CN103296078B - 具有栅极隔离物的增强型GaN高电子迁移率晶体管器件及其制备方法 - Google Patents

具有栅极隔离物的增强型GaN高电子迁移率晶体管器件及其制备方法 Download PDF

Info

Publication number
CN103296078B
CN103296078B CN201310057366.8A CN201310057366A CN103296078B CN 103296078 B CN103296078 B CN 103296078B CN 201310057366 A CN201310057366 A CN 201310057366A CN 103296078 B CN103296078 B CN 103296078B
Authority
CN
China
Prior art keywords
grid
compound
metal
gate metal
ohmic contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310057366.8A
Other languages
English (en)
Other versions
CN103296078A (zh
Inventor
亚历山大·利道
罗伯特·比奇
阿兰娜·纳卡塔
曹建军
赵广元
罗伯特·斯特里特马特
刘芳昌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Efficient Power Conversion Corp
Original Assignee
Efficient Power Conversion Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/403,400 external-priority patent/US8823012B2/en
Application filed by Efficient Power Conversion Corp filed Critical Efficient Power Conversion Corp
Publication of CN103296078A publication Critical patent/CN103296078A/zh
Application granted granted Critical
Publication of CN103296078B publication Critical patent/CN103296078B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • H01L29/7787Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT with wide bandgap charge-carrier supplying layer, e.g. direct single heterostructure MODFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1066Gate region of field-effect devices with PN junction gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

一种具有自对准的栅极隔离物、栅极金属材料和栅极化合物的增强型GaN器件,及其制备方法。使用单一光掩模对上述各材料进行图案化和进行蚀刻,这可降低制造成本。所述栅极隔离物和所述栅极化合物的界面比介电膜和所述栅极化合物的界面具有更低的泄漏,从而降低栅极泄漏。此外,使用欧姆接触金属层作为场板,以减小朝向漏极触点的掺杂的III‑V栅极化合物拐角处的电场,这导致减小的栅极泄漏电流和改进的栅极可靠性。

Description

具有栅极隔离物的增强型GaN高电子迁移率晶体管器件及其 制备方法
技术领域
本发明涉及增强型氮化镓(GaN)高电子迁移率晶体管(HEMT)器件的领域。具体地,本发明涉及用于提供具有栅极隔离物的增强型HEMT器件的方法和装置。
背景技术
氮化镓(GaN)半导体器件用作功率半导体器件日益受到欢迎,原因在于氮化镓(GaN)半导体器件具有承载大电流和支持高电压的能力。这些器件的开发通常旨在高功率/高频率应用。针对这类应用而制造的器件是基于表现出高电子迁移率的常规器件结构,且被称为异质结场效应晶体管(HFET)、高电子迁移率晶体管(HEMT)或调制掺杂场效应晶体管(MODFET)等多种名称。
GaN HEMT器件包括具有至少两个氮化物层的氮化物半导体。形成于该半导体或缓冲层上的不同材料导致这些层具有不同的带隙。在相邻氮化物层中的不同材料还导致极化,这有助于在这两层接合处附近,尤其在具有较窄带隙的层中形成导电二维电子气(2DEG)区。
导致极化的氮化物层通常包括与GaN层相邻的AlGaN阻挡层以便包括上述2DEG,其允许电荷流过该器件。该阻挡层可以是掺杂或无掺杂的。由于所述2DEG区在零栅偏压下,存在于栅极下方,所以大多数氮化物器件是常开型或耗尽型器件。如果在施加零栅偏压时在栅极下方的2DEG区被耗尽,即被移除,则该器件可以是增强型器件。增强型器件是常关型,并且由于它们提供的附加安全性以及由于它们更易于由简单、低成本的激励电路来控制,因而符合需要。为了传导电流,增强型器件需要在栅极施加正偏压。
在常规的增强型GaN晶体管中,通过利用单独的光掩模来限定栅极金属以及p-型GaN材料或p-型AlGaN材料。例如,图1(现有技术)示出了用两种不同的光掩模处理栅极金属与栅极pGaN。图1示例说明了常规的增强型GaN晶体管器件100,其包括可为蓝宝石或硅的衬底101、多个过渡层102、非掺杂的GaN材料103、非掺杂的AlGaN材料104、源极欧姆接触金属109、漏极欧姆接触金属110、p-型AlGaN或p-型GaN材料105、高度掺杂的p-型GaN材料106以及栅极金属111。
如图1中所示,栅极金属、p-型GaN或p-型AlGaN材料由两个单独的光掩模限定。第一掩模用于通过使硬掩模图案化并使p-型GaN选择性地生长或通过使p-型GaN图案化并被蚀刻来形成p-型GaN或p-型AlGaN。第二掩模用于通过使栅极金属图案化并剥离栅极金属或通过使栅极金属图案化并被蚀刻来形成栅极金属。所述两个掩模工艺导致比光/蚀刻最小CD更宽的栅极长度。这导致高的栅极电荷、更宽的单元间距和更高的Rdson(“导通电阻”)。常规的制造方法还会增加生产成本。另一个缺陷在于,最高的电场位于朝向漏极欧姆接触金属的p-型GaN材料或p-型AlGaN材料的栅极拐角处。这种高电场导致高的栅极泄漏电流和高的栅极可靠性危险。
希望提供具有自对准栅极的增强型GaN晶体管结构,其可避免现有技术的上述缺陷。还希望提供减小p-型GaN或AlGaN的栅极拐角处的高电场的特征。
发明内容
本说明书公开的实施方案涉及具有自对准的栅极隔离物、栅极金属材料和栅极化合物的增强型GaN晶体管,及其制备方法。利用单一光掩模对这些材料进行图案化和进行蚀刻,这样可降低生产成本。所述栅极隔离物和所述栅极化合物的界面比介电膜和所述栅极化合物的界面具有更低的泄漏,从而降低栅极泄漏。此外,使用欧姆接触金属层作为场板(field plate)来减小朝向漏极触点的掺杂的III-V栅极化合物拐角处的电场,这导致减小的栅极泄漏电流和改进的栅极可靠性。
附图说明
图1显示常规增强型GaN晶体管的横截面视图。
图2显示具有根据此处描述的本发明第一个实施方案形成的栅极隔离物的增强型GaN HEMT器件。
图3A-3H示意显示根据本发明第一实施方案的增强型GaN HEMT器件的形成。
图4显示具有根据本发明第二实施方案形成的栅极隔离物的增强型GaN HEMT器件。
图5A-5G示意显示根据本发明第二实施方案的增强型GaN HEMT器件的形成。
图6显示具有根据本发明第三实施方案形成的栅极隔离物的增强型GaN HEMT器件。
图7A-7H示意显示根据本发明第三实施方案的增强型GaN HEMT器件的形成。
图8显示具有根据本发明第四实施方案形成的栅极隔离物的增强型GaN HEMT器件。
图9A-9G示意显示根据本发明第四实施方案的增强型GaN HEMT器件的形成。
具体实施方式
在以下详细说明中,涉及某些实施方案。对这些实施例进行足够详细的描述,以使本领域的技术人员能够实施它们。应理解的是,可采用其它实施方案,并且可对各种结构、逻辑以及电气进行改变。
本发明涉及具有自对准的栅极隔离物、栅极金属材料和栅极化合物的增强型GaNHEMT器件,及制备这类器件的方法。利用单一光掩模对这些材料进行图案化和进行蚀刻,由此降低生产成本。此外,所述栅极隔离物21和所述栅极化合物的界面比介电膜和所述栅极化合物的界面具有更低的泄漏,从而降低栅极泄漏。此外,使用欧姆接触金属层作为场板,以减小朝向漏极触点的掺杂的III-V栅极化合物拐角处的电场,这导致减小的栅极泄漏电流和改进的栅极可靠性。在源极电位下的场板保护栅极免受漏极偏压的影响。减少了栅极-漏极电荷(Qgd)。
参照图2和3A-3H,现在描述用于形成具有栅极隔离物和自对准栅极的增强型GaNHEMT器件的第一实施方案,其中在整个附图中对于同一特征一致地使用相同的附图标记。图2显示通过下文针对图3A-3E描述的方法形成的增强型GaN HEMT器件200,其具有自对准的栅极金属17和III-V栅极化合物15。器件200包括硅衬底11、缓冲材料12、非掺杂的GaN缓冲材料13、非掺杂的AlGaN阻挡材料14、III-V栅极化合物15、栅极金属17、电介质材料18、漏极欧姆接触19、源极欧姆接触20和电介质隔离物21。源极金属20还用作在栅极上方并朝向漏极触点延伸的场板。
图3A显示GaN HEMT器件200a的EPI结构,从下向上包括硅衬底11、缓冲材料12、非掺杂的GaN缓冲材料13、非掺杂的AlGaN阻挡材料14和III-V栅极化合物材料15。所述非掺杂的GaN缓冲材料13优选具有约0.5μm至约5μm的厚度。所述非掺杂的AlGaN阻挡材料14优选具有约至约的厚度。所述非掺杂的AlGaN阻挡材料14包括占AlGaN材料中金属含量的约12%-28%的Al。所述III-V栅极化合物15可具有约至约的厚度。另外,所述III-V栅极化合物15可具有每立方厘米约1018至约1020个原子的p-型掺杂浓度。
如图3B中所示,栅极金属17沉积到图3A中所示的EPI结构上。可替代地,栅极金属17可在上述EPI生长结束时进行生长。栅极金属17可由难熔金属或其化合物制成,例如由钽(Ta)、氮化钽(TaN)、氮化钛(TiN)、钯(Pd)、钨(W)、硅化钨(WSi2)制成。
随后,使用单一光掩模对栅极金属17进行图案化和进行蚀刻,形成图3C中所示的堆栈(stack)和结构。所述栅极金属17通过诸如等离子体蚀刻的任何已知技术进行蚀刻,之后进行光刻胶的剥离。
现在参照图3D,电介质材料21,例如二氧化硅(SiO2)或等离子体增强化学气相沉积(PECVD)氮化硅(Si3N4),被沉积在图3C所示的结构上。在沉积电介质材料21之后,实施回蚀刻操作,以图案化和蚀刻所述电介质材料21,在栅极金属17的侧壁上形成隔离物21(图3E中示出)。
现在参照图3F,使用栅极金属17和隔离物21作为硬掩模对III-V栅极化合物15进行蚀刻。然后在图3F结构上沉积电介质材料18,例如Si3N4。在沉积电介质材料18之后,使用接触式光掩模对所述材料18进行蚀刻,之后进行光刻胶的剥离,从而形成图3G所示的结构。
在所述图3G结构上沉积欧姆接触金属。欧姆接触金属可由钛(Ti)、铝(Al),及覆盖金属叠层(capping metal stack)制成。在欧姆金属沉积之后,使用金属掩模来对欧姆接触金属进行图案化和进行蚀刻,形成如图3H中所示的漏极欧姆接触19和源极欧姆接触20。实施快速热退火(RTA),以形成对AlGaN/GaN2DEG的欧姆接触。源极欧姆接触金属20在栅极上方提供,并用作场板。其减小在最接近漏极欧姆接触19的III-V栅极化合物15拐角的拐角处的电场。
根据上文所述的方法,对栅极金属17进行图案化和进行蚀刻。然后在栅极金属17的侧壁上形成电介质隔离物21。然后使用栅极金属17和隔离物21作为硬掩模对III-V栅极化合物15进行蚀刻。栅极金属17、隔离物21和栅极化合物15形成在单一光掩模之后,由此自动地自对准。欧姆接触金属19和20由Ti、Al、和覆盖金属叠层构成。源极金属20覆盖整个栅极,并用作场板。其减小朝向漏极的栅极拐角处的电场。由于使用源极欧姆接触金属20作为场板来减小朝向漏极欧姆接触19的III-V栅极拐角处的电场,实现了栅极泄漏电流的降低和栅极可靠性的改进。另外,在源极电位下的场板保护栅极免受漏极偏压的影响,这样减少了栅极-漏极电荷(Qgd)。
现在参照图4和5A-5G,描述本发明的第二实施方案。图4显示具有通过图5A-5G中所示的方法形成的栅极隔离物21的增强型GaN HEMT器件300。所得器件300将具有自对准的栅极金属17和III-V栅极化合物15。图4中的器件300与图2中器件200的区别在于,器件300包括隔离物21,所述隔离物21不仅形成于栅极金属17的侧壁上,而且形成于III-V栅极化合物15的侧壁上。
图5A显示EPI结构300a,所述EPI结构300a从下向上包括硅衬底11、缓冲材料12、非掺杂的GaN缓冲材料13、非掺杂的AlGaN阻挡材料14和III-V栅极化合物材料15。所述各种材料的尺寸和组成与第一实施方案的类似。
如图5B中所示,如在第一实施方案中一样,栅极金属17在图5A中所示的EPI结构上沉积或生长。
随后,使用单一光掩模对栅极金属17和III-V栅极化合物15进行图案化和进行蚀刻,形成图5C中所示的堆栈和结构(之后实施光刻胶的剥离)。
参照图5D,如前文所述,在图5C结构上沉积电介质材料21,例如二氧化硅(SiO2)。在沉积电介质材料21之后,实施回蚀刻操作,以图案化和蚀刻所述电介质材料21,在栅极金属17的侧壁上和III-V栅极化合物15的侧壁上形成隔离物21(图5E中示出)。
然后在图5E结构上沉积电介质材料18,例如Si3N4。在沉积电介质材料18之后,使用接触式光掩模对该材料18进行蚀刻,之后进行光刻胶的剥离,从而形成图5F中所示的结构。
在图5F结构的上沉积欧姆接触金属。欧姆接触金属可由钛(Ti)、铝(Al),及覆盖金属叠层(capping metal stack)制成。在欧姆金属沉积之后,使用金属掩模来对欧姆接触金属进行图案化和进行蚀刻,形成如图5G中所示的漏极欧姆接触19和源极欧姆接触20。实施快速热退火(RTA),以形成对AlGaN/GaN2DEG的欧姆接触。源极欧姆接触金属20在栅极上方提供,并用作场板。其减小在最接近漏极欧姆接触19的III-V栅极化合物15拐角的拐角处的电场。
根据上文所述的方法,对栅极金属17和III-V栅极化合物15使用单一光掩模进行图案化和进行蚀刻,因此它们是自对准的,具有与第一实施方案相同的优点。
现在参照图6和7A-7H,描述本发明的第三实施方案。图6显示通过下文针对图7A-7H所述的方法形成的增强型GaN HEMT器件400,其具有自对准的栅极金属17和III-V栅极化合物15。器件400包括硅衬底11、缓冲材料12、非掺杂的GaN缓冲材料13、非掺杂的AlGaN阻挡材料14、III-V栅极化合物15、栅极金属17、电介质材料18、漏极欧姆接触19、源极欧姆接触20、电介质隔离物21和介电膜22。源极金属20也用作在栅极上方并朝向漏极触点延伸的场板。
图7A显示GaN HEMT器件400a的EPI结构,所述EPI结构从下向上包括硅衬底11、缓冲材料12、非掺杂的GaN缓冲材料13、非掺杂的AlGaN阻挡材料14和III-V栅极化合物材料15。所述非掺杂的GaN缓冲材料13优选具有约0.5至约5μm的厚度。所述非掺杂的AlGaN阻挡材料14优选具有约至约的厚度。所述非掺杂的AlGaN阻挡材料14包括占AlGaN材料中金属含量的约12%-28%的Al。所述III-V栅极化合物15可具有约至约的厚度。另外,所述III-V栅极化合物15可具有每立方厘米约1018至约1020个原子的p-型掺杂浓度。
如图7B中所示,栅极金属17沉积到图7A中所示的EPI结构上。可替代地,栅极金属17可在上述EPI生长结束时进行生长。栅极金属17可由难熔金属或其化合物制成,例如由钽(Ta)、氮化钽(TaN)、氮化钛(TiN)、钯(Pd)、钨(W)或硅化钨(WSi2)制成。介电膜22,例如二氧化硅(SiO2),通过任何已知方法沉积或形成在栅极金属17上。
随后,使用单一光掩模对栅极金属17和介电膜22进行图案化和进行蚀刻,形成图7C中所示的堆栈和结构。所述栅极金属17和所述和介电膜22通过诸如等离子体蚀刻的任何已知技术进行蚀刻,之后进行光刻胶的剥离。
现在参照图7D,将电介质材料21,例如二氧化硅(SiO2)或等离子体增强化学气相沉积(PECVD)氮化硅(Si3N4),现沉积在图7C所示的结构上。在沉积电介质材料21之后,实施回蚀刻操作,以图案化和蚀刻所述电介质材料21,在栅极金属17的侧壁上和介电膜22的侧壁上形成隔离物21(图7E中示出)。
现在参照图7F,使用在栅极金属17之上的介电膜22和隔离物21作为硬掩模实施对III-V栅极化合物15的蚀刻。然后在图7F结构上沉积电介质材料18,例如Si3N4。在沉积电介质材料18之后,使用接触式光掩模对所述材料18进行蚀刻,之后进行光刻胶的剥离,从而形成图7G所示的结构。
在所述图7G所示的结构上沉积欧姆接触金属。欧姆接触金属可由钛(Ti)、铝(Al),及覆盖金属叠层制成。在欧姆金属沉积之后,使用金属掩模来对欧姆接触金属进行图案化和进行蚀刻,形成如图7H中所示的漏极欧姆接触19和源极欧姆接触20。实施快速热退火(RTA),以形成对AlGaN/GaN2DEG的欧姆接触。源极欧姆接触金属20在栅极上方提供,并用作场板。其减小在最接近漏极欧姆接触19的III-V栅极化合物15拐角的拐角处的电场。
现在参照图8和9A-9G,描述本发明的第四实施方案。图8显示具有通过图9A-9G中所示方法形成的栅极隔离物21的增强型GaN HEMT器件500。所得器件500将具有自对准的栅极金属17和III-V栅极化合物15。器件500与图6中器件400的区别在于,器件500包括隔离物21,所述隔离物21不仅形成于栅极金属17和介电膜22的侧壁上,而且形成于III-V栅极化合物15的侧壁上。
图9A显示EPI结构500a,所述EPI结构500a从下向上包括硅衬底11、缓冲材料12、非掺杂的GaN缓冲材料13、非掺杂的AlGaN阻挡材料14和III-V栅极化合物材料15。所述各种材料的尺寸和组成与上述第三实施方案的类似。
如图9B中所示,如在第三实施方案中一样,栅极金属17在图9A中所示的EPI结构上沉积或生长,然后在栅极金属17之上形成介电膜22(例如SiO2)。
随后,使用单一光掩模对介电膜22、栅极金属17和III-V栅极化合物15进行图案化和进行蚀刻,形成图9C中所示的堆栈和结构(之后实施光刻胶的剥离)。
参照图9D,与第三实施方案类似,将电介质材料21,例如二氧化硅(SiO2)或等离子体增强化学气相沉积(PECVD)氮化硅(Si3N4),沉积在图9C结构之上。在沉积电介质材料21之后,实施回蚀刻操作,以图案化和蚀刻所述电介质材料21,在介电膜22、栅极金属17和III-V栅极化合物15的侧壁上形成隔离物21(图9E中示出)。
然后,在图9E结构之上沉积电介质材料18,例如Si3N4。在沉积电介质材料18之后,使用接触式光掩模对该材料18进行蚀刻,之后进行光刻胶的剥离,从而形成图9F中所示的结构。
在图9F所示的结构上沉积欧姆接触金属。欧姆接触金属可由钛(Ti)、铝(Al),及覆盖金属叠层制成。在欧姆金属沉积之后,使用金属掩模对欧姆接触金属进行图案化和进行蚀刻,形成如图9G中所示的漏极欧姆接触19和源极欧姆接触20。实施快速热退火(RTA),以形成对AlGaN/GaN2DEG的欧姆接触。源极欧姆接触金属20在栅极上方提供,并用作场板。其减小在最接近漏极欧姆接触19的III-V栅极化合物15拐角的拐角处的电场。
根据上文所述的方法,对栅极金属17和III-V栅极化合物15使用单一光掩模进行图案化和进行蚀刻,因此它们是自对准的,具有与第一至第三实施方案相同的优点。
以上描述和附图仅被认为是对实现说明书中所述特征和优点的具体实施方案的说明。可对具体操作条件进行修改和替换。因此,本发明的实施方案不应被认为受前文描述和附图的限制。

Claims (6)

1.形成增强型GaN晶体管的方法,所述方法包括:
在衬底上形成缓冲材料;
在所述缓冲材料之上形成AlGaN阻挡层;
在所述AlGaN阻挡层之上形成栅极III-V化合物;
在所述栅极III-V化合物的上表面的第一部分上形成含栅极金属的堆栈;
在所述栅极III-V化合物的所述上表面的第二部分上以及在所述栅极金属的堆栈的侧壁上形成隔离物材料,其中所述隔离物材料是电介质材料;
使用所述栅极金属和隔离物材料作为掩模对所述栅极III-V化合物进行蚀刻;
沉积电介质层;
蚀刻所述电介质层,以暴露漏极和源极接触区域;和
在暴露的漏极和源极接触区域中形成漏极和源极的欧姆接触,
所述源极欧姆接触在所述栅极上方形成并朝向所述漏极欧姆接触。
2.权利要求1所述的方法,其进一步包括,在每一个栅极金属堆栈之上形成介电膜。
3.权利要求2所述的方法,其中所述隔离物材料还形成在所述介电膜的侧壁上。
4.权利要求1-3中任一项所述的方法,其中所述隔离物材料含有二氧化硅(SiO2)。
5.权利要求1-3中任一项所述的方法,其中所述隔离物材料含有等离子体增强化学气相沉积氮化硅(Si3N4)。
6.权利要求1-3中任一项所述的方法,其中所述栅极金属含有在包括Ta、TaN、TiN、Pd、W或WSi的组中选择的一种或多种难熔金属、金属化合物及合金。
CN201310057366.8A 2012-02-23 2013-02-22 具有栅极隔离物的增强型GaN高电子迁移率晶体管器件及其制备方法 Active CN103296078B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/403,400 2012-02-23
US13/403,400 US8823012B2 (en) 2009-04-08 2012-02-23 Enhancement mode GaN HEMT device with gate spacer and method for fabricating the same

Publications (2)

Publication Number Publication Date
CN103296078A CN103296078A (zh) 2013-09-11
CN103296078B true CN103296078B (zh) 2017-01-18

Family

ID=48985216

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310057366.8A Active CN103296078B (zh) 2012-02-23 2013-02-22 具有栅极隔离物的增强型GaN高电子迁移率晶体管器件及其制备方法

Country Status (5)

Country Link
JP (1) JP6147018B2 (zh)
KR (1) KR20130097116A (zh)
CN (1) CN103296078B (zh)
DE (1) DE102013202972B4 (zh)
TW (1) TWI566402B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6562222B2 (ja) * 2014-07-29 2019-08-21 パナソニックIpマネジメント株式会社 窒化物半導体装置
CN104465746B (zh) * 2014-09-28 2018-08-10 苏州能讯高能半导体有限公司 一种hemt器件及其制造方法
US9580304B2 (en) * 2015-05-07 2017-02-28 Texas Instruments Incorporated Low-stress low-hydrogen LPCVD silicon nitride
TWI802096B (zh) * 2021-11-23 2023-05-11 新唐科技股份有限公司 電晶體元件
CN116613192B (zh) * 2023-07-17 2023-10-03 成都氮矽科技有限公司 一种常关型GaN HEMT及制造方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1292470C (zh) * 2002-01-10 2006-12-27 联华电子股份有限公司 在低介电常数材料层中形成开口的方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04101435A (ja) * 1990-08-21 1992-04-02 Sumitomo Electric Ind Ltd 電界効果トランジスタの製造方法
US7501669B2 (en) * 2003-09-09 2009-03-10 Cree, Inc. Wide bandgap transistor devices with field plates
JP4705412B2 (ja) 2005-06-06 2011-06-22 パナソニック株式会社 電界効果トランジスタ及びその製造方法
EP1932181A4 (en) * 2005-09-16 2009-06-17 Univ California ENRICHMENT FIELD EFFECT TRANSISTOR, GALLIUM NITRIDE / ALUMINUM NITRIDE AND N-POLARITY GALLIUM
JP2008010461A (ja) * 2006-06-27 2008-01-17 Sharp Corp ヘテロ接合電界効果型トランジスタおよびヘテロ接合電界効果型トランジスタの製造方法
JP4755961B2 (ja) * 2006-09-29 2011-08-24 パナソニック株式会社 窒化物半導体装置及びその製造方法
JP5442272B2 (ja) * 2009-02-19 2014-03-12 日本電信電話株式会社 電界効果トランジスタおよび電界効果トランジスタ製造方法
DE112010001555B4 (de) * 2009-04-08 2021-10-07 Efficient Power Conversion Corporation GaN-HEMT vom Anreicherungstyp und Verfahren zu seiner Herstellung
DE112010001589T5 (de) * 2009-04-08 2012-06-28 Efficient Power Conversion Corporation Kompensierter GATE-MISFET und Verfahren zu seiner Herstellung
TWI514567B (zh) * 2009-04-08 2015-12-21 Efficient Power Conversion Corp 逆擴散抑制結構
KR101172857B1 (ko) * 2009-12-14 2012-08-09 경북대학교 산학협력단 인헨스먼트 노멀리 오프 질화물 반도체 소자 및 그 제조방법
JP5604147B2 (ja) * 2010-03-25 2014-10-08 パナソニック株式会社 トランジスタ及びその製造方法
JP5666157B2 (ja) * 2010-03-26 2015-02-12 パナソニック株式会社 双方向スイッチ素子及びそれを用いた双方向スイッチ回路

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1292470C (zh) * 2002-01-10 2006-12-27 联华电子股份有限公司 在低介电常数材料层中形成开口的方法

Also Published As

Publication number Publication date
DE102013202972A1 (de) 2013-09-05
JP2013175726A (ja) 2013-09-05
KR20130097116A (ko) 2013-09-02
TWI566402B (zh) 2017-01-11
TW201347177A (zh) 2013-11-16
CN103296078A (zh) 2013-09-11
JP6147018B2 (ja) 2017-06-14
DE102013202972B4 (de) 2020-07-30

Similar Documents

Publication Publication Date Title
CN102388441B (zh) 增强型GaN高电子迁移率晶体管器件及其制备方法
EP2763179B1 (en) High Electron Mobility Transistor (HEMT)
US8823012B2 (en) Enhancement mode GaN HEMT device with gate spacer and method for fabricating the same
TW201633532A (zh) 半導體裝置及半導體裝置之製造方法
US10002956B1 (en) High electron mobility transistor
CN103296078B (zh) 具有栅极隔离物的增强型GaN高电子迁移率晶体管器件及其制备方法
US11335797B2 (en) Semiconductor devices and methods for fabricating the same
TWI725433B (zh) 半導體裝置的製作方法
EP3460841A1 (en) Asymmetrical plug technique for gan devices
US20240038886A1 (en) Semiconductor device and method for manufacturing the same
TW201935688A (zh) 半導體裝置
CN114270532A (zh) 半导体装置及其制造方法
CN114207835A (zh) 半导体装置及其制造方法
TWI693716B (zh) 半導體裝置及其製造方法
TWI686873B (zh) 半導體裝置及其製造方法
CN110875383B (zh) 半导体装置及其制造方法
US20240222423A1 (en) GaN-BASED SEMICONDUCTOR DEVICE WITH REDUCED LEAKAGE CURRENT AND METHOD FOR MANUFACTURING THE SAME
US20240038883A1 (en) Semiconductor device and method for manufacturing the same
TWI740058B (zh) 半導體裝置及其製造方法
TWI726282B (zh) 半導體裝置及其製造方法
TWI692039B (zh) 半導體裝置的製作方法
CN111987141A (zh) 半导体装置及其制造方法
CN115440811B (zh) 半导体器件及其制造方法
CN111276538B (zh) 半导体装置及其制造方法
WO2024016216A1 (en) Nitride-based semiconductor device and method for manufacturing the same

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1188514

Country of ref document: HK

C14 Grant of patent or utility model
GR01 Patent grant