JP4412477B2 - 振動型角速度センサ - Google Patents

振動型角速度センサ Download PDF

Info

Publication number
JP4412477B2
JP4412477B2 JP2004174688A JP2004174688A JP4412477B2 JP 4412477 B2 JP4412477 B2 JP 4412477B2 JP 2004174688 A JP2004174688 A JP 2004174688A JP 2004174688 A JP2004174688 A JP 2004174688A JP 4412477 B2 JP4412477 B2 JP 4412477B2
Authority
JP
Japan
Prior art keywords
signal
vibration
detection
clock signal
waveform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004174688A
Other languages
English (en)
Other versions
JP2005351820A (ja
Inventor
勇二 沓名
一 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2004174688A priority Critical patent/JP4412477B2/ja
Priority to DE102005026955A priority patent/DE102005026955A1/de
Priority to US11/149,431 priority patent/US20050274181A1/en
Publication of JP2005351820A publication Critical patent/JP2005351820A/ja
Application granted granted Critical
Publication of JP4412477B2 publication Critical patent/JP4412477B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5719Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using planar vibrating masses driven in a translation vibration along an axis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5719Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using planar vibrating masses driven in a translation vibration along an axis
    • G01C19/5726Signal processing

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Signal Processing (AREA)
  • Gyroscopes (AREA)

Description

この発明は、振動型角速度センサに関する。
特開2003−21517号公報
角速度センサ(ジャイロセンサ)の方式には、回転体の歳差運動を利用する機械式、筐体内で周回するレーザー光の筐体回転に伴う受光タイミング変化を利用する光学式、筐体内でセンシング用のガスを熱線に噴射し、その噴射量が筐体の回転により変化するのを熱線温度で検知する流体式などが知られている。他方、車両制御システムやカーナビゲーションシステム等における車両用角速度センサの需要が近年急速に高まっており、上記各方式と比較してより安価で軽量な振動式角速度センサが主流となりつつある(例えば特許文献1)。振動式角速度センサは、予め定められた基準方向に振動する振動子に角速度が作用したとき、基準方向と直交する検出方向へのコリオリ力に基づく新たな振動成分(以下、角速度振動成分という)を検出し、該振動成分に基づいて角速度情報を出力するものである。
ところで、上記のような振動型角速度センサにおいては、角速度検出波形から必要信号を取り出すための同期検波部が使用されている。角速度を検知するためのコリオリ力は、振動子の速度と加わる角速度とのベクトル積に比例して発生するので、振動子の速度が駆動振動波形により制御される結果、必要な角速度信号は、駆動波形と同じ周波数を有した振動駆動波形ということになる。そこで、上記の同期検波部では、振動子の振動駆動波形と同じ周波数の検波クロック信号を使用して必要信号を取り出すこととなる。
一方、振動子の振動駆動部では、振動子に印加する電圧が、制御系の信号電圧レベルでは不足しがちであるので、駆動用及び可動部バイアス電圧用として別途昇圧回路を設けて振動駆動を行なうようにしている。昇圧回路には昇圧クロック信号が必要であるが、この昇圧クロック信号の発生回路をセンサの制御回路とは別に設けると、センサ全体の回路構成が肥大化することにつながる。そこで、検波クロック信号と同様に、振動子の振動駆動波形を昇圧クロック信号の発生源としても流用すれば、回路のコンパクト化を図ることができる。
しかし、上記の構成であると、昇圧クロック信号と検波クロック信号とが同一の位相を有したクロック信号となる。その結果、昇圧クロック信号に由来したノイズが検波クロック信号発生のための正弦波信号に重畳した場合、昇圧クロック信号のノイズエッジが検波クロック信号の変化エッジに近接して現れるため、検波クロック信号にチャタリング等を生じやすくなり、角速度信号の検波精度を低下させる問題を生じやすくなる。
本発明の課題は、振動駆動波形を昇圧回路の昇圧クロック信号に流用しつつも、同じ振動駆動波形を用いた角速度信号の同期検波処理へのノイズ重畳の影響を効果的に軽減できる振動型角速度センサを提供することにある。
課題を解決するための手段及び発明の効果
上記の課題を解決するために、本発明の振動型角速度センサは、
予め定められた基準方向に振動する振動子と、
該振動子を一定振動数にて駆動する振動駆動部と、
振動子に角速度が加わるに伴い、基準方向と交差するように定められた角速度検出方向への被検出振動成分を検出し、該被検出振動成分に基づいて角速度検出波形を生成する角速度検出波形生成部と、
振動子の振動駆動波形を用いて検波クロック信号を生成する検波クロック信号生成部と、
検波クロック信号を用いて、角速度検出波形から振動子の駆動波形に対応した周波数の信号波形成分を同期検波する同期検波部と、
予め定められた昇圧回路の昇圧クロック信号を前記振動駆動波形振動子の振動駆動波形に基づき、検波クロック信号と同一周波数の信号として生成するとともに、該昇圧クロック信号を、検波クロック信号に対し所定角度遅延ないし進角させて出力させる位相変換手段を有した昇圧クロック信号生成部と、を有することを特徴とする。
上記の構成によると、昇圧クロック信号生成部が予め定められた昇圧回路の昇圧クロック信号を、振動子の振動駆動波形に基づいて、検波クロック信号と同一周波数の信号として生成する。これにより、振動子の振動駆動波形を検波クロック信号だけでなく昇圧クロック信号の発生源としても流用するので、回路のコンパクト化を図ることができる。また、昇圧クロック信号生成部は昇圧クロック信号を、検波クロック信号に対し所定角度遅延ないし進角させて出力させる位相変換手段を有するので、昇圧クロック信号によるノイズが検波クロック信号発生のための正弦波信号に仮に重畳しても、そのノイズエッジが検波クロック信号の変化エッジとは異なる位置に現れるので、検波クロック信号のレベル変化にチャタリング等が生じにくくなり、角速度信号の検波精度を向上させることができる。昇圧クロック信号生成部による昇圧クロック信号の供給先となる昇圧回路は、具体的には、振動駆動部から振動子に向けて出力される、駆動信号の昇圧回路とすることができる。また、振動駆動部から振動子に向けて出力される可動部バイアス電圧の昇圧回路とすることもできる。
振動駆動部は、振動子の振動駆動波形を振動モニタ信号として検出・出力する振動モニタ信号発生部と、該振動モニタ信号の振幅を検出する振幅検出部と、その振幅検出信号を参照振幅信号と比較し、その比較結果に基づいて振動モニタ信号を、一定振幅に制御しつつ昇圧して駆動信号を生成し、振動子の振動駆動端子に帰還入力する駆動波形生成部とを備えた自励式振動駆動部として構成することができる。また、昇圧クロック信号生成部は昇圧クロック信号を上記の振動モニタ信号に基づいて発生させることができる。この構成によると、振動駆動用の発振回路を外部に設ける必要がなくなり、センサ回路を一層簡略化することができる。
振動子は機械的な振動系を構成するので、その共振周波数付近で振動駆動を行うことが最も効率的である。この場合、上記の自励式振動駆動部は、駆動波形生成部への振動モニタ信号の入力経路上に、該振動モニタ信号の位相を90゜シフトさせる移相器を設ければ、振動子の変位が最小(つまり、速度が最大)となる位置に電気的な加振駆動の波形ピーク(つまり、外部から強制的に加える駆動力のピーク)を合わせこまれ、振動子の共振振動を効果的に持続することができる。
この場合、昇圧クロック信号生成部において位相変換手段は、移相器の入力前段側にて入力経路から分岐する振動モニタ信号の分岐経路を有し、該分岐経路を経て振動モニタ信号に基づく昇圧クロック信号を昇圧回路に供給するものとすることができる。また、検波クロック信号生成部は、移相器の入力後段側にて入力経路から分岐する振動モニタ信号の分岐経路を有し、該分岐経路を経て振動モニタ信号に基づく検波クロック信号を同期検波回路に入力するものとして構成することができる。振動モニタ信号は移相器の前後で位相が必然的に90゜変化するので、その前後で昇圧クロック信号と検波クロック信号とを取り出し分けるようにすると、位相遅延回路などを特に設けることなく、両クロック信号の位相を互いにずらせることができる。また、検波クロック信号のエッジから90゜ずれた位相位置では、検波クロック信号発生のための正弦波信号電圧が最も高く、ノイズに対するマージンが高いので、昇圧クロック信号のエッジに起因した検波クロック信号のチャタリング等も一層生じにくくなる。
振動モニタ信号発生部は振動モニタ信号を正弦波振動駆動波形として発生させるものとすることができる。この方式は、振動子の振動変位を検知用コンデンサの容量変化等によりアナログ的に連続検知すればよいので、振動モニタ信号の発生回路を簡略に構成できる。他方、昇圧クロック信号生成部と検波クロック信号生成部とは、振動モニタ信号をなす正弦波振動駆動波形を、位相が互いに90゜ずれたデューティ50%の方形波クロック波形に変換し、それぞれ昇圧クロック信号及び検波クロック信号とする構成を採用することが望ましい。同期検波回路に与える検波クロック信号はディーティ比50%の方形波として与えるとき、検波効率が最も向上するが、正弦波振動駆動波形をディーティ比50%の方形波に変換するには、その変換の閾値をゼロレベル付近に設定しなければならない。このとき、昇圧クロック信号と検波クロック信号とが同相になっていると、検波クロック信号発生のための正弦波振動駆動波形が上記のゼロレベルを横切るのに近いタイミングで、昇圧クロック信号のノイズエッジが重畳しやすくなり、検波クロック信号のチャタリング等を一層生じやすくなる。しかし、上記のように、昇圧クロック信号と検波クロック信号とを、位相が互いに90゜ずれたデューティ50%の方形波クロック信号とすることで、昇圧クロック信号のノイズエッジは、検波クロック信号の元信号である正弦波振動駆動波形に対し、ノイズマージンの大きい波形ピーク位置付近にしか出現しなくなり、上記のチャタリング等を効果的に防止できる。
以下、本発明の実施の形態を、図面を用いて説明する。
図1は、本発明の振動型角速度センサ(以下、単に角速度センサともいう)の一実施形態を示す回路図である。該角速度センサ1の要部は、振動子100、振動駆動部6及び角速度検出部(角速度検出波形生成部)7からなる。図2は振動子100の構成例を示す概略平面図である。該振動子100は、例えば上記半導体基板として、ベースウェーハにシリコン薄層が酸化膜を介して貼り合わされたSOI(シリコンオンインシュレータ)基板を用い、周知の半導体製造技術を用いて作ることができる。
図2には、SOI基板におけるシリコン薄層12の平面形状が示されており、この一方のシリコン基板12には、溝を形成することにより、各部が形成されている。可動部30は、一方のシリコン基板12を支持する酸化膜及び他方のシリコン基板を部分的に除去することにより形成された開口部14上に、配置されている。可動部30は、図中のx方向へバネ変形可能な駆動梁33及びy方向へバネ変形可能な検出梁34を介して、可動部30の外周の基部20に支持されている。可動部30の外周部と基部20とが対向する部位には、次に述べるような櫛歯状の各電極部が形成されている。具体的には、可動部30に周期的な信号(駆動信号、例えば正弦波)を印加するための駆動電極40と、可動部30のx方向への振動をモニタしモニタ信号を出力するためのモニタ電極60と、z軸回りに角速度Ωが印加されたときに発生する可動部30のy方向への振動に基づく容量変化を角速度Ωの検出信号として検出するための検出電極50とが形成されている。
また、上記SOI基板は、図示しない回路基板に搭載され、各電極40〜60は、それぞれ各電極40〜60対応して形成された端子41、51、61に接続されたワイヤ42、52、62を介して当該回路基板に電気的に接続されている。この図2に示す振動子100においては、回路基板から駆動電極40に駆動信号(正弦波等)を入力するとともに、図示しない端子(図1では符号Kにより表示)を介してバイアス電圧(DC電圧)を可動部30に印加すると、駆動梁33によって可動部30は、x方向へ振動(駆動振動)する。このとき、モニタ電極60における櫛歯間の容量変化を調べることにより、可動部30の駆動振動の周波数や振幅等をモニタし、駆動信号を調整できるようになっている。可動部30を駆動振動した状態で角速度Ωが印加されると、可動部30にはy方向にコリオリ力が印加され、可動部30は検出梁34によってy方向へ振動(検出振動)する。すると、この検出振動によって、検出電極50における櫛歯間の容量が変化するため、この変化を検出信号として出力することにより、角速度Ωの大きさを求めることができる。
図1に戻り、検出電極50が検出する容量変化は、チャージアンプ等で構成された電荷電圧変換回路120にて電圧変換され、電圧波形として出力される。これら電荷電圧変換回路120と、それらの出力同士を差動増幅する差動増幅器21(差分波形演算手段)と、予め定められた周波数帯域の角速度成分を抽出する同期検波部22が角速度検出部7を構成する。
振動駆動部6は、モニタ電極60が検出する容量変化を電圧変換する電荷電圧変換回路2と、それらの出力同士を差動増幅する差動増幅器3(差分波形演算手段)と、差動増幅器3の振動交流電圧出力を直流変換するAC/DC変換器11を有する。AC/DC変換器11の出力電圧値は振動モニタ信号の振幅検出信号であり、該AC/DC変換器11が振幅検出部を構成している。該振幅検出信号は、制御すべき一定振幅に対応した基準電圧Vref1との差分が差動増幅器13にて演算される。
さらに、振動駆動部6は、差動増幅器3からの振動電圧出力を90°移相する移相器14、差動増幅器13と移相器14との各出力を乗算する乗算器15とを有する。図2の可動部30のX方向の振動が、モニタ電極60の容量変化により、振動モニタ信号としてモニタ端子61から取り出され、電荷電圧変換回路2にて電圧信号に変換後、差動増幅器3を経て駆動端子41に帰還させることにより自励式振動駆動機構を構成する。移相器14は、梁34を介した可動部30の共振点付近での機械的振動を持続させる役割を果たす。また、差動増幅器3からの振動モニタ信号は、別途AC/DC変換器11で平滑化されて振幅レベル信号とされ、制御振幅レベルに対応した基準電圧Vref1との差分が差動増幅器13にて演算される。この差動増幅器13の出力を振幅補正信号として、乗算器15にて振動モニタ信号と乗ずることにより、駆動振幅が一定に制御されることとなる。
つまり、乗算器15の出力が振動信号として、振動子100の各駆動端子41に入力される。該乗算器15は、差動増幅器13による振幅検出信号と参照振幅信号との差分値(比較結果)に基づいて、前述の振動モニタ信号を、一定振幅に制御しつつ昇圧して駆動信号を生成し、可動部30の振動駆動端子に帰還入力する駆動波形生成部の役割を果たしている。
次に、角速度検出部7において、差動増幅器21からの角速度信号の出力は、同期検波部22にて振幅変調された角速度信号が復調された後、ローパスフィルタ23にて平滑化されることにより、入力角速度に比例した直流の信号Vyとして出力される。同期検波部22の参照周波数信号は、本実施形態では移相器14からの振動モニタ信号が流用される。コリオリ力は、振動子の速度と加わる角速度とのベクトル積に比例して発生するので、駆動振動波形に対し、コリオリ力の検出波形は必ず90°位相変化した形で検知される。従って、移相器14にて90°移相した駆動振動波形はコリオリ力の検出波形(つまり、角速度波形)と位相が一致し、同期検波用の参照周波数信号として好適に採用できる。
電荷電圧変換回路2の出力は、増幅器3でpeak to peakにて最大5Vの信号レベルに増幅されるが、振動子の駆動用としてそのまま使用するには電圧レベルが十分ではない。そこで、駆動波形生成部をなす乗算器15では、昇圧回路4により、十分な電圧(本実施形態ではpeak to peakにて最大16V)にまで昇圧して最終的な駆動信号を出力するようにしている。その昇圧回路の昇圧クロック信号に上記の振動モニタ信号が流用されている。
具体的には、前述の移相器14は、乗算器(駆動波形生成部)15への振動モニタ信号の入力経路3a上に設けられ、該振動モニタ信号の位相を90゜シフトさせる。そして、該移相器14の入力前段側にて入力経路3aからは、振動モニタ信号の分岐経路6aが分岐し、正弦波をなす振動モニタ信号が、該正弦波のゼロレベルを基準電圧Vref3としたコンパレータ6kに入力される。これにより、移相器14に入力される前の振動モニタ信号がコンパレータ6kにより、デューティ50%の方形波クロック波形からなる昇圧クロック信号とされ、昇圧回路4に供給される。つまり、コンパレータ6kが昇圧クロック信号生成部を構成している。
図5は、昇圧回路4の一例であり、ここではチャージポンプ式の回路を用いている。昇圧制御回路4aのクロック端子CKに上記の昇圧クロック信号が入力される。元電源電圧は電源端子Vccに入力され、昇圧スイッチング端子D及び反転昇圧スイッチング端子D(−)(図面では上付きのバーで表している)とに、昇圧用コンデンサC1,C3及び逆流防止用ダイオードD1,D3からなる第一の電圧逓倍部と、昇圧用コンデンサC2,C4及び逆流防止用ダイオードD2,D4からなる第二の電圧逓倍部とが交互に並列接続され、昇圧スイッチング端子D及び反転昇圧スイッチング端子Dを、昇圧クロック信号にて互いに逆相にてスイッチングすることにより、元電源電圧の4倍の出力電圧を得ることができる。これをレギュレータ4bにより、上記の出力電圧をこれよりも低い最終電圧(ここでは16V)に安定化させて出力するようにしている。なお、ダイオードD5とコンデンサC5はリップル除去用である。また、チャージポンプ式の昇圧回路に代えて、昇圧コイルを用いたステップアップ型DC−DCコンバータ回路を用いてもよい。
一方、移相器14の入力後段側では、入力経路3aから振動モニタ信号の分岐経路6cが分岐し、正弦波をなす振動モニタ信号が、該正弦波のゼロレベルを基準電圧Vref2としたコンパレータ5に入力される。これにより、移相器14に入力後の(つまり、移相が90°ずれた)振動モニタ信号がコンパレータ5により、デューティ50%の方形波クロック波形からなる検波クロック信号とされ、同期検波回路22に供給される。つまり、コンパレータ5が検波クロック信号生成部を構成している。
さて、上記の構成によると、昇圧回路4に向かう昇圧クロック信号と、同期検波回路22に向かう検波クロック信号とは、いずれも正弦波からなる同じ振動モニタ信号を方形波化して得られるものであるが、前者は移相器14を通過前の振動モニタ信号に基づき、後者は移相器14を通過後の振動モニタ信号に基づくものなので、図3に示すように、位相が互いに90゜ずれたデューティ50%の方形波クロック波形となる。図4上に示すように、正弦波waをデューティ比50%の方形波wbに変換するには、その変換の閾値VTHをゼロレベル付近に設定しなければならない。このとき、昇圧クロック信号と検波クロック信号とが同相になっていると、図4下に示すように、検波クロック信号発生のための正弦波波形が上記のゼロレベル(つまり、コンパレータの閾値)を横切るのに近いタイミングで、昇圧クロック信号のノイズエッジNが重畳しやすくなり、検波クロック信号のチャタリング等を一層生じやすくなる。そこで、上記のように、昇圧クロック信号と検波クロック信号とを、位相が互いに90゜ずれたデューティ50%の方形波クロック信号とすることで、昇圧クロック信号のノイズエッジ(N’)は、検波クロック信号の元信号である正弦波波形に対し、ノイズマージンの大きい波形ピーク位置付近にしか出現しなくなり、上記のチャタリング等を効果的に防止できる。なお、コンパレータのチャタリング防止には、一般には正帰還等による不感帯形成が有効であるが、得られる方形波のディーティ比を50%に維持する観点からは不感帯形成は望ましくない。しかし、上記の方式であると、不感帯形を設けなくともチャタリング防止が可能であり、デューティ比50%を維持する上でも好都合であるといえる。
なお、本実施形態では昇圧回路4からの電圧を、端子Kを介して可動部30にもバイアス電圧として印加している。この場合、可動部30の駆動力は、可動部バイアス電圧と駆動信号のオフセット電圧との差電圧(DC電圧)と、駆動信号の振幅(AC電圧)の積に比例する。また、電荷電圧変換器2のゲインは、可動部バイアス電圧と該電荷電圧変換器2の基準電圧(通常2.5V)の差電圧に比例する。角速度センサにおいては、駆動力が大きく、かつ電荷電圧変換器2のゲインを大きく設計した方がSN比を高くできるので望ましい。したがって、上記の実施形態では、駆動信号及び可動部バイアス電圧として制御系の電源よりも高い電圧を印加するための昇圧回路4を設け、これを昇圧クロック信号の供給先としている。なお、SN比を向上するためには、角速度検出部7の電荷電圧変換器120のゲインを高くすることも有効である。
本発明の振動型角速度センサの一実施形態を示す回路図。 振動子の構成例を示す模式図。 昇圧クロック信号と検波クロック信号との位相の関係を示す模式図。 本発明の効果説明図。 昇圧回路の一例を示す回路図。
符号の説明
1 振動型角速度センサ
4 昇圧回路
5 コンパレータ(検波クロック信号生成部)
6 振動駆動部
6a 分岐経路(位相変換手段)
6c 分岐経路
6k コンパレータ(昇圧クロック信号生成部)
7 角速度検出部(角速度検出波形生成部)
14 移相器
22 同期検波回路(同期検波部)
100 振動子

Claims (1)

  1. 予め定められた基準方向に振動する振動子(100)と、
    前記振動子(100)の振動波形を正弦波振動波形の振動モニタ信号として検出・出力する振動モニタ信号発生部(2、3)と、その振動モニタ信号の振幅を振幅検出信号として検出する振幅検出部(11)と、その振幅検出信号を参照振幅信号(Vref1)と比較し、その比較結果に基づいて前記振動モニタ信号を、一定振幅に制御しつつ予め定められた昇圧回路(4)を用いて昇圧して駆動信号を生成し、その駆動信号を前記振動子(100)の振動駆動端子(41)に帰還入力する駆動波形生成部(15)と、を備えた自励式振動駆動部として構成された、前記振動子(100)を一定振動数にて駆動する振動駆動部(6)と、
    前記振動子(100)に角速度が加わるに伴い、前記基準方向と交差するように定められた角速度検出方向への被検出振動成分を検出し、該被検出振動成分に基づいて角速度検出波形を生成する角速度検出波形生成部(120、21)と、
    前記駆動波形生成部(15)への前記振動モニタ信号の入力経路(3a)上に設けられた、該振動モニタ信号の位相を90゜シフトさせる移相器(14)と、
    その移相器(14)の入力後段側にて前記入力経路(3a)から分岐する前記振動モニタ信号の分岐経路(6c)を有し、該分岐経路(6c)を経て前記振動モニタ信号に基づく検波クロック信号を生成する検波クロック信号生成部(5)と、
    前記検波クロック信号を用いて、前記角速度検出波形から前記振動子(100)の振動波形に対応した周波数の信号波形成分を同期検波する同期検波部(22)と、
    前記移相器(14)の入力前段側にて前記入力経路(3a)から分岐する前記振動モニタ信号の分岐経路(6a)を有し、該分岐経路(6a)を経て前記振動モニタ信号に基づく前記昇圧回路(4)の昇圧クロック信号を前記検波クロック信号と同一周波数の信号として生成する昇圧クロック信号生成部(6k)と、を備え、
    前記昇圧クロック信号生成部(6k)と前記検波クロック信号生成部(5)とは、前記振動モニタ信号をなす前記正弦波振動波形を、位相が互いに90゜ずれたデューティ50%の方形波クロック波形に変換し、それぞれ前記昇圧クロック信号及び前記検波クロック信号とするものであることを特徴とする振動型角速度センサ。
JP2004174688A 2004-06-11 2004-06-11 振動型角速度センサ Expired - Fee Related JP4412477B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004174688A JP4412477B2 (ja) 2004-06-11 2004-06-11 振動型角速度センサ
DE102005026955A DE102005026955A1 (de) 2004-06-11 2005-06-10 Winkelgeschwindigkeitssensor eines Schwingungstyps
US11/149,431 US20050274181A1 (en) 2004-06-11 2005-06-10 Vibration type angular rate sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004174688A JP4412477B2 (ja) 2004-06-11 2004-06-11 振動型角速度センサ

Publications (2)

Publication Number Publication Date
JP2005351820A JP2005351820A (ja) 2005-12-22
JP4412477B2 true JP4412477B2 (ja) 2010-02-10

Family

ID=35459111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004174688A Expired - Fee Related JP4412477B2 (ja) 2004-06-11 2004-06-11 振動型角速度センサ

Country Status (3)

Country Link
US (1) US20050274181A1 (ja)
JP (1) JP4412477B2 (ja)
DE (1) DE102005026955A1 (ja)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006349409A (ja) 2005-06-14 2006-12-28 Denso Corp 静電駆動・容量検出型のジャイロセンサのセンサ回路
JP4682856B2 (ja) * 2006-02-01 2011-05-11 株式会社デンソー 角速度センサ装置
JP4830757B2 (ja) * 2006-02-28 2011-12-07 株式会社デンソー 角速度センサおよびその製造方法
JP2009162645A (ja) * 2008-01-08 2009-07-23 Panasonic Corp 慣性速度センサ信号処理回路およびそれを備える慣性速度センサ装置
JP4645725B2 (ja) * 2008-11-05 2011-03-09 株式会社デンソー 振動型角速度センサの角速度検出方法
DE102008044000B4 (de) * 2008-11-24 2019-11-07 Robert Bosch Gmbh Verfahren zum Regeln einer angeregten Schwingung, Vorrichtung zum Regeln einer angeregten Schwingung
JP5205352B2 (ja) * 2009-09-11 2013-06-05 アオイ電子株式会社 昇圧回路
EP2336717B1 (en) * 2009-12-21 2012-09-19 STMicroelectronics Srl Microelectromechanical device having an oscillating mass, and method for controlling a microelectromechanical device having an oscillating mass
EP2366988A1 (de) * 2010-03-19 2011-09-21 Winergy AG Verfahren und Meßvorrichtung zur Drehmomenterfassung in einem Getriebe mittels eines Schwingungssensors
US8564311B2 (en) * 2010-07-01 2013-10-22 Stmicroelectronics Asia Pacific Pte Ltd. Sensing phase sequence to suppress single tone noise
DE112011103124T5 (de) 2010-09-18 2013-12-19 Fairchild Semiconductor Corporation Biegelager zum Verringern von Quadratur für mitschwingende mikromechanische Vorrichtungen
CN103221333B (zh) 2010-09-18 2017-05-31 快捷半导体公司 多晶片mems封装
US9278845B2 (en) 2010-09-18 2016-03-08 Fairchild Semiconductor Corporation MEMS multi-axis gyroscope Z-axis electrode structure
US9156673B2 (en) 2010-09-18 2015-10-13 Fairchild Semiconductor Corporation Packaging to reduce stress on microelectromechanical systems
WO2012037538A2 (en) 2010-09-18 2012-03-22 Fairchild Semiconductor Corporation Micromachined monolithic 6-axis inertial sensor
US9455354B2 (en) 2010-09-18 2016-09-27 Fairchild Semiconductor Corporation Micromachined 3-axis accelerometer with a single proof-mass
KR101332701B1 (ko) 2010-09-20 2013-11-25 페어차일드 세미컨덕터 코포레이션 기준 커패시터를 포함하는 미소 전자기계 압력 센서
WO2012040245A2 (en) 2010-09-20 2012-03-29 Fairchild Semiconductor Corporation Through silicon via with reduced shunt capacitance
DE102010053022B4 (de) * 2010-12-02 2014-01-09 Hahn-Schickard-Gesellschaft für angewandte Forschung e.V. Vorrichtung zur Messung einer Drehrate
DE102011006420A1 (de) * 2011-03-30 2012-10-04 Robert Bosch Gmbh Steuerschaltung, Sensoranordnung und Verfahren zum Betrieb einer Steuerschaltung
KR101237604B1 (ko) * 2011-09-02 2013-02-26 한국기술교육대학교 산학협력단 자이로 센서 구동 장치 및 그 방법
US9062972B2 (en) 2012-01-31 2015-06-23 Fairchild Semiconductor Corporation MEMS multi-axis accelerometer electrode structure
US8978475B2 (en) 2012-02-01 2015-03-17 Fairchild Semiconductor Corporation MEMS proof mass with split z-axis portions
US9293521B2 (en) 2012-03-02 2016-03-22 Taiwan Semiconductor Manufacturing Co., Ltd. Concentric capacitor structure
US8860114B2 (en) * 2012-03-02 2014-10-14 Taiwan Semiconductor Manufacturing Company, Ltd. Structure and method for a fishbone differential capacitor
US9488693B2 (en) 2012-04-04 2016-11-08 Fairchild Semiconductor Corporation Self test of MEMS accelerometer with ASICS integrated capacitors
EP2647955B8 (en) 2012-04-05 2018-12-19 Fairchild Semiconductor Corporation MEMS device quadrature phase shift cancellation
EP2647952B1 (en) 2012-04-05 2017-11-15 Fairchild Semiconductor Corporation Mems device automatic-gain control loop for mechanical amplitude drive
KR102058489B1 (ko) 2012-04-05 2019-12-23 페어차일드 세미컨덕터 코포레이션 멤스 장치 프론트 엔드 전하 증폭기
US9069006B2 (en) 2012-04-05 2015-06-30 Fairchild Semiconductor Corporation Self test of MEMS gyroscope with ASICs integrated capacitors
KR101999745B1 (ko) 2012-04-12 2019-10-01 페어차일드 세미컨덕터 코포레이션 미세 전자 기계 시스템 구동기
US9625272B2 (en) 2012-04-12 2017-04-18 Fairchild Semiconductor Corporation MEMS quadrature cancellation and signal demodulation
DE102013014881B4 (de) 2012-09-12 2023-05-04 Fairchild Semiconductor Corporation Verbesserte Silizium-Durchkontaktierung mit einer Füllung aus mehreren Materialien
US9644963B2 (en) 2013-03-15 2017-05-09 Fairchild Semiconductor Corporation Apparatus and methods for PLL-based gyroscope gain control, quadrature cancellation and demodulation
JP6098349B2 (ja) 2013-05-14 2017-03-22 船井電機株式会社 発振装置、走査型スキャナ装置、情報端末、移相量調整装置、及び移相量調整方法
WO2015146566A1 (ja) 2014-03-25 2015-10-01 株式会社村田製作所 振動子駆動回路
JP2016161451A (ja) * 2015-03-03 2016-09-05 セイコーエプソン株式会社 ジャイロセンサー、電子機器、移動体およびジャイロセンサーの製造方法
JP6380571B2 (ja) * 2017-02-17 2018-08-29 船井電機株式会社 発振装置、走査型スキャナ装置、情報端末、移相量調整装置、及び移相量調整方法
US11867509B2 (en) * 2021-03-03 2024-01-09 Invensense, Inc. Robust method for gyroscope drive amplitude measurement
CN117091581B (zh) * 2023-08-21 2024-08-23 东南大学 一种基于双轴频分复用的振动陀螺阻尼耦合抑制方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69213976T2 (de) * 1991-03-12 1997-04-03 New Sd Inc Stimmgabelinertialsensor mit einem Ende und Verfahren
JP3536497B2 (ja) * 1995-12-21 2004-06-07 株式会社デンソー 振動型角速度検出装置
JP3288597B2 (ja) * 1997-01-27 2002-06-04 アルプス電気株式会社 振動型ジャイロスコープ
JP2001264072A (ja) * 2000-03-17 2001-09-26 Aisin Seiki Co Ltd 角速度センサ
JP2002188924A (ja) * 2000-12-20 2002-07-05 Denso Corp 半導体装置
JP3627665B2 (ja) * 2001-04-11 2005-03-09 株式会社デンソー 角速度センサ
JP4310571B2 (ja) * 2003-04-07 2009-08-12 株式会社村田製作所 静電容量検出型振動ジャイロ、および静電容量変化検出方法

Also Published As

Publication number Publication date
DE102005026955A1 (de) 2006-02-09
JP2005351820A (ja) 2005-12-22
US20050274181A1 (en) 2005-12-15

Similar Documents

Publication Publication Date Title
JP4412477B2 (ja) 振動型角速度センサ
US8375790B2 (en) Physical quantity detection apparatus, method of controlling physical quantity detection apparatus, abnormality diagnosis system, and abnormality diagnosis method
JP4411529B2 (ja) 振動型角速度センサ
US7849744B2 (en) Driving device, physical quantity measurement device, and electronic instrument
JP5458462B2 (ja) 振動型慣性力検知センサ
US7812681B2 (en) Driver device, physical quantity measuring device, and electronic instrument
JP5136016B2 (ja) 駆動装置、物理量測定装置及び電子機器
JP2007107909A5 (ja)
JP2003319668A (ja) 振動波駆動装置及びその駆動回路
JP2007263941A (ja) 角速度センサおよびその製造方法
US6954022B2 (en) Control apparatus for vibration type actuator
JP2006017659A (ja) アナログ信号のデジタル変換方法
JP2005043098A (ja) 物理量検出装置
US7692506B2 (en) Oscillation driver device, physical quantity measuring device, and electronic instrument
JP3732582B2 (ja) 角速度検出装置
JP4600031B2 (ja) 角速度検出装置
JP2010107416A (ja) 角速度検出装置およびその製造方法
US8297120B2 (en) Angular velocity signal detection circuit and angular velocity signal detection method
JP2000136934A (ja) 角速度センサの検出信号処理装置
JP2005265724A (ja) 振動型角速度センサ
JP4310455B2 (ja) 静電駆動型振動ジャイロ装置
JP2001033533A (ja) 磁気インピーダンスセンサ回路
JP4935069B2 (ja) 角速度センサ
JP4884498B2 (ja) 角度検出装置
JP2006071498A (ja) 振動ジャイロ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091028

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091110

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131127

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees