CN103153462B - 加氢甲酰基化方法 - Google Patents

加氢甲酰基化方法 Download PDF

Info

Publication number
CN103153462B
CN103153462B CN201180048078.5A CN201180048078A CN103153462B CN 103153462 B CN103153462 B CN 103153462B CN 201180048078 A CN201180048078 A CN 201180048078A CN 103153462 B CN103153462 B CN 103153462B
Authority
CN
China
Prior art keywords
calixarenes
transition metal
organophosphorus ligand
bisphosphite ligands
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201180048078.5A
Other languages
English (en)
Other versions
CN103153462A (zh
Inventor
M·A·布拉默
R·W·韦格曼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dow Technology Investments LLC
Original Assignee
Dow Technology Investments LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Technology Investments LLC filed Critical Dow Technology Investments LLC
Publication of CN103153462A publication Critical patent/CN103153462A/zh
Application granted granted Critical
Publication of CN103153462B publication Critical patent/CN103153462B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/49Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide
    • C07C45/50Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide by oxo-reactions
    • C07C45/505Asymmetric hydroformylation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • B01J31/063Polymers comprising a characteristic microstructure
    • B01J31/066Calixarenes and hetero-analogues, e.g. thiacalixarenes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/165Polymer immobilised coordination complexes, e.g. organometallic complexes
    • B01J31/1658Polymer immobilised coordination complexes, e.g. organometallic complexes immobilised by covalent linkages, i.e. pendant complexes with optional linking groups, e.g. on Wang or Merrifield resins
    • B01J31/1683Polymer immobilised coordination complexes, e.g. organometallic complexes immobilised by covalent linkages, i.e. pendant complexes with optional linking groups, e.g. on Wang or Merrifield resins the linkage being to a soluble polymer, e.g. PEG or dendrimer, i.e. molecular weight enlarged complexes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1845Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing phosphorus
    • B01J31/185Phosphites ((RO)3P), their isomeric phosphonates (R(RO)2P=O) and RO-substitution derivatives thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • B01J31/2404Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • B01J31/2495Ligands comprising a phosphine-P atom and one or more further complexing phosphorus atoms covered by groups B01J31/1845 - B01J31/1885, e.g. phosphine/phosphinate or phospholyl/phosphonate ligands
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/49Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide
    • C07C45/50Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide by oxo-reactions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6564Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms
    • C07F9/6571Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and oxygen atoms as the only ring hetero atoms
    • C07F9/6574Esters of oxyacids of phosphorus
    • C07F9/65746Esters of oxyacids of phosphorus the molecule containing more than one cyclic phosphorus atom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/30Addition reactions at carbon centres, i.e. to either C-C or C-X multiple bonds
    • B01J2231/32Addition reactions to C=C or C-C triple bonds
    • B01J2231/321Hydroformylation, metalformylation, carbonylation or hydroaminomethylation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/822Rhodium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

杯芳烃双亚磷酸酯配体和有机膦配体的组合。所述组合可以与催化金属一起使用以形成络合物催化剂。所述催化剂可以用于加氢甲酰基化方法,以生产醛的混合物。

Description

加氢甲酰基化方法
相关申请的交叉引用
本申请要求2010年10月5日提交的序号为61/389,972的美国临时申请的优先权,所述申请以其全部内容通过引用并入本文。
发明背景
本发明涉及用于将烯属不饱和化合物加氢甲酰基化以产生醛混合物的产物的改良方法。
本技术领域众所周知的是,通过在金属有机磷配体络合物催化剂存在下,将烯烃与一氧化碳和氢气在反应条件下接触,可以产生一种或多种醛产物。如US4,148,830、US4,717,775和US4,769,498中所示例的一种这样的方法包括在循环含有金属有机磷配体络合物催化剂的溶液下进行连续加氢甲酰基化,其中铑是合适的金属的例子。产生的混合物通常包括线性或正构、和支化的醛产物。在一些经济的条件中,期望产物醛中正构与支化(正构/支化或N/I)异构体比率高。
铑催化的加氢甲酰基化的N/I比率主要由所使用的配体决定。因为它不昂贵,并且产生相对活性和选择性的催化剂,三苯基膦(TPP)经常用于工业加氢甲酰基化方法。虽然铑/TPP催化剂成功地实施于世界范围的工厂中,但它将正构与异构醛产物的比率限制为约10∶1。在市场中正构醛往往具有更高的价值,因此希望那些当前正在运行基于铑/TPP的方法能够以易行的、成本有效的方式增加它们的正构醛产量。
在铑/TPP体系中,与铑配位的TPP分子数与所使用的TPP浓度成正比。在低浓度(例如5-10摩尔TPP/摩尔铑)下,大部分铑络合物将只含一个TPP分子。这样的络合物很有活性,但是产生低N/I产物。因为铑/TPP催化剂的选择性随着TPP浓度增加而增加,商业的铑/TPP体系通常运用大量过量的TPP(例如100-200摩尔/摩尔铑)。
WO2009/035204教导了通过添加另外的膦配体和氧化膦来增加由铑/TPP加氢甲酰基化催化剂产生的N/I。但是,WO2009/035204只说明了将TPP水平提高到50至60摩尔/摩尔铑。因为众所周知TPP的浓度直接影响TPP/铑络合物的性质,因此技术人员将会预期,含有商业水平的TPP(100-200摩尔TPP/摩尔铑)的催化剂体系与只含有60摩尔TPP的催化剂体系相比较,表现将非常不同。而且,可以通过添加单一的其他组分来增加N/I的较简单的方法,将是所希望的。
已知双亚磷酸酯是铑加氢甲酰基化的活性和选择性配体。然而,EP0839787指出,铑/双亚磷酸酯络合物易于受到TPP的进一步配位的损害。这将产生低活性的三磷络合物。因此,技术人员预期,在不严重损失反应速率的情况下,双亚磷酸酯不能增加使用商业水平TPP配体的铑/TPP催化剂的N/I。
发明概述
本发明在一个方面是包含杯芳烃双亚磷酸酯配体和有机膦配体的组合物。在一种实施方式中,本发明是包含与杯芳烃双亚磷酸酯配体和有机膦配体络合的过渡金属的催化络合物。本发明还包括一种方法,所述方法包括在具有过渡金属、杯芳烃双亚磷酸酯配体和有机膦配体作为组分的催化剂存在下,在足以形成至少一种醛产物的加氢甲酰基化条件下,将CO、H2和至少一种烯烃接触。
令人惊讶地,使用杯芳烃双亚磷酸酯配体和有机膦配体的组合,可以在商业上可接受的反应速率下,可逆地获得与只有有机膦相比更高的N/I比率。
通过加氢甲酰基化产生的醛具有广泛范围的应用,包括,例如,作为用于脂族醇加氢、用于脂族胺胺化、用于脂族酸氧化和用于羟醛缩合生产增塑剂的中间体。
发明详述
本文中描述的本发明提供了包含杯芳烃双亚磷酸酯配体和有机膦配体的组合物。在一种实施方式中,本发明是包含与杯芳烃双亚磷酸酯配体和有机膦配体络合的过渡金属的催化络合物。本发明还包括一种方法,所述方法包括在具有过渡金属、杯芳烃双亚磷酸酯配体和有机膦配体作为组分的催化剂存在下,在足以形成至少一种醛产物的加氢甲酰基化条件下,将CO、H2和至少一种烯烃接触。
合成气(来自合成气体)是赋予含有变化量的一氧化碳(CO)和氢气(H2)的气体混合物的名称。生产方法是公知的并且包括,例如:(1)天然气或液态烃的蒸气重整和部分氧化;和(2)煤和/或生物质的气化。氢气和CO通常是合成气的主要组分,但是合成气可以含有二氧化碳和惰性气体例如N2和Ar。H2与CO的比率变化很大,但是一般范围为1∶100至100∶1,并优选在1∶10和10∶1之间。合成气是可商购的,并且经常作为燃料来源或作为生产其他化学品的中间体使用。用于化学品生产的最优选H2∶CO比率在3∶1和1∶3之间,并且对于大部分加氢甲酰基化应用而言,所述比率的目标通常为约1∶2和2∶1之间。
本发明的加氢甲酰基化方法中可使用的烯属化合物可以是取代或未取代的,并包括含有2至40、优选3至20个碳原子和一个或多个碳-碳双键(C=C)的光学活性(前手性和手性)和非光学活性的(非手性)不饱和化合物二者。这样的烯属化合物可以是末端或内部不饱和的并具有直链、支链或环状结构。还可以使用烯烃混合物,例如从丙烯、丁烯和异丁烯的低聚得到的,(例如,所谓的二聚、三聚或四聚丙烯,如例如,美国专利4,518,809和4,528,403中所公开的,所述美国专利通过引用并入本文),以及混合丁烯,例如技术人员已知的萃余液I和萃余液II。这样的烯属化合物和由其衍生的相应醛产物还可以含有不会不利地影响本发明的加氢甲酰基化方法的一个或多个基团或取代基;合适的基团或取代基描述在例如美国专利3,527,809和4,769,498中,所述美国专利通过引用并入本文。
最优选地,本发明尤其可用于通过对含有2至30、优选3至20个碳原子的非手性α-烯烃、和含有4至20个碳原子的非手性内烯烃以及这样的α-烯烃和内烯烃的起始材料混合物进行加氢甲酰基化,来生产非光学活性的醛。
说明性的α烯烃和内烯烃包括,例如,乙烯、丙烯、1-丁烯、1-戊烯、1-己烯、1-庚烯、1-辛烯、1-壬烯、1-癸烯、1-十一烯、1-十二烯1-十三烯、1-十四烯、1-十五烯、1-十六稀、1-十七烯、1-十八烯、1-十九烯、1-二十烯、2-丁烯、2-甲基丙烯(异丁烯)、2-甲基丁烯、2-戊烯、2-己烯、3-己烷、2-庚烯、2-辛烯、环己烯、二聚丙烯、三聚丙烯、四聚丙烯、丁二烯、戊间二烯、异戊二烯、2-乙基-1-己烯、苯乙烯、4-甲基苯乙烯、4-异丙基苯乙烯、4-叔丁基苯乙烯、α-甲基苯乙烯、4-叔丁基-α-甲基苯乙烯、1,3二异丙烯基苯、3-苯基-1-丙烯、1,4-己二烯、1,7-辛二烯、3-环己基-1-丁烯等,以及1,3-二烯,丁二烯,链烯酸烷基酯例如戊烯酸甲酯;链烷酸链烯基酯,链烯基烷基醚,烯醇,例如戊烯醇;烯醛,例如戊烯醛;这样的物质包括烯丙醇、丁酸烯丙酯、己-1-烯-4-醇、辛-1-烯-4-醇、乙酸乙烯酯、乙酸烯丙酯、乙酸3-丁烯酯、丙酸乙烯酯、丙酸烯丙酯、甲基丙烯酸甲酯、乙烯基乙醚、乙烯基甲醚、烯丙基乙醚、正丙基-7-辛烯酸酯、3-丁烯腈、5-己烯酰胺、丁子香酚、异丁子香酚、黄樟脑、异黄樟脑、茴香脑、4烯丙基茴香醚、茚、苎烯、β-蒎烯、二环戊二烯、环辛二烯、莰烯、里哪醇、油酸及其酯例如油酸甲酯,和同系的不饱和脂肪酸和不饱和脂肪酸酯。许多烯属化合物是可商购的。
在所述加氢甲酰基化方法中使用了两种不同的有机磷配体,即杯芳烃双亚磷酸酯配体和有机膦配体,两者都能够与过渡金属结合形成能够催化加氢甲酰基化过程的过渡金属-有机磷配体络合物催化剂。
可以用作过渡金属-配体络合物催化剂中金属的合适金属包括选自铑(Rh)、钴(Co)、铱(Ir)、钌(Ru)、铁(Fe)、镍(Ni)、钯(Pd)、铂(Pt)、锇(Os)的VIII族金属及其混合物,优选的金属是铑、钴、铱和钌,更优选铑、钴和钌,最优选铑。其他可允许的金属包括选自铬(Cr)、钼(Mo)、钨(W)的VIB族金属,及其混合物。VIB和VIII族金属的混合物也可以用于本发明。
所述金属以催化量使用。在一种实施方式中,基于反应容器中反应流体的重量,使用的金属量至少约1ppm。有利地,使用的金属量是约1ppm至约1000。使用的金属量也可以为约20ppm至约500ppm,或为约100ppm至约300ppm。
所述杯芳烃双亚磷酸酯配体包含两个磷(III)原子,每个与三个烃氧基键合,所述烃氧基的任何非桥接种类是基本由取代或未取代的芳氧基组成。在本发明中,杯芳烃双亚磷酸酯配体由下式表示:
其中所述杯芳烃是杯[4]芳烃;各R1、R2、R3和R4独立地选自氢和取代或未取代的烷基;各Y1和Y2独立地选自取代和未取代的单价烷基、烷芳基、芳烷基和酰胺基团;并且其中各Ar1、Ar2、Ar3和Ar4独立地选自取代和未取代的单价芳基,或者,其中Ar1和Ar2相连形成取代或未取代的二价亚芳基和/或Ar3和Ar4相连形成取代或未取代的二价亚芳基。在一种实施方式中,各R1、R2、R3和R4独立地是叔丁基。在一种实施方式中,各Y1和Y2独立地是N,N’-二乙基酰胺基。
优选的杯芳烃双亚磷酸酯组合物由下式表示:
其中所述杯芳烃是杯[4]芳烃;各R1、R2、R3和R4独立地选自氢和取代或未取代的单价烷基;各Y1和Y2独立地选自取代和未取代的单价烷基、烷芳基、芳烷基和酰胺基;并且各R5、R6、R7、R8、R9、R10、R11、R12、R5’、R6’、R7’、R8’、R9’、R10’、R11’和R12’独立地选自氢、烷基、烷芳基、烷氧基、芳氧基、酮基、羰氧基、和烷氧羰基。
在最优选的实施方式中,所述杯芳烃双亚磷酸酯配体包含由下式(IIa)表示的N,N-二乙基乙酰胺-对-叔丁基杯[4]芳烃双亚磷酸酯:
式IIa的杯芳烃双亚磷酸酯配体可以如美国专利申请公布2010/0044628所述制备。如本领域技术人员所知,类似的技术可用于制备式I和II的配体。杯芳烃双亚磷酸酯配体的组合可以用作杯芳烃双亚磷酸酯配体。
在优选实施方式中,有机膦配体是由下式表示的三芳基膦:
P(R)3
其中各R相同或不同并且是取代或未取代的芳基。有机膦配体的例子包括三苄基膦、三苯基膦、三-邻甲苯基膦、三-间甲苯基膦、三-对甲苯基膦、三(邻甲氧基苯基)膦、三(间甲氧基苯基)膦、三(对甲氧基苯基)膦、三(对-三氟甲基苯基)膦、三(2,4,6-三甲氧基苯基)膦、三(五氟苯基)膦、三(对氟苯基)膦、三(3,5-二甲基苯基)膦、三(2,4,6-三甲苯基)膦、环己基二苯基膦、苄基二苯基膦、二环己基苯基膦、三苄基膦、三环己基膦。三苯基膦考虑到它的低成本和易得性是优选的。
使用的有机膦配体的量是足以形成催化络合物的量。可以使用宽范围的有机膦配体浓度。如本领域技术人员所知,使用的有机膦配体浓度对加氢甲酰基化过程具有已知的影响,包括产物构成和反应速率。例如,在各种实施方式中,有机膦配体与催化金属的摩尔比可以为约10(即10∶1)至约300,为约100至约250,和为约150至约200。在一种实施方式中,有机膦与催化金属的摩尔比为至少150∶1,并可以大于150∶1。
在优选实施方式中,有机膦配体是三芳基膦。在更优选的实施方式中,有机膦配体是三苯基膦。有机膦配体的组合可以用作有机膦配体。许多有机膦配体是可商购的,其他可以使用已知的有机化学合成技术进行合成。
要注意,成功实践本发明的加氢甲酰基化方法不依赖于并且不基于催化活性金属络合物类的准确结构式,所述络合物类可以呈现为单核、双核或更高的核形式。事实上,催化活性金属配体络合物的准确结构式可能难以通过分析来确定。虽然不想要束缚在任何理论或机械的论调上,但似乎其通式中的活性催化物类包括所述过渡金属与一个或多个配体络合物组合的各种组合。例如,所述活性催化物类可以包含一个或多个有机膦配体和/或一个或多个杯芳烃双亚磷酸酯配体,还与一氧化碳组合。所述催化活性组合物还可以含有一个或多个其他配体,例如氢、或满足过渡金属的配位点或核电荷的阴离子。说明性的其他配体包括卤离子(Cl-,Br-,I-)、烷基、芳基、取代芳基、CF3 -、C2F5 -、CN-、R′2PO-、R′P(O)(OH)O-(其中每个R′独立地是烷基或芳基)、CH3C(O)O-、乙酰丙酮根、SO4 2-、PF4 -、PF6 -、NO2 -、NO3 -、CH3O-、CH2=CHCH2-、C6H5CN、CH3CH=、NO、NH3、吡啶、(C2H5)3N、单烯烃、二烯烃、三烯烃、和四氢呋喃。
所述过渡金属-配体络合物催化剂可以通过本技术领域已知的方法制备。在一种情况中,所述催化剂可以预先制备,并被引入加氢甲酰基化过程的反应介质中。标准鉴定法可以用来鉴定络合物催化剂或催化剂前体组合物和它的配体组分,包括,例如,如技术人员已知并在下文提到的元素分析、质谱、红外光谱和1H、31P和/或13CNMR光谱。
优选地,本发明的过渡金属-配体络合物催化剂源自于过渡金属源材料,其被被引入加氢甲酰基化反应介质以提供原位形成的活性催化剂。优选VIII族金属源材料;例如,铑源材料诸如乙酰丙酮铑、二羰基乙酰丙酮铑、Rh2O3、Rh4(CO)12、[RhCl(CO)2]2、Rh6(CO)16、Rh(NO3)3等可以与一种或多种配体一起被引入加氢甲酰基化反应介质,以原位形成活性催化剂。在一种实施方式中,杯芳烃双亚磷酸酯配体可以添加到其中已经存在过渡金属-有机膦配体的体系中。例如,反应体系开始可以只有过渡金属-有机膦配体,并可以向它添加杯芳烃双亚磷酸酯配体。在一种实施方式中,使用二羰基乙酰丙酮铑作为铑源并在溶剂存在下与杯芳烃双亚磷酸酯配体反应,形成铑-杯芳烃双亚磷酸酯配体络合物催化前体组合物,将其与过量的游离杯芳烃双亚磷酸酯配体一起引入反应器,以原位形成活性催化剂。在大多数情况下足以形成所述络合物催化剂或催化剂前体的反应条件将类似于在下文描述的加氢甲酰基化反应条件。
术语“络合物”在本文中使用时是指由一个或多个富电子的分子或原子(即配体)与一个或多个贫电子的分子或原子(例如过渡金属)结合形成的配位化合物。例如,本文中可使用的有机膦配体拥有一个具有一对未共享电子的磷(III)供电子原子,它能够与所述金属形成配位共价键。本文中可使用的杯芳烃双亚磷酸酯配体拥有两个或更多个磷(III)供电子原子,每个具有一对未共享电子,每个原子都能够独立地或可能共同地(例如通过螯合)与过渡金属形成配位共价键。一氧化碳也可以存在并与过渡金属络合。络合物催化剂的最终组成也可以含有另外的配体,例如上面描述的,如氢、单烯烃、或满足金属的配位点或核电荷的阴离子。
过渡金属上可用的配位点数量是本领域公知的,并且取决于所选的具体过渡金属。催化物类可以包含单体、二聚或更高核性形式的络合物催化剂混合物,其形式优选特征在于每一分子金属例如铑络合了至少一个含有机磷的分子。例如,一般认为,除了杯芳烃双亚磷酸酯配体或有机膦配体之外,加氢甲酰基化反应中使用的优选催化剂的催化物类还可以与一氧化碳和氢络合。
在下文中使用时,术语“反应流体”或“反应产物流体”预期包括但不限于包含下列物质的反应混合物:(a)杯芳烃双亚磷酸酯配体;(b)有机膦配体;(c)过渡金属-配体络合物催化剂,其中所述配体选自上面描述的配体在所述流体中的混合物,包括至少杯芳烃双亚磷酸酯配体和有机膦配体,(d)在反应中形成的两种或更多种醛产物,(e)任选地,未转化的反应物,包括未反应的烯烃,和(f)所述金属-配体络合物催化剂和所述游离配体的有机增溶剂。要理解,所述加氢甲酰基化反应流体可以含有少量的其他成分,例如有意添加的或在所述过程期间原位形成的那些。这样的其他成分的例子包括一氧化碳和氢气,和原位形成的产物例如饱和烃,和/或与烯烃起始材料对应的未反应的异构化烯烃,和/或高沸点液体醛缩合副产物,和/或所述催化剂和/或有机磷配体的一种或多种降解产物、包括有机磷配体水解形成的副产物,以及惰性共溶剂或烃添加剂,如果使用的话。
在一种实施方式中,杯芳烃双亚磷酸酯配体与催化金属的摩尔比为约0.2至约15。在另一种实施方式中,杯芳烃双亚磷酸酯配体与有机膦配体的比率为约0.8至约10。在又一种实施方式中,杯芳烃双亚磷酸酯配体与有机膦配体的比率为约1至约5。
在一种实施方式中,本发明是生产醛混合物的加氢甲酰基化方法,所述方法包括:在连续反应条件下,在杯芳烃双亚磷酸酯配体和有机膦配体的混合物存在下,一种或多种烯属不饱和化合物、一氧化碳和氢在加氢甲酰基化反应流体中进行接触,至少一个所述配体与过渡金属键合,形成过渡金属-配体络合物加氢甲酰基化催化剂,从而产生醛混合物。
适用于本发明的加氢甲酰基化加工技术可以对应于本领域中已知的和描述的任何加工技术。优选的方法是包括催化剂液体再循环加氢甲酰基化方法的那些,如US4,668,651、US4,774,361、US5,102,505、US5,110,990、US5,288,918、US5,874,639和US6,090,987中所述;以及萃取加氢甲酰基化方法,如US5,932,772、US5,952,530、US6,294,700、US6,303,829、US6,303,830、US6,307,109和US6,307,110所述;它们的公开内容通过引用并入本文。
一般说来,这样的催化液体加氢甲酰基化方法包括:在也可以包含用于催化剂和配体的有机溶剂的液相中,在过渡金属-有机磷配体络合物催化剂存在下,将烯属不饱和化合物与一氧化碳和氢接触,产生醛。游离的有机磷配体也存在于所述液相中。在本发明中,类属术语“有机磷配体”包括两种类型的配体:杯芳烃双亚磷酸酯和有机膦。这两种配体是需要的;但是不能推论出这两种配体总是与所述过渡金属络合。相反地,所述配体随着催化循环可以是络合的或未结合的,并且可以被配体之间对过渡金属的竞争所支配。“游离的有机磷配体”是指没有与所述络合物催化剂的金属例如铑原子络合(连接或结合)的有机磷配体。通常,所述加氢甲酰基化方法可以包括再循环法,其中从加氢甲酰基化反应器(它可以包括一个反应区或多个例如串联的反应区)中连续地或间歇地取出含有所述催化剂和醛产物的一部分液态反应流体;通过本技术领域描述的技术从中分离和回收醛产物;然后将分离出的含有金属催化剂的残余物再循环到反应区,如例如US5,288,918所公开的。如果使用串联的多个反应区,反应物烯烃可以只供应给第一个反应区;而催化剂溶液、一氧化碳和氢可以供应给每个反应区。
在要求的方法的一种实施方式中,取决于烯烃底物和所选择的具体配体对,N/I异构体比率可以在约1/1至约100/1的范围内连续地变化动。更优选地,N/I异构体比率可以在大于约13/1到小于约75/1、更优选小于约50/1内变化。
在本发明的另一种优选实施方式中,当杯芳烃双亚磷酸酯配体的浓度增加时,醛产物的N/I异构体比率增加;而当杯芳烃双亚磷酸酯配体的浓度降低时,醛产物的N/I异构体比率降低。
本发明的加氢甲酰基化方法可以是不对称或非不对称的,优选的过程是非不对称的,并以任何连续或半连续的方式进行;并且可以按照需要包括含有任何常规催化剂的加氢甲酰基化反应流体和/或气体和/或萃取再循环操作。在本文中使用时,术语“加氢甲酰基化”预期包括所有可操作的不对称和非不对称方法,所述方法包括在一氧化碳、氢和加氢甲酰基化催化剂的存在下,将一种或多种取代或未取代的烯属化合物或包含一种或多种取代或未取代的烯属化合物的反应混合物转化成包含取代或未取代的醛的混合物的产物。
在本发明中,利用过渡金属/有机膦催化剂的加氢甲酰基化方法的N/I异构体比率可以通过添加杯芳烃双亚磷酸酯配体而增加。此外,N/I异构体比率可以基于相对于所述过渡金属所添加的杯芳烃双亚磷酸酯配体的量而增加。不受理论的约束,认为由形成过渡金属/杯芳烃双亚磷酸酯螯合环而产生的热力学稳定性,确保了相对于有机膦,杯芳烃双亚磷酸酯将优先络合过渡金属。即使催化剂溶液中有机膦的浓度明显更高,但这种螯合效应占统治地位。此外认为,所生成的过渡金属/杯芳烃双亚磷酸酯络合物的空间体积足以阻碍有机膦接近过渡金属中心从而形成低活性的过渡金属/三磷物类。
加氢甲酰基化反应流体中过渡金属、杯芳烃双亚磷酸酯配体和有机膦配体的浓度可以容易地通过熟知的分析法测定。从这些浓度分析可以容易地计算和追踪所需要的摩尔比率。过渡金属、优选铑,最好通过原子吸收或电感耦合等离子体(ICP)技术测定。配体最好通过31P核磁共振光谱(NMR)或通过小份反应流体的高压液相色谱(HPLC)来定量。还可以使用在线HPLC监测配体和过渡金属-配体络合物的浓度。不同的配体应该以定量的方式分别鉴定(例如在反应流体中不存在过渡金属),以便根据需要使用适合的内标物建立化学位移和/或保留时间。通过以上确定的任何分析法,可以观察过渡金属-杯芳烃双亚磷酸酯配体和过渡金属-有机膦配体络合物,从而能够对络合的配体进行定量。
加氢甲酰基化反应流体中杯芳烃双亚磷酸酯配体的浓度可以用任何合适的方式增加,例如通过向加氢甲酰基化反应器中一次性或递增添加地加入一定量杯芳烃双亚磷酸酯配体,或向进料至包含增溶剂(溶剂)、催化剂、有机膦配体和任选的液体烯属化合物的反应器的液体进料中连续或间歇地添加一定量的杯芳烃双亚磷酸酯配体。或者,杯芳烃双亚磷酸酯配体可以在加氢甲酰基化反应器下游的任何点添加到再循环流(或产生再循环流的单元)中,以循环回到所述反应器。例如,杯芳烃双亚磷酸酯配体可以添加至加工所述加氢甲酰基化产物流体的萃取器以回收再循环流,所述再循环流含有有机膦、初始和补加量的杯芳烃双亚磷酸酯和增溶剂,其被循环回到加氢甲酰基化反应器中。同样地,加氢甲酰基化反应流体中的杯芳烃双亚磷酸酯配体浓度可以用任何合适的方式降低;例如,杯芳烃双亚磷酸酯配体的浓度可能由所述配体与反应流体中存在的大量水反应所引起的水解损耗而随时间降低。或者,可以有意将适量的氧化剂,例如氧、空气、过氧化氢、有机氢过氧化物、更具体地烷基氢过氧化物例如叔丁基氢过氧化物、或芳基氢过氧化物例如乙苯氢过氧化物或枯烯氢过氧化物添加到加氢甲酰基化反应流体中,以加速杯芳烃双亚磷酸酯配体的破坏性氧化。连续加氢甲酰基化过程期间的任何时候,可以向反应流体提供补加的杯芳烃双亚磷酸酯和/或有机膦配体,以弥补配体由于降解的这种损失。可以使用其他方法降低杯芳烃双亚磷酸酯配体相对于过渡金属的浓度。例如,可以在选择的加工条件(例如pH或升高的温度)下进行加氢甲酰基化产物流的下游萃取或汽化,以降解一部分杯芳烃双亚磷酸酯配体,使得其在返回到加氢甲酰基化反应器的再循环流中的浓度降低。熟练的工艺工程师可以设想增加或降低杯芳烃双亚磷酸酯相对于过渡金属的浓度的其他手段和方法。
在本发明中,一般而言,增加杯芳烃双亚磷酸酯配体与过渡金属的摩尔比,将增加醛产物中N/I异构体比率。在实践中,观察的醛产物N/I异构体比率表明是否要添加杯芳烃双亚磷酸酯配体(通常为了提高N/I比率)或添加水或氧化剂(通常为了降低N/I比率)。选择要提高或降低异构体比率的程度由选择的目标N/I异构体比率(例如由市场需求确定)决定。对于距目标N/I比率的小偏离程度(<+/-1),优选的实施是间断地向反应器添加单位份额的杯芳烃双亚磷酸酯配体或水或氧化剂,直到达到目标N/I比率。“单位份额”由杯芳烃双亚磷酸酯配体或水或氧化剂的摩尔加料组成,取作装载到反应器的杯芳烃双亚磷酸酯的初始摩尔的约5至约10摩尔百分比。对于距目标N/I比率的大偏离程度(>+/-1),可以将几个单位份额合并成较大的份额,添加到反应器。在连续操作中,连续或间歇添加单位份额(或几个单位份额)的杯芳烃双亚磷酸酯配体或水或氧化剂可以直接加入供给反应器的反应物进料或通过单独的进料管线来完成。在连续操作中,可以根据以前对于杯芳烃双亚磷酸酯配体衰减速率的经验,来选择添加所述配体的时间,以达到稳定的杯芳烃双亚磷酸酯配体浓度以及得到期望的和稳定的N/I异构体比率。通过气相色谱(GC)分析产物流,可以容易地确定N/I异构体比率,所述产物流来自反应器中的蒸气空间(例如排气流)或直接取自反应器的产物流体的液体样品、或来自下游的产物-催化剂分离阶段(例如汽化器)。
在本发明中,对N/I异构体比率的控制通常是平稳和连续的、而不是不连续的或突兀的,例如“阶梯式”增加或减少。
一般而言,本发明的加氢甲酰基化方法可以在任何可操作的反应温度下进行。优选地,反应温度大于约-25℃,更优选大于约50℃。优选地,反应温度小于约200℃,优选小于约120℃。
通常,包含一氧化碳、氢和一种或多种烯属反应物的总气体压力可以为约1psia(6.9kPa)至约10,000psia(69,000MPa)。然而,一般而言,优选所述方法在包含一氧化碳、氢和一种或多种烯烃反应物的总气体压力大于约25psia(172kPa)并小于约2,000psia(14,000kPa)和更优选小于约500psia(3500kPa)下运行。更具体地,本发明的加氢甲酰基化方法的一氧化碳分压可以在约10psia(69kPa)至约1,000psia(6,900kPa)、更优选在约10psia(69kPa)至约800psia(5,500kPa)、甚至更优选在约15psia(103.4kPa)至约200psia(1378kPa)之间变化;同时氢分压优选为约5psia(34.5kPa)至约500psia(3,,500kPa),并更优选为约10psia(69kPa)至约300psia(2,100kPa)。
合成气进给流速可以是任何足以获得期望的加氢甲酰基化过程的可操作流速。通常,合成气进给流速可以根据催化剂的具体形式、烯烃进给流速及其他运行条件而广泛地变化。适合的合成气进给流速和排出流速描述在下面的参考文献中,“ProcessEconomicsProgramReport21D:OxoAlcohols21d),”SRIConsulting,MenloPark,California,1999年12月出版,该文献通过引用并入本文。
在一种实施方式中,反应速率为至少0.2g-mol/l-hr。优选地,反应速率至少1g-mol/l-hr。反应速率的上限受实际因素支配。
本发明将通过考虑以下实施例进一步阐明,所述实施例用来单纯示范本发明的使用。对本领域技术人员而言,在考虑本说明书或本文中公开的本发明实践中,本发明的其他实施方式将是明显的。
本发明的具体实施方式
实施例1-4
将铑催化剂前体(二羰基乙酰丙酮铑(I)(150ppm铑),三苯基膦(TPP)(300当量TPP/Rh,10.3wt%)和N,N-二乙基乙酰胺-对-叔丁基杯[4]芳烃双亚磷酸酯配体(DE-Calix-BP,0、1、2和3当量/Rh)称重,放入干燥箱内隔膜覆盖的瓶子中。所述固体溶解在甲苯中,所生成的溶液通过真空转移到100mLParr微型反应器中。所述含催化剂的溶液然后在1∶1的一氧化碳∶氢(合成气)下伴随搅拌(1100rpm)预热到90℃30分钟。用Brooks5866型流量计建立60psig的1∶1∶1气体(等份一氧化碳∶氢∶丙烯)压力,并在2小时的运行时间中保持不变。用Brooks0151E累加器测量总气体摄入。定期取液体反应样品并在配备有DB-130mx0.32mm、1μ膜柱的AgilentTechnologies6890气相色谱(GC)上分析。基于除去溶剂的GC面积百分比对组分进行定量。下面显示了每当量铑0-3当量范围DE-Calix-BP的结果:
实施例 DE/Calix-BP(L/Rh) 初始速率(g-mol/l-hr) 最终N/I
1* 0 0.80 6.0
2 1 0.34 8.0
3 2 0.07 16.3
4 3 0.04 18.5
*不是本发明的实施方式
实施例5-8
除了对浓度和条件的以下改变之外,重复实施例1-4的程序:300ppm铑,因此TPP/Rh的浓度改变为150当量TPP/Rh,作为液体添加4.7g丙烯,和在90℃下的80psig的1:1一氧化碳:氢。下面显示了对于每当量铑0-3当量范围DE-Calix-BP的结果:
实施例 DE/Calix-BP(L/Rh) 初始速率(g-mol/l-hr) 最终N/I
5* 0 3.12 3.4
6 1 1.28 5.5
7 2 1.00 10.49 -->
8 3 0.67 13.3
*不是本发明的实施方式
实施例9-12
除了对浓度和条件的以下改变之外,重复实施例1-4的程序:300ppm铑,因此TPP/Rh的浓度改变为150当量TPP/Rh,作为液体添加5.5g1-丁烯,和在100℃下的40psig的1:1一氧化碳:氢。下面显示了对于每当量铑0-3当量范围DE-Calix-BP的结果:
实施例 DE/Calix-BP(L/Rh) 初始速率(g-mol/l-hr) 最终N/I
9* 0 3.05 6.0
10 1 1.61 9.1
11 2 0.86 16.3
12 3 0.78 24.5
*不是本发明的实施方式
比较试验13-16(不是本发明的实施方式)
重复实施例9-12的程序,但是使用配体B(下面图片)代替本发明的杯芳烃双亚磷酸酯配体:
下面显示了对于每当量铑0-3当量范围配体B的结果:
实施例 DE/Calix-BP(L/Rh) 初始速率(g-mol/l-hr) 最终N/I
13* 0 4.61 6.0
14* 1 2.04 6.5
15* 2 0.09 81.5
16* 3 0.08 85.7
*不是本发明的实施方式
实施例2-4令人惊讶地显示了通过添加DE-Calix-BP,可以增加铑/三苯基膦催化剂的N/I异构体比率。此外,实施例6-8证明了通过使用更强制性的反应条件,可以增加铑/三苯基膦/DE-Calix-BP催化剂的反应速率。实施例10-12说明了使用其他烯烃(1-丁烯)的本发明。
比较试验13-16明确显示,通过向铑/三苯基膦催化剂添加其它双亚磷酸酯配体(配体B),不容易复制本发明的意想不到的结果。比较试验14的N/I比率没有明显不同于比较试验13。虽然比较试验15和16的N/I比率很高,但反应速率低得不可接受。

Claims (14)

1.组合物,其包含过渡金属、杯芳烃双亚磷酸酯配体和有机膦配体,其中所述有机膦配体与所述过渡金属的摩尔比为100至250。
2.权利要求1的组合物,其中所述杯芳烃双亚磷酸酯配体由下式表示:
其中所述杯芳烃是杯[4]芳烃;各R1、R2、R3和R4独立地选自氢和取代或未取代的烷基;各Y1和Y2独立地选自取代和未取代的单价烷基、烷芳基、芳烷基和酰胺基;并且其中各Ar1、Ar2、Ar3和Ar4独立地选自取代和未取代的单价芳基,或者,其中Ar1和Ar2相连形成取代或未取代的二价亚芳基和/或Ar3和Ar4相连形成取代或未取代的二价亚芳基。
3.前述权利要求任一项的组合物,其中所述杯芳烃双亚磷酸酯配体选自下式:
其中所述杯芳烃是杯[4]芳烃;各R1、R2、R3和R4独立地选自氢和取代或未取代的单价烷基;各Y1和Y2独立地选自取代和未取代的单价烷基、烷芳基、芳烷基和酰胺基;并且各R5、R6、R7、R8、R9、R10、R11、R12、R5’、R6’、R7’、R8’、R9’、R10’、R11’和R12’独立地选自氢、烷基、烷芳基、烷氧基、芳氧基、酮基、羰氧基、和烷氧羰基。
4.权利要求1或2的组合物,其中所述杯芳烃双亚磷酸酯配体是:
5.权利要求1或2的组合物,其中所述有机膦配体是由下式表示的三芳基膦:
P(R)3
其中各R相同或不同并且是取代或未取代的芳基。
6.权利要求1或2的组合物,其中所述有机膦配体是三苯基膦。
7.催化络合物,其包含前述权利要求任一项中所述的过渡金属、杯芳烃双亚磷酸酯配体和有机膦配体,其中所述有机膦配体与所述过渡金属的摩尔比为100至250,并且所述过渡金属与所述杯芳烃双亚磷酸酯配体和所述有机膦配体络合。
8.一种方法,所述方法包括在催化络合物存在下,在足以形成至少一种醛产物的加氢甲酰基化条件下,将CO、H2和至少一种烯烃接触,所述络合物包含权利要求1-6任一项中所述的过渡金属、杯芳烃双亚磷酸酯配体和有机膦配体,其中所述有机膦配体与所述过渡金属的摩尔比为100至250。
9.一种方法,所述方法包括在具有过渡金属、杯芳烃双亚磷酸酯配体和有机膦配体作为组分的催化剂存在下,在足以形成至少一种醛产物的加氢甲酰基化条件下,将CO、H2和至少一种烯烃接触,其中所述有机膦配体与所述过渡金属的摩尔比为150至250,并且反应速率是至少0.2g-mol/l-hr。
10.权利要求9的方法,其中正构/支化醛产物异构体比率为至少13。
11.权利要求9至10任一项的方法,其中所述方法在反应容器中进行,并且基于所述容器中加氢甲酰基化反应流体的重量,所述过渡金属的浓度大于百万分之(ppm)1并小于1,000ppm。
12.权利要求9至10任一项的方法,其中所述方法温度大于-25℃并小于200℃,其中包含一氧化碳、氢和一种或多种烯属反应物的总气体压力为大于25psia(173kPa)到小于2,000psia(14,000kPa),其中一氧化碳分压为15psia(103.4kPa)至200psia(1378kPa),其中所述烯烃是具有2至30个碳原子的非手性α-烯烃或具有4至20个碳原子的非手性内烯烃,其中一氧化碳和氢以提供H2:CO摩尔比为1:10至100:1的量存在,并且其中所述过渡金属是选自铑、钴、铱、钌及其混合物的VIII族金属。
13.权利要求9至10任一项的方法,其中所述烯烃是丙烯,所述杯芳烃双亚磷酸酯配体如权利要求4所述,所述有机膦配体是三苯基膦,并且正构/支化醛产物异构体比率为13/1至20/1。
14.权利要求9至10任一项的方法,其中使用杯芳烃双亚磷酸酯配体的混合物;或其中使用有机膦配体的混合物;或其中共同使用杯芳烃双亚磷酸酯配体的混合物和有机膦配体的混合物。
CN201180048078.5A 2010-10-05 2011-09-21 加氢甲酰基化方法 Active CN103153462B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US38997210P 2010-10-05 2010-10-05
US61/389,972 2010-10-05
PCT/US2011/052500 WO2012047514A1 (en) 2010-10-05 2011-09-21 Hydroformylation process

Publications (2)

Publication Number Publication Date
CN103153462A CN103153462A (zh) 2013-06-12
CN103153462B true CN103153462B (zh) 2016-06-01

Family

ID=44720184

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201180048078.5A Active CN103153462B (zh) 2010-10-05 2011-09-21 加氢甲酰基化方法

Country Status (6)

Country Link
US (1) US8741173B2 (zh)
EP (1) EP2624953B1 (zh)
JP (2) JP2014502254A (zh)
CN (1) CN103153462B (zh)
WO (1) WO2012047514A1 (zh)
ZA (1) ZA201302026B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101411307B1 (ko) 2012-04-12 2014-06-24 삼성메디슨 주식회사 초음파 진단장치
CN105384772B (zh) * 2015-12-18 2020-12-18 湖南理工学院 一种制备全取代杯[8]芳烃磷酸酯衍生物的方法
CA3100778A1 (en) 2018-05-30 2019-12-05 Dow Technology Investments Llc Methods for slowing deactivation of a catalyst and/or slowing tetraphosphine ligand usage in hydroformylation processes
CN112088153A (zh) 2018-05-30 2020-12-15 陶氏技术投资有限责任公司 控制加氢甲酰化过程的方法
MX2020011383A (es) * 2018-05-30 2020-11-24 Dow Technology Investments Llc Composiciones catalizadoras que comprenden la combinacion de una monofosfina, un ligando de tetrafosfina y proceso de hidroformilacion que lo usa.
US11976017B2 (en) 2019-12-19 2024-05-07 Dow Technology Investments Llc Processes for preparing isoprene and mono-olefins comprising at least six carbon atoms
WO2023080071A1 (ja) * 2021-11-02 2023-05-11 株式会社レゾナック 4-ヒドロキシブチルアルデヒドの製造方法、ガンマブチロラクトンの製造方法、n-メチル-2-ピロリドンの製造方法、化合物

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1863595A (zh) * 2004-06-12 2006-11-15 Lg化学株式会社 含磷催化剂组合物及使用该含磷催化剂组合物的醛化方法
CN1986055A (zh) * 2006-12-22 2007-06-27 中国科学院上海有机化学研究所 一种丙烯氢甲酰化催化体系和方法
CN101652341A (zh) * 2007-04-05 2010-02-17 陶氏环球技术公司 用于加氢甲酰基化方法中的杯芳烃二亚磷酸酯配体

Family Cites Families (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3415906A (en) 1964-05-29 1968-12-10 Hooker Chemical Corp Phosphite phospholane and phosphorinane compounds
US3527809A (en) 1967-08-03 1970-09-08 Union Carbide Corp Hydroformylation process
US4148830A (en) 1975-03-07 1979-04-10 Union Carbide Corporation Hydroformylation of olefins
US4247486A (en) 1977-03-11 1981-01-27 Union Carbide Corporation Cyclic hydroformylation process
US4169861A (en) 1977-08-19 1979-10-02 Celanese Corporation Hydroformylation process
US4215077A (en) 1978-02-09 1980-07-29 Kuraray Co., Ltd. Hydroformylation of olefins
US4518809A (en) 1981-06-11 1985-05-21 Monsanto Company Preparation of pentyl nonanols
US4491675A (en) 1981-08-17 1985-01-01 Union Carbide Corporation Hydroformylation process using triarylphosphine and bisphosphine monooxide ligands
US4593011A (en) 1981-08-17 1986-06-03 Union Carbide Corporation Hydroformylation process using triarylphosphine and bisphosphine monooxide ligands
US4528403A (en) 1982-10-21 1985-07-09 Mitsubishi Chemical Industries Ltd. Hydroformylation process for preparation of aldehydes and alcohols
GB8334359D0 (en) 1983-12-23 1984-02-01 Davy Mckee Ltd Process
US4599206A (en) 1984-02-17 1986-07-08 Union Carbide Corporation Transition metal complex catalyzed reactions
US5110990A (en) 1984-03-30 1992-05-05 Union Carbide Chemicals & Plastics Technology Corporation Process for recovery of phosphorus ligand from vaporized aldehyde
US4567302A (en) 1984-07-20 1986-01-28 Angus Chemical Polymeric quaternary ammonium salts possessing antimicrobial activity and methods for preparation and use thereof
US4737588A (en) 1984-12-28 1988-04-12 Union Carbide Corporation Transition metal complex catalyzed reactions
US4593127A (en) 1985-01-11 1986-06-03 Union Carbide Corporation Hydroformylation process
US4885401A (en) 1985-09-05 1989-12-05 Union Carbide Corporation Bis-phosphite compounds
US4748261A (en) 1985-09-05 1988-05-31 Union Carbide Corporation Bis-phosphite compounds
US4668651A (en) 1985-09-05 1987-05-26 Union Carbide Corporation Transition metal complex catalyzed processes
US4774361A (en) 1986-05-20 1988-09-27 Union Carbide Corporation Transition metal complex catalyzed reactions
US4835299A (en) 1987-03-31 1989-05-30 Union Carbide Corporation Process for purifying tertiary organophosphites
US5113022A (en) 1988-08-05 1992-05-12 Union Carbide Chemicals & Plastics Technology Corporation Ionic phosphites used in homogeneous transition metal catalyzed processes
US5059710A (en) 1988-08-05 1991-10-22 Union Carbide Chemicals And Plastics Technology Corporation Ionic phosphites and their use in homogeneous transition metal catalyzed processes
US5114473A (en) 1988-08-25 1992-05-19 Union Carbide Chemicals And Plastics Technology Corporation Transition metal recovery
US4969953A (en) 1988-10-25 1990-11-13 Mitsubishi Kasei Corporation Alcohol mixture for plasticizer and method for producing the same
US5210318A (en) 1990-05-04 1993-05-11 Union Carbide Chemicals & Plastics Technology Corporation Catalysts and processes useful in producing 1,3-diols and/or 3-hydroxyldehydes
DE4026406A1 (de) 1990-08-21 1992-02-27 Basf Ag Rhodiumhydroformylierungskatalysatoren mit bis-phosphit-liganden
US5179055A (en) 1990-09-24 1993-01-12 New York University Cationic rhodium bis(dioxaphosphorus heterocycle) complexes and their use in the branched product regioselective hydroformylation of olefins
US5102505A (en) 1990-11-09 1992-04-07 Union Carbide Chemicals & Plastics Technology Corporation Mixed aldehyde product separation by distillation
TW213465B (zh) 1991-06-11 1993-09-21 Mitsubishi Chemicals Co Ltd
US5506273A (en) 1991-12-06 1996-04-09 Agency Of Industrial Science And Technology Catalyst for hydrogenation and method for hydrogenation therewith
DE4204808A1 (de) 1992-02-18 1993-08-19 Basf Ag Verfahren zur herstellung von (omega)-formylalkancarbonsaeureestern
US5233093A (en) 1992-07-20 1993-08-03 Arco Chemical Technology, L.P. Hydroformylation process and bimetallic catalyst therefor
US5312996A (en) 1992-06-29 1994-05-17 Union Carbide Chemicals & Plastics Technology Corporation Hydroformylation process for producing 1,6-hexanedials
US5364950A (en) 1992-09-29 1994-11-15 Union Carbide Chimicals & Plastics Technology Corporation Process for stabilizing phosphite ligands in hydroformylation reaction mixtures
US5288918A (en) 1992-09-29 1994-02-22 Union Carbide Chemicals & Plastics Technology Corporation Hydroformylation process
DE4321194A1 (de) * 1993-06-25 1995-01-05 Basf Ag Phosphorhaltige Calixarene
FR2717480B1 (fr) 1994-03-17 1996-08-23 Strasbourg Ecole Europ Hautes Procédé de préparation de bis(oxydes de phosphane) et bis(phosphanes) macrocycliques.
US5756855A (en) 1994-08-19 1998-05-26 Union Carbide Chemicals & Plastics Technology Corporation Stabilization of phosphite ligands in hydroformylation process
US5731472A (en) 1995-12-06 1998-03-24 Union Carbide Chemicals & Plastics Technology Corporation Metal-ligand complex catalyzed processes
US5744650A (en) 1995-12-06 1998-04-28 Union Carbide Chemicals & Plastics Technology Corporation Metal-Ligand complex catalyzed processes
US5874641A (en) 1996-03-15 1999-02-23 Dsm N.V. Process to prepare a terminal aldehyde
EP0839787A1 (en) 1996-11-04 1998-05-06 Dsm N.V. Process for the preparation of an aldehyde
DE19717359B4 (de) 1996-04-30 2014-10-30 Mitsubishi Chemical Corp. Bisphosphitverbindungen und Verfahren zu deren Herstellung
DE69708880T2 (de) 1996-07-01 2002-04-11 Dow Chemical Co Verfahren zur direkten oxidation von olefinen zu olefinoxiden
US5874640A (en) 1996-11-26 1999-02-23 Union Carbide Chemicals & Plastics Technology Corporation Metal-ligand complex catalyzed processes
US5892119A (en) 1996-11-26 1999-04-06 Union Carbide Chemicals & Plastics Technology Corporation Metal-ligand complex catalyzed processes
ZA9610314B (en) 1996-11-26 1998-09-07 Union Carbide Chem Plastic Metal-ligand complex catalyzed processes
US5952530A (en) 1998-02-02 1999-09-14 Union Carbide Chemicals & Plastics Technology Corporation Separation processes
US5932772A (en) 1998-02-02 1999-08-03 Union Carbide Chemicals & Plastics Technology Corporation Separation processes
US6090987A (en) 1998-07-06 2000-07-18 Union Carbide Chemicals & Plastics Technology Corporation Metal-ligand complex catalyzed processes
ATE259258T1 (de) 1999-04-08 2004-02-15 Dow Global Technologies Inc Verfahren für die oxidierung von olefinen zu olefinoxiden unter verwendung eines oxidierten gold-katalysators
US6294700B1 (en) 2000-03-15 2001-09-25 Union Carbide Chemicals & Plastics Technology Corporation Separation processes
US6303829B1 (en) 2000-03-15 2001-10-16 Union Carbide Chemicals & Plastics Technology Corporation Separation processes
US6303830B1 (en) 2000-03-15 2001-10-16 Union Carbide Chemicals & Plastics Technology Corporation Metal-ligand complex catalyzed processes
US6307109B1 (en) 2000-03-15 2001-10-23 Union Carbide Chemicals & Plastics Technology Corporation Separation processes
US6307110B1 (en) 2000-03-15 2001-10-23 Union Carbide Chemicals & Plastics Technology Corporation Separation processes
MY139377A (en) 2001-03-29 2009-09-30 Basf Ag Ligands for pnicogen chelate complexes with a metal of subgroup viii and use of the complexes as catalysts for hydroformylation, carbonylation, hydrocyanation or hydrogenation
DE10140083A1 (de) * 2001-08-16 2003-02-27 Oxeno Olefinchemie Gmbh Neue Phosphitverbindungen und deren Metallkomplexe
US6831035B2 (en) 2002-01-22 2004-12-14 Eastman Kodak Company Stabilization of fluorophosphite-containing catalysts
GB0322247D0 (en) 2003-09-23 2003-10-22 Exxonmobil Chem Patents Inc Improvement in or relating to an isobutylene containing stream
DE10349343A1 (de) 2003-10-23 2005-06-02 Basf Ag Stabilisierung von Hydroformylierungskatalysatoren auf Basis von Phosphoramiditliganden
ZA200701001B (en) 2004-08-02 2008-05-28 Union Carbide Chem Plastic Stabilization of a hydroformylation process
JP2006143653A (ja) 2004-11-19 2006-06-08 Kuraray Co Ltd アルデヒド化合物の製造方法
US8178729B2 (en) 2005-03-16 2012-05-15 Perstorp Specialty Chemicals Ab Hydroformylation process
CN100430139C (zh) 2006-06-09 2008-11-05 中国科学院上海有机化学研究所 联萘酚骨架的取代双齿亚磷酰胺配体在烯烃氢甲酰化反应中的应用
KR100664657B1 (ko) 2006-09-22 2007-01-04 주식회사 엘지화학 하이드로포르밀레이션 반응 촉매용 배위자, 이를 함유하는촉매계 및 이를 이용한 하이드로포르밀레이션 방법
MY146608A (en) 2007-03-20 2012-09-14 Dow Technology Investments Llc Hydroformylation process with improved control over product isomers
KR100964099B1 (ko) 2007-09-14 2010-06-16 주식회사 엘지화학 인을 포함하는 촉매 조성물 및 이를 이용한 히드로포밀화방법
EP2328857B1 (en) * 2008-08-19 2016-03-23 Dow Technology Investments LLC Hydroformylation process using a symmetric bisphosphite ligand for improved control over product isomers
US8513469B2 (en) 2009-03-31 2013-08-20 Dow Technology Investments Llc Hydroformylation process with doubly open-ended bisphosphite ligand
KR101854480B1 (ko) 2010-02-19 2018-05-03 다우 글로벌 테크놀로지스 엘엘씨 올레핀 단량체의 중합 방법 및 이를 위한 촉매

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1863595A (zh) * 2004-06-12 2006-11-15 Lg化学株式会社 含磷催化剂组合物及使用该含磷催化剂组合物的醛化方法
CN1986055A (zh) * 2006-12-22 2007-06-27 中国科学院上海有机化学研究所 一种丙烯氢甲酰化催化体系和方法
CN101652341A (zh) * 2007-04-05 2010-02-17 陶氏环球技术公司 用于加氢甲酰基化方法中的杯芳烃二亚磷酸酯配体

Also Published As

Publication number Publication date
EP2624953B1 (en) 2018-10-24
US8741173B2 (en) 2014-06-03
EP2624953A1 (en) 2013-08-14
ZA201302026B (en) 2014-05-28
WO2012047514A1 (en) 2012-04-12
JP2015187123A (ja) 2015-10-29
CN103153462A (zh) 2013-06-12
US20130204024A1 (en) 2013-08-08
JP2014502254A (ja) 2014-01-30
JP6077590B2 (ja) 2017-02-08

Similar Documents

Publication Publication Date Title
CN103153462B (zh) 加氢甲酰基化方法
Delolo et al. Anisole: a further step to sustainable hydroformylation
EP2114568B1 (en) Phosphonite-containing catalysts for hydroformylation processes
CN102365258B (zh) 使用双开端二亚磷酸酯配体的加氢甲酰基化方法
EP0149894B1 (en) Hydroformylation process
CN102753511B (zh) 在混合配体加氢甲酰化工艺中通过控制合成气分压来控制正构:异构醛的比率
CN102741210B (zh) 控制混合配体加氢甲酰化工艺中的正构∶异构醛比率
CN102741209B (zh) 通过控制烯烃分压来控制混合配体加氢甲酰化工艺中的正构∶异构醛比率
Zhang et al. Hydroformylation
CN107001218A (zh) 氢甲酰化方法
CN107266298A (zh) 气相加氢甲酰化方法
CN102123978B (zh) 用于改进对产物异构体的控制的使用对称的二亚磷酸酯配体的加氢甲酰化方法
CN103702758B (zh) 储存过渡金属有机磷配体基催化剂的方法
KR20090078779A (ko) 노르말부탄올과 이소부틸알데히드의 병산 방법
CN101909753A (zh) 用于醛化过程的含亚膦酸酯催化剂
Alhaffar et al. Ultranox626 as a selective ligand in rhodium-catalyzed hydroformylation–acetalization of allylbenzene derivatives
CN104245654B (zh) 在连续加氢甲酰化中补充催化剂的方法
CN105050996B (zh) 二醛的制造方法
CN108698962A (zh) 将烯烃转化成醇、醚或其组合的方法
Martínez-Carrión et al. Valorisation of mixtures of linear alkenes using cobalt-mediated isomerisation and hydroformylation chemistries
CA2818033A1 (en) Process for telomerization of butadiene using a mono-orthoalkoxy substituted catalyst
US9610574B2 (en) Supported composition and the use thereof in methods for the hydroformylation of unsaturated compounds
US11370737B2 (en) Co-feeding ethylene with allyl alcohol in hydroformylation to make 1,4-butanediol and n-propanol
US9950981B2 (en) Allyl alcohol hydroformylation process
KR20230115558A (ko) 하이드로포밀화 방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant