WO2017022542A1 - 金属多孔体、燃料電池、及び金属多孔体の製造方法 - Google Patents

金属多孔体、燃料電池、及び金属多孔体の製造方法 Download PDF

Info

Publication number
WO2017022542A1
WO2017022542A1 PCT/JP2016/071696 JP2016071696W WO2017022542A1 WO 2017022542 A1 WO2017022542 A1 WO 2017022542A1 JP 2016071696 W JP2016071696 W JP 2016071696W WO 2017022542 A1 WO2017022542 A1 WO 2017022542A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
porous body
metal porous
nickel
less
Prior art date
Application number
PCT/JP2016/071696
Other languages
English (en)
French (fr)
Inventor
奥野 一樹
孝浩 東野
知之 粟津
真嶋 正利
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016014144A external-priority patent/JP2017033917A/ja
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to CN201680045608.3A priority Critical patent/CN107925092A/zh
Priority to KR1020187000831A priority patent/KR20180037174A/ko
Priority to US15/742,923 priority patent/US20180219232A1/en
Priority to EP16832821.9A priority patent/EP3333947A4/en
Publication of WO2017022542A1 publication Critical patent/WO2017022542A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/08Alloys with open or closed pores
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a metal porous body, a fuel cell, and a method for producing a metal porous body.
  • a polymer polymer fuel cell (PEFC) using an ion exchange membrane as an electrolyte has been put into practical use for cogeneration, and a vehicle using this as a power source has begun to be put into practical use.
  • the basic structure of a polymer electrolyte fuel cell includes an anode, a membrane, and a cathode.
  • the membrane is an ion exchange membrane, and a fluorine-based exchange membrane having a sulfone group is mainly employed. Due to the improvement of the characteristics of the membrane, the practical use of the polymer electrolyte fuel cell is promoted.
  • a polymer electrolyte fuel cell is a unit cell in which a gas diffusion layer and a separator are disposed on the back of each electrode of an anode and a cathode, and this is used as a laminated structure (for example, Patent Document 1).
  • the operating temperature is in the range of about 70 ° C. to 110 ° C. in consideration of performance, removal from the system due to evaporation of generated water, lifespan, and the like. Increasing the operating temperature improves the discharge characteristics. For cogeneration, there is an advantage that high-temperature exhaust heat can be obtained, but the lifetime is shorter than that at low temperatures.
  • carbon paper obtained by processing carbon fibers into a non-woven fabric is generally used and functions as a current collector.
  • a groove is provided in a carbon plate used as a separator to facilitate gas supply and discharge.
  • the carbon paper also has a function of suppressing the membrane electrode assembly (Membrane / Electrode / Assembly: MEA) from biting into the grooves of the separator.
  • the porous metal body according to one embodiment of the present invention is a flat metal porous body having a three-dimensional network structure containing nickel (Ni), wherein the nickel content is 50% by mass or more, and the thickness is It is a metal porous body which is 0.10 mm or more and 0.50 mm or less.
  • FIG. 1 is a diagram illustrating an outline of an example of a configuration of a cell of a fuel cell according to an embodiment of the present invention.
  • FIG. 2 is a graph showing current-voltage characteristics of the batteries A to F in the example.
  • the porosity of the groove formed in the carbon plate used as the separator for the solid polymer fuel depends on how much the carbon plate is provided, but is practically about 50%. That is, the groove is provided in about 1 ⁇ 2 of the area of one surface of the carbon plate. Further, the shape of the groove is a rectangle, and the width thereof is about 500 ⁇ m.
  • the width of the groove is preferably increased and deepened, and the ratio of the groove per unit area is preferably increased.
  • the greater the number of grooves provided in the separator the lower the conductivity of the separator, thereby reducing the battery characteristics. Since the influence of the conductivity of the separator on the battery characteristics is large, the ratio of the grooves is small from the viewpoint of the battery characteristics.
  • the smaller the groove width and the greater the number of grooves the more uniformly the gas is supplied to the MEA.
  • the groove width decreases, the MEA is less likely to be grooved by the pressure applied when the cells are integrated, and the MEA is deformed and the function as the groove is reduced. This adverse effect becomes more prominent as the size of the battery increases and the number of batteries increases. In other words, the larger the electrode, the greater the number of cells, and the greater the required load, the greater.
  • the present inventors examined using a porous metal body having a three-dimensional network structure as a gas diffusion layer.
  • the porous metal body having a three-dimensional network structure has a high porosity, and has many gas diffusion paths compared with the conventional groove processing in which gas advances only in one direction, and the gas flow path Since the cross-sectional area is large, the pressure loss can be reduced.
  • the conventional porous metal body is relatively thick, the volume of the fuel cell becomes large, and there is room for further improvement in order to increase the capacity of the fuel cell and the volume density of the output. It was found.
  • an object of the present invention is to provide a porous metal body suitably used for a gas diffusion layer capable of increasing the output while reducing the size of the fuel cell.
  • the metal porous body according to one aspect of the present invention is: A flat plate-like metal porous body having a three-dimensional network structure containing nickel (Ni), The nickel content is 50% by mass or more, A metal porous body having a thickness of 0.10 mm or more and 0.50 mm or less, It is.
  • the “metal porous body having a three-dimensional network structure” is also simply referred to as “metal porous body”.
  • the metal porous body described in the above (1) has a sufficiently high porosity, but is thinner than the conventional metal porous body. For this reason, when it uses as a gas diffusion layer of a fuel cell, a fuel cell can be reduced in size and can be made high output.
  • the porous metal body according to the embodiment of the present invention is the porous metal body according to (1), wherein the porosity of the porous metal body is 55% or more and 85% or less.
  • the metal porous body described in the above (2) is a metal porous body capable of further improving gas diffusibility when used as a gas diffusion layer of a fuel cell.
  • the metal porous body further contains chromium (Cr), and the content of the chromium is 1% by mass or more and 50% by mass or less (1) or It is a metal porous body as described in said (2).
  • the metal porous body described in the above (3) is a metal porous body superior in corrosion resistance.
  • a fuel cell according to an embodiment of the present invention is a fuel cell using the porous metal body according to any one of (1) to (3) above as a gas diffusion layer.
  • the fuel cell described in the above (4) is a small and high output fuel cell, and is a fuel cell excellent in power generation per volume.
  • a method for producing a porous metal body according to an embodiment of the present invention includes: A method for producing a flat metal porous body having a three-dimensional network structure containing nickel (Ni), Applying a conductive material containing carbon powder to the surface of the skeleton of a plate-like resin molded body having a three-dimensional network structure, and conducting the surface of the skeleton of the resin molded body; Forming a resin structure on the resin molded body by forming a nickel plating layer so that the nickel content in the metal porous body is 50% by mass or more; Removing the resin molded body from the resin structure to obtain a metal porous body; Rolling the thickness of the porous metal body to 0.10 mm or more and 0.50 mm or less; The manufacturing method of the metal porous body containing this.
  • the porous metal body according to any one of (1) to (3) above can be manufactured by the method for manufacturing a porous metal body according to (5) above.
  • the method for producing a porous metal body according to the embodiment of the present invention is the method for producing a porous metal body according to (5), wherein the carbon powder is carbon black, activated carbon, or graphite.
  • the metal porous body according to any one of (1) to (3) can be manufactured at a lower cost by the method for manufacturing a metal porous body according to (6) above.
  • a chromium powder or a chromium oxide powder may be added to the conductive treatment agent, or a chromium plating layer may be formed so that the content is 1% by mass or more and 50% by mass or less.
  • a metal porous body containing chromium can be produced by the methods described in the following (i) to (iii).
  • (Ii) A method for producing a flat metal porous body having a three-dimensional network structure containing at least nickel (Ni) and chromium (Cr), Applying a conductive material containing carbon powder to the surface of the skeleton of a plate-like resin molded body having a three-dimensional network structure, and conducting the surface of the skeleton of the resin molded body; A nickel plating layer and a chromium plating layer are formed on the resin molded body so that the nickel content in the metal porous body is 50% by mass or more and the chromium content is 1% by mass or more and 50% by mass or less.
  • the formation order of the nickel plating layer and the chromium plating layer formed on the surface of the skeleton of the resin molded body is not limited, and either one is formed first. It doesn't matter. However, since the metal porous body has a higher nickel content than the chromium content, it is preferable to form the nickel plating layer first in consideration of handling of the substrate after plating.
  • the porous metal body according to the embodiment of the present invention includes, for example, tin, aluminum, copper, iron, tungsten, titanium, cobalt, phosphorus, boron, manganese, silver, gold, and the like. In the range which does not impair this, it may be included intentionally or inevitably. However, since the skeleton of the metal porous body becomes brittle when it contains tin or tungsten, it may be damaged during rolling, and the content of tin and tungsten is preferably suppressed to less than 5% by mass.
  • the porous metal body according to the embodiment of the present invention is a flat metal porous body having a three-dimensional network structure containing nickel (Ni) in an amount of 50% by mass or more, and has a thickness of 0.10 mm or more and 0.50 mm or less. It is a thin metal porous body.
  • the porous metal body according to the embodiment of the present invention has a high porosity and a thin flat plate shape. Therefore, when used as a gas diffusion layer in a fuel cell, the gas supply / exhaust performance can be improved and the fuel cell can be miniaturized. That is, it can be used in place of the configuration of the groove formed in the separator of the conventional fuel cell. For example, it can be preferably used for a gas diffusion layer on the hydrogen electrode side of a solid oxide fuel cell (SOFC) or a gas diffusion layer on the hydrogen electrode side of a solid polymer fuel cell.
  • SOFC solid oxide fuel cell
  • the metal porous body contains 50% by mass or more of nickel, it has excellent toughness and can be rolled. As long as the property that the rolling process is possible is not impaired, a metal component other than nickel may be intentionally contained, or an inevitable impurity may be contained.
  • the metal intentionally added to the metal porous body include chromium (Cr), tin (Sn), aluminum (Al), copper (Cu), iron (Fe), tungsten (W), titanium (Ti), Examples include cobalt (Co), phosphorus (P), boron (B), manganese (Mn), silver (Ag), and gold (Au).
  • the thickness of the porous metal body is 0.10 mm or more and 0.50 mm or less.
  • the thickness of the metal porous body is 0.10 mm or more and 0.50 mm or less, it can contribute to miniaturization of the fuel cell when used as a gas diffusion layer of the fuel cell.
  • the porous metal body has little gas pressure loss and excellent gas diffusibility, the output of the fuel cell can be increased. If the thickness of the metal porous body is less than 0.10 mm, the porosity becomes too small and the gas supply capacity to the fuel cell is lowered. Further, if the thickness of the metal porous body is more than 0.50 mm, contribution to miniaturization of the fuel cell is reduced. From these viewpoints, the thickness of the porous metal body is more preferably 0.20 mm or more and 0.40 mm or less.
  • the porous metal body according to the embodiment of the present invention preferably has a porosity of 55% or more and 85% or less.
  • the porosity is 55% or more
  • the metal porous body is used as the gas diffusion layer of the fuel cell, the gas pressure loss can be further reduced.
  • the porosity is 85% or less
  • gas diffusibility can be further enhanced when the metal porous body is used as a gas diffusion layer of a fuel cell. This is because, since the metal porous body has a three-dimensional network structure, when the porosity decreases, the rate at which the gas hits the skeleton of the metal porous body increases.
  • the porosity of the metal porous body is 85% or less, the conductivity becomes excellent. From these viewpoints, the porosity of the metal porous body according to the embodiment of the present invention is more preferably 70% or more and 82% or less, and further preferably 75% or more and 80% or less.
  • the metal porous body according to the embodiment of the present invention further contains chromium (Cr), and the chromium content is preferably 1% by mass or more and 50% by mass or less.
  • the chromium content is preferably 1% by mass or more, the corrosion resistance of the metal porous body can be further increased.
  • the porous metal body is more preferably 2% by mass or more and 40% by mass or less, and further preferably 4% by mass or more and 30% by mass or less.
  • the basis weight of nickel is preferably about 250 g / m 2 or more and 950 g / m 2 or less.
  • the total amount of the said metal component and nickel is about 250 g / m ⁇ 2 > or more and about 950 g / m ⁇ 2 > or less.
  • the strength and conductivity of the metal porous body can be sufficiently increased.
  • the raise of a manufacturing cost and the increase in a weight can be suppressed because the sum total of the metal amount of metal shall be 950 g / m ⁇ 2 > or less.
  • the total basis weight of the metal 350 g / m 2 or more, and even more preferably about 850 g / m 2 or less, 450 g / m 2 or more, and more preferably of the order 750 g / m 2 or less .
  • the flat metal porous body according to the embodiment of the present invention preferably has a pore diameter of 100 ⁇ m or more and 650 ⁇ m or less when viewed from above.
  • the hole diameter is 100 ⁇ m or more, the pressure loss during fuel gas supply can be reduced. Further, when the hole diameter is 650 ⁇ m or less, uniform diffusion of the fuel gas to the MEA can be promoted.
  • the pore diameter of the metal porous body is more preferably 200 ⁇ m or more and 550 ⁇ m or less, and further preferably 300 ⁇ m or more and 500 ⁇ m or less.
  • the case of viewing from above refers to the case of viewing planarly from the thickness direction of the planar porous metal body, and the same applies to the following.
  • the average pore diameter is a value obtained from the reciprocal of the number of cells of the metal porous body.
  • the number of cells is a numerical value obtained by counting the number of cells on the outermost surface crossing the line when a line having a length of 1 inch is drawn on the surface of the metal porous body, and the unit is the number of cells / inch. However, 1 inch shall be 2.54 cm.
  • the fuel cell according to the embodiment of the present invention is a fuel cell using the porous metal body according to the embodiment of the present invention as a gas diffusion layer.
  • the type of the fuel cell is not particularly limited, and may be a solid polymer fuel cell or a solid oxide fuel cell.
  • a solid polymer fuel cell will be described as an example.
  • ion exchange membranes and the like in the polymer electrolyte fuel cell can be used.
  • a membrane / electrode assembly obtained by bonding an ion exchange membrane and a catalyst layer a commercially available one can be used as it is.
  • Both the anode and cathode platinum catalysts are integrated using a gas diffusion electrode carrying about 0.5 mg / cm 2 and Nafion (registered trademark) 112 as an ion exchange membrane.
  • FIG. 1 is a schematic cross-sectional view of a single cell of a polymer electrolyte fuel cell.
  • a membrane / electrode assembly (MEA) M has gas diffusion electrodes, that is, activated carbon layers (2-1, 2-2) containing a platinum catalyst, on both surfaces of an ion exchange membrane 1.
  • a hydrogen electrode as an anode and an air electrode as a cathode, respectively.
  • the current collector (3-1, 3-2) also serves as a bipolar current collector and a gas diffusion layer.
  • commercially available carbon paper treated with water repellency can be used.
  • As the carbon paper for example, a paper having water repellency to which a porosity of about 50% and a fluororesin of about 15% are added can be used.
  • the separator (4-1, 4-2) for example, a commercially available graphite plate can be used.
  • the gas diffusion layer (4-1-1, 4-2-1) is a porous metal body according to the embodiment of the present invention, and also serves as a gas supply / discharge path. Since the porous metal body according to the embodiment of the present invention is very thin compared to the conventional porous metal body, the fuel cell can be downsized.
  • FIG. 1 shows a single cell, a fuel cell that has been put into practical use is configured by stacking cells so that a desired voltage can be handled via a separator.
  • each cell is usually connected in series, if one side of the separator is a cathode, it is assembled such that the anode of the next cell comes to the other side, and the periphery is pressure-integrated with bolts, nuts and the like.
  • the porous metal body according to the embodiment of the present invention can be produced by various methods. Examples of the production method include the methods described in (5), (6) and (i) to (iii) described above. Is mentioned.
  • a conventional metal porous body having a three-dimensional network structure is manufactured for a battery so as to increase the porosity to about 95% in order to increase the amount of active material retained in the electrode.
  • the porous metal body according to the present invention when used as a gas diffusion layer of a fuel cell, performs good gas supply, exhaust and diffusion, and contributes to the miniaturization of the fuel cell. Therefore, the conventional method for producing a porous metal body is improved. Below, the manufacturing method of a metal porous body is demonstrated in detail.
  • any known or commercially available one may be used as long as it is porous.
  • a resin foam, nonwoven fabric, felt, woven fabric, or the like can be used.
  • these can also be used in combination as needed.
  • a sheet-like material is preferably a flexible material because it breaks when the rigidity is high.
  • a resin foam As the resin molding.
  • the resin foam include foamed urethane, foamed styrene, and foamed melamine resin.
  • foamed urethane is preferable from the viewpoint of particularly high porosity.
  • the porosity of the resin molded body is not limited, and is usually about 60% to 97%, preferably about 80% to 96%.
  • the thickness of the resin molded body is not limited, and is appropriately determined according to the use of the obtained porous metal body. Usually, it is about 600 ⁇ m or more and 5000 ⁇ m or less, preferably about 800 ⁇ m or more and 2000 ⁇ m or less.
  • the resin molded body has a very high porosity, a flat plate shape cannot be maintained when the thickness is 500 ⁇ m or less.
  • a foamed resin is used as a resin molded body having a three-dimensional network structure will be described as an example.
  • the conductive treatment is not particularly limited as long as a conductive layer can be provided on the surface of the skeleton of the resin molded body.
  • the material constituting the conductive layer include metals such as nickel, tin, chromium, copper, iron, tungsten, titanium, and stainless steel, and carbon powder such as carbon powder.
  • Specific examples of the conductive treatment include metal powders such as nickel, tin, and chromium, and conductive paints obtained by adding a binder to graphite powder, electroless plating treatment, sputtering, vapor deposition, ion plating, and the like. Preferred examples include phase treatment.
  • the electroless plating treatment using nickel can be performed by immersing the foamed resin in a known electroless nickel plating bath such as a nickel sulfate aqueous solution containing sodium hypophosphite as a reducing agent. If necessary, the resin molded body may be immersed in an activation liquid containing a trace amount of palladium ions (cleaning liquid manufactured by Kanigen Co., Ltd.) or the like before immersion in the plating bath.
  • a known electroless nickel plating bath such as a nickel sulfate aqueous solution containing sodium hypophosphite as a reducing agent.
  • the resin molded body may be immersed in an activation liquid containing a trace amount of palladium ions (cleaning liquid manufactured by Kanigen Co., Ltd.) or the like before immersion in the plating bath.
  • a resin molded body is attached to a substrate holder, and then a DC voltage is applied between the holder and a target (nickel or chromium) while introducing an inert gas.
  • the ionized inert gas thus collides with nickel or chromium, and the blown-off nickel particles or chromium particles may be deposited on the surface of the resin molded body.
  • a conductive paint such as carbon powder or metal powder
  • powder having conductivity on the surface of the skeleton of the resin molded body for example, powder of metal material such as stainless steel, crystalline graphite, amorphous
  • a method of applying a mixture of carbon powder such as carbon black for example, a method of applying a mixture of carbon powder such as carbon black
  • chromium powder or chromium oxide powder and carbon powder may be used.
  • the chromium content in the porous metal body may be 1% by mass or more and 50% by mass or less. Thereby, a chromium plating process becomes unnecessary.
  • chromium powder or chromium oxide powder it is preferable to use powder having a particle size of about 0.1 ⁇ m or more and 10 ⁇ m or less in consideration of diffusibility to nickel, and particles having a size of about 0.5 ⁇ m or more and 5 ⁇ m or less. It is more preferable to use a powder having a diameter.
  • carbon powder carbon black, activated carbon, graphite or the like can be used, and the material is not particularly limited. Carbon black may be used for the purpose of making the conductivity uniform, and fine graphite powder may be used for considering the strength of the conductive coating layer. Moreover, it is preferable to mix including activated carbon. You may add the thickener generally used, for example, carboxymethylcellulose (CMC) etc., when producing a slurry.
  • the surface of the skeleton of the resin molded body can be made conductive by applying this slurry to the skeleton of the resin molded body that has been cut into a plate shape or a strip shape by adjusting the thickness.
  • nickel When nickel is used for the conductive coating layer, it may be formed continuously on the surface of the resin molded body, and the basis weight is not limited, but is usually about 5 g / m 2 or more and 15 g / m 2 or less, preferably 7 g / m 2. m 2 or more, it may be set to the degree 10 g / m 2 or less.
  • the nickel plating layer may be formed using either electroless nickel plating or electrolytic nickel plating, but electrolytic nickel plating is preferable because of its higher efficiency. What is necessary is just to perform an electrolytic nickel plating process in accordance with a conventional method.
  • a known or commercially available bath can be used, and examples thereof include a watt bath, a chloride bath, a sulfamic acid bath, and the like.
  • a resin structure having a conductive layer formed on the surface thereof by electroless plating or sputtering is immersed in a plating bath, and the resin structure is connected to the cathode and the nickel counter electrode is connected to the anode to allow direct current or pulsed intermittent current to flow.
  • a nickel coating can be further formed on the conductive layer.
  • the basis weight of an electrolytic nickel plating layer so that the content rate of nickel may be 50 mass% or more as a final metal composition of a metal porous body.
  • the basis weight of nickel is preferably about 250 g / m 2 or more and 950 g / m 2 or less.
  • the basis weight of the total metal amount is preferably about 250 g / m 2 or more and 950 g / m 2 or less.
  • a chromium plating layer formation When forming a chromium plating layer in a resin structure, it can carry out as follows, for example. That is, it may be carried out according to a known chrome plating method, and a known or commercially available plating bath can be used. For example, a hexavalent chromium bath or a trivalent chromium bath can be used.
  • a chrome plating layer can be formed by immersing a porous body to be plated in the chrome plating bath and connecting it to the cathode, connecting a chrome plate to the anode as a counter electrode, and applying a direct current or pulse intermittent current. The weight per unit area of the chrome plating may be adjusted so that the final metal composition of the metal porous body has a nickel content of 50% by mass or more and a chromium content of 1% by mass or more and 50% by mass or less. .
  • plating solution circulation during plating In general, it is difficult to uniformly plate a substrate such as a resin molded body having a three-dimensional network structure. It is preferable to circulate the plating solution in order to prevent non-attachment to the inside or to reduce the difference in the amount of plating adhesion between the inside and the outside.
  • a circulation method there are methods such as using a pump and installing a fan inside the plating tank. Also, if a plating solution is sprayed onto the resin molded body using these methods, or if the resin molded body is placed adjacent to the suction port, the plating solution can easily flow inside the resin molded body, which is effective.
  • the method of removing the resin molded body used as the base material from the resin structure having the metal plating layer formed on the surface is not limited, and examples thereof include a chemical treatment and a combustion removal method by incineration.
  • the heating may be performed in an oxidizing atmosphere such as air of about 600 ° C. or higher.
  • the obtained metal porous body is heat-treated in a reducing atmosphere as necessary to reduce the metal, thereby obtaining a metal porous body mainly composed of nickel.
  • the metal porous structure can be obtained by chromizing the skeleton surface of the metal porous body.
  • the body may be a nickel chrome alloy porous body.
  • the chromization treatment is a treatment for diffusing and penetrating chromium into the nickel film, and a known method can be adopted.
  • a powder pack method in which a porous metal is filled with a permeation material in which a chromium source powder, a sintering inhibitor powder (alumina powder), and a halide are mixed and heated in a reducing atmosphere.
  • the infiltrating material and the porous metal body can be spaced apart and heated in a reducing atmosphere to form a gas for the infiltrating material to infiltrate the infiltrating material into nickel on the surface of the porous metal body.
  • a porous metal body made of nickel chromium can be obtained by diffusing chromium into nickel and then washing to remove residual powder.
  • the content of chromium in nickel chromium can be adjusted by the heating time of the chromization treatment. What is necessary is just to make it the chromium content rate of the metal porous body finally obtained be 1 mass% or more and 50 mass% or less.
  • the porous metal body according to the embodiment of the present invention has toughness, it can be adjusted by rolling. For this reason, what is necessary is just to roll the thickness of a metal porous body to 0.10 mm or more and 0.50 mm or less with a roller press machine, a flat plate press, etc.
  • the thickness of the metal porous body can be made uniform and the unevenness of the surface unevenness can be eliminated.
  • the porosity can be reduced by rolling the metal porous body.
  • the flat porous body is slightly elongated by rolling, but is not deformed to the extent that the average pore diameter when viewed from above changes.
  • the average pore diameter when the flat porous body before rolling is viewed from above is preferably 100 ⁇ m or more and 650 ⁇ m or less, similarly to the average pore diameter after rolling, and is 200 ⁇ m or more and 550 ⁇ m or less. More preferably, it is 300 ⁇ m or more and 500 ⁇ m or less.
  • the porosity is preferably 60% or more and 97% or less, and more preferably 80% or more and 96% or less.
  • the porosity is preferably 55% or more and 85% or less, and preferably 70% or more and 82% or less. More preferably, it is 75% or more and 80% or less.
  • the metal porous body When the metal porous body is used as the gas diffusion layer of the fuel cell, a metal porous body having a thickness slightly thicker than the thickness of the gas diffusion layer when incorporated in the fuel cell is manufactured, The metal porous body may be deformed by the pressure at the time of incorporation so that the thickness becomes 0.10 mm or more and 0.50 mm or less. At this time, the porous metal body may be rolled slightly in advance, and the porous metal body may be slightly thicker than the thickness of the gas diffusion layer when incorporated in the fuel cell. Thereby, the adhesion between the MEA of the fuel cell and the gas diffusion layer (metal porous body) can be further enhanced.
  • the metal porous body which concerns on embodiment of this invention can be used conveniently also for the hydrogen production use by water electrolysis besides a fuel cell use.
  • Hydrogen production methods are broadly classified into [1] alkaline water electrolysis method, [2] PEM method, and [3] SOEC method, and any of these methods can use a porous metal body.
  • the alkaline water electrolysis method [1] is a method in which water is electrolyzed by immersing an anode and a cathode in a strong alkaline aqueous solution and applying a voltage.
  • a metal porous body as an electrode, the contact area between water and the electrode is increased, and the efficiency of water electrolysis can be increased.
  • the metal porous body preferably has a pore diameter of 100 ⁇ m or more and 5000 ⁇ m or less when viewed from above.
  • the pore size when the metal porous body is viewed from above is 100 ⁇ m or more, the generated hydrogen / oxygen bubbles are prevented from clogging the pores of the metal porous body and reducing the contact area between water and the electrode. be able to.
  • the pore diameter is 5000 ⁇ m or less, the surface area of the electrode is sufficiently increased, and the efficiency of water electrolysis can be increased.
  • the pore size when the metal porous body is viewed from above is more preferably 400 ⁇ m or more and 4000 ⁇ m or less.
  • the thickness and the amount of metal of the metal porous body may be appropriately selected depending on the scale of the equipment because it causes a deflection or the like when the electrode area increases.
  • a plurality of porous metal bodies having different pore diameters can be used in combination in order to achieve both the elimination of bubbles and the securing of the surface area.
  • the PEM method of [2] is a method of electrolyzing water using a solid polymer electrolyte membrane.
  • a solid polymer electrolyte membrane By placing an anode and a cathode on both sides of the solid polymer electrolyte membrane and applying a voltage while flowing water to the anode side, hydrogen ions generated by water electrolysis move to the cathode side through the solid polymer electrolyte membrane And is taken out as hydrogen on the cathode side.
  • the operating temperature is about 100 ° C.
  • the polymer electrolyte fuel cell that generates electricity with hydrogen and oxygen and discharges water is operated in exactly the reverse manner with the same configuration. Since the anode side and the cathode side are completely separated, there is an advantage that high purity hydrogen can be taken out. Since both the anode and the cathode must pass through the electrode and allow water and hydrogen gas to pass through, the electrode needs a conductive porous body.
  • the porous metal body according to the embodiment of the present invention has high porosity and good electrical conductivity, it can be used for PEM water electrolysis as well as it can be suitably used for polymer electrolyte fuel cells. It can be used suitably.
  • the metal porous body preferably has a pore diameter of 100 ⁇ m or more and 650 ⁇ m or less when viewed from above. When the porous metal body is viewed from above, the pore diameter is 100 ⁇ m or more, and the generated hydrogen / oxygen bubbles are clogged in the pores of the porous metal body, reducing the contact area between water and the solid polymer electrolyte membrane. Can be suppressed.
  • the pore diameter is 650 ⁇ m or less, so that sufficient water retention can be ensured, and water is prevented from passing through before reacting. Electrolysis can be performed.
  • the pore diameter when the metal porous body is viewed from above is more preferably 200 ⁇ m or more and 550 ⁇ m or less, and further preferably 300 ⁇ m or more and 500 ⁇ m or less.
  • the thickness and the amount of metal of the porous metal body may be appropriately selected depending on the scale of the equipment. However, if the porosity is too small, the pressure loss for allowing water to pass increases, so the porosity is 30% or more. It is preferable to adjust the thickness and the amount of metal. Also, in the PEM method, the electrical connection between the solid polymer electrolyte membrane and the electrode is a pressure bonding, so it is necessary to adjust the amount of metal so that the increase in electrical resistance due to deformation and creep during pressurization is within a practically acceptable range. .
  • the metal weight is 250 g / m 2 or more, preferably of the order 950 g / m 2 or less, 350 g / m 2 or more, and even more preferably about 850 g / m 2 or less, 450 g / m 2 or more, 750 g / m More preferably, it is about 2 or less.
  • a plurality of porous metal bodies having different pore diameters can be used in combination for ensuring porosity and electrical connection.
  • the SOEC method [3] is a method of electrolyzing water using a solid oxide electrolyte membrane, and the configuration differs depending on whether the electrolyte membrane is a proton conducting membrane or an oxygen ion conducting membrane.
  • the oxygen ion conductive membrane hydrogen is generated on the cathode side for supplying water vapor, so that the hydrogen purity is lowered. Therefore, it is preferable to use a proton conductive membrane from the viewpoint of hydrogen production.
  • hydrogen ions generated by water electrolysis are moved to the cathode side through the solid oxide electrolyte membrane. In this method, only hydrogen is extracted on the cathode side.
  • the operating temperature is about 600 ° C to 800 ° C.
  • a solid oxide fuel cell that generates electricity with hydrogen and oxygen and discharges water is operated in exactly the reverse manner with the same configuration.
  • the electrode must be conductive and have a porous body that can withstand a high-temperature oxidizing atmosphere, particularly on the anode side. Since the porous metal body according to the embodiment of the present invention has high porosity, good electrical conductivity, and high oxidation resistance and heat resistance, it can be suitably used for a solid oxide fuel cell. It can also be suitably used for SOEC water electrolysis. It is preferable to use a Ni alloy to which a metal having high oxidation resistance such as Cr is added for the electrode on the side that becomes an oxidizing atmosphere.
  • the porous metal body preferably has a pore diameter of 100 ⁇ m or more and 650 ⁇ m or less when viewed from above. Since the pore diameter when the metal porous body is viewed from above is 100 ⁇ m or more, water vapor or generated hydrogen is clogged in the pores of the metal porous body, and the contact area between the water vapor and the solid oxide electrolyte membrane is reduced. This can be suppressed. Moreover, when the metal porous body is viewed from above, the pore diameter is 650 ⁇ m or less, so that it is possible to prevent the pressure loss from being too low and water vapor from passing through before sufficiently reacting. From the same viewpoint, the pore diameter when the metal porous body is viewed from above is more preferably 200 ⁇ m or more and 550 ⁇ m or less, and further preferably 300 ⁇ m or more and 500 ⁇ m or less.
  • the thickness of the metal porous body and the amount of metal may be appropriately selected depending on the scale of the equipment. However, if the porosity is too small, the pressure loss for introducing water vapor increases, so that the porosity is 30% or more. It is preferable to adjust the thickness and the amount of metal. In addition, in the SOEC method, since the electrical connection between the solid oxide electrolyte membrane and the electrode is a pressure bonding, it is necessary to adjust the amount of metal so that the increase in electric resistance due to deformation and creep during pressurization is within a practically acceptable range. .
  • the metal weight is 250 g / m 2 or more, preferably of the order 950 g / m 2 or less, 350 g / m 2 or more, and even more preferably about 850 g / m 2 or less, 450 g / m 2 or more, 750 g / m More preferably, it is about 2 or less.
  • a plurality of porous metal bodies having different pore diameters can be used in combination for ensuring porosity and electrical connection.
  • Appendix 1 A method for producing hydrogen in which hydrogen is generated by electrolyzing water using a plate-like metal porous body having a three-dimensional network structure containing nickel (Ni) as an electrode, The nickel content is 50% by mass or more, The manufacturing method of hydrogen whose thickness is 0.10 mm or more and 0.50 mm or less.
  • Appendix 2 The method for producing hydrogen according to supplementary note 1, wherein the porosity of the metal porous body is 55% or more and 85% or less.
  • Appendix 6 The metal porous body is disposed on both sides of the solid oxide electrolyte membrane, the solid polymer electrolyte membrane and the metal porous body are brought into contact with each other, and each metal porous body acts as an anode and a cathode.
  • (Appendix 7) An apparatus for producing hydrogen capable of generating hydrogen by electrolyzing water, A plate-like metal porous body having a three-dimensional network structure containing nickel (Ni) is provided as an electrode, The nickel content is 50% by mass or more, A hydrogen production apparatus having a thickness of 0.10 mm or more and 0.50 mm or less.
  • (Appendix 8) The hydrogen production apparatus according to appendix 7, wherein the porosity of the metal porous body is 55% or more and 85% or less.
  • (Appendix 9) 9. The hydrogen production apparatus according to appendix 7 or appendix 8, wherein the metal porous body further contains chromium (Cr), and the content of the chromium is 1% by mass or more and 50% by mass or less.
  • Appendix 12 Having an anode and a cathode on both sides of the solid oxide electrolyte membrane; The anode and the cathode are in contact with the solid polymer electrolyte membrane; A hydrogen production apparatus capable of generating hydrogen on the cathode side by electrolyzing water vapor supplied to the anode side, The hydrogen production apparatus according to any one of appendix 7 to appendix 9, wherein the metal porous body is used for at least one of the anode and the cathode.
  • Example 1 -Fabrication of porous metal- (Conductive treatment of resin moldings with a three-dimensional network structure)
  • a resin molded body having a three-dimensional network structure a urethane resin foam sheet having a porosity of 96%, an average pore diameter of 450 ⁇ m, and a thickness of 2.0 mm was used.
  • graphite fine powder having an average particle diameter of 0.5 ⁇ m and 20% by mass of a polypropylene aqueous emulsion, the resin part was added to graphite so that the resin part was 4.5% by mass. Further, 0.1% by mass of carboxymethyl cellulose as a thickener was added to form a slurry.
  • the urethane resin foam was immersed in this slurry. Then, the urethane resin foam was pulled up, excess slurry was removed between the rolls, and dried to make the surface of the skeleton conductive.
  • the amount of the conductive coating layer made of carbon / polypropylene was 80 g / m 2 .
  • the electroconductive urethane resin foam was subjected to electrolytic nickel plating by a known sulfamic acid bath method.
  • Electrolytic nickel plating was performed with a known composition, that is, a bath mainly composed of nickel sulfamate 430 g / L, nickel chloride 7 g / L, and boric acid 32 g / L at a current density of 250 mA / cm 2 .
  • a known composition that is, a bath mainly composed of nickel sulfamate 430 g / L, nickel chloride 7 g / L, and boric acid 32 g / L at a current density of 250 mA / cm 2 .
  • the basis weight of nickel in the resin structure on which the nickel plating layer was formed was 550 g / m 2 .
  • the nickel chrome alloy porous body was rolled to a thickness of 0.5 mm with a roller press to obtain a porous metal body.
  • the porosity of the metal porous body was about 84%.
  • the porous metal body was used as a gas diffusion layer / gas supply / discharge path of a solid polymer fuel cell (single cell).
  • a commercially available MEA was used, and the metal porous body was cut into 5 ⁇ 5 cm to form the single cell shown in FIG.
  • the membrane electrode assembly (MEA) M is sandwiched between two carbon paper current collectors 3-1 and 3-2, and the outer side thereof is a gas diffusion layer 4-1-1 and consisting of two metal porous bodies.
  • a single cell was constructed sandwiched between 4-2-1.
  • Example 2 By a method similar to the method described in Example 1, a nickel porous body having a porosity of 96% and a nickel basis weight of 700 g / m 2 was produced.
  • the metal porous body was obtained by rolling with a roller press so that the thickness of the nickel porous body was 0.50 mm.
  • the porosity of the metal multi-porous body 2 was about 84%.
  • a single cell was manufactured using a nickel chrome metal porous body on the air electrode side and a nickel porous metal porous body on the hydrogen electrode side. This cell was designated as battery B.
  • Example 3 A nickel-chromium alloy porous body having a basis weight of 450 g / m 2 was prepared in the same manner as in Example 1 except that the nickel plating amount was 350 g / m 2 and the chromium concentration was 22% by mass. Rolled to 12 mm to obtain a porous metal body. The porosity of the metal porous body was 58%. A battery C was obtained in the same manner as in Example 1 except that a porous metal body was used for both electrodes.
  • Example 2 The nickel chrome alloy porous body with a basis weight of 450 g / m 2 produced in Example 3 was rolled to 0.08 mm with a roller press to obtain a metal porous body. The porosity of the metal porous body was 37%.
  • a battery E was obtained in the same manner as in Example 1 except that a porous metal body was used for both electrodes.
  • Example 3 The nickel chrome alloy porous body with a basis weight of 700 g / m 2 produced in Example 1 was rolled to 0.70 mm with a roller press to obtain a metal porous body. The porosity of the metal porous body was 88%. A battery F was obtained in the same manner as in Example 1 except that a porous metal body was used for both electrodes.
  • FIG. 2 is a graph showing the current-voltage characteristics of the batteries A to F.
  • the vertical axis in FIG. 2 represents voltage (unit: V), and the horizontal axis represents current (unit: A).
  • the single-cell discharge voltage changes substantially at the same level in the batteries A and B due to the low current density.
  • the battery C of Example 3 has a slightly lower voltage, but maintains 0.5 V or higher up to a high current density.
  • the battery of the comparative example showed a difference in voltage from the beginning.
  • the cell voltage dropped to 0.5V at about 6A. This is because, in the battery D, the current collector is carbon, so that the conductivity is inferior to the batteries A to C.
  • the battery F is electrically equivalent to the batteries A to C in terms of conductivity, but the gas supply capability is inferior because the thickness of the metal porous body is inappropriate.
  • the voltage of the battery E greatly decreased from the beginning, and reached about 0.2 V at about 2 A, and the power generation was stopped. This is because the thickness of the metal porous body was made too thin, the pressure required for supplying hydrogen and air was very high, and the gas supply capability was inferior. In addition, the phenomenon that the generated water is diffused in the gas and the discharge voltage varies due to accumulation in the supply path was observed in the batteries D and E, but not in the batteries A to C and F.
  • batteries A to D were subjected to continuous discharge for 5000 hours at a discharge current density of 500 mA / cm 2 .
  • the discharge voltage did not decrease in batteries A to C, but decreased by 7% for battery D and 5% for battery F.
  • Discharging was stopped, gas supply to both electrodes was stopped, the battery was returned to room temperature, and allowed to discharge again at 500 mA / cm 2 after being left for 10 days.
  • the batteries A to C showed the voltage before the suspension within 30 minutes, but the battery D required 75 minutes.
  • the metal porous body is used for the gas diffusion layer, so that the water of the discharge product does not stay in the gas diffusion layer / gas supply / exhaust passage and obstruct the gas flow. It is believed that there is.
  • the width of the groove was not easily covered with carbon paper, and the flow of gas was obstructed.
  • the gas diffusion layer is a metal porous body, unlike the groove, the phenomenon that the carbon paper is difficult to be inserted was not recognized at all.
  • M Membrane / electrode assembly (MEA) 1 Ion exchange membrane 2-1 Gas diffusion electrode (activated carbon layer containing platinum catalyst) 2-2 Gas diffusion electrode (activated carbon layer containing platinum catalyst) 3-1 Current collector 3-2 Current collector 4-1 Separator 4-1-1 Gas diffusion layer 4-2 Separator 4-2-1 Gas diffusion layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

ニッケル(Ni)を含む三次元網目状構造の平板状の金属多孔体であって、前記ニッケルの含有率は50質量%以上であり、厚さが0.10mm以上、0.50mm以下である金属多孔体。

Description

金属多孔体、燃料電池、及び金属多孔体の製造方法
  本発明は金属多孔体、燃料電池、及び金属多孔体の製造方法に関する。
本出願は、2015年8月4日出願の日本出願第2015-154120号、2016年1月28日出願の日本出願第2016-014144号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。
  イオン交換膜を電解質とした固体高分子型燃料電池(Polymer  Electrolyte  Fuel  Cell:PEFC)がコジェネレーション用に実用化され、これを動力源とする自動車の実用化が始まっている。
  固体高分子型燃料電池の基本的な構造は、アノード、膜、カソードからなる。膜がイオン交換膜であり、スルフォン基を持つフッ素系交換膜が主として採用されている。この膜の特性の向上により、固体高分子型燃料電池の実用化が促進されている。
  固体高分子型燃料電池は、アノード、カソードの各電極の背面にガス拡散層及びセパレータが配されて単電池となり、これを積層構造として使用される(例えば、特許文献1等)。作動温度は、性能、生成水の蒸発による系からの除去、寿命などを考慮して、70℃~110℃程度の範囲が採用されている。作動温度を高くすれば、放電特性は向上する。
コジェネレーション用では、高温の排熱が得られるなどの利点があるが、寿命は低温の場合よりも短くなる。
  なお、ガス拡散層としては、一般にカーボン繊維を不織布状に加工したカーボンペーパーが用いられており、集電体としても機能させている。また、同じくガス拡散層として、セパレータとして用いられる炭素板に溝を設けて、ガスの供給及び排出を容易にしている。このように、ガス拡散層としてカーボンペーパーと溝を併用するのが一般的である。なお、カーボンペーパーは膜電極複合体(Membrane  Electrode  Assembly:MEA)がセパレータの溝に食い込むのを抑制する働きもしている。
特開2011-129265号公報
  本発明の一態様に係る金属多孔体は、ニッケル(Ni)を含む三次元網目状構造の平板状の金属多孔体であって、前記ニッケルの含有率は50質量%以上であり、厚さが0.10mm以上、0.50mm以下である金属多孔体、である。
図1は、本発明の実施形態に係る燃料電池のセルの構成の一例の概略を表す図である。 図2は、実施例における電池A~Fの電流-電圧特性を表すグラフである。
[本開示が解決しようとする課題]
  固体高分子型燃料のセパレータとして用いる炭素板に形成される溝の気孔率は、炭素にどの程度設けるかに依存するが、実用的には50%程度である。すなわち、炭素板の一方の面の面積のほぼ1/2程度に溝が設けられている。また、溝の形状は長方形であり、その幅は500μm程度である。
  MEAに低い圧力で均一にガスを供給するためには、溝の幅を大きく、深くするほど好ましく、さらに単位面積当たり溝の占める比率を大きくするほど好ましい。ところが、セパレータに設ける溝を多くするほどセパレータの導電性が低下してしまい、これにより電池特性が低下してしまう。電池特性へのセパレータの導電性の影響は大きいため、電池特性の面からは、溝の比率は小さく、浅くするほど好ましいということになる。
  また、溝の幅を小さく、数多く設けるほどMEAへガスが均一に供給される。しかしながら、溝の幅が小さくなるほど、単電池を一体化する際に加える加圧によってMEAが溝にくい込み易くなり、MEAの変形や、溝としての機能の低下を招いてしまう。この弊害は電池が大型化し、電池が多くなるほど顕著になる。つまり電極が大きく、セル数が増し、必要な負荷が大きくなる程大きくなる。
  上記のように、ガス供給の点ではセパレータに形成する溝の比率を増すことが好ましいが、電気的な特性からは溝の比率を下げる方がよい。また、溝の精度が要求され、溝を形成する工程の複雑化に伴いセパレータが高価になってしまう。また、溝は一方向で形成されているので、たとえば水が詰まるとガスの移動が阻害されてしまう。
  そこで本発明者等は、ガス拡散層として三次元網目状構造を有する金属多孔体を用いることを検討した。その結果、三次元網目状構造を有する金属多孔体は気孔率が高く、なおかつ、一方向にしかガスが進めない従来の溝加工に比べて、ガスの拡散経路が多数あり、ガスの流路の断面積が大きいため、圧力損失を少なくすることができた。しかしながら従来の金属多孔体は厚さが比較的厚いため、燃料電池の体積が大きくなってしまい、燃料電池の容量や出力の体積密度を大きくするためには、更なる改良の余地があることが見出された。
  そこで、本発明は上記問題点に鑑みて、燃料電池を小型化しつつ高出力化することが可能なガス拡散層に好適に用いられる金属多孔体を提供することを課題とする。
本開示の効果
  上記発明によれば、燃料電池を小型化しつつ高出力化することが可能なガス拡散層に好適に用いられる金属多孔体を提供することが可能となる。
[発明の実施形態の説明]
  最初に本発明の実施態様を列記して説明する。
(1)本発明の一態様に係る金属多孔体は、
  ニッケル(Ni)を含む三次元網目状構造の平板状の金属多孔体であって、
  前記ニッケルの含有率は50質量%以上であり、
  厚さが0.10mm以上、0.50mm以下である金属多孔体、
である。
  なお、以下では「三次元網目状構造を有する金属多孔体」のことを単に「金属多孔体」とも記す。
  上記(1)に記載の金属多孔体は、充分に高い気孔率を有しながら、従来の金属多孔体に比べて厚さが薄いものである。このため、燃料電池のガス拡散層として用いた場合に、燃料電池を小型化し、かつ高出力のものにすることができる。
(2)本発明の実施形態に係る金属多孔体は、前記金属多孔体の気孔率が、55%以上、85%以下である上記(1)に記載の金属多孔体、である。
  上記(2)に記載の金属多孔体は、燃料電池のガス拡散層として用いた場合に、ガスの拡散性をより高めることが可能な金属多孔体である。
(3)本発明の実施形態に係る金属多孔体は、前記金属多孔体はクロム(Cr)を更に含み、前記クロムの含有率が1質量%以上、50質量%以下である上記(1)又は上記(2)に記載の金属多孔体、である。
  上記(3)に記載の金属多孔体は、耐食性により優れた金属多孔体である。
(4)本発明の実施形態に係る燃料電池は、上記(1)から上記(3)のいずれか一項に記載の金属多孔体をガス拡散層に用いた燃料電池、である。
  上記(4)に記載の燃料電池は、小型かつ高出力の燃料電池であり、体積当たりの発電量に優れた燃料電池である。
(5)本発明の実施形態に係る金属多孔体の製造方法は、
  ニッケル(Ni)を含む三次元網目状構造を有する平板状の金属多孔体の製造方法であって、
  三次元網目状構造を有する平板状の樹脂成形体の骨格の表面に、炭素粉末を含む導電化材を塗布して前記樹脂成形体の骨格の表面を導電化処理する工程と、
  前記樹脂成形体に、前記金属多孔体におけるニッケルの含有率が50質量%以上となるようにニッケルめっき層を形成して、樹脂構造体を形成する工程と、
  前記樹脂構造体から前記樹脂成形体を除去して金属多孔体を得る工程と、
  前記金属多孔体の厚さを0.10mm以上、0.50mm以下に圧延する工程と、
を含む金属多孔体の製造方法、である。
  上記(5)に記載の金属多孔体の製造方法により、上記(1)から上記(3)のいずれか一項に記載の金属多孔体を製造することができる。
(6)本発明の実施形態に係る金属多孔体の製造方法は、前記炭素粉末がカーボンブラック、活性炭又は黒鉛である上記(5)に記載の金属多孔体の製造方法、である。
  上記(6)に記載の金属多孔体の製造方法により、上記(1)から上記(3)のいずれか一項に記載の金属多孔体をより安価に製造することができる。
  なお、上記(3)に記載の金属多孔体のようにクロムを含む金属多孔体を製造する場合には、上記(5)又は上記(6)に記載の金属多孔体の製造方法において、クロムの含有率が1質量%以上、50質量%以下となるように、導電化処理剤にクロム粉末又は酸化クロム粉末を添加するか、あるいは、クロムめっき層を形成すればよい。
  具体的には、例えば、以下の(i)~(iii)に記載の方法によりクロムを含有する金属多孔体を製造することができる。
(i)少なくともニッケル(Ni)及びクロム(Cr)を含む三次元網目状構造を有する平板状の金属多孔体の製造方法であって、
  三次元網目状構造を有する平板状の樹脂成形体の骨格の表面に、前記金属多孔体におけるクロムの含有率が1質量%以上、50質量%以下となるようにクロム粉末又は酸化クロム粉末を含む導電化材を塗布して前記樹脂成形体の骨格の表面を導電化処理する工程と、  前記樹脂成形体に、前記金属多孔体におけるニッケルの含有率が50質量%以上となるようにニッケルめっき層を形成して、樹脂構造体を形成する工程と、
  前記樹脂構造体から前記樹脂成形体を除去して金属多孔体を得る工程と、
  前記金属多孔体の厚さを0.10mm以上、0.50mm以下に圧延する工程と、
を含む金属多孔体の製造方法。
  上記(i)に記載の金属多孔体の製造方法は、樹脂成形体の骨格の表面を導電化処理する際にクロム粉末又は酸化クロム粉末を含む導電処理材を使用するため、その後にクロムめっき層を形成する工程が不要となる。このため、より低コストでの金属多孔体の提供が可能となる。
(ii)少なくともニッケル(Ni)及びクロム(Cr)を含む三次元網目状構造を有する平板状の金属多孔体の製造方法であって、
  三次元網目状構造を有する平板状の樹脂成形体の骨格の表面に、炭素粉末を含む導電化材を塗布して前記樹脂成形体の骨格の表面を導電化処理する工程と、
  前記樹脂成形体に、前記金属多孔体におけるニッケルの含有率が50質量%以上、クロムの含有率が1質量%以上、50質量%以下となるように、ニッケルめっき層及びクロムめっき層を形成して樹脂構造体を形成する工程と、
  前記樹脂構造体から前記樹脂成形体を除去して金属多孔体を得る工程と、
  前記金属多孔体の厚さを0.10mm以上、0.50mm以下に圧延する工程と、
を含む金属多孔体の製造方法。
  上記(ii)に記載の金属多孔体の製造方法においては、樹脂成形体の骨格の表面に形成するニッケルめっき層とクロムめっき層の形成順序は限定されるものではなく、どちらを先に形成しても構わない。しかしながら、前記金属多孔体はクロムの含有量に比べてニッケルの含有量の方が多いため、めっき後の基材のハンドリングを考慮すると、ニッケルめっき層を先に形成することが好ましい。
(iii)少なくともニッケル(Ni)及びクロム(Cr)を含む三次元網目状構造を有する平板状の金属多孔体の製造方法であって、
  三次元網目状構造を有する平板状の樹脂成形体の骨格の表面に、炭素粉末を含む導電化材を塗布して前記樹脂成形体の骨格の表面を導電化処理する工程と、
  前記樹脂成形体に、前記金属多孔体におけるニッケルの含有率が50質量%以上となるように、ニッケルめっき層を形成して樹脂構造体を形成する工程と、
  前記樹脂構造体から前記樹脂成形体を除去してニッケル多孔体を得る工程と、
  前記ニッケル多孔体にクロム源粉末と焼結防止剤粉末を充填し、還元性雰囲気で熱処理して、クロムの含有率が1質量%以上、50質量%以下になるようにクロムをニッケル多孔体中に拡散させたのち、洗浄により残留粉末を除去して金属多孔体を得る工程と、
  前記金属多孔体の厚さを0.10mm以上、0.50mm以下に圧延する工程と、
を含む金属多孔体の製造方法。
  本発明の実施形態に係る金属多孔体はニッケルやクロムの他にも、例えば、スズ、アルミニウム、銅、鉄、タングステン、チタン、コバルト、リン、ホウ素、マンガン、銀、金などを、発明の効果を損なわない範囲で、意図的にあるいは不可避的に含んでいても構わない。ただし、スズ、又はタングステンを含む場合は金属多孔体の骨格が脆くなるため、圧延時に破損する可能性があり、スズ及びタングステンの含有率を5質量%未満に抑えることが好ましい。
[本発明の実施形態の詳細]
  本発明の実施形態に係る金属多孔体等の具体例を以下に説明する。なお、本発明はこれらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
<金属多孔体>
  本発明の実施形態に係る金属多孔体は、ニッケル(Ni)を50質量%以上含む三次元網目状構造の平板状の金属多孔体であって、厚さが0.10mm以上、0.50mm以下の薄い金属多孔体である。
  本発明の実施形態に係る金属多孔体は高い気孔率を有し、かつ薄い平板状である。このため、燃料電池におけるガス拡散層として用いた場合に、ガスの供給・排気性能を向上させ、かつ燃料電池を小型化することができる。即ち、従来の燃料電池のセパレータに形成されている溝の構成に換えて用いることができる。例えば、固体酸化物型燃料電池(Solid  Oxide  Fuel  Cell:SOFC)の水素極側のガス拡散層や、固体高分子型燃料電池の水素極側のガス拡散層に好ましく用いることができる。
  前記金属多孔体はニッケルが50質量%以上含まれているため靭性に優れ、圧延加工が可能である。圧延加工が可能であるという性質を損なわない限り、ニッケル以外の金属成分を意図的に含有させてもいいし、不可避的不純物が含まれていても構わない。金属多孔体に意図的に添加させる金属としては、例えば、クロム(Cr)、スズ(Sn)、アルミニウム(Al)、銅(Cu)、鉄(Fe)、タングステン(W)、チタン(Ti)、コバルト(Co)、リン(P)、ホウ素(B)、マンガン(Mn)、銀(Ag)、金(Au)などが挙げられる。
  また、金属多孔体の厚さは0.10mm以上、0.50mm以下である。金属多孔体の厚さが0.10mm以上、0.50mm以下であることにより、燃料電池のガス拡散層として用いた場合に、燃料電池の小型化に寄与することができる。また、金属多孔体はガスの圧力損失が少なく、ガスの拡散性にも優れているため、燃料電池を高出力化することもできる。金属多孔体の厚さが0.10mm未満であると気孔率が小さくなり過ぎて燃料電池へのガス供給能力が下がってしまう。また、金属多孔体の厚さが0.50mm超であると、燃料電池の小型化への寄与が少なくなってしまう。これらの観点から、金属多孔体の厚さは、0.20mm以上、0.40mm以下であることがより好ましい。
  本発明の実施形態に係る金属多孔体は気孔率が55%以上、85%以下であることが好ましい。気孔率が55%以上であると、金属多孔体を燃料電池のガス拡散層として用いた場合に、ガスの圧力損失をより少なくすることができる。また、気孔率が85%以下であると、金属多孔体を燃料電池のガス拡散層として用いた場合に、ガスの拡散性をより高くすることができる。これは、金属多孔体が三次元網目状構造を有しているため、気孔率が小さくなるとガスが金属多孔体の骨格に当たって拡散する率が高くなるからである。さらに、金属多孔体の気孔率が85%以下であると、導電性にも優れるようになる。これらの観点から、本発明の実施形態に係る金属多孔体は、気孔率が70%以上、82%以下であることがより好ましく、75%以上、80%以下であることが更に好ましい。
  本発明の実施形態に係る金属多孔体は、クロム(Cr)を更に含み、前記クロムの含有率が1質量%以上、50質量%以下であることが好ましい。クロムの含有率が1質量%以上であることにより金属多孔体の耐食性をより高めることができる。これにより、金属多孔体を、固体高分子型燃料電池や固体酸化物型燃料電池の空気極側のガス拡散層としても用いることが可能となる。また、クロムの含有率が50質量%以下であることにより、金属多孔体の電気抵抗が高くなることを抑制することができる。これらの観点から、金属多孔体におけるクロムの含有率は、2質量%以上、40質量%以下であることがより好ましく、4質量%以上、30質量%以下であることが更に好ましい。
  本発明の実施形態に係る金属多孔体において、ニッケルの目付量は250g/m2以上、950g/m2以下程度であることが好ましい。また、金属多孔体がニッケル以外の金属成分を含む場合には、当該金属成分とニッケルの合計の目付量が250g/m2以上、950g/m2以下程度であることが好ましい。
  金属の目付量の合計が250g/m2以上であることにより、金属多孔体の強度と導電性を充分に高くすることができる。また、金属の目付量の合計を950g/m2以下とすることで、製造コストの上昇や重量の増加を抑制することができる。これらの観点から、金属の目付量の合計は、350g/m2以上、850g/m2以下程度であることがより好ましく、450g/m2以上、750g/m2以下程度であることが更に好ましい。
  本発明の実施形態に係る平板状の金属多孔体は上から見た場合の孔径が、100μm以上、650μm以下であることが好ましい。孔径が100μm以上であることにより、燃料ガス供給時の圧損を小さくすることができる。また、孔径が650μm以下であることにより、燃料ガスのMEAへの均一な拡散を促進することができる。これらの観点から、金属多孔体の孔径は、200μm以上、550μm以下であることがより好ましく、300μm以上、500μm以下であることが更に好ましい。ここで、上から見た場合とは平面状の金属多孔体の厚み方向から平面的に見た場合をいい、以下も同様である。
  なお、平均孔径は金属多孔体のセル数の逆数から求めた値である。セル数は、金属多孔体表面に長さ1インチの線を引いたときに、線と交差する最表面のセルの数を数えた数値であり、単位は個/インチである。但し、1インチは2.54センチメートルとする。
<燃料電池>
  本発明の実施形態に係る燃料電池は、前記本発明の実施形態に係る金属多孔体をガス拡散層として用いた燃料電池である。燃料電池の種類は特に限定されるものではなく、固体高分子型燃料電池であってもよいし、固体酸化物型燃料電池であってもよい。
  以下では、固体高分子型燃料電池を例に説明する。
  固体高分子型燃料電池におけるイオン交換膜等は従来のものを利用することができる。
例えば、イオン交換膜と触媒層とを接合した膜・電極接合体などは、市販されているものをそのまま利用することができる。アノード、カソードの白金触媒はいずれも約0.5mg/cm2が担持されたガス拡散電極、イオン交換膜としてNafion(登録商標)  112を用いて一体化されている。
  図1は、固体高分子型燃料電池の単セルの断面概略図である。
  図1においては、膜・電極接合体(MEA)Mは、イオン交換膜1の両面にガス拡散電極つまり白金触媒を含む活性炭層(2-1、2-2)を有している。それぞれアノードとしての水素極とカソードとしての空気極である。また、集電体(3-1、3-2)は、両極の集電体とガス拡散層を兼ねており、例えば、市販の撥水性処理したカーボンペーパーを用いることができる。カーボンペーパーとしては例えば、多孔度は約50%、フッ素樹脂約15%が添加されていて撥水性を有しているものを用いることができる。
  セパレータ(4-1、4-2)は、例えば、市販の黒鉛板を用いることができる。ガス拡散層(4-1-1、4-2-1)は、本発明の実施形態に係る金属多孔体であり、ガス供給・排出路も兼ねている。本発明の実施形態に係る金属多孔体は、従来の金属多孔体に比べて厚さが非常に薄いため、燃料電池を小型化することができる。
  なお、図1は単セルであるが、実用化されている燃料電池では、セパレータを介して所望の電圧に対応できるようにセルが積層されて構成されている。通常各セルは直列結合なのでセパレータの一方面がカソードであれば、他の面には隣のセルのアノードがくるように組み立てられ、周辺をボルト、ナットなどで加圧一体化している。
<金属多孔体の製造方法>
  本発明実施形態に係る金属多孔体は種々の方法によって製造することができ、その製造方法としては、例えば、前記(5)、(6)や前記(i)~(iii)に記載の方法等が挙げられる。
  従来の三次元網目状構造を有する金属多孔体は、電池用としては、電極の活物質保持量を多くするために、気孔率が95%程度と大きくなるように製造されている。これに対して本発明に係る金属多孔体は、燃料電池のガス拡散層として用いた場合に、ガスの良好な供給、排気、拡散を良好に行い、更に、燃料電池の小型化に寄与することを主たる目的としているため、従来の金属多孔体の製造方法に改良を加えたものである。
  以下に、金属多孔体の製造方法についてより詳細に説明する。
(三次元網目状構造を有する樹脂成形体)
  基材として用いる三次元網目状構造を有する平板状の樹脂成形体としては、多孔性のものであればよく公知又は市販のものを使用できる。例えば、樹脂製の発泡体、不織布、フェルト、織布などを用いることができる。また、必要に応じてこれらを組み合わせて用いることもできる。素材としては特に限定されるものではないが、金属をめっきした後焼却処理により除去できるものが好ましい。また、樹脂成形体の取扱い上、特にシート状のものにおいては剛性が高いと折れるので柔軟性のある素材であることが好ましい。
  前記樹脂成形体としては樹脂発泡体を用いることが好ましい。樹脂発泡体としては発泡ウレタン、発泡スチレン、発泡メラミン樹脂等が挙げられるが、これらの中でも、特に気孔率が大きい観点から、発泡ウレタンが好ましい。
  樹脂成形体の気孔率は限定的でなく、通常60%以上、97%以下程度、好ましくは80%以上、96%以下程度である。樹脂成形体の厚さは限定的でなく、得られる金属多孔体の用途に応じて適宜決定されるが、通常600μm以上、5000μm以下程度、好ましくは800μm以上、2000μm以下程度とすればよい。なお、樹脂成形体は気孔率が非常に大きいものであるため、厚さが500μm以下であると、平板状の形状を保つことができない。
  以下では、三次元網目状構造を有する樹脂成形体として発泡状樹脂を用いた場合を例にとって説明する。
(導電化処理)
  導電化処理は、樹脂成形体の骨格の表面に導電性を有する層を設けることができる限り、特に限定されるものではない。導電性を有する層(導電被覆層)を構成する材料としては、例えば、ニッケル、スズ、クロム、銅、鉄、タングステン、チタン、ステンレススチール等の金属の他、カーボン粉末等の炭素粉末が挙げられる。
  導電化処理の具体例としては、例えばニッケル、スズ、クロムなどの金属粉末や黒鉛粉末にバインダを加えて得られる導電性塗料の塗布、無電解めっき処理、スパッタリングや蒸着・イオンプレーティングなどの気相処理等が好ましく挙げられる。
  ニッケルを用いた無電解めっき処理は、例えば、還元剤として次亜リン酸ナトリウムを含有した硫酸ニッケル水溶液等の公知の無電解ニッケルめっき浴に発泡状樹脂を浸漬することによって行うことができる。必要に応じて、めっき浴浸漬前に、樹脂成形体を微量のパラジウムイオンを含む活性化液(カニゼン社製の洗浄液)等に浸漬してもよい。
  ニッケル又はクロムを用いたスパッタリング処理としては、例えば、まず、基板ホルダーに樹脂成形体を取り付けた後、不活性ガスを導入しながらホルダーとターゲット(ニッケル又はクロム)との間に直流電圧を印加する。これによりイオン化した不活性ガスをニッケル又はクロムに衝突させて、吹き飛ばしたニッケル粒子又はクロム粒子を樹脂成形体表面に堆積すればよい。
  カーボン粉末や金属粉末等の導電性塗料を塗布する場合には、前記樹脂成形体の骨格の表面に導電性を有する粉末(例えば、ステンレススチール等の金属材料の粉末、結晶質のグラファイト、非晶質のカーボンブラック等のカーボンの粉末)とバインダとの混合物を塗着する方法等が挙げられる。また、このときに、クロム粉末又は酸化クロム粉末と炭素粉末とを用いてもよい。クロム粉末又は酸化クロム粉末を用いる場合には、金属多孔体におけるクロムの含有率が1質量%以上、50質量%以下となるようにすればよい。これにより、クロムめっき工程が不要となる。
  またクロム粉末又は酸化クロム粉末を用いる場合には、ニッケルへの拡散性を考慮すると0.1μm以上、10μm以下程度の粒径の粉末を用いることが好ましく、0.5μm以上、5μm以下程度の粒径の粉末を用いることがより好ましい。
  炭素粉末としては、カーボンブラック、活性炭、黒鉛などを用いることができ、特に材料に限定はない。導電性を均一にすることを目的にする場合にはカーボンブラックを採用し、導電被覆層の強度を考慮する際には黒鉛の微粉末を用いればよい。また、活性炭も含めて混合することは好ましい。スラリーを作製する際に一般的に用いられる増粘剤、例えばカルボキシメチルセルロース(CMC)などを添加しても良い。このスラリーを、厚さを調整して板状あるいは帯状に裁断しておいた樹脂成形体の骨格に塗着し、乾燥させることで、樹脂成形体の骨格の表面を導電化することができる。
  導電被覆層にニッケルを用いる場合は樹脂成形体表面に連続的に形成されていればよく、目付量は限定的でないが、通常5g/m2以上、15g/m2以下程度、好ましくは7g/m2以上、10g/m2以下程度とすればよい。
(ニッケルめっき層の形成)
  ニッケルめっき層の形成は無電解ニッケルめっき及び電解ニッケルめっきのどちらを利用しても構わないが、電解ニッケルめっきの方が、効率が良いため好ましい。電解ニッケルめっき処理は、常法に従って行えばよい。電解ニッケルめっき処理に用いるめっき浴としては、公知又は市販のものを使用することができ、例えば、ワット浴、塩化浴、スルファミン酸浴等が挙げられる。
  前記の無電解めっきやスパッタリングにより表面に導電層を形成された樹脂構造体をめっき浴に浸し、樹脂構造体を陰極に、ニッケル対極板を陽極に接続して直流或いはパルス断続電流を通電させることにより、導電層上に、さらにニッケルの被覆を形成することができる。
  電解ニッケルめっき層の目付量は、金属多孔体の最終的な金属組成として、ニッケルの含有率が50質量%以上となるように調整すればよい。
  なお、金属多孔体において、ニッケルの目付量は250g/m2以上、950g/m2以下程度とすることが好ましい。また、ニッケル以外の金属成分を含み、ニッケル合金による金属多孔体とする場合には、金属総量の目付量を250g/m2以上、950g/m2以下程度とすることが好ましい。
(クロムめっき層の形成)
  樹脂構造体にクロムめっき層を形成する場合には、例えば、次のようにして行うことができる。すなわち、公知のクロムめっき方法に従って行えばよく、めっき浴としては公知又は市販のものを使用することができる。例えば、6価クロム浴、3価クロム浴を用いることができる。めっき対象となる多孔体を前記クロムめっき浴に浸して陰極に接続し、対極としてクロム板を陽極に接続して直流あるいはパルス断続電流を通電させることによりクロムめっき層を形成することができる。
  クロムめっきの目付量は、金属多孔体の最終的な金属組成として、ニッケルの含有率が50質量%以上、クロムの含有率が1質量%以上、50質量%以下となるように調整すればよい。
(めっき時のめっき液の循環)
  三次元網目状構造を有する樹脂成形体のような基材へのめっきは、一般的に内部へ均一にめっきすることが難しい。内部への未着を防いだり、内部と外部のめっき付着量の差を低減したりするために、めっき液を循環させることが好ましい。循環の方法としては、ポンプを使用したり、めっき槽内部にファンを設置したりするなどの方法がある。また、これらの方法を用いて樹脂成形体にめっき液を吹き付けたり、吸引口に樹脂成形体を隣接させたりすると、樹脂成形体の内部にめっき液の流れができやすくなって効果的である。
(樹脂成形体の除去)
  表面に金属めっき層が形成された樹脂構造体から基材として用いた樹脂成形体を除去する方法は限定的でなく、薬品による処理や、焼却による燃焼除去の方法が挙げられる。焼却による場合には、例えば、600℃程度以上の大気等の酸化性雰囲気下で加熱すればよい。
  得られた金属多孔体を、必要に応じて還元性雰囲気下で加熱処理して金属を還元することにより、ニッケルを主成分とする金属多孔体が得られる。
(クロマイズ処理)
  樹脂成形体の骨格表面の導電被覆層にクロムを添加したり、樹脂成形体の骨格の表面にクロムめっきをしたりする方法以外にも、金属多孔体の骨格表面をクロマイズ処理することによって金属多孔体をニッケルクロム合金多孔体とすることもできる。
  クロマイズ処理は、ニッケル膜にクロムを拡散浸透させる処理であり、公知の手法を採用できる。例えば、金属多孔体にクロム源粉末、焼結防止剤粉末(アルミナ粉末)、ハロゲン化物、を混合した浸透材を充填して還元性雰囲気で加熱する粉末パック法を採用することができる。また、浸透材と金属多孔体を離間して配置し、還元性雰囲気中で加熱し、浸透材のガスを形成して金属多孔体表面のニッケルに浸透材を浸透させることもできる。
ニッケル中にクロムを拡散させた後に洗浄して残留粉末を除去することでニッケルクロムからなる金属多孔体を得ることができる。
  ニッケルクロム中のクロムの含有量はクロマイズ処理の加熱時間によって調整することができる。最終的に得られる金属多孔体のクロム含有率が1質量%以上、50質量%以下となるようにすればよい。
(金属多孔体を圧延する工程)
  上記のように、本発明の実施形態に係る金属多孔体は靭性を有するため、圧延加工によって調厚することが可能である。このため、ローラープレス機や平板プレス等によって、金属多孔体の厚さを0.10mm以上、0.50mm以下に圧延すればよい。金属多孔体を圧延することにより、金属多孔体の厚さを均一にし、かつ、表面の凹凸のバラツキをなくすことができる。また、金属多孔体を圧延することにより気孔率を小さくすることができる。
  平板状の多孔体は圧延によって若干伸びるが、上から見た場合の平均孔径が変化するほどには変形しない。このため、圧延する前の平板状の多孔体を上から見た場合の平均孔径は、圧延した後の平均孔径と同様に、100μm以上、650μm以下であることが好ましく、200μm以上、550μm以下であることがより好ましく、300μm以上、500μm以下であることが更に好ましい。
  また、金属多孔体を圧延する前においては、気孔率は、60%以上、97%以下であることが好ましく、80%以上、96%以下であることがより好ましい。一方、金属多孔体を0.10mm以上、0.50mm以下に圧延した後においては、気孔率は、55%以上、85%以下であることが好ましく、70%以上、82%以下であることがより好ましく、75%以上、80%以下であることが更に好ましい。
  なお、金属多孔体を燃料電池のガス拡散層として用いる場合には、燃料電池に組み込まれた際のガス拡散層の厚さよりもわずかに厚い厚さの金属多孔体を製造し、燃料電池への組み込み時の圧力により金属多孔体を変形させて厚さが0.10mm以上、0.50mm以下となるようにしてもよい。このとき、金属多孔体を予めわずかに圧延しておいて、燃料電池に組み込まれた際のガス拡散層の厚さよりもわずかに厚い厚さの金属多孔体としてもよい。これにより燃料電池のMEAとガス拡散層(金属多孔体)との密着性をより高めることができる。
<水素の製造方法、および水素の製造装置>
  本発明の実施形態に係る金属多孔体は、燃料電池用途以外に、水電解による水素製造用途にも好適に使用できる。水素の製造方式には、大きく分けて[1]アルカリ水電解方式、[2]PEM方式、及び[3]SOEC方式があり、いずれの方式にも金属多孔体を用いることができる。
  前記[1]のアルカリ水電解方式では、強アルカリ水溶液に陽極と陰極を浸漬し、電圧を印加することで水を電気分解する方式である。金属多孔体を電極として使用することで水と電極の接触面積が大きくなり、水の電気分解の効率を高めることができる。
  アルカリ水電解方式による水素の製造方法においては、金属多孔体は上から見た場合の孔径が100μm以上、5000μm以下であることが好ましい。金属多孔体を上から見た場合の孔径が100μm以上であることにより、発生した水素・酸素の気泡が金属多孔体の気孔部に詰まって水と電極との接触面積が小さくなることを抑制することができる。
また、金属多孔体を上から見た場合の孔径が5000μm以下であることにより電極の表面積が十分に大きくなり、水の電気分解の効率を高めることができる。同様の観点から、金属多孔体を上から見た場合の孔径は400μm以上、4000μm以下であることがより好ましい。
  金属多孔体の厚さや金属量は、電極面積が大きくなるとたわみなどの原因となるため、設備の規模によって適宜選択すればよい。気泡の抜けと表面積の確保を両立するために、異なる孔径を持つ複数の金属多孔体を組み合わせて使うこともできる。
  前記[2]のPEM方式は、固体高分子電解質膜を用いて水を電気分解する方法である。固体高分子電解質膜の両面に陽極と陰極を配置し、陽極側に水を流しながら電圧を印加することで、水の電気分解により発生した水素イオンを、固体高分子電解質膜を通して陰極側へ移動させ、陰極側で水素として取り出す方式である。動作温度は100℃程度である。水素と酸素で発電して水を排出する固体高分子型燃料電池と、同様の構成で全く逆の動作をさせるものである。陽極側と陰極側は完全に分離されているため、純度の高い水素を取り出せる利点がある。陽極・陰極共に電極を透過させて水・水素ガスを通す必要があるため、電極には導電性の多孔体が必要である。
  本発明の実施形態に係る金属多孔体は高い気孔率と良好な電気伝導性を備えているため、固体高分子型燃料電池に好適に使用できるのと同じように、PEM方式の水電解にも好適に使用できる。PEM方式による水素の製造方法においては、金属多孔体は上から見た場合の孔径が100μm以上、650μm以下であることが好ましい。金属多孔体を上から見た場合の孔径が100μm以上であることにより、発生した水素・酸素の気泡が金属多孔体の気孔部に詰まって水と固体高分子電解質膜との接触面積が小さくなってしまうことを抑制することができる。また、金属多孔体を上から見た場合の孔径が650μm以下であることにより十分な保水性を確保することができ、反応する前に水が通り抜けてしまうことを抑制して、効率よく水の電気分解を行なうことができる。同様の観点から、金属多孔体を上から見た場合の孔径は、200μm以上、550μm以下であることがより好ましく、300μm以上、500μm以下であることが更に好ましい。
  金属多孔体の厚さや金属量は、設備の規模によって適宜選択すればよいが、気孔率が小さくなり過ぎると水を通過させるための圧力損失が大きくなるため、気孔率は30%以上となるように厚みと金属量を調整することが好ましい。また、PEM方式では固体高分子電解質膜と電極の導通は圧着になるため、加圧時の変形・クリープによる電気抵抗増加が、実用上問題ない範囲になるように金属量を調節する必要がある。金属量としては250g/m以上、950g/m以下程度であることが好ましく、350g/m2以上、850g/m2以下程度であることがより好ましく、450g/m2以上、750g/m2以下程度であることが更に好ましい。他、気孔率の確保と電気的接続の両立のために、異なる孔径を持つ複数の金属多孔体を組み合わせて使うこともできる。
  前記[3]のSOEC方式は、固体酸化物電解質膜を用いて水を電気分解する方法で、電解質膜がプロトン伝導膜か酸素イオン伝導膜かによって構成が異なる。酸素イオン伝導膜では、水蒸気を供給する陰極側で水素が発生するため、水素純度が下がる。そのため、水素製造の観点からはプロトン伝導膜を用いることが好ましい。
  プロトン伝導膜の両側に陽極と陰極を配置し、陽極側に水蒸気を導入しながら電圧を印加することで、水の電気分解により発生した水素イオンを、固体酸化物電解質膜を通して陰極側へ移動させ、陰極側で水素のみを取り出す方式である。動作温度は600℃~800℃程度である。水素と酸素で発電して水を排出する固体酸化物型燃料電池と、同様の構成で全く逆の動作をさせるものである。
  陽極・陰極共に電極を透過させて水蒸気・水素ガスを通す必要があるため、電極には導電性かつ、特に陽極側で高温の酸化雰囲気に耐える多孔体が必要である。本発明の実施形態に係る金属多孔体は高い気孔率と良好な電気伝導性と高い耐酸化性・耐熱性を備えているため、固体酸化物型燃料電池に好適に使用できるのと同じように、SOEC方式の水電解にも好適に使用できる。酸化性雰囲気となる側の電極には、Crなどの高い耐酸化性を有する金属を添加したNi合金の使用が好ましい。
  SOEC方式による水素の製造方法においては、金属多孔体は上から見た場合の孔径が100μm以上、650μm以下であることが好ましい。金属多孔体を上から見た場合の孔径が100μm以上であることにより、水蒸気や発生した水素が金属多孔体の気孔部に詰まって水蒸気と固体酸化物電解質膜との接触面積が小さくなってしまうことを抑制することができる。また、金属多孔体を上から見た場合孔径が650μm以下であることにより、圧損が低くなりすぎて水蒸気が十分に反応する前に通り抜けてしまうことを抑制することができる。同様の観点から、金属多孔体を上から見た場合の孔径は、200μm以上、550μm以下であることがより好ましく、300μm以上、500μm以下であることが更に好ましい。
  金属多孔体の厚さや金属量は、設備の規模によって適宜選択すればよいが、気孔率が小さくなり過ぎると水蒸気を投入するための圧力損失が大きくなるため、気孔率は30%以上となるように厚みと金属量を調整することが好ましい。また、SOEC方式では固体酸化物電解質膜と電極の導通は圧着になるため、加圧時の変形・クリープによる電気抵抗増加が、実用上問題ない範囲になるように金属量を調節する必要がある。金属量としては250g/m以上、950g/m以下程度であることが好ましく、350g/m2以上、850g/m2以下程度であることがより好ましく、450g/m2以上、750g/m2以下程度であることが更に好ましい。他、気孔率の確保と電気的接続の両立のために、異なる孔径を持つ複数の金属多孔体を組み合わせて使うこともできる。
<付記>
  以上の説明は、以下に付記する特徴を含む。
(付記1)
  ニッケル(Ni)を含む三次元網目状構造の平板状の金属多孔体を電極として用いて、水を電気分解することによって水素を発生させる水素の製造方法であって、
  前記ニッケルの含有率は50質量%以上であり、
  厚さが0.10mm以上、0.50mm以下である、水素の製造方法。
(付記2)
  前記金属多孔体の気孔率が、55%以上、85%以下である付記1に記載の水素の製造方法。
(付記3)
  前記金属多孔体はクロム(Cr)を更に含み、前記クロムの含有率が1質量%以上、50質量%以下である付記1又は付記2に記載の水素の製造方法。
(付記4)
  前記水が強アルカリ水溶液である付記1から付記3のいずれか一項に記載の水素の製造方法。
(付記5)
  固体高分子電解質膜の両側に前記金属多孔体を配置して前記固体高分子電解質膜と前記金属多孔体とを接触させ、それぞれの金属多孔体を陽極及び陰極として作用させ、前記陽極側に水を供給して電気分解することによって、前記陰極側に水素を発生させる、付記1から付記3のいずれか一項に記載の水素の製造方法。
(付記6)
  固体酸化物電解質膜の両側に前記金属多孔体を配置して前記固体高分子電解質膜と前記金属多孔体とを接触させ、それぞれの金属多孔体を陽極及び陰極として作用させ、前記陽極側に水蒸気を供給して水を電気分解することによって、前記陰極側に水素を発生させる、付記1から付記3のいずれか一項に記載の水素の製造方法。
(付記7)
  水を電気分解することによって水素を発生させることが可能な水素の製造装置であって、
  ニッケル(Ni)を含む三次元網目状構造の平板状の金属多孔体を電極として備え、
  前記ニッケルの含有率は50質量%以上であり、
  厚さが0.10mm以上、0.50mm以下である、水素の製造装置。
(付記8)
  前記金属多孔体の気孔率が、55%以上、85%以下である付記7に記載の水素の製造装置。
(付記9)
  前記金属多孔体はクロム(Cr)を更に含み、前記クロムの含有率が1質量%以上、50質量%以下である付記7又は付記8に記載の水素の製造装置。
(付記10)
  前記水が強アルカリ水溶液である付記7から付記9のいずれか一項に記載の水素の製造装置。
(付記11)
  固体高分子電解質膜の両側に陽極及び陰極を有し、
  前記陽極及び前記陰極は前記固体高分子電解質膜と接触しており、
  前記陽極側に供給された水を電気分解することによって前記陰極側に水素を発生させることが可能な水素の製造装置であって、
  前記陽極及び前記陰極の少なくとも一方に前記金属多孔体を用いる、付記7から付記9のいずれか一項に記載の水素の製造装置。
(付記12)
  固体酸化物電解質膜の両側に陽極及び陰極を有し、
  前記陽極及び前記陰極は前記固体高分子電解質膜と接触しており、
  前記陽極側に供給された水蒸気を電気分解することによって前記陰極側に水素を発生させることが可能な水素の製造装置であって、
  前記陽極及び前記陰極の少なくとも一方に前記金属多孔体を用いる、付記7から付記9のいずれか一項に記載の水素の製造装置。
  以下、実施例に基づいて本発明をより詳細に説明するが、これらの実施例は例示であって、本発明の金属多孔体等はこれらに限定されるものではない。本発明の範囲は請求の範囲の範囲によって示され、請求の範囲の範囲と均等の意味及び範囲内でのすべての変更が含まれる。
[実施例1]
-金属多孔体の作製-
(三次元網目状構造を有する樹脂成形体の導電化処理)
  三次元網目状構造を有する樹脂成形体として、気孔率96%、平均孔径450μm、厚さ2.0mmのウレタン樹脂発泡体のシートを用いた。平均粒径0.5μmの黒鉛微粉末と20質量%のポリプロピレン水性エマルジョンを用い、黒鉛に対して樹脂部が4.5質量%になるように加えた。更に、カルボキシメチルセルロースを増粘剤として0.1質量%加えてスラリーとした。このスラリーに上記のウレタン樹脂発泡体を浸漬した。そして、ウレタン樹脂発泡体を引き上げ、ロール間を通して余分なスラリーを除去し、乾燥させて骨格の表面を導電化した。炭素・ポリプロピレンによる導電被覆層の付着量は80g/mとした。
(ニッケルめっき)
  導電性を付与したウレタン樹脂発泡体を、公知のスルファミン酸浴法で電解ニッケルめっきを施した。公知の組成、つまりスルファミン酸ニッケル430g/L、塩化ニッケル7g/L、ホウ酸32g/Lを主とする浴で、電流密度を250mA/cmとして電解ニッケルめっきを行った。これにより、樹脂成形体の骨格の表面にニッケルめっき層が形成された樹脂構造体を得た。ニッケルめっき層が形成された樹脂構造体におけるニッケルの目付量は550g/mとした。
(樹脂成形体の除去)
  前記樹脂構造体を、空気中750℃で加熱して樹脂成形体を焼却除去した。ついで、水素雰囲気中で850℃、10分間加熱して一部酸化したニッケルの還元と焼鈍を行った。
これにより三次元網目状構造を有する金属多孔体(ニッケル多孔体)を得た。この金属多孔体の気孔率は約97%であった。厚さもほぼ同じ2.0mmであった。
(クロムとの合金化)
  ニッケルのニッケルクロム合金化は公知の方法を採用した。まず、クロム粉末、塩化アンモン、アルミナが90:1:9質量%になるよう混合し、これを上記で作製した金属多孔体に充填した。そして、水素雰囲気中で800℃に加熱してクロムを拡散させ合金化した。クロムの含有量が21質量%になるように合金化し、均一に合金化していることを確認した。このニッケルクロム合金多孔体の気孔率は約96%であった。ニッケルクロム合金多孔体における金属の総目付量は、700g/mであった。
(金属多孔体の調厚)
  前記ニッケルクロム合金多孔体をローラープレス機により、厚さを0.5mmに圧延して金属多孔体を得た。金属多孔体の気孔率は約84%であった。
-燃料電池の作製-
  上記の金属多孔体を、固体高分子型燃料電池(単セル)のガス拡散層兼ガス供給・排出路として用いた。
  金属多孔体を用いて単セルを組み立てるために市販のMEAを用い、金属多孔体を5×5cmに裁断して、図1に示した単セルを構成した。膜電極複合体(MEA)Mを2枚のカーボンペーパーからなる集電体3-1,3-2で挟み、更にその外側を2枚の金属多孔体からなるガス拡散層4-1-1,4-2-1で挟んで単セルを構成した。空気極と水素極がリークしないよう、ガスケットと凹型に加工したカーボン成形体を用い、4角をボルトとナットにより締め付け固定した。これにより、各構成材料の接触性の向上とともに水素、空気のセルからの漏れを防止した。なお、セパレータのカーボン成形体は、実用的には積層電池にするのでその厚さは1~2mm程度であるが、実施例は単セルであり、締め付けに耐える強度にするために厚さ10mmとした。このセルを電池Aとした。
[実施例2]
  実施例1に記載の方法と同様の方法により、気孔率が96%でニッケルの目付量が700g/mのニッケル多孔体を作製した。このニッケル多孔体の厚さが0.50mmとなるようにローラープレス機によって圧延して金属多孔体を得た。金属多多孔体2の気孔率は約84%であった。
  実施例1と同様に、空気極側にはニッケルクロムの金属多孔体を用い、水素極側にはニッケル多孔体の金属多孔体を用いて単セルを作製した。このセルを電池Bとした。
[実施例3]
  ニッケルめっき量を350g/m、クロム濃度を22質量%にした以外は実施例1と同様の手法で、目付量が450g/mのニッケルクロム合金多孔体を作製し、ローラープレス機によって0.12mmに圧延して金属多孔体を得た。金属多孔体の気孔率は58%となった。
  両極に金属多孔体を用いた以外は実施例1と同様にして電池Cを得た。
[比較例1]
  汎用のセパレータ(カーボン成形体)に溝を形成したものをガス拡散層として用いて単セルを構成した。つまり、電池Aと同様のMEA、カーボンペーパーをアノード、カソードともに用いた。溝は深さ、幅ともに1mm、とし、溝間の幅を1mmとした。したがって見掛けの気孔率は、ほぼ50%になる。このセルを電池Dとした。
[比較例2]
  実施例3で作製した目付量が450g/mのニッケルクロム合金多孔体をローラープレス機によって0.08mmに圧延し、金属多孔体を得た。金属多孔体の気孔率は37%となった。
  両極に金属多孔体を用いた以外は実施例1と同様にして電池Eを得た。
[比較例3]
  実施例1で作製した目付量が700g/mのニッケルクロム合金多孔体をローラープレス機によって0.70mmに圧延し、金属多孔体を得た。金属多孔体の気孔率は88%となった。
  両極に金属多孔体を用いた以外は実施例1と同様にして電池Fを得た。
[評価]
-電流電圧特性-
  電池A~Fのアノードに水素を、カソードに空気を供給して、放電特性を調べた。
  なお、各ガスの供給は負荷に応じて調整する装置を用いた。電極の周囲温度は25℃、作動温度として80℃を採用した。
  図2に電池A~Fの電流-電圧特性を表すグラフを示す。図2の縦軸は電圧(単位:V)を表し、横軸は電流(単位:A)を表す。
  図2で明らかなように、単セル放電電圧は、低電流密度から電池A、Bがほぼ同等で推移する。実施例3の電池Cは若干電圧が低いが、高電流密度まで0.5V以上を維持している。
  一方、比較例の電池は初期から電圧に差が現れた。電池D、Fではセル電圧が0.5Vにまで低下するのが約6Aであった。これは、電池Dでは集電体がカーボンであるため、電池A~Cに比べて導電性が劣っているためである。また、電池Fは導電性に関しては電池A~Cと材質的に同等であるが、金属多孔体の厚さが不適切であったためガス供給能力が劣るためである。
  一方、電池Eは初期から電圧が大きく低下し、2A程度で0.2Vに達して発電が停止してしまった。金属多孔体の厚さを薄くし過ぎたため水素及び空気を供給するために必要な圧力が非常に高く、ガス供給能力が劣っていたためである。また、生成水がガス拡散、供給路に溜まって放電電圧がばらつく現象については電池D、Eでは認められたが、電池A~C及びFでは起こらなかった。
  次に、電池A~Dについて、放電電流密度500mA/cmで5000時間連続放電を行った。その結果、電池A~Cでは放電電圧の低下はなかったが、電池Dでは7%、電池Fでは5%低下した。
  放電を中止して両極へのガス供給を停止し、電池を室温に戻して10日間放置後に、再び500mA/cmで放電できる時間を測定した。その結果、電池A~Cでは30分以内で休止前の電圧を示したが、電池Dでは75分間を要した。これは、電池A~Cでは金属多孔体をガス拡散層に用いているため、放電生成物の水がガス拡散層兼ガス供給・排気路に留まってガスの流れを阻害することがないためであると考えられる。
  また、放電特性を評価した後に各セルを分解して調べたところ、電池Dでは、溝の幅部分がカーボンペーパーにくい込んでいて、ガスの流れを阻害していた。一方、電池A~Cではガス拡散層が金属多孔体であるため、溝と異なり、カーボンペーパーにくい込む現象はまったく認められなかった。
  M              膜・電極接合体(MEA)
  1              イオン交換膜
  2-1          ガス拡散電極(白金触媒を含む活性炭層)
  2-2          ガス拡散電極(白金触媒を含む活性炭層)
  3-1          集電体
  3-2          集電体
  4-1          セパレータ
  4-1-1      ガス拡散層
  4-2          セパレータ
  4-2-1      ガス拡散層

Claims (6)

  1.   ニッケル(Ni)を含む三次元網目状構造の平板状の金属多孔体であって、
      前記ニッケルの含有率は50質量%以上であり、
      厚さが0.10mm以上、0.50mm以下である金属多孔体。
  2.   前記金属多孔体の気孔率が、55%以上、85%以下である請求項1に記載の金属多孔体。
  3.   前記金属多孔体はクロム(Cr)を更に含み、前記クロムの含有率が1質量%以上、50質量%以下である請求項1又は請求項2に記載の金属多孔体。
  4.   請求項1から請求項3のいずれか一項に記載の金属多孔体をガス拡散層に用いた燃料電池。
  5.   ニッケル(Ni)を含む三次元網目状構造を有する平板状の金属多孔体の製造方法であって、
      三次元網目状構造を有する平板状の樹脂成形体の骨格の表面に、炭素粉末を含む導電化材を塗布して前記樹脂成形体の骨格の表面を導電化処理する工程と、
      前記樹脂成形体に、前記金属多孔体におけるニッケルの含有率が50質量%以上となるようにニッケルめっき層を形成して、樹脂構造体を形成する工程と、
      前記樹脂構造体から前記樹脂成形体を除去して金属多孔体を得る工程と、
      前記金属多孔体の厚さを0.10mm以上、0.50mm以下に圧延する工程と、
    を含む金属多孔体の製造方法。
  6.   前記炭素粉末がカーボンブラック、活性炭又は黒鉛である請求項5に記載の金属多孔体の製造方法。
PCT/JP2016/071696 2015-08-04 2016-07-25 金属多孔体、燃料電池、及び金属多孔体の製造方法 WO2017022542A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680045608.3A CN107925092A (zh) 2015-08-04 2016-07-25 金属多孔体、燃料电池以及制造该金属多孔体的方法
KR1020187000831A KR20180037174A (ko) 2015-08-04 2016-07-25 금속 다공체, 연료 전지 및, 금속 다공체의 제조 방법
US15/742,923 US20180219232A1 (en) 2015-08-04 2016-07-25 Porous metal body, fuel cell, and method for producing porous metal body
EP16832821.9A EP3333947A4 (en) 2015-08-04 2016-07-25 Metal porous body, fuel cell, and method for manufacturing metal porous body

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015154120 2015-08-04
JP2015-154120 2015-08-04
JP2016-014144 2016-01-28
JP2016014144A JP2017033917A (ja) 2015-08-04 2016-01-28 金属多孔体、燃料電池、及び金属多孔体の製造方法

Publications (1)

Publication Number Publication Date
WO2017022542A1 true WO2017022542A1 (ja) 2017-02-09

Family

ID=57944176

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/071696 WO2017022542A1 (ja) 2015-08-04 2016-07-25 金属多孔体、燃料電池、及び金属多孔体の製造方法

Country Status (1)

Country Link
WO (1) WO2017022542A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108118173A (zh) * 2017-12-13 2018-06-05 燕山大学 一种球形胞元超轻泡沫金属材料的制备方法
JPWO2020235265A1 (ja) * 2019-05-22 2020-11-26
EP3760751A4 (en) * 2018-02-27 2021-12-01 Sumitomo Electric Industries, Ltd. METALLIC POROUS BODY AND METHOD OF MANUFACTURING IT, AND FUEL CELL
WO2022059497A1 (ja) * 2020-09-17 2022-03-24 富山住友電工株式会社 ニッケルクロム多孔体およびニッケルクロム多孔体の製造方法
TWI771688B (zh) * 2019-07-08 2022-07-21 國立中央大學 固態氧化物燃料電池檢測裝置之承載結構

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57123942A (en) * 1981-01-22 1982-08-02 Sumitomo Electric Ind Ltd Manufacture of microporous metallic body having cellular structure
JP2004039516A (ja) * 2002-07-05 2004-02-05 Mitsubishi Materials Corp すぐれた接面通電性を長期に亘って発揮する固体高分子形燃料電池の多孔質金属ガス拡散シート
JP2004039517A (ja) * 2002-07-05 2004-02-05 Mitsubishi Materials Corp すぐれた接面通電性を長期に亘って発揮する固体高分子形燃料電池の多孔質金属ガス拡散シート
JP2007184134A (ja) * 2006-01-05 2007-07-19 Toyota Motor Corp 燃料電池の製造方法
JP2012124012A (ja) * 2010-12-08 2012-06-28 Sumitomo Electric Ind Ltd 高耐食性を有する金属多孔体の製造方法
WO2015151828A1 (ja) * 2014-03-31 2015-10-08 住友電気工業株式会社 燃料電池用集電体及び燃料電池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57123942A (en) * 1981-01-22 1982-08-02 Sumitomo Electric Ind Ltd Manufacture of microporous metallic body having cellular structure
JP2004039516A (ja) * 2002-07-05 2004-02-05 Mitsubishi Materials Corp すぐれた接面通電性を長期に亘って発揮する固体高分子形燃料電池の多孔質金属ガス拡散シート
JP2004039517A (ja) * 2002-07-05 2004-02-05 Mitsubishi Materials Corp すぐれた接面通電性を長期に亘って発揮する固体高分子形燃料電池の多孔質金属ガス拡散シート
JP2007184134A (ja) * 2006-01-05 2007-07-19 Toyota Motor Corp 燃料電池の製造方法
JP2012124012A (ja) * 2010-12-08 2012-06-28 Sumitomo Electric Ind Ltd 高耐食性を有する金属多孔体の製造方法
WO2015151828A1 (ja) * 2014-03-31 2015-10-08 住友電気工業株式会社 燃料電池用集電体及び燃料電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3333947A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108118173A (zh) * 2017-12-13 2018-06-05 燕山大学 一种球形胞元超轻泡沫金属材料的制备方法
EP3760751A4 (en) * 2018-02-27 2021-12-01 Sumitomo Electric Industries, Ltd. METALLIC POROUS BODY AND METHOD OF MANUFACTURING IT, AND FUEL CELL
JPWO2020235265A1 (ja) * 2019-05-22 2020-11-26
WO2020235265A1 (ja) * 2019-05-22 2020-11-26 住友電気工業株式会社 多孔体、それを含む燃料電池、およびそれを含む水蒸気電解装置
JP7355034B2 (ja) 2019-05-22 2023-10-03 住友電気工業株式会社 多孔体、それを含む燃料電池、およびそれを含む水蒸気電解装置
TWI771688B (zh) * 2019-07-08 2022-07-21 國立中央大學 固態氧化物燃料電池檢測裝置之承載結構
WO2022059497A1 (ja) * 2020-09-17 2022-03-24 富山住友電工株式会社 ニッケルクロム多孔体およびニッケルクロム多孔体の製造方法

Similar Documents

Publication Publication Date Title
US20200373586A1 (en) Highly corrosion-resistant porous metal body
JP2017033917A (ja) 金属多孔体、燃料電池、及び金属多孔体の製造方法
US20200251750A1 (en) Method for producing porous metal body
JP6701601B2 (ja) 金属多孔体、燃料電池、及び金属多孔体の製造方法
EP2666890B1 (en) Porous metal having high corrosion resistance and process for producing same
WO2017022542A1 (ja) 金属多孔体、燃料電池、及び金属多孔体の製造方法
JP6300315B2 (ja) 燃料電池用集電体及び燃料電池
US11228043B2 (en) Fuel battery
JPWO2016132811A1 (ja) ニッケル合金多孔体の製造方法
WO2017043365A1 (ja) 金属多孔体、燃料電池、及び金属多孔体の製造方法
CN108172947B (zh) 一种双功能电极及其制备和应用
JPWO2020049851A1 (ja) 金属多孔体、燃料電池および金属多孔体の製造方法
Abdel-Karim et al. Electrochemical performance of porous Ni-Cu anodes for direct methanol fuel cells
EP2644722B1 (en) Method for producing highly corrosion-resistant porous metal body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16832821

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15742923

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20187000831

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016832821

Country of ref document: EP