫酸ナトリウムを添加することにより添加元素としての硫黄をそれぞれ、3ppm、5pm、9000ppm、11000ppm添加し、試料3-5~試料3-8の多孔体を作製した。
 <試料4-1>~<試料4-4>
上記実施例1の第2工程に用いる浴組成に関し、スルファミン酸ニッケルおよびスルファミン酸コバルトに含まれるNiおよびCoの合計量を400g/Lとし、Co/(Ni+Co)の質量比を0.33とし、それ以外を試料1-1と同じとした。また、めっき浴中にリン酸ナトリウムを添加することにより添加元素としてのリンをそれぞれ、3ppm、5pm、50000ppm、55000ppm添加し、試料4-1~試料4-4の多孔体を作製した。
 <試料4-5>~<試料4-8>
上記実施例1の第2工程に用いる浴組成に関し、スルファミン酸ニッケルおよびスルファミン酸コバルトに含まれるNiおよびCoの合計量を400g/Lとし、Co/(Ni+Co)の質量比を0.66とし、それ以外を試料1-1と同じとした。また、めっき浴中にリン酸ナトリウムを添加することにより添加元素としてのリンをそれぞれ、3ppm、5pm、50000ppm、55000ppm添加し、試料4-5~試料4-8の多孔体を作製した。
 <試料5-1>~<試料5-4>
上記実施例1の第2工程に用いる浴組成に関し、スルファミン酸ニッケルおよびスルファミン酸コバルトに含まれるNiおよびCoの合計量を400g/Lとし、Co/(Ni+Co)の質量比を0.33とし、それ以外を試料1-1と同じとした。また、めっき浴中にフッ化ナトリウムを添加することにより添加元素としてのフッ素をそれぞれ、3ppm、5pm、9000ppm、11000ppm添加し、試料5-1~試料5-4の多孔体を作製した。
 <試料5-5>~<試料5-8>
上記実施例1の第2工程に用いる浴組成に関し、スルファミン酸ニッケルおよびスルファミン酸コバルトに含まれるNiおよびCoの合計量を400g/Lとし、Co/(Ni+Co)の質量比を0.66とし、それ以外を試料1-1と同じとした。また、めっき浴中にフッ化ナトリウムを添加することにより添加元素としてのフッ素をそれぞれ、3ppm、5pm、9000ppm、11000ppm添加し、試料5-5~試料5-8の多孔体を作製した。
 <試料6-1>~<試料6-4>
上記実施例1の第2工程に用いる浴組成に関し、スルファミン酸ニッケルおよびスルファミン酸コバルトに含まれるNiおよびCoの合計量を400g/Lとし、Co/(Ni+Co)の質量比を0.33とし、それ以外を試料1-1と同じとした。また、めっき浴中に塩化ナトリウムを添加することにより添加元素としての塩素をそれぞれ、3ppm、5pm、9000ppm、11000ppm添加し、試料6-1~試料6-4の多孔体を作製した。
 <試料6-5>~<試料6-8>
上記実施例1の第2工程に用いる浴組成に関し、スルファミン酸ニッケルおよびスルファミン酸コバルトに含まれるNiおよびCoの合計量を400g/Lとし、Co/(Ni+Co)の質量比を0.66とし、それ以外を試料1-1と同じとした。また、めっき浴中に塩化ナトリウムを添加することにより添加元素としての塩素をそれぞれ、3ppm、5pm、9000ppm、11000ppm添加し、試料6-5~試料6-8の多孔体を作製した。
 <試料7-1>
上記実施例1の第2工程に用いる浴組成に関し、スルファミン酸ニッケルおよびスルファミン酸コバルトに含まれるNiおよびCoの合計量を400g/Lとし、Co/(Ni+Co)の質量比を0.33とし、それ以外を試料1-1と同じとした。また、めっき浴中に塩化ナトリウムを添加することにより添加元素としての塩素を2ppm、めっき浴中にリン酸ナトリウムを添加することにより添加元素としてのリンを1ppm添加し、添加元素の合計の濃度が3ppmの試料7-1の多孔体を作製した。
 <試料7-2>
上記実施例1の第2工程に用いる浴組成に関し、スルファミン酸ニッケルおよびスルファミン酸コバルトに含まれるNiおよびCoの合計量を400g/Lとし、Co/(Ni+Co)の質量比を0.33とし、それ以外を試料1-1と同じとした。また、めっき浴中に塩化ナトリウムを添加することにより添加元素としての塩素を2ppm、めっき浴中にリン酸ナトリウムを添加することにより添加元素としてのリンを3ppm添加し、添加元素の合計の濃度が5ppmの試料7-2の多孔体を作製した。
 <試料7-3>
上記実施例1の第2工程に用いる浴組成に関し、スルファミン酸ニッケルおよびスルファミン酸コバルトに含まれるNiおよびCoの合計量を400g/Lとし、Co/(Ni+Co)の質量比を0.33とし、それ以外を試料1-1と同じとした。また、めっき浴中に硝酸ナトリウムを添加することにより添加元素としての窒素を2ppm、めっき浴中に硫酸ナトリウムを添加することにより添加元素としての硫黄を3ppm添加し、添加元素の合計の濃度が5ppmの試料7-3の多孔体を作製した。
 <試料7-4>
上記実施例1の第2工程に用いる浴組成に関し、スルファミン酸ニッケルおよびスルファミン酸コバルトに含まれるNiおよびCoの合計量を400g/Lとし、Co/(Ni+Co)の質量比を0.33とし、それ以外を試料1-1と同じとした。また、めっき浴中にフッ化ナトリウムを添加することにより添加元素としてのフッ素を10000ppm、めっき浴中にリン酸ナトリウムを添加することにより添加元素としてのリンを30000ppm、めっき浴中に硫酸ナトリウムを添加することにより添加元素としての硫黄を10000ppm添加し、添加元素の合計の濃度が50000ppmの試料7-4の多孔体を作製した。
 <試料7-5>
上記実施例1の第2工程に用いる浴組成に関し、スルファミン酸ニッケルおよびスルファミン酸コバルトに含まれるNiおよびCoの合計量を400g/Lとし、Co/(Ni+Co)の質量比を0.33とし、それ以外を試料1-1と同じとした。また、めっき浴中にフッ化ナトリウムを添加することにより添加元素としてのフッ素を5000ppm、めっき浴中にリン酸ナトリウムを添加することにより添加元素としてのリンを30000ppm、めっき浴中に硫酸ナトリウムを添加することにより添加元素としての硫黄を20000ppm添加し、添加元素の合計の濃度が55000ppmの試料7-5の多孔体を作製した。
 <試料7-6>
上記実施例1の第2工程に用いる浴組成に関し、スルファミン酸ニッケルおよびスルファミン酸コバルトに含まれるNiおよびCoの合計量を400g/Lとし、Co/(Ni+Co)の質量比を0.66とし、それ以外を試料1-1と同じとした。また、めっき浴中に塩化ナトリウムを添加することにより添加元素としての塩素を2ppm、めっき浴中にリン酸ナトリウムを添加することにより添加元素としてのリンを1ppm添加し、添加元素の合計の濃度が3ppmの試料7-6の多孔体を作製した。
 <試料7-7>
上記実施例1の第2工程に用いる浴組成に関し、スルファミン酸ニッケルおよびスルファミン酸コバルトに含まれるNiおよびCoの合計量を400g/Lとし、Co/(Ni+Co)の質量比を0.66とし、それ以外を試料1-1と同じとした。また、めっき浴中に塩化ナトリウムを添加することにより添加元素としての塩素を2ppm、めっき浴中にリン酸ナトリウムを添加することにより添加元素としてのリンを3ppm添加し、添加元素の合計の濃度が5ppmの試料7-7の多孔体を作製した。
 <試料7-8>
上記実施例1の第2工程に用いる浴組成に関し、スルファミン酸ニッケルおよびスルファミン酸コバルトに含まれるNiおよびCoの合計量を400g/Lとし、Co/(Ni+Co)の質量比を0.66とし、それ以外を試料1-1と同じとした。また、めっき浴中に硝酸ナトリウムを添加することにより添加元素としての窒素を2ppm、めっき浴中に硫酸ナトリウムを添加することにより添加元素としての硫黄を3ppm添加し、添加元素の合計の濃度が5ppmの試料7-8の多孔体を作製した。
 <試料7-9>
上記実施例1の第2工程に用いる浴組成に関し、スルファミン酸ニッケルおよびスルファミン酸コバルトに含まれるNiおよびCoの合計量を400g/Lとし、Co/(Ni+Co)の質量比を0.66とし、それ以外を試料1-1と同じとした。また、めっき浴中にフッ化ナトリウムを添加することにより添加元素としてのフッ素を10000ppm、めっき浴中にリン酸ナトリウムを添加することにより添加元素としてのリンを45000ppm、めっき浴中に硫酸ナトリウムを添加することにより添加元素としての硫黄を5000ppm添加し、添加元素の合計の濃度が60000ppmの試料7-9の多孔体を作製した。
 ≪多孔体の性能評価≫
 <多孔体のクリープ特性>
 上述の方法により得た試料2-1~試料7-9の多孔体において、各試料にSUS430製のブロックを載せることにより0.2MPaの荷重をかけながら、大気雰囲気下、800℃で1000時間熱処理を行った。評価としては、熱処理前後の各試料の厚みの変化率を株式会社テクロック社のデジタルシックネスゲージを用いて測定した。厚みの変化率が5%未満を良品(判定:A)、5%以上を不良品(判定:B)、割れたものを測定不能(判定:C)とした。その結果を、表3~表8にそれぞれ示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 <考察>
 表3、表4、表6~表8によれば、添加元素が1つの場合、添加元素の濃度が少なくとも5ppm以上10000ppm以下の範囲であれば、上記クリープ特性は良好であり、高温環境下において高い強度が維持されることが分かった。また、表5によれば、添加元素としてのリンの濃度が少なくとも5ppm以上50000ppm以下の範囲であれば、上記クリープ特性は良好であり、高温環境下において高い強度が維持されることが分かった。また、表9によれば、添加元素が複数含まれている場合、添加元素の合計の濃度が少なくとも5ppm以上50000ppm以下の範囲であれば、上記クリープ特性は良好であり、高温環境下において高い強度が維持されることが分かった。
 以下、より具体的に好ましい範囲を述べる。添加元素が窒素の場合、5ppm以上9000ppm以下の範囲で良好なクリープ特性を示す。添加元素が硫黄の場合、5ppm以上9000ppm以下の範囲で良好なクリープ特性を示す。添加元素がリンの場合、5ppm以上50000ppm以下の範囲で良好なクリープ特性を示す。添加元素がフッ素の場合、5ppm以上9000ppm以下の範囲で良好なクリープ特性を示す。添加元素が塩素の場合、5ppm以上9000ppm以下の範囲で良好なクリープ特性を示す。
 以上のように本開示の実施形態および実施例について説明を行なったが、上述の各実施形態および各実施例の構成を適宜組み合わせることも当初から予定している。
 今回開示された実施の形態および実施例はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した実施の形態および実施例ではなく請求の範囲によって示され請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。
 1 支柱部
 2 ノード部
 10 フレーム部
11 外殻
 12 骨格
 13 芯部
 14 気孔部
 20 セル部
 30 三次元網目状構造
 40 燃料電池
41 カソード
 42 アノード
 43 固体電解質層
 44 カソード側集電体
 45 アノード側集電体
 46 カソード側セパレータ
 47 アノード側セパレータ
 48 酸化剤流路
 49 燃料流路
 A 仮想平面
 t 厚み

Claims (12)

  1.  骨格が一体的に連続した三次元網目状構造を有する多孔体であって、
     前記骨格は、外殻と、中空又は導電性材料の一方または双方を含む芯部と、を備え、
     前記外殻は、ニッケルとコバルトとを含み、前記ニッケルおよび前記コバルトの合計質量に対する前記コバルトの質量比率が0.2以上0.4以下または0.6以上0.8以下である、多孔体。
  2.  前記外殻は、さらに窒素、硫黄、フッ素、塩素からなる群から選ばれる少なくとも1つの添加元素を含み、前記添加元素は、5ppm以上10000ppm以下である、請求項1に記載の多孔体。
  3.  前記外殻は、さらに添加元素としてリンを含み、前記添加元素は、5ppm以上50000ppm以下である、請求項1に記載の多孔体。
  4.  前記外殻は、さらに窒素、硫黄、フッ素、塩素、リンからなる群から選ばれる少なくとも2つ以上の添加元素を含み、前記添加元素の合計が、5ppm以上50000ppm以下である、請求項1に記載の多孔体。
  5.  前記外殻は、さらに酸素を含む、請求項1から請求項4のいずれか1項に記載の多孔体。
  6.  前記酸素は、0.1質量%以上35質量%以下である、請求項5に記載の多孔体。
  7.  前記外殻は、スピネル型酸化物を含む、請求項1から請求項6のいずれか1項に記載の多孔体。
  8.  前記外殻の断面を3000倍の倍率で観察することにより観察像を得た場合、前記観察像の任意の10μm四方の領域において現われる長径1μm以上の空隙の数が5個以下である、請求項1から請求項7のいずれか1項に記載の多孔体。
  9.  前記芯部は、中空である、請求項1から請求項8のいずれか1項に記載の多孔体。
  10.  前記多孔体は、シート状の外観を有し、厚みが0.2mm以上2mm以下である、請求項1から請求項9のいずれか1項に記載の多孔体。
  11.  請求項1から請求項10のいずれか1項に記載の多孔体を含む、集電体。
  12.  請求項11に記載の集電体を含む、燃料電池。
PCT/JP2019/017552 2018-06-21 2019-04-25 多孔体、それを含む集電体および燃料電池 WO2019244480A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP19812896.9A EP3812476B1 (en) 2018-06-21 2019-04-25 Porous body, current collector including same, and fuel cell
JP2019559124A JP7230826B2 (ja) 2018-06-21 2019-04-25 多孔体、それを含む集電体および燃料電池
KR1020197038195A KR20210021891A (ko) 2018-06-21 2019-04-25 다공체, 그것을 포함하는 집전체 및 연료 전지
CN201980003260.5A CN110856447B (zh) 2018-06-21 2019-04-25 多孔体、包括该多孔体的集电体以及燃料电池
US16/627,672 US11329295B2 (en) 2018-06-21 2019-04-25 Porous body, current collector including the same, and fuel cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-118044 2018-06-21
JP2018118044 2018-06-21

Publications (1)

Publication Number Publication Date
WO2019244480A1 true WO2019244480A1 (ja) 2019-12-26

Family

ID=68984029

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/017552 WO2019244480A1 (ja) 2018-06-21 2019-04-25 多孔体、それを含む集電体および燃料電池

Country Status (6)

Country Link
US (1) US11329295B2 (ja)
EP (1) EP3812476B1 (ja)
JP (1) JP7230826B2 (ja)
KR (1) KR20210021891A (ja)
CN (1) CN110856447B (ja)
WO (1) WO2019244480A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020235266A1 (ja) * 2019-05-22 2020-11-26 住友電気工業株式会社 多孔体、それを含む燃料電池、およびそれを含む水蒸気電解装置
WO2020235265A1 (ja) * 2019-05-22 2020-11-26 住友電気工業株式会社 多孔体、それを含む燃料電池、およびそれを含む水蒸気電解装置
WO2020235267A1 (ja) * 2019-05-22 2020-11-26 住友電気工業株式会社 多孔体、それを含む燃料電池、およびそれを含む水蒸気電解装置
WO2021130849A1 (ja) * 2019-12-24 2021-07-01 住友電気工業株式会社 多孔体、およびそれを含む燃料電池
WO2021131689A1 (ja) * 2019-12-24 2021-07-01 住友電気工業株式会社 多孔体、およびそれを含む燃料電池
WO2021153406A1 (ja) * 2020-01-27 2021-08-05 住友電気工業株式会社 金属多孔体シート及び水電解装置
WO2021210231A1 (ja) 2020-04-15 2021-10-21 住友電気工業株式会社 電気化学セル装置
WO2024070084A1 (ja) * 2022-09-28 2024-04-04 住友電気工業株式会社 導電性部材、およびそれを含む固体酸化物燃料電池
WO2024070083A1 (ja) * 2022-09-28 2024-04-04 住友電気工業株式会社 多孔体、多孔質集電体、およびそれらを備える固体酸化物形燃料電池

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11154517A (ja) 1997-11-21 1999-06-08 Inoac Corporation:Kk 二次電池用金属多孔体及びその製造方法
JP2012132083A (ja) 2010-12-24 2012-07-12 Sumitomo Electric Ind Ltd 高耐食性を有する金属多孔体及びその製造方法
JP2012149282A (ja) 2011-01-17 2012-08-09 Toyama Sumitomo Denko Kk 高耐食性を有する金属多孔体及びその製造方法
JP2016015217A (ja) * 2014-07-01 2016-01-28 住友電気工業株式会社 膜電極複合体、膜電極複合体の製造方法、燃料電池及び燃料電池の製造方法
WO2016132811A1 (ja) * 2015-02-18 2016-08-25 住友電気工業株式会社 ニッケル合金多孔体の製造方法
JP2017507452A (ja) * 2013-12-26 2017-03-16 リサーチ インスティチュート オブ インダストリアル サイエンス アンド テクノロジー 固体酸化物形燃料電池用空気極集電体及びこれを含む固体酸化物形燃料電池
JP2018118044A (ja) 2017-01-27 2018-08-02 ステリルメン、インコーポレイテッド 無害な消毒化粧鏡

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101741849B1 (ko) 2008-12-08 2017-05-30 넥스테크 머티리얼스, 엘티디. 고체 산화물 연료 전지 스택용 집전 장치
JP5615147B2 (ja) * 2010-11-30 2014-10-29 マグネクス株式会社 固体酸化物燃料電池
KR101832251B1 (ko) 2010-12-08 2018-02-26 스미토모덴키고교가부시키가이샤 고내식성을 갖는 금속 다공체 및 그의 제조 방법
KR101499588B1 (ko) * 2012-07-12 2015-03-06 주식회사 엘지화학 이차전지용 전극 및 이의 제조방법
KR20150075442A (ko) * 2013-12-25 2015-07-06 주식회사 포스코 고체산화물 연료전지용 금속 집전체 및 그를 포함하는 고체산화물 연료전지

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11154517A (ja) 1997-11-21 1999-06-08 Inoac Corporation:Kk 二次電池用金属多孔体及びその製造方法
JP2012132083A (ja) 2010-12-24 2012-07-12 Sumitomo Electric Ind Ltd 高耐食性を有する金属多孔体及びその製造方法
JP2012149282A (ja) 2011-01-17 2012-08-09 Toyama Sumitomo Denko Kk 高耐食性を有する金属多孔体及びその製造方法
JP2017507452A (ja) * 2013-12-26 2017-03-16 リサーチ インスティチュート オブ インダストリアル サイエンス アンド テクノロジー 固体酸化物形燃料電池用空気極集電体及びこれを含む固体酸化物形燃料電池
JP2016015217A (ja) * 2014-07-01 2016-01-28 住友電気工業株式会社 膜電極複合体、膜電極複合体の製造方法、燃料電池及び燃料電池の製造方法
WO2016132811A1 (ja) * 2015-02-18 2016-08-25 住友電気工業株式会社 ニッケル合金多孔体の製造方法
JP2018118044A (ja) 2017-01-27 2018-08-02 ステリルメン、インコーポレイテッド 無害な消毒化粧鏡

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3812476A4

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020235266A1 (ja) * 2019-05-22 2020-11-26 住友電気工業株式会社 多孔体、それを含む燃料電池、およびそれを含む水蒸気電解装置
WO2020235265A1 (ja) * 2019-05-22 2020-11-26 住友電気工業株式会社 多孔体、それを含む燃料電池、およびそれを含む水蒸気電解装置
WO2020235267A1 (ja) * 2019-05-22 2020-11-26 住友電気工業株式会社 多孔体、それを含む燃料電池、およびそれを含む水蒸気電解装置
WO2021130849A1 (ja) * 2019-12-24 2021-07-01 住友電気工業株式会社 多孔体、およびそれを含む燃料電池
WO2021131689A1 (ja) * 2019-12-24 2021-07-01 住友電気工業株式会社 多孔体、およびそれを含む燃料電池
JPWO2021130849A1 (ja) * 2019-12-24 2021-07-01
JP7314940B2 (ja) 2019-12-24 2023-07-26 住友電気工業株式会社 多孔体、およびそれを含む燃料電池
US11757106B2 (en) 2019-12-24 2023-09-12 Sumitomo Electric Industries, Ltd. Porous body and fuel cell including the same
WO2021153406A1 (ja) * 2020-01-27 2021-08-05 住友電気工業株式会社 金属多孔体シート及び水電解装置
WO2021210231A1 (ja) 2020-04-15 2021-10-21 住友電気工業株式会社 電気化学セル装置
WO2024070084A1 (ja) * 2022-09-28 2024-04-04 住友電気工業株式会社 導電性部材、およびそれを含む固体酸化物燃料電池
WO2024070083A1 (ja) * 2022-09-28 2024-04-04 住友電気工業株式会社 多孔体、多孔質集電体、およびそれらを備える固体酸化物形燃料電池

Also Published As

Publication number Publication date
JP7230826B2 (ja) 2023-03-01
CN110856447B (zh) 2021-08-27
KR20210021891A (ko) 2021-03-02
US20200350600A1 (en) 2020-11-05
CN110856447A (zh) 2020-02-28
US11329295B2 (en) 2022-05-10
EP3812476B1 (en) 2023-04-12
EP3812476A4 (en) 2022-04-13
JPWO2019244480A1 (ja) 2021-05-13
EP3812476A1 (en) 2021-04-28

Similar Documents

Publication Publication Date Title
WO2019244480A1 (ja) 多孔体、それを含む集電体および燃料電池
JP7079842B2 (ja) 金属多孔体
WO2020235265A1 (ja) 多孔体、それを含む燃料電池、およびそれを含む水蒸気電解装置
JP7021669B2 (ja) 金属多孔体、固体酸化物型燃料電池及び金属多孔体の製造方法
JP7314940B2 (ja) 多孔体、およびそれを含む燃料電池
WO2021131689A1 (ja) 多孔体、およびそれを含む燃料電池
WO2020235267A1 (ja) 多孔体、それを含む燃料電池、およびそれを含む水蒸気電解装置
WO2020235266A1 (ja) 多孔体、それを含む燃料電池、およびそれを含む水蒸気電解装置
JP7369785B2 (ja) 表面被覆金属多孔体
WO2024070083A1 (ja) 多孔体、多孔質集電体、およびそれらを備える固体酸化物形燃料電池

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019559124

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19812896

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019812896

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2019812896

Country of ref document: EP

Effective date: 20210121