CN103209922A - 具有减小的并联电容的硅通孔 - Google Patents

具有减小的并联电容的硅通孔 Download PDF

Info

Publication number
CN103209922A
CN103209922A CN2011800539261A CN201180053926A CN103209922A CN 103209922 A CN103209922 A CN 103209922A CN 2011800539261 A CN2011800539261 A CN 2011800539261A CN 201180053926 A CN201180053926 A CN 201180053926A CN 103209922 A CN103209922 A CN 103209922A
Authority
CN
China
Prior art keywords
layer
perpendicular layers
dielectric
groove
polysilicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011800539261A
Other languages
English (en)
Other versions
CN103209922B (zh
Inventor
J·布雷泽克
约翰·加德纳·布卢姆斯伯
C·阿卡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Sirui Technology Co.,Ltd.
Original Assignee
Fairchild Semiconductor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fairchild Semiconductor Corp filed Critical Fairchild Semiconductor Corp
Publication of CN103209922A publication Critical patent/CN103209922A/zh
Application granted granted Critical
Publication of CN103209922B publication Critical patent/CN103209922B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • B81B3/0064Constitution or structural means for improving or controlling the physical properties of a device
    • B81B3/0086Electrical characteristics, e.g. reducing driving voltage, improving resistance to peak voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B1/00Devices without movable or flexible elements, e.g. microcapillary devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/0032Packages or encapsulation
    • B81B7/007Interconnections between the MEMS and external electrical signals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/02Microstructural systems; Auxiliary parts of microstructural devices or systems containing distinct electrical or optical devices of particular relevance for their function, e.g. microelectro-mechanical systems [MEMS]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G7/00Capacitors in which the capacitance is varied by non-mechanical means; Processes of their manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G7/00Capacitors in which the capacitance is varied by non-mechanical means; Processes of their manufacture
    • H01G7/06Capacitors in which the capacitance is varied by non-mechanical means; Processes of their manufacture having a dielectric selected for the variation of its permittivity with applied voltage, i.e. ferroelectric capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0228Inertial sensors
    • B81B2201/0235Accelerometers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2207/00Microstructural systems or auxiliary parts thereof
    • B81B2207/09Packages
    • B81B2207/091Arrangements for connecting external electrical signals to mechanical structures inside the package
    • B81B2207/094Feed-through, via
    • B81B2207/096Feed-through, via through the substrate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Pressure Sensors (AREA)
  • Micromachines (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

本文涉及用于微机电系统(MEMS)传感器的器件层的装置和方法,所述MEMS传感器具有通孔,所述通孔具有减小的并联电容。在一个实例中,器件层可包括衬底,该衬底具有在水平方向上被所述衬底的一部分分隔开的一对沟槽,其中,该对沟槽中的每个沟槽包括包含电介质的第一垂直层和第二垂直层,所述第一垂直层和第二垂直层被包含多晶硅的第三垂直层分隔开。

Description

具有减小的并联电容的硅通孔
要求优先权
本申请要求2010年9月20日递交的、题为“TSV WITH REDUCED SHUNTCAPACITANCE(具有减小的并联电容的TSV)”(代理机构案号2921.103PRV)美国临时专利申请序列号No.61/384,319的优先权,其全部内容通过引用并入本文。
背景技术
微机电系统(MEMS)芯片可包括多层,这多层中包括通孔层。通孔层可包括介电沟槽(trench),该介电沟槽用于形成对MEMS芯片中MEMS器件的特性进行感应的电极。这种沟槽在美国专利No.7,539,003中提及。介电沟槽可具有巨大的并联电容,该并联电容会降低MEMS器件(如用于电容传感或射频(RF)应用的MEMS器件)的性能。
发明内容
在某些实例中,微电子机械系统(MEMS)传感器可包括具有减小的并联电容的通孔(via)。在一个实例中,器件层可包括:衬底(substrate),该衬底具有在水平方向上被所述衬底的一部分分隔开的一对沟槽,其中,该对沟槽中的每个沟槽包括含电介质的第一垂直层和第二垂直层,所述第一垂直层和第二垂直层被包含多晶硅的第三垂直层分隔开。
该部分旨在提供对本专利申请的主题的概述,而非旨在提供对本发明的排他性或穷尽性解释。本文包含了具体实施方式以提供与本专利申请有关的进一步信息。
附图说明
在附图(其不一定按比例绘制)中,相似的附图标记可在不同的视图中描述相似的部件。具有不同字母后缀的相似附图标记可表示同类部件的不同例子。附图以示例而非限制的方式大体示出了本文中所论述的各个实例。
图1大体示出了一个实例MEMS器件的截面图;
图2大体示出了一个实例通孔层的布局视图;
图3A大体示出了通孔层的一个实例TSV结构的等效电路300;
图3B大体示出了通孔层的一个实例TSV结构的可选的布局等效电路;
图4大体示出了作为不同沟槽结构和感应电容的频率函数的阻抗的比较;
图5大体示出了对于四种沟槽结构感应电容器阻抗与并联阻抗作为频率的函数的比较。
具体实施方式
发明人已经发现用于在MEMS器件的通孔层中形成电极的结构和方法,其明显减小了与现有设计相关的并联电容。在某些实例中,集成MEMS器件的一层可包括多个高电阻率的多晶填充层(poly filled layer)与多个电介质层(dielectic layer)相互交错的硅通孔(TSV)结构。所述TSV结构能够将高电阻率多晶与电介质串联连接,由此减小对所述MEMS器件中感应电容器的电容分流效应(capacitive shunting effect)。在某些实例中,与所述MEMS器件相关的电子器件的工作频率可选择为使得所述感应电容器的阻抗大于并联电容的阻抗,由此减小所述并联电容的影响。在一个实例中,包括低K电介质或包括低K电介质与其他材料(如热氧化物、掺杂氧化物或其他介电材料)的组合的介电沟槽可降低并联电容,例如,所述低K电介质的介电常数小于用在沟槽中的氧化物的介电常数。在一个实例中,所述低K电介质的介电常数可约为氧化物的介电常数的一半。
在某些实例中,沟槽可部分地由多晶填充且处于负压下(如真空中)。处于真空中的沟槽区域内的介电常数可以是氧化物的介电常数的1/4,由此减小由氧化物填充的沟槽的并联电容。
图1大体示出了一个实例MEMS器件100的截面图。在某些实例中,MEMS器件100可包括三层:覆盖层(cap layer)101、器件层102和通孔层103。器件层102可包括由锚105支撑的可移动部分104。在某些实例中,MEMS器件100的可移动部分104可由硅晶圆刻蚀而成。经刻蚀的器件层102可包括允许对可移动部分104的平面内(in-plane)和平面外(out-ofplane)移动进行感应的结构。在某些实例中,可移动部分104可被驱动为以特定频率进行振荡,从而允许对MEMS器件100的角加速度进行感应。
覆盖层101可提供器件层102中可移动部分104的环境外壳(environmentalenclosure)的至少一部分。在某些实例中,覆盖层101可包括凹部(未示出)以适应器件层102中的可移动部分104的移动。在一个实例中,覆盖层101可限制例如在MEMS器件100机械震动时,器件层102的可移动部分104的移动。在某些实例中,覆盖层101与器件层102相粘合,从而可使器件层102的可移动部分104周围保持真空。
通孔层103也可提供器件层102中可移动部分104的环境外壳的至少一部分。在某些实例中,通孔层103可包括用于感应或驱动器件层102中的可移动部分104的电极106、107、108。在一个实例中,器件层电极中的一个或多个电极,例如驱动电极107,可为器件层102提供驱动信号。在一个实例中,通孔层103中的一个或多个感应电极106、108可提供对器件层102中的可移动部分104的移动进行指示的感应信息。在某些实例中,感应信息可包括与器件层102中的可移动部分104的移动相关的感应电容的变化。在一个实例中,通孔层103内的沟槽109、110可为所述感应电极提供一定程度的电隔离。
图2大体示出了包括与现有结构相比可提供减小的并联电容的沟槽或通孔结构的实例通孔层203的布局视图。通孔层203的布局包括用于多个电极的区域。在一个实例中,通孔层203的布局可包括位于中心附近的驱动电极207和围绕驱动电极207的感应电极206、208。在某些实例中,所述感应电极可通过介电沟槽或通孔结构209、210与驱动电极207以及通孔层203的硅的外部区域隔离。
参见图1,可延展至图2的实例,在一个实例中,介电沟槽109、110可包括第一沟槽区域113,该第一沟槽区域113包括位于垂直介电层115之间的垂直多晶硅层114。在一个实例中,第二沟槽区域117可包括位于介电层115之间的第二垂直多晶硅层118,其中,第二沟槽区域117通过垂直单晶硅层116与所述第一沟槽区域隔离。关于图1,驱动信号可经由通孔层103的部分(如,通过四重介电沟槽110与感应电极106、108电隔离的锚电极107)施加至器件层102中的可移动部分104。在一个实例中,感应电极106、108中除与驱动电极107相对的一侧之外的另一侧可通过另一四重介电沟槽109与通孔层103的接地部分隔离。
在一个实例中,未示出地,一隔离沟槽可将感应电极包围,且一单独的沟槽可形成于所述锚电极的周围以连接驱动电压。由于所述驱动电压不易受并联电容的影响,因此简单的单个沟槽即可用于隔离所述锚电极。
所述MEMS器件的传感器可包括连接到感应电极106、108的感应电容。器件层102中可移动部分104的移动可改变所述感应电容。某些实例中的包含低阻单晶硅的感应电极106、108可用于测量所述感应电容的变化。
图3A大体示出了通孔层的一个实例TSV结构的等效电路300。在某些实例中,所述等效电路可包括驱动电极307、感应电极306、感应电容326、第一TSV网络310和第二TSV网络309。感应电容326可随所述器件层的移动而改变。在一个实例中,第一TSV网络310可表示驱动电极307与感应电极306之间的隔离沟槽。第二TSV网络309可表示感应电极306与所述通孔层的周界部分之间的隔离沟槽。每个网络309、310可包括四个电容元件315和三个电阻元件314、316。电容元件315可与如上结合图1和图2论述的四个垂直介电层相关。三个电阻元件中的两个电阻元件314可与两个垂直多晶硅层相关。在一个实例中,第三电阻元件316可与低阻的垂直单晶硅层相关。相对高阻的垂直多晶硅层314与电介质的并联电容315串联连接,可减小对所述传感器的分流效应,从而改善感应电容326的性能。
图3B大体示出了通孔层的一个实例TSV结构的替代的布局等效电路。例如,由于低源阻抗,所述驱动电压大体上不易受并联电容的影响,因此会出现由在感应电容器输出处的加载引起的MEMS传感器性能的劣化。在使用该替代布局的实例中,等效电路330示出了TSV结构331、332的并联电容加载在感应电容326的两侧。
对减小并联电容的其他改进可通过使用多晶硅和电介质的不同组合与类型来实现。例如,当垂直介电层包括两种材料时,例如包括介电常数约为3.9以确保密封性(hermeticity)的热氧化物和介电常数约为2以在制作过程期间提供结构强度的低K电介质时,可进一步减小并联电容。在某些实例中,低K介电材料可为多孔的,由此无法保持真空。因此,一些低K电介质不适于100%沟槽填充。组合介电层可保持真空并具备与低K电介质相关的好处。
在一个实例中,并联电容的减小X作为沟槽长度和分别为K1、K2的各介电常数的函数,可取决于氧化物含量(O%)和低K电介质含量(D%)。例如,
X=(K2*D+K1*O)/K1
如果氧化物占沟槽的20%且低K电介质占80%,且K1=3.9,K2=2,那么,
X=(2*0.8+3.9*0.2)/3.9=0.61,
表示与仅由氧化物填充的沟槽相比,并联电容减小了39%。
如果沟槽长度为4.0mm,通孔层为200um,沟槽面积为0.8mm2,则对于1um厚的电介质,其氧化物电容约为27.6pF。以低K介电材料对沟槽的80%进行填充,可将电容减小至约为16.8pF。
对沟槽的非介电垂直层进行部分地填充也可减小并联电容。在某些实例中,如果在所述TSV的制作过程中将部分多晶硅填充物去除(刻蚀),可进一步减小并联电容。该减小效果与使用低K电介质的效果相似。当多晶硅层的厚度是介电层的几倍且所述沟槽暴露于介电常数约为1(是一些低K电介质的1/2)的真空中时,该减小效果可更大。对于上述实例的沟槽,如果约为80%的多晶硅厚度被去除,则并联电容会从约27.6pf降到约6.1pf。
图4大体示出了作为各种沟槽结构和1pf感应电容405的阻抗-频率函数的比较。所述各种沟槽结构包括具有高阻多晶填充物的单沟槽结构401、双沟槽结构402和四重沟槽结构403,以及使用低K电介质和80%多晶硅回蚀的四重沟槽结构404。
信噪比的劣化及由此产生的可用性能损失可正比于感应电容器阻抗与并联阻抗的比值。图5大体示出了(感应电容器/四种沟槽结构的并联阻抗)-频率函数的比较。四种结构包括具有高电阻率的多晶填充物的单沟槽结构501、双沟槽结构502和四重沟槽结构503,以及使用低K电介质和80%多晶硅回蚀的四重沟槽结构504。选择比值低于1的电子器件的工作频率能够使得TSV电容的分流影响大幅度减小。高阻多晶硅可提供足够低的低信噪比以避免过多的功耗。例如,比较显示,所述单沟槽结构在示出的频率范围内看不到感应电容器阻抗与并联阻抗的比值低于1。相反,具有低K电介质和20%多晶填充物的所述四重沟槽结构在直流状态下,感应电容器阻抗与并联阻抗的比值低于1,且在639kHz附近,该比值低于0.1。一般而言,MEMS器件的工作频率越低,则功耗越低,当在具有受限电源的移动系统中使用MEMS器件时,可具备显著优势。
补充注释及实例
在实例1中,一种方法包括:在硅衬底的第一侧刻蚀出至少一对沟槽,在所述硅衬底的第一侧上形成氧化物层,在所述氧化物层上形成多晶硅层,将在该对沟槽中的每个沟槽内的所述多晶硅层回蚀至预定深度,以及在所述沟槽的侧壁上形成介电层,所述介电层包括所述氧化物层的一部分和第二介电材料。
在实例2中,实例1的所述方法可选地包括在所述氧化物层的顶部形成氮化物层。
在实例3中,实例1至2中任意一个或多个实例的所述形成氮化物层可选地包括:将所述多晶硅层的一部分去除,直至到达所述沟槽中的氧化物层的上表面,其中,所述将所述多晶硅层的一部分去除包括:将所述多晶硅层的位于所述沟槽中的部分留下。
在实例4中,实例1至3中任意一个或多个实例的在所述氧化物层的顶部形成氮化物层可选地包括:在所述氮化物层的顶部形成抗蚀层(resist 1ayer)。
在实例5中,实例1至4中任意一个或多个实例的所述方法可选地包括:对所述抗蚀层进行图案化以限定凹部的边界。
在实例6中,实例1至5中任意一个或多个实例的所述方法可选地包括:去除所述氮化物的一部分以进一步限定所述凹部的所述边界。
在实例7中,实例1至6中任意一个或多个实例的所述方法可选地包括:刻蚀所述凹部到所述硅衬底。
在实例8中,实例1至7中任意一个或多个实例的所述刻蚀所述凹部可选地包括:从所述沟槽的侧壁上去除所述氧化物层的一部分。
在实例9中,实例1至8中任意一个或多个实例的所述形成氧化物层可选地包括:在所述沟槽的侧壁上形成氧化物层。
在实例10中,实例1至9中任意一个或多个实例的所述方法可选地包括:将所述硅衬底的所述第一侧的一部分与MEMS传感器的器件层相粘合。
在实例11中,实例1至10中任意一个或多个实例的所述方法可选地包括:磨削所述硅衬底的第二侧以暴露所述沟槽的第一端。
在实例12中,用于MEMS器件的一种通孔层,可包括:衬底,具有在水平方向上被所述衬底的一部分分隔开的一对沟槽,其中,该对沟槽中的每个沟槽包括包含第一材料的第一垂直层和第二垂直层,所述第一垂直层和第二垂直层被包含第二材料的第三垂直层分隔开,其中,所述第一材料包括电介质。
在实例13中,实例1至12中任意一个或多个实例的所述第二材料可选地包括:多晶硅。
在实例14中,实例1至13中任意一个或多个实例的所述第三垂直层可选地包括:包含少于80%的多晶硅的量。
在实例15中,实例1至14中任意一个或多个实例的所述第三垂直层可选地包括:包含少于20%的多晶硅的量。
在实例16中,实例1至16中任意一个或多个实例的所述第一垂直层和第二垂直层可选地包括:热氧化物。
在实例17中,实例1至16中任意一个或多个实例的所述第一垂直层和第二垂直层的每一层可选地包括:热氧化物和第三材料,所述第三材料的介电常数小于所述热氧化物的介电常数。
在实例18中,实例1至17中任意一个或多个实例的所述第一材料可选地包括:热氧化物,且实例17中的所述第二材料可选地包括:电介质,所述电介质的介电常数小于所述热氧化物的介电常数。
在实例19中,一种传感器可包括:覆盖层、连接到所述覆盖层的器件层(包括检测质量块)和连接到所述器件层的通孔层,其中,所述器件层可包括:硅衬底,具有在水平方向上被所述硅衬底的一部分分隔开的一对沟槽,且其中,该对沟槽中的每个沟槽包括含电介质的第一垂直层和第二垂直层,所述第一垂直层和第二垂直层被包含多晶硅的第三垂直层分隔开。
在实例20中,实例1至19中任意一个或多个实例的所述第三垂直层可选地包括:少于80%的多晶硅的量。
在实例21中,实例1至20中任意一个或多个实例的所述第三垂直层可选地包括:少于20%的多晶硅的量。
在实例22中,实例1至21中任意一个或多个实例的所述第一垂直层和第二垂直层可选地包括:热氧化物。
在实例23中,实例1至22中任意一个或多个实例的所述第一垂直层和第二垂直层的每一层可选地包括:热氧化物和第二材料,所述第二材料的介电常数小于所述热氧化物的介电常数。
上述详细说明书参照了附图,附图也是所述详细说明书的一部分。附图以图解的方式显示了可应用本发明的具体实施例。这些实施例在本发明中被称作“示例”。本发明所涉及的所有出版物、专利及专利文件全部作为本发明的参考内容,尽管它们是分别加以参考的。如果本发明与参考文件之间存在用途差异,则将参考文件的用途视作本发明的用途的补充,若两者之间存在不可调和的差异,则以本发明的用途为准。
在本发明中,与专利文件通常使用的一样,术语“一”或“某一”表示包括一个或多个,但其他情况或在使用“至少一个”或“一个或多个”时应除外。在本发明中,除非另外指明,否则使用术语“或”指无排他性的或者,使得“A或B”包括:“A但不是B”、“B但不是A”以及“A和B”。在所附权利要求中,术语“包含”和“在其中”等同于各个术语“包括”和“其中”的通俗英语。同样,在下面的权利要求中,术语“包含”和“包括”是开放性的,即,系统、装置、物品或步骤包括除了权利要求中这种术语之后所列出的那些元件以外的部件的,依然视为落在该条权利要求的范围之内。而且,在下面的权利要求中,术语“第一”、“第二”和“第三”等仅仅用作标签,并非对对象有数量要求。
上述说明的作用在于解说而非限制。在其它示例中,上述示例(或示例的一个或多个方面)可结合使用。可以在理解上述说明书的基础上,利用现有技术的某种常规技术来执行其他实施例。遵照37C.F.R.§1.72(b)的规定提供摘要,允许读者快速确定本技术公开的性质。提交本摘要时要理解的是该摘要不用于解释或限制权利要求的范围或意义。同样,在上面的具体实施方式中,各种特征可归类成将本公开合理化。这不应理解成未要求的公开特征对任何权利要求必不可少。相反,本发明的主题可在于的特征少于特定公开的实施例的所有特征。因此,下面的权利要求据此并入具体实施方式中,每个权利要求均作为一个单独的实施例。应参看所附的权利要求,以及这些权利要求所享有的等同物的所有范围,来确定本发明的范围。

Claims (10)

1.一种通孔层,用于MEMS器件,所述通孔层包括:
衬底,具有在水平方向上被所述衬底的一部分分隔开的一对沟槽,其中,该对沟槽中的每个沟槽包括包含电介质的第一垂直层和第二垂直层,所述第一垂直层和第二垂直层被包含多晶硅的第三垂直层分隔开。
2.根据权利要求1所述的通孔层,其中,所述第三垂直层中少于约80%的量包括多晶硅。
3.根据权利要求1所述的通孔层,其中,所述第三垂直层中少于约20%的量包括多晶硅。
4.根据权利要求1所述的通孔层,其中,所述第一垂直层和第二垂直层包括热氧化物。
5.根据权利要求1所述的通孔层,其中,所述第一垂直介电层和第二垂直介电层中的每一层包括热氧化物和第三材料,所述第三材料的介电常数小于所述热氧化物的介电常数。
6.一种传感器,包括:
覆盖层;
器件层,连接到所述覆盖层,所述器件层包括检测质量块;以及
通孔层,连接到所述器件层,其中,所述器件层包括:
硅衬底,具有在水平方向上被所述硅衬底的一部分分隔开的一对沟槽,
其中,该对沟槽中的每个沟槽包括包含电介质的第一垂直层和第二垂直层,所述第一垂直层和第二垂直层被包含多晶硅的第三垂直层分隔开。
7.根据权利要求6所述的传感器,其中,所述第三垂直层中少于约80%的量包括多晶硅。
8.根据权利要求6所述的传感器,其中,所述第三垂直层中少于约20%的量包括多晶硅。
9.根据权利要求6所述的传感器,所述第一垂直层和第二垂直层包括热氧化物。
10.根据权利要求6所述的传感器,其中,所述第一垂直介电层和第二垂直介电层中的每一层包括热氧化物和第二材料,所述第二材料的介电常数小于所述热氧化物的介电常数。
CN201180053926.1A 2010-09-20 2011-09-20 具有减小的并联电容的硅通孔 Active CN103209922B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US38431910P 2010-09-20 2010-09-20
US61/384,319 2010-09-20
PCT/US2011/052417 WO2012040245A2 (en) 2010-09-20 2011-09-20 Through silicon via with reduced shunt capacitance

Publications (2)

Publication Number Publication Date
CN103209922A true CN103209922A (zh) 2013-07-17
CN103209922B CN103209922B (zh) 2014-09-17

Family

ID=45874333

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201180053926.1A Active CN103209922B (zh) 2010-09-20 2011-09-20 具有减小的并联电容的硅通孔

Country Status (5)

Country Link
US (1) US9006846B2 (zh)
EP (1) EP2619130A4 (zh)
KR (1) KR101311966B1 (zh)
CN (1) CN103209922B (zh)
WO (1) WO2012040245A2 (zh)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8710599B2 (en) 2009-08-04 2014-04-29 Fairchild Semiconductor Corporation Micromachined devices and fabricating the same
US8742964B2 (en) 2012-04-04 2014-06-03 Fairchild Semiconductor Corporation Noise reduction method with chopping for a merged MEMS accelerometer sensor
US8754694B2 (en) 2012-04-03 2014-06-17 Fairchild Semiconductor Corporation Accurate ninety-degree phase shifter
US8813564B2 (en) 2010-09-18 2014-08-26 Fairchild Semiconductor Corporation MEMS multi-axis gyroscope with central suspension and gimbal structure
US8978475B2 (en) 2012-02-01 2015-03-17 Fairchild Semiconductor Corporation MEMS proof mass with split z-axis portions
US9006846B2 (en) 2010-09-20 2015-04-14 Fairchild Semiconductor Corporation Through silicon via with reduced shunt capacitance
US9062972B2 (en) 2012-01-31 2015-06-23 Fairchild Semiconductor Corporation MEMS multi-axis accelerometer electrode structure
US9069006B2 (en) 2012-04-05 2015-06-30 Fairchild Semiconductor Corporation Self test of MEMS gyroscope with ASICs integrated capacitors
US9094027B2 (en) 2012-04-12 2015-07-28 Fairchild Semiconductor Corporation Micro-electro-mechanical-system (MEMS) driver
US9095072B2 (en) 2010-09-18 2015-07-28 Fairchild Semiconductor Corporation Multi-die MEMS package
US9156673B2 (en) 2010-09-18 2015-10-13 Fairchild Semiconductor Corporation Packaging to reduce stress on microelectromechanical systems
US9246018B2 (en) 2010-09-18 2016-01-26 Fairchild Semiconductor Corporation Micromachined monolithic 3-axis gyroscope with single drive
US9278846B2 (en) 2010-09-18 2016-03-08 Fairchild Semiconductor Corporation Micromachined monolithic 6-axis inertial sensor
US9352961B2 (en) 2010-09-18 2016-05-31 Fairchild Semiconductor Corporation Flexure bearing to reduce quadrature for resonating micromachined devices
US9425328B2 (en) 2012-09-12 2016-08-23 Fairchild Semiconductor Corporation Through silicon via including multi-material fill
US9444404B2 (en) 2012-04-05 2016-09-13 Fairchild Semiconductor Corporation MEMS device front-end charge amplifier
US9488693B2 (en) 2012-04-04 2016-11-08 Fairchild Semiconductor Corporation Self test of MEMS accelerometer with ASICS integrated capacitors
US9618361B2 (en) 2012-04-05 2017-04-11 Fairchild Semiconductor Corporation MEMS device automatic-gain control loop for mechanical amplitude drive
US9625272B2 (en) 2012-04-12 2017-04-18 Fairchild Semiconductor Corporation MEMS quadrature cancellation and signal demodulation
CN107084807A (zh) * 2017-04-11 2017-08-22 中航(重庆)微电子有限公司 一种压阻式的微机械压力传感器芯片及其制备方法
US10060757B2 (en) 2012-04-05 2018-08-28 Fairchild Semiconductor Corporation MEMS device quadrature shift cancellation
US10065851B2 (en) 2010-09-20 2018-09-04 Fairchild Semiconductor Corporation Microelectromechanical pressure sensor including reference capacitor

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015013828A1 (en) * 2013-08-02 2015-02-05 Motion Engine Inc. Mems motion sensor and method of manufacturing
US20170030788A1 (en) 2014-04-10 2017-02-02 Motion Engine Inc. Mems pressure sensor
WO2015184531A1 (en) 2014-06-02 2015-12-10 Motion Engine Inc. Multi-mass mems motion sensor
CA3004760A1 (en) 2014-12-09 2016-06-16 Motion Engine Inc. 3d mems magnetometer and associated methods
US10407299B2 (en) 2015-01-15 2019-09-10 Motion Engine Inc. 3D MEMS device with hermetic cavity

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070085544A1 (en) * 2005-10-18 2007-04-19 Viswanathan Raju R Method and apparatus for high-gain magnetic resonance imaging
US20080122439A1 (en) * 2006-11-07 2008-05-29 Burdick William E High performance low volume inductor and method of making same
US20080169811A1 (en) * 2005-10-18 2008-07-17 Viswanathan Raju R Method and apparatus for high-gain magnetic resonance imaging

Family Cites Families (189)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5354695A (en) 1992-04-08 1994-10-11 Leedy Glenn J Membrane dielectric isolation IC fabrication
US4896156A (en) 1988-10-03 1990-01-23 General Electric Company Switched-capacitance coupling networks for differential-input amplifiers, not requiring balanced input signals
DE69206770T2 (de) 1991-12-19 1996-07-11 Motorola Inc Dreiachsiger Beschleunigungsmesser
US5491604A (en) 1992-12-11 1996-02-13 The Regents Of The University Of California Q-controlled microresonators and tunable electronic filters using such resonators
US5481914A (en) 1994-03-28 1996-01-09 The Charles Stark Draper Laboratory, Inc. Electronics for coriolis force and other sensors
US5765046A (en) 1994-08-31 1998-06-09 Nikon Corporation Piezoelectric vibration angular velocity meter and camera using the same
JPH0989927A (ja) 1995-09-28 1997-04-04 Zexel Corp 多軸加速度センサ
SE9500729L (sv) 1995-02-27 1996-08-28 Gert Andersson Anordning för mätning av vinkelhastighet i enkristallint material samt förfarande för framställning av sådan
US5760465A (en) 1996-02-01 1998-06-02 International Business Machines Corporation Electronic package with strain relief means
JP3125675B2 (ja) 1996-03-29 2001-01-22 三菱電機株式会社 容量型センサインターフェース回路
JPH10239347A (ja) 1997-02-28 1998-09-11 Japan Aviation Electron Ind Ltd 運動センサ
JPH11352143A (ja) 1998-04-06 1999-12-24 Matsushita Electric Ind Co Ltd 加速度センサ
US6351996B1 (en) 1998-11-12 2002-03-05 Maxim Integrated Products, Inc. Hermetic packaging for semiconductor pressure sensors
US7051590B1 (en) 1999-06-15 2006-05-30 Analog Devices Imi, Inc. Structure for attenuation or cancellation of quadrature error
US6522762B1 (en) 1999-09-07 2003-02-18 Microtronic A/S Silicon-based sensor system
US6301965B1 (en) 1999-12-14 2001-10-16 Sandia Corporation Microelectromechanical accelerometer with resonance-cancelling control circuit including an idle state
IT1314296B1 (it) 1999-12-21 2002-12-09 St Microelectronics Srl Struttura resistiva integrata su un substrato semiconduttore
US6390905B1 (en) 2000-03-31 2002-05-21 Speedfam-Ipec Corporation Workpiece carrier with adjustable pressure zones and barriers
WO2001075455A2 (en) 2000-04-04 2001-10-11 Rosemount Aerospace Inc. Three axis accelerometer
US6366468B1 (en) 2000-04-28 2002-04-02 Hewlett-Packard Company Self-aligned common carrier
US6214644B1 (en) 2000-06-30 2001-04-10 Amkor Technology, Inc. Flip-chip micromachine package fabrication method
US7523537B1 (en) 2000-07-13 2009-04-28 Custom Sensors & Technologies, Inc. Method of manufacturing a tuning fork with reduced quadrature errror and symmetrical mass balancing
US6988408B2 (en) 2000-07-13 2006-01-24 Dong-Il Cho Surface/bulk micromachined single-crystalline silicon micro-gyroscope
US7083997B2 (en) * 2000-08-03 2006-08-01 Analog Devices, Inc. Bonded wafer optical MEMS process
US6553835B1 (en) 2000-09-15 2003-04-29 Bei Technologies, Inc. Inertial rate sensor and method with improved clocking
US6501282B1 (en) 2000-09-29 2002-12-31 Rockwell Automation Technologies, Inc. Highly sensitive capacitance comparison circuit
US7166910B2 (en) 2000-11-28 2007-01-23 Knowles Electronics Llc Miniature silicon condenser microphone
DE10059775C2 (de) 2000-12-01 2003-11-27 Hahn Schickard Ges Verfahren und Vorrichtung zur Verarbeitung von analogen Ausgangssignalen von kapazitiven Sensoren
SG106612A1 (en) 2001-05-29 2004-10-29 Sony Electronics Singapore Pte A force sensing device
US6504385B2 (en) 2001-05-31 2003-01-07 Hewlett-Pakcard Company Three-axis motion sensor
US6513380B2 (en) 2001-06-19 2003-02-04 Microsensors, Inc. MEMS sensor with single central anchor and motion-limiting connection geometry
US6683692B2 (en) 2001-06-21 2004-01-27 Honeywell International Dither system for motion sensors
US6937479B2 (en) 2001-08-21 2005-08-30 The Charles Stark Draper Laboratory, Inc. Sensor isolation system
US6598475B2 (en) 2001-09-20 2003-07-29 Honeywell International Inc. Micromechanical inertial sensor having increased pickoff resonance damping
EP2327959B1 (en) 2002-02-06 2012-09-12 Analog Devices, Inc. Micromachined gyroscope
US6785117B2 (en) 2002-03-15 2004-08-31 Denso Corporation Capacitive device
US6725719B2 (en) 2002-04-17 2004-04-27 Milli Sensor Systems And Actuators, Inc. MEMS-integrated inertial measurement units on a common substrate
US7217588B2 (en) 2005-01-05 2007-05-15 Sharp Laboratories Of America, Inc. Integrated MEMS packaging
US6701786B2 (en) 2002-04-29 2004-03-09 L-3 Communications Corporation Closed loop analog gyro rate sensor
US6992399B2 (en) 2002-05-24 2006-01-31 Northrop Grumman Corporation Die connected with integrated circuit component for electrical signal passing therebetween
US6781231B2 (en) 2002-09-10 2004-08-24 Knowles Electronics Llc Microelectromechanical system package with environmental and interference shield
CN101069099A (zh) 2003-02-24 2007-11-07 佛罗里达大学 微机械加工的集成单片三轴加速度计
JP4336946B2 (ja) 2003-03-20 2009-09-30 セイコーエプソン株式会社 回転角速度の測定方法および装置
US6848304B2 (en) 2003-04-28 2005-02-01 Analog Devices, Inc. Six degree-of-freedom micro-machined multi-sensor
US7005193B2 (en) 2003-04-29 2006-02-28 Motorola, Inc. Method of adding mass to MEMS structures
JP4123044B2 (ja) 2003-05-13 2008-07-23 ソニー株式会社 マイクロマシンおよびその製造方法
JP2005024310A (ja) 2003-06-30 2005-01-27 Kyocera Kinseki Corp 慣性センサ
US6845670B1 (en) 2003-07-08 2005-01-25 Freescale Semiconductor, Inc. Single proof mass, 3 axis MEMS transducer
JP4433747B2 (ja) 2003-09-29 2010-03-17 株式会社村田製作所 角速度検出装置
JP4645013B2 (ja) 2003-10-03 2011-03-09 パナソニック株式会社 加速度センサ及びそれを用いた複合センサ
JP2007516746A (ja) 2003-12-11 2007-06-28 プロテウス バイオメディカル インコーポレイテッド 移植可能な圧力センサ
US20050189635A1 (en) 2004-03-01 2005-09-01 Tessera, Inc. Packaged acoustic and electromagnetic transducer chips
JP3875240B2 (ja) 2004-03-31 2007-01-31 株式会社東芝 電子部品の製造方法
TWI255341B (en) 2004-06-10 2006-05-21 Chung Shan Inst Of Science Miniature accelerator
JP4412477B2 (ja) 2004-06-11 2010-02-10 株式会社デンソー 振動型角速度センサ
US7301212B1 (en) 2004-07-30 2007-11-27 National Semiconductor Corporation MEMS microphone
EP1624285B1 (en) 2004-08-03 2014-07-23 STMicroelectronics Srl Resonant micro-electro-mechanical system and gyroscope
US7266349B2 (en) 2004-08-06 2007-09-04 Broadcom Corporation Multi-mode crystal oscillator
US7929714B2 (en) 2004-08-11 2011-04-19 Qualcomm Incorporated Integrated audio codec with silicon audio transducer
US7421898B2 (en) 2004-08-16 2008-09-09 The Regents Of The University Of California Torsional nonresonant z-axis micromachined gyroscope with non-resonant actuation to measure the angular rotation of an object
US7170187B2 (en) 2004-08-31 2007-01-30 International Business Machines Corporation Low stress conductive polymer bump
JP4969822B2 (ja) 2004-12-06 2012-07-04 株式会社デンソー センサ装置
US7358151B2 (en) 2004-12-21 2008-04-15 Sony Corporation Microelectromechanical system microphone fabrication including signal processing circuitry on common substrate
US20060169041A1 (en) 2005-02-02 2006-08-03 Madni Asad M Combined gyroscope and 2-axis accelerometer
DE102005008512B4 (de) 2005-02-24 2016-06-23 Epcos Ag Elektrisches Modul mit einem MEMS-Mikrofon
US20060207327A1 (en) 2005-03-16 2006-09-21 Zarabadi Seyed R Linear accelerometer
US7213458B2 (en) 2005-03-22 2007-05-08 Honeywell International Inc. Quadrature reduction in MEMS gyro devices using quad steering voltages
US7231824B2 (en) 2005-03-22 2007-06-19 Honeywell International Inc. Use of electrodes to cancel lift effects in inertial sensors
JP4453587B2 (ja) 2005-03-24 2010-04-21 株式会社デンソー 加速度センサ
EP1715580B1 (en) 2005-03-31 2018-11-28 STMicroelectronics Srl Device for controlling the resonance frequency of a MEMS resonator
US20070071268A1 (en) 2005-08-16 2007-03-29 Analog Devices, Inc. Packaged microphone with electrically coupled lid
US7885423B2 (en) 2005-04-25 2011-02-08 Analog Devices, Inc. Support apparatus for microphone diaphragm
US7449355B2 (en) 2005-04-27 2008-11-11 Robert Bosch Gmbh Anti-stiction technique for electromechanical systems and electromechanical device employing same
CA2607918A1 (en) 2005-05-18 2006-11-23 Kolo Technologies, Inc. Micro-electro-mechanical transducers
WO2006126253A1 (ja) 2005-05-24 2006-11-30 Japan Aerospace Exploration Agency ジャイロスコープ
US7240552B2 (en) 2005-06-06 2007-07-10 Bei Technologies, Inc. Torsional rate sensor with momentum balance and mode decoupling
JP2007024864A (ja) 2005-06-16 2007-02-01 Mitsubishi Electric Corp 振動ジャイロ
CN101558552B (zh) 2005-06-17 2017-05-31 科隆科技公司 具有绝缘延伸部的微机电换能器
US7202552B2 (en) 2005-07-15 2007-04-10 Silicon Matrix Pte. Ltd. MEMS package using flexible substrates, and method thereof
EP1915320A1 (en) 2005-08-11 2008-04-30 Koninklijke Philips Electronics N.V. Method for manufacturing a microelectronic package comprising a silicon mems microphone
US20070220973A1 (en) 2005-08-12 2007-09-27 Cenk Acar Multi-axis micromachined accelerometer and rate sensor
US7284430B2 (en) 2005-08-15 2007-10-23 The Regents Of The University Of California Robust micromachined gyroscopes with two degrees of freedom sense-mode oscillator
US20070040231A1 (en) 2005-08-16 2007-02-22 Harney Kieran P Partially etched leadframe packages having different top and bottom topologies
US7932182B2 (en) 2005-08-19 2011-04-26 Honeywell International Inc. Creating novel structures using deep trenching of oriented silicon substrates
US8130979B2 (en) 2005-08-23 2012-03-06 Analog Devices, Inc. Noise mitigating microphone system and method
US7622782B2 (en) 2005-08-24 2009-11-24 General Electric Company Pressure sensors and methods of making the same
JP2007114078A (ja) 2005-10-21 2007-05-10 Sony Corp Memsセンサの駆動装置およびその駆動方法、並びにmemsを用いたアクティブセンサ
US7258011B2 (en) 2005-11-21 2007-08-21 Invensense Inc. Multiple axis accelerometer
US20070114643A1 (en) 2005-11-22 2007-05-24 Honeywell International Inc. Mems flip-chip packaging
US7518493B2 (en) 2005-12-01 2009-04-14 Lv Sensors, Inc. Integrated tire pressure sensor system
US7539003B2 (en) 2005-12-01 2009-05-26 Lv Sensors, Inc. Capacitive micro-electro-mechanical sensors with single crystal silicon electrodes
EP1793497B1 (en) 2005-12-02 2011-04-27 STMicroelectronics Srl Device and method for reading a capacitive sensor, in particular of a micro-electromechanical type
WO2007086849A1 (en) 2006-01-25 2007-08-02 The Regents Of The University Of California Robust six degree-of-freedom micromachined gyroscope with anti-phase drive scheme and method of operation of the same
GB2454603B (en) 2006-02-24 2010-05-05 Wolfson Microelectronics Plc Mems device
US7436054B2 (en) 2006-03-03 2008-10-14 Silicon Matrix, Pte. Ltd. MEMS microphone with a stacked PCB package and method of producing the same
EP1832841B1 (en) 2006-03-10 2015-12-30 STMicroelectronics Srl Microelectromechanical integrated sensor structure with rotary driving motion
US7589390B2 (en) 2006-03-10 2009-09-15 Teledyne Technologies, Incorporated Shielded through-via
FR2898683B1 (fr) 2006-03-14 2008-05-23 Commissariat Energie Atomique Accelerometre triaxial a membrane
GB0605576D0 (en) 2006-03-20 2006-04-26 Oligon Ltd MEMS device
US7726188B2 (en) 2006-04-24 2010-06-01 Millisensor Systems + Actuators Scale factor measurement for mems gyroscopes and accelerometers
US7561277B2 (en) 2006-05-19 2009-07-14 New Jersey Institute Of Technology MEMS fiber optic microphone
JP4310325B2 (ja) 2006-05-24 2009-08-05 日立金属株式会社 角速度センサ
US7454967B2 (en) 2006-07-10 2008-11-25 Lv Sensors, Inc. Signal conditioning methods and circuits for a capacitive sensing integrated tire pressure sensor
TWI301823B (en) 2006-08-29 2008-10-11 Ind Tech Res Inst Package structure and packaging method of mems microphone
JP5294228B2 (ja) 2006-09-27 2013-09-18 シチズンホールディングス株式会社 物理量センサ
KR100831405B1 (ko) 2006-10-02 2008-05-21 (주) 파이오닉스 웨이퍼 본딩 패키징 방법
US20080083958A1 (en) 2006-10-05 2008-04-10 Wen-Chieh Wei Micro-electromechanical system package
DE102006048381A1 (de) 2006-10-12 2008-04-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Sensor zur Erfassung von Beschleunigungen
US7461552B2 (en) 2006-10-23 2008-12-09 Custom Sensors & Technologies, Inc. Dual axis rate sensor
CN1948906B (zh) 2006-11-10 2011-03-23 北京大学 一种电容式全解耦水平轴微机械陀螺
US8201449B2 (en) 2006-11-14 2012-06-19 Panasonic Corporation Sensor
TWI315295B (en) 2006-12-29 2009-10-01 Advanced Semiconductor Eng Mems microphone module and method thereof
US7550828B2 (en) 2007-01-03 2009-06-23 Stats Chippac, Inc. Leadframe package for MEMS microphone assembly
US8047075B2 (en) 2007-06-21 2011-11-01 Invensense, Inc. Vertically integrated 3-axis MEMS accelerometer with electronics
US8250921B2 (en) 2007-07-06 2012-08-28 Invensense, Inc. Integrated motion processing unit (MPU) with MEMS inertial sensing and embedded digital electronics
WO2008087578A2 (en) 2007-01-17 2008-07-24 Nxp B.V. A system-in-package with through substrate via holes
US7950281B2 (en) 2007-02-28 2011-05-31 Infineon Technologies Ag Sensor and method for sensing linear acceleration and angular velocity
US7544531B1 (en) * 2007-03-13 2009-06-09 Sitime Inc. Ground strap for suppressing stiction during MEMS fabrication
JP2008256438A (ja) 2007-04-03 2008-10-23 Sony Corp 慣性センサ及び電気・電子機器
US20080251866A1 (en) 2007-04-10 2008-10-16 Honeywell International Inc. Low-stress hermetic die attach
CN101038299A (zh) 2007-04-21 2007-09-19 中北大学 基于单质量块的单轴集成惯性测量器件
US8006557B2 (en) 2007-05-16 2011-08-30 Intellisense Software Corporation Multi-axis sensor
TWI333933B (en) 2007-08-17 2010-12-01 Advanced Semiconductor Eng Microelectromechanical-system package and method for manufacturing the same
US20090175477A1 (en) 2007-08-20 2009-07-09 Yamaha Corporation Vibration transducer
JP5045616B2 (ja) 2007-08-30 2012-10-10 株式会社デンソー 容量式物理量検出装置
US8042396B2 (en) 2007-09-11 2011-10-25 Stmicroelectronics S.R.L. Microelectromechanical sensor with improved mechanical decoupling of sensing and driving modes
WO2009038736A2 (en) 2007-09-19 2009-03-26 Georgia Tech Research Corporation Single-resonator dual-frequency lateral-extension mode piezoelectric oscillators, and operating methods thereof
GB0720412D0 (en) 2007-10-18 2007-11-28 Melexis Nv Combined mems accelerometer and gyroscope
JP4508230B2 (ja) 2007-11-21 2010-07-21 ソニー株式会社 慣性センサ及びその検出装置
US7830003B2 (en) 2007-12-27 2010-11-09 Honeywell International, Inc. Mechanical isolation for MEMS devices
US20090183570A1 (en) 2008-01-18 2009-07-23 Custom Sensors & Technologies, Inc. Micromachined cross-differential dual-axis accelerometer
US20090194829A1 (en) 2008-01-31 2009-08-06 Shine Chung MEMS Packaging Including Integrated Circuit Dies
JP2009186213A (ja) 2008-02-04 2009-08-20 Denso Corp ジャイロセンサユニット
CN101270988B (zh) 2008-03-14 2011-11-30 江苏英特神斯科技有限公司 多轴惯性传感器及测量多轴平动和转动加速度的方法
DE102008002748A1 (de) 2008-06-27 2009-12-31 Sensordynamics Ag Mikro-Gyroskop
TW201004857A (en) 2008-07-23 2010-02-01 Ind Tech Res Inst A packaging structure and method for integration of microelectronics and MEMS devices by 3D stacking
JP2010025898A (ja) 2008-07-24 2010-02-04 Yamaha Corp Memsセンサ
US8450817B2 (en) 2008-08-14 2013-05-28 Knowles Electronics Llc Microelectromechanical system package with strain relief bridge
US8193596B2 (en) 2008-09-03 2012-06-05 Solid State System Co., Ltd. Micro-electro-mechanical systems (MEMS) package
TWI374268B (en) 2008-09-05 2012-10-11 Ind Tech Res Inst Multi-axis capacitive accelerometer
US7851925B2 (en) 2008-09-19 2010-12-14 Infineon Technologies Ag Wafer level packaged MEMS integrated circuit
US8499629B2 (en) 2008-10-10 2013-08-06 Honeywell International Inc. Mounting system for torsional suspension of a MEMS device
US7859352B2 (en) 2008-10-15 2010-12-28 Honeywell International Inc. Systems and methods to overcome DC offsets in amplifiers used to start resonant micro-electro mechanical systems
US8205498B2 (en) 2008-11-18 2012-06-26 Industrial Technology Research Institute Multi-axis capacitive accelerometer
JP2010190766A (ja) 2009-02-19 2010-09-02 Seiko Epson Corp 発振駆動装置、物理量測定装置及び電子機器
TWI391663B (zh) 2009-02-25 2013-04-01 Nat Univ Tsing Hua 加速度計
US7775119B1 (en) 2009-03-03 2010-08-17 S3C, Inc. Media-compatible electrically isolated pressure sensor for high temperature applications
US8256290B2 (en) 2009-03-17 2012-09-04 Minyao Mao Tri-axis angular rate sensor
CN101858928B (zh) 2009-04-10 2012-09-05 利顺精密科技股份有限公司 微电机系统电容式三轴加速度器
IT1394898B1 (it) 2009-06-03 2012-07-20 St Microelectronics Rousset Giroscopio microelettromeccanico con attuazione a controllo di posizione e metodo per il controllo di un giroscopio microelettromeccanico
CN102597699B (zh) 2009-08-04 2015-07-08 飞兆半导体公司 微机械惯性传感器器件
US8739626B2 (en) 2009-08-04 2014-06-03 Fairchild Semiconductor Corporation Micromachined inertial sensor devices
US8266961B2 (en) 2009-08-04 2012-09-18 Analog Devices, Inc. Inertial sensors with reduced sensitivity to quadrature errors and micromachining inaccuracies
US8549915B2 (en) 2009-10-23 2013-10-08 The Regents Of The University Of California Micromachined gyroscopes with 2-DOF sense modes allowing interchangeable robust and precision operation
US8421168B2 (en) 2009-11-17 2013-04-16 Fairchild Semiconductor Corporation Microelectromechanical systems microphone packaging systems
JP2011112455A (ja) 2009-11-25 2011-06-09 Seiko Epson Corp Memsセンサー及びその製造方法並びに電子機器
EP2336717B1 (en) 2009-12-21 2012-09-19 STMicroelectronics Srl Microelectromechanical device having an oscillating mass, and method for controlling a microelectromechanical device having an oscillating mass
US8004354B1 (en) 2010-02-12 2011-08-23 Taiwan Semiconductor Manufacturing Company, Ltd. Automatic level control
CN101813480B (zh) 2010-04-20 2012-02-15 浙江大学 一种具有电调谐功能的微机械梳状栅电容陀螺
US8584522B2 (en) 2010-04-30 2013-11-19 Qualcomm Mems Technologies, Inc. Micromachined piezoelectric x-axis gyroscope
US8378756B2 (en) 2010-05-18 2013-02-19 Taiwan Semiconductor Manufacturing Company, Ltd. Drive loop for MEMS oscillator
US8476970B2 (en) 2010-09-14 2013-07-02 Ahmed Mokhtar Interface for MEMS inertial sensors
KR101443730B1 (ko) 2010-09-18 2014-09-23 페어차일드 세미컨덕터 코포레이션 미세기계화 다이, 및 직교 오차가 작은 서스펜션을 제조하는 방법
WO2012037540A2 (en) 2010-09-18 2012-03-22 Fairchild Semiconductor Corporation Micromachined monolithic 3-axis gyroscope with single drive
WO2012037536A2 (en) 2010-09-18 2012-03-22 Fairchild Semiconductor Corporation Packaging to reduce stress on microelectromechanical systems
EP2616771B8 (en) 2010-09-18 2018-12-19 Fairchild Semiconductor Corporation Micromachined monolithic 6-axis inertial sensor
US9278845B2 (en) 2010-09-18 2016-03-08 Fairchild Semiconductor Corporation MEMS multi-axis gyroscope Z-axis electrode structure
EP2616389B1 (en) 2010-09-18 2017-04-05 Fairchild Semiconductor Corporation Multi-die mems package
WO2012040245A2 (en) 2010-09-20 2012-03-29 Fairchild Semiconductor Corporation Through silicon via with reduced shunt capacitance
CN103221795B (zh) 2010-09-20 2015-03-11 快捷半导体公司 包括参考电容器的微机电压力传感器
US20130247668A1 (en) 2010-09-20 2013-09-26 Fairchild Semiconductor Corporation Inertial sensor mode tuning circuit
KR20130037462A (ko) 2011-10-06 2013-04-16 주식회사 포스코 몰드 보호 유닛 및 이를 구비하는 연속 주조 장치
US9062972B2 (en) 2012-01-31 2015-06-23 Fairchild Semiconductor Corporation MEMS multi-axis accelerometer electrode structure
WO2013116514A1 (en) 2012-02-01 2013-08-08 Cenk Acar Mems multi-axis gyroscope with central suspension and gimbal structure
US8978475B2 (en) 2012-02-01 2015-03-17 Fairchild Semiconductor Corporation MEMS proof mass with split z-axis portions
CN203301454U (zh) 2012-04-03 2013-11-20 快捷半导体(苏州)有限公司 电子电路
US8754694B2 (en) 2012-04-03 2014-06-17 Fairchild Semiconductor Corporation Accurate ninety-degree phase shifter
US9488693B2 (en) 2012-04-04 2016-11-08 Fairchild Semiconductor Corporation Self test of MEMS accelerometer with ASICS integrated capacitors
KR102045784B1 (ko) 2012-04-04 2019-11-18 페어차일드 세미컨덕터 코포레이션 병합된 미세 전자기계 가속도계 센서에 대한 초핑을 이용하는 노이즈 감소 방법
KR102034604B1 (ko) 2012-04-04 2019-10-21 페어차일드 세미컨덕터 코포레이션 Asic 집적 캐패시터를 구비한 미소 기전 시스템 가속도계의 자가 테스트
US8742964B2 (en) 2012-04-04 2014-06-03 Fairchild Semiconductor Corporation Noise reduction method with chopping for a merged MEMS accelerometer sensor
EP2647955B8 (en) 2012-04-05 2018-12-19 Fairchild Semiconductor Corporation MEMS device quadrature phase shift cancellation
EP2647952B1 (en) 2012-04-05 2017-11-15 Fairchild Semiconductor Corporation Mems device automatic-gain control loop for mechanical amplitude drive
EP2648334B1 (en) 2012-04-05 2020-06-10 Fairchild Semiconductor Corporation Mems device front-end charge amplifier
US9069006B2 (en) 2012-04-05 2015-06-30 Fairchild Semiconductor Corporation Self test of MEMS gyroscope with ASICs integrated capacitors
KR20130113386A (ko) 2012-04-05 2013-10-15 페어차일드 세미컨덕터 코포레이션 Asic 집적 캐패시터를 구비한 미소 기전 시스템 자이로스코프의 자가 테스트
US9625272B2 (en) 2012-04-12 2017-04-18 Fairchild Semiconductor Corporation MEMS quadrature cancellation and signal demodulation
KR101999745B1 (ko) 2012-04-12 2019-10-01 페어차일드 세미컨덕터 코포레이션 미세 전자 기계 시스템 구동기
DE102013014881B4 (de) 2012-09-12 2023-05-04 Fairchild Semiconductor Corporation Verbesserte Silizium-Durchkontaktierung mit einer Füllung aus mehreren Materialien

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070085544A1 (en) * 2005-10-18 2007-04-19 Viswanathan Raju R Method and apparatus for high-gain magnetic resonance imaging
US20080169811A1 (en) * 2005-10-18 2008-07-17 Viswanathan Raju R Method and apparatus for high-gain magnetic resonance imaging
US20080122439A1 (en) * 2006-11-07 2008-05-29 Burdick William E High performance low volume inductor and method of making same

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8739626B2 (en) 2009-08-04 2014-06-03 Fairchild Semiconductor Corporation Micromachined inertial sensor devices
US8710599B2 (en) 2009-08-04 2014-04-29 Fairchild Semiconductor Corporation Micromachined devices and fabricating the same
US9455354B2 (en) 2010-09-18 2016-09-27 Fairchild Semiconductor Corporation Micromachined 3-axis accelerometer with a single proof-mass
US10050155B2 (en) 2010-09-18 2018-08-14 Fairchild Semiconductor Corporation Micromachined monolithic 3-axis gyroscope with single drive
US8813564B2 (en) 2010-09-18 2014-08-26 Fairchild Semiconductor Corporation MEMS multi-axis gyroscope with central suspension and gimbal structure
US9856132B2 (en) 2010-09-18 2018-01-02 Fairchild Semiconductor Corporation Sealed packaging for microelectromechanical systems
US9586813B2 (en) 2010-09-18 2017-03-07 Fairchild Semiconductor Corporation Multi-die MEMS package
US9352961B2 (en) 2010-09-18 2016-05-31 Fairchild Semiconductor Corporation Flexure bearing to reduce quadrature for resonating micromachined devices
US9095072B2 (en) 2010-09-18 2015-07-28 Fairchild Semiconductor Corporation Multi-die MEMS package
US9156673B2 (en) 2010-09-18 2015-10-13 Fairchild Semiconductor Corporation Packaging to reduce stress on microelectromechanical systems
US9246018B2 (en) 2010-09-18 2016-01-26 Fairchild Semiconductor Corporation Micromachined monolithic 3-axis gyroscope with single drive
US9278845B2 (en) 2010-09-18 2016-03-08 Fairchild Semiconductor Corporation MEMS multi-axis gyroscope Z-axis electrode structure
US9278846B2 (en) 2010-09-18 2016-03-08 Fairchild Semiconductor Corporation Micromachined monolithic 6-axis inertial sensor
US9006846B2 (en) 2010-09-20 2015-04-14 Fairchild Semiconductor Corporation Through silicon via with reduced shunt capacitance
US10065851B2 (en) 2010-09-20 2018-09-04 Fairchild Semiconductor Corporation Microelectromechanical pressure sensor including reference capacitor
US9062972B2 (en) 2012-01-31 2015-06-23 Fairchild Semiconductor Corporation MEMS multi-axis accelerometer electrode structure
US9599472B2 (en) 2012-02-01 2017-03-21 Fairchild Semiconductor Corporation MEMS proof mass with split Z-axis portions
US8978475B2 (en) 2012-02-01 2015-03-17 Fairchild Semiconductor Corporation MEMS proof mass with split z-axis portions
US8754694B2 (en) 2012-04-03 2014-06-17 Fairchild Semiconductor Corporation Accurate ninety-degree phase shifter
US8742964B2 (en) 2012-04-04 2014-06-03 Fairchild Semiconductor Corporation Noise reduction method with chopping for a merged MEMS accelerometer sensor
US9488693B2 (en) 2012-04-04 2016-11-08 Fairchild Semiconductor Corporation Self test of MEMS accelerometer with ASICS integrated capacitors
US9618361B2 (en) 2012-04-05 2017-04-11 Fairchild Semiconductor Corporation MEMS device automatic-gain control loop for mechanical amplitude drive
US9069006B2 (en) 2012-04-05 2015-06-30 Fairchild Semiconductor Corporation Self test of MEMS gyroscope with ASICs integrated capacitors
US10060757B2 (en) 2012-04-05 2018-08-28 Fairchild Semiconductor Corporation MEMS device quadrature shift cancellation
US9444404B2 (en) 2012-04-05 2016-09-13 Fairchild Semiconductor Corporation MEMS device front-end charge amplifier
US9625272B2 (en) 2012-04-12 2017-04-18 Fairchild Semiconductor Corporation MEMS quadrature cancellation and signal demodulation
US9094027B2 (en) 2012-04-12 2015-07-28 Fairchild Semiconductor Corporation Micro-electro-mechanical-system (MEMS) driver
US9425328B2 (en) 2012-09-12 2016-08-23 Fairchild Semiconductor Corporation Through silicon via including multi-material fill
US9802814B2 (en) 2012-09-12 2017-10-31 Fairchild Semiconductor Corporation Through silicon via including multi-material fill
CN107084807A (zh) * 2017-04-11 2017-08-22 中航(重庆)微电子有限公司 一种压阻式的微机械压力传感器芯片及其制备方法
CN107084807B (zh) * 2017-04-11 2020-03-10 华润微电子(重庆)有限公司 一种压阻式的微机械压力传感器芯片及其制备方法

Also Published As

Publication number Publication date
WO2012040245A2 (en) 2012-03-29
US9006846B2 (en) 2015-04-14
WO2012040245A3 (en) 2012-06-07
CN103209922B (zh) 2014-09-17
EP2619130A4 (en) 2014-12-10
KR101311966B1 (ko) 2013-10-14
KR20130054441A (ko) 2013-05-24
EP2619130A2 (en) 2013-07-31
US20130277773A1 (en) 2013-10-24

Similar Documents

Publication Publication Date Title
CN103209922B (zh) 具有减小的并联电容的硅通孔
JP5405322B2 (ja) トレンチコンデンサを備えた半導体装置とその製造方法
US6465832B1 (en) Semiconductor device
CN100416826C (zh) 具有传感芯片和电路芯片的电容式物理量传感器
JP4763358B2 (ja) マイクロ電気機械式可変コンデンサ
US7296476B2 (en) Microelectromechanical system pressure sensor and method for making and using
US20020079743A1 (en) MEMS-switched stepped variable capacitor and method of making same
KR20080015862A (ko) 실리콘 마이크로폰
CN109473486B (zh) 一种电容器结构及其制作方法
US10721576B2 (en) MEMS microphone and method for manufacturing the same
US8776337B2 (en) Methods of forming capacitive sensors
CN104671186A (zh) Mems器件
US7678659B2 (en) Method of reducing current leakage in a metal insulator metal semiconductor capacitor and semiconductor capacitor thereof
KR100924674B1 (ko) 커패시터형 실리콘 멤스 마이크로폰
JP2009270961A (ja) Memsセンサおよびその製造方法
CN103426728B (zh) 电容器结构及其制作方法
CN214956872U (zh) 一种硅基电容半导体结构
US20220274134A1 (en) Cmut transducer
KR100644526B1 (ko) 엠보싱형 커패시터의 제조 방법
CN103663343A (zh) 电子装置及其制造方法、以及振荡器
CN219873162U (zh) 电容器及电容模组
CN220253050U (zh) 电容器及电容模组
CN219322901U (zh) 一种半导体器件及半导体芯片
CN219156510U (zh) 一种mems器件及电子装置
CN117012752A (zh) 电容器及其形成方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CP02 Change in the address of a patent holder

Address after: Arizona, USA

Patentee after: Fairchild Semiconductor Corp.

Address before: American California

Patentee before: Fairchild Semiconductor Corp.

CP02 Change in the address of a patent holder
TR01 Transfer of patent right

Effective date of registration: 20190723

Address after: Floor 1, Building 2, 235 Chengbei Road, Jiading District, Shanghai

Patentee after: Shanghai Xirui Technology Co., Ltd.

Address before: Arizona, USA

Patentee before: Fairchild Semiconductor Corp.

TR01 Transfer of patent right
CP03 Change of name, title or address

Address after: Room 307, 3rd floor, 1328 Dingxi Road, Changning District, Shanghai 200050

Patentee after: Shanghai Sirui Technology Co.,Ltd.

Address before: Floor 1, building 2, No. 235, Chengbei Road, Jiading District, Shanghai, 201800

Patentee before: Shanghai Silicon Technology Co.,Ltd.

CP03 Change of name, title or address