CN103187288B - 一种带有静电保护功能的沟槽半导体功率器件的制备方法 - Google Patents

一种带有静电保护功能的沟槽半导体功率器件的制备方法 Download PDF

Info

Publication number
CN103187288B
CN103187288B CN201110457665.1A CN201110457665A CN103187288B CN 103187288 B CN103187288 B CN 103187288B CN 201110457665 A CN201110457665 A CN 201110457665A CN 103187288 B CN103187288 B CN 103187288B
Authority
CN
China
Prior art keywords
layer
groove
mask
polysilicon
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201110457665.1A
Other languages
English (en)
Other versions
CN103187288A (zh
Inventor
苏冠创
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LISHIN SEMICONDUCTOR Inc
Original Assignee
LISHIN SEMICONDUCTOR Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LISHIN SEMICONDUCTOR Inc filed Critical LISHIN SEMICONDUCTOR Inc
Priority to CN201110457665.1A priority Critical patent/CN103187288B/zh
Publication of CN103187288A publication Critical patent/CN103187288A/zh
Application granted granted Critical
Publication of CN103187288B publication Critical patent/CN103187288B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Thyristors (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

本发明公开了一种带有静电保护功能的沟槽半导体功率器件的制备方法,包括以下步骤:首先利用沟槽掩模对衬底上外延层进行侵蚀而形成多个栅极沟槽,在外延层表面依次沉积二氧化硅层和多晶硅层,再利用多晶硅掩模形成多晶硅区作静电保护用,P型基区掺杂剂可在进行栅极沟槽侵蚀之前注入或在多晶硅区形成之后注入;然后,在外延层表面沉积层间介质,利用接触孔掩模在层间介质中形成开孔,并注入N型掺杂剂形成在有源区的N型源区和多晶硅区的N型区,之后对外延层表面进行侵蚀形成接触沟槽,并对接触沟槽进行金属插塞填充;最后,在器件的上表面沉积金属层,利用金属掩模进行金属侵蚀,形成金属垫层和连线,本制备方法省略了基区掩模和源区掩模的工序。

Description

一种带有静电保护功能的沟槽半导体功率器件的制备方法
技术领域
本发明涉及一种带有静电保护功能的半导体功率器件技术领域,具体的说,涉及一种带有静电保护功能的沟槽半导体功率器件的制备方法。
背景技术
目前,功率MOSFET(Metal Oxide Semiconductor Field Effect Transistor,金属氧化物半导体场效应晶体管)已广泛应用于各类电子、通讯产品中,同时,其在工业上也有多种应用。
功率MOSFET所代表的功率半导体器件,由于导通电阻低且可高速开关,所以其可有效地控制高频大电流。同时,功率MOSFET作为小型功率转换元件正被广泛地利用在例如功率放大器、功率转换器、低噪音放大器以及一些个人计算机的电源部分开关、电源电路,其特点是低功耗、速度快。
沟槽型功率MOSFET,因其具有结构上的高效以及导通电阻特性低的优点,其作为电源控制用电子器件被广泛应用,有些应用是需要功率半导体器件带有静电保护功能的。
在现有的带有静电保护功能的沟槽型功率MOSFET的设计和制造领域中,器件的基区和源区是各自都需要基区掩模和源区掩模步骤引入的,而有些之前提出的,如公开了的美国专利文献US07799642,US20090085074,US20110233666,US20110233667等,试图省略基区或源区掩模步骤的制造方法,其步骤较为复杂,不易生成,而且制造出的半导体器件的终端(termination)结构不好,以至器件的击穿电压和可靠性也相对较差。
发明内容
本发明克服了现有技术中的缺点,提供了一种带有静电保护功能的沟槽半导体功率器件的制备方法,其较之前的带有静电保护功能的沟槽型功率器件制造方法步骤少,省略了基区或源区掩模步骤,降低了带有静电保护功能的沟槽型功率器件的制造成本,而且不影响带有静电保护功能的沟槽型功率器件的电气性能,质量和可靠性,进而提高了半导体器件的性能价格比。
本发明可用于制备12V至1200V的带有静电保护功能的沟槽半导体功率器件。
为了解决上述技术问题,本发明是通过以下技术方案实现的:
一种带有静电保护功能的沟槽半导体功率器件的制备方法,包括以下步骤:
(1)利用沟槽掩模对衬底上的外延层注入P型掺杂剂形成P型基区,并在外延层上进行侵蚀而形成多个栅极沟槽;
(2)在外延层表面依次沉积二氧化硅层和多晶硅层,接着利用多晶硅掩模形成多晶硅区作静电保护用;
(3)在外延层表面沉积层间介质,接着利用接触孔掩模,对层间介质进行侵蚀,在层间介质中形成开孔,然后注入N型掺杂剂形成在有源区(active area)的N型源区和多晶硅区的N型区,之后对外延层表面进行侵蚀形成接触沟槽,并对接触沟槽进行金属插塞填充;
(4)在器件的上表面沉积金属层,利用金属掩模进行金属侵蚀,形成金属垫层和连线。
进一步,所述步骤(1)包括以下步骤:
a、在外延层的上面形成氧化层,在氧化层上积淀光刻涂层,再通过沟槽掩模暴露出部分氧化层,对暴露出的部分氧化层进行干蚀,直至暴露出外延层,形成沟槽掩模在氧化层上的开孔,这些开孔不是全都一样大小,其中的宽度范围是0.2um至2.0um,然后清除掉光刻涂层,
b、在表面注入P型掺杂剂,有原氧化层覆盖的部分没有被注入,没有原氧化层覆盖的部分,P型掺杂剂会注入到外延层表面上,并通过一次高温扩散作业将P型掺杂剂推进扩散到外延层形成P型基区;
c、通过刻蚀在开孔处形成沟槽,该沟槽穿过P型基区延伸至外延层中,对沟槽进行牺牲性氧化,然后清除掉所有氧化层;
d、在沟槽暴露着的侧壁和底部,以及外延层的上表面形成栅极氧化层,再在沟槽中沉积N型高掺杂剂的多晶硅,以填充沟槽并覆盖顶面;
e、对在外延层表面上的多晶硅层进行平面腐蚀处理或化学机械抛光。
进一步,其特征在于,在步骤b中,所述一次高温扩散作业温度为950至1200℃,时间为10分钟至1000分钟
进一步,其特征在于,在步骤d中,通过热生长的方式,在沟槽暴露着的侧壁和底部,以及外延层的上表面形成栅极氧化层。
进一步,所述步骤(1)在本发明的一种变型(embodiment)中包括以下步骤:
在步骤c中,在刻蚀沟槽前,先沉淀一层氧化层并把在氧化层中的至少一个沟槽掩模开孔封上,封上的开孔宽度可以是0.2um或0.3um或0.4um或0.5um或0.6um不等,视制备方法而定,这步骤的好处是使有些沟槽掩模的开孔有被P型掺杂剂注入但没有被开出沟槽,然后对氧化层进行干蚀,接着清除开孔里的氧化层,暴露出开孔里的外延层;之后刻蚀沟槽。
进一步,其特征在于,在上述步骤中,在刻蚀沟槽前,采用LPCVD方法沉淀一层氧化层。
进一步,所述步骤(2)包括以下步骤:
a、在外延层的表面依次沉积无掺杂二氧化硅层和多晶硅层;
b、在多晶硅层表面注入P型掺杂剂;
c、在多晶硅层表面积淀光刻涂层,利用多晶硅掩模暴露出部分多晶硅层,接着对暴露出的部分多晶硅进行干蚀,直至暴露出多晶硅层下无掺杂二氧化硅;
d、再把外延层表面上没有被光刻涂层覆盖的无掺杂二氧化硅刻蚀掉,然后清除掉光刻涂层。
进一步,其特征在于,在步骤a中,所述的多晶硅层接受退火作业,温度为950至1050℃,时间为10分钟至100分钟。
一种带有静电保护功能的沟槽半导体功率器件的制备方法,包括以下步骤:
(1)利用沟槽掩模对衬底上的外延层进行侵蚀而形成多个栅极沟槽;
(2)在外延层表面依次沉积二氧化硅层和多晶硅层,再利用多晶硅掩模形成多晶硅区作静电保护用,并通过多晶硅掩模对外延层注入P型掺杂剂形成P型基区;
(3)在外延层表面沉积层间介质,再利用接触孔掩模,对层间介质进行侵蚀,在层间介质中形成开孔,然后注入N型掺杂剂形成在有源区(active area)的N型源区和多晶硅区的N型区,之后对外延层表面进行侵蚀形成接触沟槽,并对接触沟槽进行金属插塞填充;
(4)在器件的上表面沉积金属层,利用金属掩模进行金属侵蚀,形成金属垫层和连线。
进一步,所述步骤(1)包括以下步骤:
a、在外延层的上面形成氧化层,在氧化层上积淀光刻涂层,再通过沟槽掩模暴露出部分氧化层,对暴露出的部分氧化层进行干蚀,直至暴露出外延层,形成沟槽掩模在氧化层上的开孔,这些开孔不是全都一样大小,其中的宽度范围是0.2um至2.0um,然后清除掉光刻涂层;
b、通过刻蚀在开孔处形成沟槽,该沟槽延伸至外延层中,对沟槽进行牺牲性氧化,然后清除掉所有氧化层;
c、在沟槽暴露着的侧壁和底部,以及外延层的上表面形成栅极氧化层,再在沟槽中沉积N型高掺杂剂的多晶硅,以填充沟槽并覆盖顶面;
d、对在外延层表面上的多晶硅层进行平面腐蚀处理或化学机械抛光。
进一步,其特征在于,在步骤c中,通过热生长的方式,在沟槽暴露着的侧壁和底部,以及外延层的上表面形成栅极氧化层。
进一步,所述步骤(2)包括以下步骤:
a、在外延层的表面依次沉积无掺杂二氧化硅层和多晶硅层;
b、在多晶硅层表面注入P型掺杂剂;
c、在多晶硅层积淀光刻涂层,利用多晶硅掩模暴露出部分多晶硅,然后对暴露出的部分多晶硅进行干蚀,直至暴露出多晶硅层下无掺杂二氧化硅;
d、再把外延层表面上没有被光刻涂层覆盖的无掺杂二氧化硅刻蚀掉;
e、在表面注入P型掺杂剂,有多晶硅掩模的光刻涂层覆盖的部分没有被注入,没有多晶硅掩模的光刻涂层覆盖的部分,P型掺杂剂会注入到外延层表面上,然后清除掉光刻涂层,并通过一次高温扩散作业将P型掺杂剂推进扩散到外延层形成P型基区。
进一步,其特征在于,在步骤a中,所述的多晶硅层接受退火作业,温度为950至1050℃,时间为10分钟至100分钟。
进一步,其特征在于,在步骤e中,所述一次高温扩散作业温度为950至1200℃,时间为10分钟至1000分钟。
进一步,以上所述的带一种有静电保护功能的沟槽半导体功率器件的制备方法中的步骤(3)包括以下步骤:
a、在最顶层表面沉积层间介质;
b、在层间介质表面积淀光刻涂层,利用接触孔掩模暴露出部分层间介质,然后对暴露出的部分层间介质进行干蚀,直至暴露出外延层和多晶硅层,形成在层间介质中的接触孔掩模开孔,这些开孔不是全都一样大小,其中的宽度范围是0.2um至1.6um,然后清除掉光刻涂层;
c、在表面注入N型掺杂剂,并通过二次高温扩散作业将N型掺杂剂推进扩散到P型基区中形成N型源区和多晶硅层中形成N型区;
d、通过层间介质开孔,对外延层表面和多晶硅层表面进行侵蚀,形成接触孔沟槽,
e、在有源区(active area),接触孔沟槽穿过N型源区进入到P型基区,
f、在多晶硅区,接触孔沟槽进入多晶硅区;
g、之后对接触孔沟槽注入P型高掺杂剂;
h、在接触孔沟槽侧壁、底部以及层间介质表面上依次沉积一层钛层和一层氮化钛层,再对接触孔沟槽进行钨填充以形成沟槽金属插塞。
进一步,其特征在于,在步骤a中,在最顶层表面依次沉积无掺杂二氧化硅和硼磷玻璃形成层间介质。
进一步,所述步骤(3)在本发明的一种变型中包括以下步骤:
在步骤d或e中,在刻蚀接触孔沟槽前,先沉淀一层氧化层并把在层间介质中的至少一个接触孔掩模开孔封上,封上的开孔宽度可以是0.2um或0.3um或0.4um或0.5um或0.6um不等,视制备方法而定,这步骤的好处是使有些接触孔沟槽开孔没有金属插塞在其中;然后对氧化层进行干蚀,清除层间介质开孔里的氧化层,暴露出开孔里的外延层;之后刻蚀接触孔沟槽。
进一步,其特征在于,在上述步骤中,采用LPCVD方法沉淀一层氧化层。
进一步,其特征在于,在步骤c中,所述二次高温扩散作业温度为950至1200℃,时间为10分钟至100分钟。
进一步,以上所述步骤(4)中的金属层为铝铜合金。
与现有技术相比,本发明的有益效果是:
采用本发明的制备方法,省略了基区掩模和源区掩模的制备工序,使器件的制造成本得到了较大的降低;同时不会影响器件原有的电气特性,从而增加了器件的性能价格比,而且不影响沟槽型功率器件的质量和可靠性。
附图说明
附图用来提供对本发明的进一步理解,与本发明的实施例一起用于解释本发明,并不构成对本发明的限制,在附图中:
图1a,1b是本发明实施例1的暴露氧化层示意图;
图2a,2b是本发明实施例1的暴露外延层示意图;
图3a,3b是本发明实施例1的注入P型掺杂剂示意图;
图4a,4b是本发明实施例1的P型基区示意图;
图5a,5b是本发明实施例1的沟槽示意图;
图6a,6b是本发明实施例1的对沟槽进行牺牲性氧化处理示意图;
图7a,7b是本发明实施例1的栅极氧化层示意图;
图8a,8b是本发明实施例1的沉积高掺杂的多晶硅示意图;
图9a,9b是本发明实施例1的进行平面处理示意图;
图10a,10b是本发明实施例1的沉积无掺杂二氧化硅层和多晶硅层示意图;
图11a,11b是本发明实施例1的注入P型掺杂剂到多晶硅层示意图;
图12a,12b是本发明实施例1的用平面处理去清除掉二氧化硅层和多晶硅层示意图;
图13a,13b是本发明实施例1的层间介质示意图;
图14a,14b是本发明实施例1的接触孔沟槽示意图;
图15a,15b是本发明实施例1的N型源区和N型区示意图;
图16a,16b是本发明实施例1的注入P型掺杂剂到接触孔沟槽示意图;
图17a,17b是本发明实施例1的金属插塞示意图;
图18a,18b是本发明实施例1的铜铝合金层示意图;
图19a,19b是本发明实施例2的暴露氧化层示意图;
图20a,20b是本发明实施例2的暴露外延层示意图;
图21a,21b是本发明实施例2的沟槽示意图;
图22a,22b是本发明实施例2的对沟槽进行牺牲性氧化处理示意图;
图23a,23b是本发明实施例2的栅极氧化层示意图;
图24a,24b是本发明实施例2的沉积高掺杂的多晶硅示意图;
图25a,25b是本发明实施例2的进行平面处理示意图;
图26a,26b是本发明实施例2的沉积无掺杂二氧化硅层和多晶硅层示意图;
图27a,27b是本发明实施例2的注入P型掺杂剂到多晶硅层示意图;
图28a,28b是本发明实施例2的二氧化硅层和多晶硅层腐蚀处理后示意图;
图29a,29b是本发明实施例2的注入P型掺杂剂示意图;
图30a,30b是本发明实施例2的P型基区示意图;
图31a,31b是本发明实施例2的层间介质示意图;
图32a,32b是本发明实施例2的注入N型掺杂剂示意图;
图33a,33b是本发明实施例2的N型源区和N型区示意图;
图34a,34b是本发明实施例2的注入P型掺杂剂到接触孔沟槽示意图;
图35a,35b是本发明实施例2的金属插塞示意图;
图36a,36b是本发明实施例2的铜铝合金层示意图;
图37a,37b是本发明实施例3(本发明的另一种变型)的铜铝合金层示意图;
图38a,38b是本发明实施例4(本发明的另一种变型)的铜铝合金层示意图;
图39a,39b是本发明实施例5(本发明的另一种变型)的铜铝合金层示意图;
图40a,40b是本发明实施例6(本发明的另一种变型)的铜铝合金层示意图。
具体实施方式
以下结合附图对本发明的优选实施例进行说明,应当理解,此处所描述的优选实施例仅用于说明和解释本发明,并不用于限定本发明。
本发明公开了一种带有静电保护功能的沟槽半导体功率器件的制备方法,包括以下步骤:首先利用沟槽掩模对衬底上外延层进行侵蚀而形成多个栅极沟槽,在外延层表面依次沉积二氧化硅层和多晶硅层,接着利用多晶硅掩模形成多晶硅区作静电保护用,P型基区掺杂剂可在进行栅极沟槽侵蚀之前注入或在多晶硅区形成之后注入;然后,在外延层表面沉积层间介质,再利用接触孔掩模,对层间介质进行侵蚀,在层间介质中形成开孔,然后注入N型掺杂剂形成在有源区(active area)的N型源区和多晶硅区的N型区,之后对外延层表面进行侵蚀形成接触沟槽,并对接触沟槽进行金属插塞填充;最后,在器件的上表面沉积金属层,利用金属掩模进行金属侵蚀,形成金属垫层和连线。
实施例1:
如图1a,1b所示,外延层置于衬底的上方,首先在外延层的上面采用积淀或热生长方式形成氧化层(厚度为0.3um至1.5um氧化物硬光罩),在氧化层上再积淀一层光刻涂层,然后通过沟槽掩模形成图案暴露出氧化层的一些部分。如图2a,2b所示,对沟槽掩模形成图案暴露出的氧化层进行干蚀后,暴露出外延层,然后清除掉光刻涂层。
如图3a,3b所示,对硅片表面注入P型掺杂剂(剂量为8e12/cm3至2e14/cm3),有原氧化层覆盖的部分没有被注入,没有原氧化层覆盖的部分,P型掺杂剂会注入到外延层表面上形成P型区,P型掺杂剂可采用B11(硼boron)。
如图4a,4b所示,注入的P型掺杂剂通过一次高温扩散作业(时间为10分钟至1000分钟,温度为950℃至1200℃)被推进扩散到外延层形成P型基区。这步骤所形成的P型基区深度(深度为0.5um至4.0um)并非最终深度,因为这步骤之后还有其它高温作业,所以,这步骤所形成的基区深度要适当调整。
如图5a,5b所示,,通过蚀刻形成沟槽,该沟槽(深度为1.0um至7.0um,宽度为0.2um至2.0um)穿过P型基区延伸至外延层。
如图6a,6b所示,在形成沟槽后,对沟槽进行牺牲性氧化(时间为10分钟至100分钟,温度为1000℃至1200℃),以消除在开槽过程中被等离子破坏的硅层(牺牲性氧化作业会将P型掺杂物进一步推进扩散到外延层),然后清除掉所有氧化层。
如图7a,7b所示,并通过热生长的方式,在沟槽暴露着的侧壁和底部,和外延层的上表面形成一层薄的栅极氧化层(厚度为0.02um至0.12um)。
如图8a,,8b所示,在沟槽中沉积N型高掺杂剂的多晶硅,多晶硅掺杂浓度为RS=5Ω/□至100Ω/□(方阻),以填充沟槽并覆盖顶面。
如图9a,9b所示,接着对在外延层表面上的多晶硅层进行平面腐蚀处理或化学机械抛光。
如图10a,10b所示,在外延层最表面上依次沉积无掺杂二氧化硅层和多晶硅层,无掺杂二氧化硅层厚度为0.1um至0.8um,多晶硅层厚度为0.5um至1.0um。
如图11a,,11b所示,在多晶硅层表面注入P型掺杂剂(硼,杂剂浓度为1013至1×1015/cm3),然后对多晶硅层进行退火作业,温度为950至1050℃,时间为10分钟至100分钟。
如图12a,12b所示,在多晶硅层表面积淀一层光刻涂层,通过多晶硅掩模形成图案暴露出多晶硅层的一些部分,对暴露出的多晶硅层和氧化层进行干蚀后,暴露出外延层,然后清除掉光刻涂层。
如图13a,13b所示,,在外延层最表面上先沉积无掺杂二氧化硅层(厚度为0.1um至0.8um),然后沉积硼磷玻璃(厚度为0.1um至0.8um)形成层间介质。
如图14a,14b所示,在层间介质表面积淀光刻涂层,利用接触孔掩模暴露出部分层间介质,然后对暴露出的部分层间介质进行干蚀,直至暴露出外延层(宽度为0.25um至1.0um),然后清除掉光刻涂层;之后对外延层表面注入N型掺杂剂(磷或砷,剂量为1e15/cm3至2e16/cm3)。
如图15a,15b所示,通过二次高温扩散处理,温度为950至1200℃,时间为10分钟至100分钟,使N型区推進扩散到P型基区中形成N型源区(N型源区深度为0.2um至0.8um,P型基区深度为0.5um至4.5um)和多晶硅层中形成N型区。
如图16a,16b所示,通过接触孔掩模,对含有掺杂剂的外延层和多晶硅层进行浸蚀,在有源区(active area),接触沟槽(深度为0.4um至1.0um,宽度为0.2um至1.0um)穿过源区进入到P型基区;在多晶硅区,接触孔沟槽进入多晶硅区,之后对接触孔沟槽注入P型高掺杂剂,杂剂浓度为1014至5×1015/cm3,以减少P型基区与金属插塞间的接触电阻,这有效地增加器件的安全使用区。
如图17a,17b所示,在接触沟槽侧壁、底部以及外延层上表面沉积一层钛/氮化钛层,接着对接触沟槽进行钨填充以形成沟槽插塞。
如图18a,18b所示,在该器件的上面沉积一层铝铜合金(厚度为0.8um至10um),然后通过金属掩模进行金属浸蚀,形成金属垫层和连线。
实施例2:
如图19a,19b所示,N型外延层置于衬底的上方,首先在外延层的上面采用积淀或热生长方式形成氧化层(厚度为0.3um至1.5um氧化物硬光罩),在氧化层上再积淀一层光刻涂层,然后通过沟槽掩模形成图案暴露出氧化层的一些部分。如图20a,20b所示,对沟槽掩模形成图案暴露出的氧化层进行干蚀后,暴露出外延层,然后清除掉光刻涂层。
如图21a,21b所示,,通过蚀刻形成沟槽,该沟槽(深度为1.0um至7.0um,宽度为0.2um至2.0um)延伸至N型外延层中。
如图22a,22b所示,形成沟槽后,对沟槽进行牺牲性氧化(时间为10分钟至100分钟,温度为1000℃至1200℃),以消除在开槽过程中被等离子破坏的硅层,然后清除掉所有氧化层。
如图23a,23b所示,并通过热生长的方式,在沟槽暴露着的侧壁和底部,和外延层的上表面形成一层薄的栅极氧化层(厚度为0.02um至0.12um)。
如图24a,24b所示,在沟槽中沉积N型高掺杂剂的多晶硅,多晶硅掺杂浓度为RS=5Ω/□至100Ω/□(方阻),以填充沟槽并覆盖顶面。
如图25a,25b所示,接着对在外延层表面上的多晶硅层进行平面腐蚀处理或化学机械抛光。
如图26a,26b所示,在外延层最表面上依次沉积无掺杂二氧化硅层和多晶硅层,无掺杂二氧化硅层厚度为0.1um至0.8um,多晶硅层厚度为0.5um至1.0um。
如图27a,27b所示,在多晶硅层表面注入P(硼)型掺杂剂,杂剂浓度为1013至1×1015/cm3,然后对多晶硅层进行退火作业,温度为950至1050℃,时间为10分钟至100分钟。
如图28a,28b所示,在多晶硅层表面积淀一层光刻涂层,通过多晶硅掩模形成图案暴露出多晶硅层的一些部分,对暴露出的多晶硅层和氧化层进行干蚀后,直至暴露出外延层。
如图29a,29b所示,对硅片表面注入P型掺杂剂(硼,剂量为8e12/cm3至2e14/cm3),有多晶硅光刻涂层覆盖的部分没有被注入,没有多晶硅光刻涂层覆盖的部分,P型掺杂剂会注入到外延层表面上形成P型区,P型掺杂剂可采用B11(硼boron),然后清除掉光刻涂层。
如图30a,30b所示,注入的P型掺杂剂通过一次高温扩散作业(时间为10分钟至1000分钟,温度为950℃至1200℃)被推进扩散到外延层中形成P型基区,这步骤所形成的P型基区深度(深度为0.5um至4.5um)并非最终深度。
如图31a,31b所示,,在外延层最表面上先沉积无掺杂二氧化硅层(厚度为0.1um至0.8um),然后沉积硼磷玻璃(厚度为0.1um至0.8um)形成层间介质。如图32a,32b所示,在层间介质表面积淀光刻涂层,利用接触孔掩模暴露出部分层间介质,接触孔的宽度为0.2um至1.0um,然后对暴露出的部分层间介质进行干蚀,直至暴露出外延层(宽度为0.2um至1.0um),然后清除掉光刻涂层;之后对外延层表面注入N型掺杂剂(磷或砷,剂量为1e15/cm3至2e16/cm3)。如图33a,33b所示,通过二次高温扩散处理,温度为950至1200℃,时间为10分钟至100分钟,将N型掺杂剂推进扩散到P型基区中形成N型源区和多晶硅层中形成N型区,N型源区深度为0.2um至0.8um,P型基区深度为0.5um至4.5um。
如图34a,34b所示,通过接触孔掩模,对含有掺杂剂的外延层和多晶硅层进行浸蚀,在有源区(active area),接触沟槽(深度为0.4um至1.0um,宽度为0.2um至1.0um)穿过N型源区进入到P型基区;在多晶硅区,接触孔沟槽进入多晶硅区中,之后对接触孔沟槽注入P型高掺杂剂,杂剂浓度为1014~5×1015/cm3,以减少P型基区与金属插塞间的接触电阻,这有效地增加器件的安全使用区。如图35a,35b所示,对接触沟槽进行乾蚀,並在接触沟槽侧壁、底部以及外延层上表面沉积一层钛/氮化钛层,再对接触沟槽进行钨填充以形成沟槽插塞。
如图36a,36b在该器件的上面沉积一层铝铜合金(厚度为0.8um至10um),然后通过金属掩模进行金属浸蚀,形成金属垫层和连线。
实施例3:
本实施例的技术方案与实施例1大致相同,其区别仅在于:
在上述实施例1中图5刻蚀沟槽前,先沉淀一层(LPCVD)氧化层并把在氧化层中的至少一个沟槽掩模开孔封上,封上的开孔宽度可以是0.2um或0.3um或0.4um或0.5um或0.6um不等,视制备方法而定,然后对氧化层进行干蚀,清除沟槽掩模开孔里的氧化层,暴露出开孔里的外延层;之后刻蚀沟槽,其他步骤和实施例1相同,器件的横截面如图37a,37b。
实施例3的好处是使有些沟槽掩模的开孔有被P型掺杂剂注入但没有被开出沟槽,器件的终端结构更好,因而器件的击穿电压更高和更稳定。
实施例4:
为本发明的另一种变型:所述实施例1,在刻蚀接触孔沟槽前,先沉淀一层(LPCVD)氧化层并把在层间介质中的至少一个接触孔掩模开孔封上,封上的开孔宽度可以是0.2um或0.3um或0.4um或0.5um或0.6um不等,视制备方法而定;然后对氧化层进行干蚀,清除接触孔掩模开孔里的氧化层,暴露出开孔里的外延层;之后刻蚀接触孔沟槽。其他步骤基本与实施例1的相同,器件的横截面如图38a,38b。
实施例5:
为本发明的另一种变型:所述实施例2,在刻蚀接触孔沟槽前,先沉淀一层(LPCVD)氧化层并把在层间介质中的至少一个接触孔掩模开孔封上,封上的开孔宽度可以是0.2um或0.3um或0.4um或0.5um或0.6um不等,视制备方法而定;然后对氧化层进行干蚀,清除接触孔掩模开孔里的氧化层,暴露出开孔里的外延层;之后刻蚀接触孔沟槽。其他步骤基本与实施例1的相同,器件的横截面如图39a,39b。
实施例6:
为本发明的另一种变型:所述实施例3,在刻蚀接触孔沟槽前,先沉淀一层(LPCVD)氧化层并把在层间介质中的至少一个接触孔掩模开孔封上,封上的开孔宽度可以是0.2um或0.3um或0.4um或0.5um或0.6um不等,视制备方法而定;然后对氧化层进行干蚀,清除接触孔掩模开孔里的氧化层,暴露出开孔里的外延层;之后刻蚀接触孔沟槽。其他步骤基本与实施例1的相同,器件的横截面如图40a,40b。
最后应说明的是:以上仅为本发明的优选实施例而已,并不用于限制本发明,本发明可用于涉及制造带有静电保护功能的沟槽半导体功率器件(例如,带有静电保护功能的沟槽绝缘栅双极晶体管(Trench IGBT)或沟槽二极管、沟槽有特基二极管),本发明可用于制备12V至1200V的带有静电保护功能的沟槽半导体功率器件,本发明的实施例是以N型通道器件作出说明,本发明亦可用于P型通道器件,尽管参照实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换,但是凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之。

Claims (10)

1.一种带有静电保护功能的沟槽半导体功率器件的制备方法,其特征在于,包括以下步骤,并依次如下:
(1)利用沟槽掩模对衬底上的外延层注入P型掺杂剂形成P型基区,并在外延层上进行侵蚀而形成多个栅极沟槽;
(2)在外延层表面依次沉积二氧化硅层和多晶硅层,再利用多晶硅掩模形成多晶硅区作静电保护用;
(3)在外延层表面沉积层间介质,再利用接触孔掩模,对层间介质进行侵蚀,在层间介质中形成开孔,然后注入N型掺杂剂形成在有源区(active area)的N型源区和多晶硅区的N型区,之后对外延层表面进行侵蚀形成接触沟槽,并对接触沟槽进行金属插塞填充;
(4)在器件的上表面沉积金属层,利用金属掩模进行金属侵蚀,形成金属垫层和连线。
2.根据权利要求1所述的一种带有静电保护功能的沟槽半导体功率器件的制备方法,其特征在于,所述步骤(1)包括以下步骤:
a、在外延层的上面形成氧化层,在氧化层上积淀光刻涂层,再通过沟槽掩模暴露出部分氧化层,对暴露出的部分氧化层进行干蚀,直至暴露出外延层,形成在氧化层上的多个沟槽掩模开孔,然后清除掉光刻涂层;
b、在表面注入P型掺杂剂,有原氧化层覆盖的部分没有被注入,没有原氧化层覆盖的部分,P型掺杂剂会注入到外延层表面上,并通过一次高温扩散作业将P型掺杂剂推进扩散到外延层中形成P型基区;
c、通过刻蚀在开孔处形成沟槽,该沟槽穿过P型基区延伸至外延层中,对沟槽进行牺牲性氧化,然后清除掉所有氧化层;
d、在沟槽暴露着的侧壁和底部,以及外延层的上表面形成栅极氧化层,再在沟槽中沉积N型高掺杂剂的多晶硅,以填充沟槽并覆盖顶面;
e、对在外延层表面上的多晶硅层进行平面腐蚀处理或化学机械抛光。
3.根据权利要求2所述的一种带有静电保护功能的沟槽半导体功率器件的制备方法,其特征在于,在步骤a中,所述的多个沟槽掩模开孔宽度不一样。
4.根据权利要求2所述的一种带有静电保护功能的沟槽半导体功率器件的制备方法,其特征在于,在步骤c中,在刻蚀沟槽前,先沉淀一层氧化层并把在氧化层中的至少一个沟槽掩模开孔封上,然后对氧化层进行干蚀,清除开孔里的氧化层,暴露出开孔里的外延层;之后刻蚀沟槽。
5.根据权利要求1所述的一种带有静电保护功能的沟槽半导体功率器件的制备方法,其特征在于,所述步骤(2)包括以下步骤:
a、在外延层的表面上依次沉积无掺杂二氧化硅层和多晶硅层;
b、在多晶硅层表面注入P型掺杂剂;
c、在多晶硅层表面积淀光刻涂层,利用多晶硅掩模暴露出部分多晶硅层,然后对暴露出的部分多晶硅层进行干蚀,直至暴露出多晶硅层下无掺杂二氧化硅;
d、再把外延层表面上没有被光刻涂层覆盖的无掺杂二氧化硅刻蚀掉,然后清除掉光刻涂层。
6.一种带有静电保护功能的沟槽半导体功率器件的制备方法,其特征在于,包括以下步骤:
(1)利用沟槽掩模对衬底上的外延层进行侵蚀而形成多个栅极沟槽;
(2)在外延层表面依次沉积二氧化硅层和多晶硅层,再利用多晶硅掩模形成多晶硅区作静电保护用,并通过多晶硅掩模对外延层注入P型掺杂剂形成P型基区;
(3)在外延层表面沉积层间介质,再利用接触孔掩模,对层间介质进行侵蚀,在层间介质中形成开孔,然后注入N型掺杂剂形成N型源区,之后对外延层表面进行侵蚀形成接触沟槽,并对接触沟槽进行金属插塞填充;
(4)在器件的上表面沉积金属层,利用金属掩模进行金属侵蚀,形成金属垫层和连线。
7.根据权利要求6所述的一种带有静电保护功能的沟槽半导体功率器件的制备方法,其特征在于,所述步骤(1)包括以下步骤:
a、在外延层的上面形成氧化层,在氧化层上积淀光刻涂层,再通过沟槽掩模暴露出部分氧化层,对暴露出的部分氧化层进行干蚀,直至暴露出外延层,形成在氧化层上的沟槽掩模开孔,然后清除掉光刻涂层;
b、通过刻蚀在开孔处形成沟槽,该沟槽延伸至外延层中,对沟槽进行牺牲性氧化,然后清除掉所有氧化层;
c、在沟槽暴露着的侧壁和底部,以及外延层的上表面形成栅极氧化层,再在沟槽中沉积N型高掺杂剂的多晶硅,以填充沟槽并覆盖顶面;
d、对在外延层表面上的多晶硅层进行平面腐蚀处理或化学机械抛光。
8.根据权利要求6所述的一种带有静电保护功能的沟槽半导体功率器件的制备方法,其特征在于,所述步骤(2)包括以下步骤:
a、在外延层的表面依次沉积无掺杂二氧化硅层和多晶硅层;
b、在多晶硅层表面注入P型掺杂剂;
c、在多晶硅层表面积淀光刻涂层,利用多晶硅掩模暴露出部分多晶硅层,然后对暴露出的部分多晶硅层进行干蚀,直至暴露出多晶硅层下无掺杂二氧化硅;
d、再把外延层表面上没有被光刻涂层覆盖的无掺杂二氧化硅刻蚀掉;
e、在表面注入P型掺杂剂,有多晶硅掩模的光刻涂层覆盖的部分没有被注入,没有多晶硅掩模的光刻涂层覆盖的部分,P型掺杂剂会注入到外延层表面上,然后清除掉光刻涂层,并通过一次高温扩散作业将P型掺杂剂推进扩散到外延层中形成P型基区。
9.根据权利要求1或6所述的一种带有静电保护功能的沟槽半导体功率器件的制备方法,其特征在于,所述步骤(3)包括以下步骤:
a、在最顶层表面沉积层间介质;
b、在层间介质表面积淀光刻涂层,利用接触孔掩模暴露出部分层间介质,然后对暴露出的部分层间介质进行干蚀,直至暴露出外延层和多晶硅层,在层间介质中形成多个接触孔掩模开孔,多个接触孔掩模开孔的宽度不一样,然后清除掉光刻涂层;
c、在表面注入N型掺杂剂,并通过二次高温扩散作业将N型掺杂剂推进扩散到P型基区中形成N型源区和多晶硅层中形成N型区;
d、通过层间介质开孔,对外延层表面和多晶硅层表面进行侵蚀,形成接触孔沟槽;
e、在有源区(active area),接触孔沟槽穿过N型源区进入到P型基区;
f、在多晶硅区,接触孔沟槽进入多晶硅区中;
g、之后对接触孔沟槽注入P型高掺杂剂;
h、在接触孔沟槽侧壁、底部以及层间介质表面上依次沉积一层钛层和一层氮化钛层,再对接触孔沟槽进行钨填充以形成沟槽金属插塞。
10.根据权利要求9所述的一种带有静电保护功能的沟槽半导体功率器件的制备方法,其特征在于,在步骤d中,在刻蚀接触孔沟槽前,先沉淀一层氧化层并把在层间介质中的至少一个接触孔掩模开孔封上;然后对氧化层进行干蚀,清除层间介质开孔里的氧化层,暴露出开孔里的外延层;之后刻蚀接触孔沟槽。
CN201110457665.1A 2011-12-29 2011-12-29 一种带有静电保护功能的沟槽半导体功率器件的制备方法 Expired - Fee Related CN103187288B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201110457665.1A CN103187288B (zh) 2011-12-29 2011-12-29 一种带有静电保护功能的沟槽半导体功率器件的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110457665.1A CN103187288B (zh) 2011-12-29 2011-12-29 一种带有静电保护功能的沟槽半导体功率器件的制备方法

Publications (2)

Publication Number Publication Date
CN103187288A CN103187288A (zh) 2013-07-03
CN103187288B true CN103187288B (zh) 2016-08-10

Family

ID=48678394

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110457665.1A Expired - Fee Related CN103187288B (zh) 2011-12-29 2011-12-29 一种带有静电保护功能的沟槽半导体功率器件的制备方法

Country Status (1)

Country Link
CN (1) CN103187288B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105185709A (zh) * 2014-05-28 2015-12-23 北大方正集团有限公司 在沟槽型vdmos中制作防静电结构的方法
CN104465349B (zh) * 2014-11-19 2017-02-22 上海华虹宏力半导体制造有限公司 沟槽栅半导体器件的制造方法
GB2535484B (en) * 2015-02-17 2019-10-09 Dynex Semiconductor Ltd Wafer metallization of high power semiconductor devices
CN106024701B (zh) * 2016-07-12 2023-06-16 杭州士兰集成电路有限公司 沟槽功率器件及制作方法
CN109148591A (zh) * 2018-08-29 2019-01-04 电子科技大学 一种集成肖特基二极管的碳化硅槽栅mos器件

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1787193A (zh) * 2004-12-08 2006-06-14 上海华虹Nec电子有限公司 深沟槽型功率mos管静电保护结构制造方法
CN101777514A (zh) * 2010-02-03 2010-07-14 香港商莫斯飞特半导体有限公司 一种沟槽型半导体功率器件及其制备方法
CN101834142A (zh) * 2010-05-21 2010-09-15 香港商莫斯飞特半导体有限公司 一种具有厚绝缘底部的沟槽及其半导体器件的制造方法
CN101997030A (zh) * 2009-08-17 2011-03-30 力士科技股份有限公司 具有浅沟槽结构的沟槽mosfet及其制造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1787193A (zh) * 2004-12-08 2006-06-14 上海华虹Nec电子有限公司 深沟槽型功率mos管静电保护结构制造方法
CN101997030A (zh) * 2009-08-17 2011-03-30 力士科技股份有限公司 具有浅沟槽结构的沟槽mosfet及其制造方法
CN101777514A (zh) * 2010-02-03 2010-07-14 香港商莫斯飞特半导体有限公司 一种沟槽型半导体功率器件及其制备方法
CN101834142A (zh) * 2010-05-21 2010-09-15 香港商莫斯飞特半导体有限公司 一种具有厚绝缘底部的沟槽及其半导体器件的制造方法

Also Published As

Publication number Publication date
CN103187288A (zh) 2013-07-03

Similar Documents

Publication Publication Date Title
CN101777514B (zh) 一种沟槽型半导体功率器件及其制备方法
US6489204B1 (en) Save MOS device
CN103187288B (zh) 一种带有静电保护功能的沟槽半导体功率器件的制备方法
CN108962989B (zh) 一种沟槽型mos器件及其制造方法
US20230282713A1 (en) Trench type power device and manufacturing method thereof
CN108091573A (zh) 屏蔽栅沟槽mosfet esd结构及其制造方法
CN108447911A (zh) 一种深浅沟槽半导体功率器件及其制备方法
CN103187303B (zh) 功率半导体装置的制作方法
CN103632964A (zh) 一种制备沟槽半导体功率器件的方法
CN109326647A (zh) 一种vdmos器件及其制作方法
CN113809145B (zh) 窄台面绝缘栅双极型晶体管器件及形成方法
CN103730493A (zh) 一种半导体功率器件的结构
CN108417637A (zh) 一种多沟槽半导体功率器件及其制备方法
CN103187287B (zh) 一种沟槽半导体分立器件的制备方法
CN103187291B (zh) 一种制备沟槽半导体功率分立器件的方法
CN103219241B (zh) 一种制备沟槽半导体分立器件的方法
CN103187292B (zh) 一种制造沟槽型半导体功率器件的方法
CN103632963A (zh) 一种制备沟槽栅控半导体功率器件的方法
CN210403736U (zh) Sgt器件
CN103187281B (zh) 一种沟槽半导体功率分立器件的制备方法
CN103187282B (zh) 一种沟槽半导体功率器件的制备方法
CN112820698A (zh) 一种快充电源及接口浪涌保护芯片制造工艺
CN102820214B (zh) 半导体的制造方法
CN103426937B (zh) 一种沟槽终端结构肖特基器件及其制备方法
CN106783572B (zh) 半导体结构的形成方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160810

Termination date: 20201229

CF01 Termination of patent right due to non-payment of annual fee