CN1029954C - 一种制造氮化硅陶瓷的方法 - Google Patents

一种制造氮化硅陶瓷的方法 Download PDF

Info

Publication number
CN1029954C
CN1029954C CN89108962A CN89108962A CN1029954C CN 1029954 C CN1029954 C CN 1029954C CN 89108962 A CN89108962 A CN 89108962A CN 89108962 A CN89108962 A CN 89108962A CN 1029954 C CN1029954 C CN 1029954C
Authority
CN
China
Prior art keywords
ceramic powder
silicon nitride
pyrolysis
sintering
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN89108962A
Other languages
English (en)
Other versions
CN1044272A (zh
Inventor
马塞路斯·皮苛特
马丁·布鲁克
托马斯·格道
汉斯-乔治·科莱那
提洛·瓦赫斯
弗茨·奥丁格
尤尼特·帕特佐
拉尔夫·里德尔
马丁·西赫尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoechst AG
Original Assignee
Hoechst AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoechst AG filed Critical Hoechst AG
Publication of CN1044272A publication Critical patent/CN1044272A/zh
Priority to CN 92105800 priority Critical patent/CN1034654C/zh
Application granted granted Critical
Publication of CN1029954C publication Critical patent/CN1029954C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/589Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained from Si-containing polymer precursors or organosilicon monomers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/593Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained by pressure sintering
    • C04B35/5935Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained by pressure sintering obtained by gas pressure sintering

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)
  • Silicon Polymers (AREA)

Abstract

本发明涉及一种新的可烧结陶瓷粉、其制备方法、用该陶瓷粉制造氮化硅陶瓷的方法、该氮化硅陶瓷材料及其用途。该可烧结陶瓷粉制备如下:将式(CH3SiHNH)n(CH3SiN)n(n约为10-12)聚硅氮烷溶于有机溶剂,将粉末状烧结助剂悬浮于该溶液中,蒸去溶剂,于500-1600℃在惰性气氛中热解残余物。得到的陶瓷粉可成型为定型制品,再通过烧结制造氮化硅陶瓷。还可以在蒸去溶剂后先将残余物成型,再热解和烧结。得到的陶瓷可用于制造用于高机械强度、高温和腐蚀环境零部件。

Description

本发明涉及一种新的可烧结的陶瓷粉、其制备方法、用该陶瓷粉制造氮化硅陶瓷的方法、该氮化硅陶瓷材料及其用途。
一般可将纯的Si3N4粉在1850℃压紧至理论密度而无需加压,或在加压下于更高的温度压紧至理论密度,在每种情况下均需加入氧化烧结助剂如氧化铝、氧化硅、氧化镁或氧化钇。
相比之下,Si3N4/SiC混合粉末的完全压紧更困难,一般只能通过热压模制法压紧。
分散材料的机械和物理性质的良好再现性基本上取决于结构中各相是否均匀分布。一般来说,在传统的用粉末状Si3N4、SiC和烧结助剂制造混合陶瓷的方法中,分散相和烧结助剂的均匀分布是主要困难,而且这种均匀分布需要成本较高的适宜粉末混合物的混合和研磨操作。因此,需要研究一种能确保改进原始粉末中不同颗粒均匀分布的方法。
一种改进两相或多相分布均匀性的可行方法是以溶液相将烧结助剂沉积到陶瓷粉末(如SiC粉末)上。这种方法是先将如SiC粉末分散于悬浮剂中,而烧结助剂已以盐、金属有机化合物或无机聚合物的形式溶于该悬浮剂中。然后将溶解的烧结助剂沉积到SiC颗粒上,例如通过抽提溶剂(DE2856593    C2)的方法。通过 热分解将烧结助剂基本上转化为适宜的陶瓷相。
本发明的一个目的是提供一种合成Si3N4和SiC颗粒及烧结助剂分布极为均匀的可烧结Si3N4或Si3N4/SiC粉末的方法。
根据本发明,通过下述方法达到上述发明目的:以含Si、C、H和N的聚合物(即有机取代的聚硅氮烷)作为Si3N4和SiC源,并将其沉积到粉末状烧结助剂上,随后进行热解。
因此,本发明涉及制备可烧结陶瓷粉末的制备方法,该方法包括将具有下式(Ⅰ)的聚硅氮烷
〔CH3SiHNH〕n〔CH3SiN〕n
(其中n约为10-12)溶于有机溶剂中,将粉末状烧结助剂悬浮于该溶液中,然后蒸去溶剂,于500-1600℃在惰性气体气氛中热解残余物。
可根据美国专利№.4,482,669所述的方法制备所用的聚硅氮烷,方法如下:
1.使CH3HSiCl2氨解,得到三聚和四聚环状硅氮烷〔CH3SiHNH〕3,4;
2.在碱性催化剂如KH的作用下使上述环状硅氮烷交联,得到聚硅氮烷。
用这种方法得到的聚硅氮烷为无色固体,其分子量为1000- 1300克/摩尔,并可溶于有机溶剂。该有机溶剂最好为四氢呋喃(THF)、甲苯或己烷。
一般采用下述物质中的一种或多种作为烧结助剂:碱土金属元素、Al、Y、稀土元素、Ti、Zr、Hf、Nb、Ta和Cr的氧化物、醇盐、硝酸盐、乙酸盐、乙酰丙酮化物、碳酸盐、草酸盐或卤化物。在这些物质中,优选Mg、Al、Y、Dy、Ho、Er、Tm、Yb、Ti、Zr和Hf的氧化物。最优选的是Mg、Al、Y、Yb和Ti的氧化物。
烧结助剂的量优选为每100克聚硅氮烷用0.02-0.2摩尔烧结助剂。
先将聚硅氮烷溶于有机溶剂中,再将粉末状烧结助剂悬浮于该溶液中。可对该悬浮液进行超声处理以改进固体颗粒的分散状况。在常压或负压下缓慢蒸发溶剂,使聚合物均匀地沉积到固体颗粒上。然后将得到的残余物于500-1600℃(优选800-1200℃)在惰性气体气氛中热解。所用的惰性气体优选为N2、Ar、NH3、H2或其混合物,特别是N2、Ar、NH3或其混合物。
可通过下述方法用得到的陶瓷粉末制造Si3N4或Si3N4/SiC密实烧结块:在非质子溶剂中研磨粉,必要时筛选研磨产物,成型为定型制品并将其烧结。
因此,本发明还涉及制造氮化硅陶瓷的方法,该方法包括将具有下式(Ⅰ)的聚硅氮烷
〔CH3SiHNH〕n〔CH3SiN〕n
(其中n约为10-12)溶于有机溶剂中,将粉末状烧结助剂悬浮于该溶液中,然后蒸去溶剂,于500-1600℃在惰性气体气氛中热解残余物,在非质子溶剂中研磨热解产物,将该研磨产物成型为定型制品,再于1700-2000℃和1-150巴下在N2气氛中烧结该成型制品。
还可以用下述方法制造Si3N4或Si3N4/SiC密实烧结块:开始时按照本发明制备陶瓷粉末的步骤操作,但在蒸去溶剂后不热解得到的残余物,而是先将其成型为定型制品,然后将该制品热解并烧结。
因此,本发明还涉及制造氮化硅陶瓷的方法,该方法包括将具有下式(Ⅰ)的聚硅氮烷
〔CH3SiHNH〕n〔CH3SiN〕n
(其中n约为10-12)溶于有机溶剂中,将粉末状烧结助剂悬浮于该溶液中,然后蒸去溶剂,将残余物成型为定型制品,于500-1600℃在惰性气体气氛中热解该制品,然后于1750-2000℃和1-150巴下在N2气氛中烧结该制品。
在制造氮化硅陶瓷的两种方法中,烧结过程最好于1700-1850℃、1-10巴下在N2气氛中进行。
如果所有聚硅氮烷中的N反应生成Si3N4,热解产物中SiC的最大含量可望达到22%(重量)(以聚硅氮烷的元素组成为基准)。但如在1000℃下于Ar或N2中热解,还生成元素碳。在 随后的烧结步骤常采用的高温下,该元素碳与部分原先生成的Si3N4反应生成SiC和N2。因此,通过在Ar或N2下热解制造的烧结块中SiC含量大于22%(重量),最大为43%(重量)。另一方面,如果在NH3气氛下热解聚硅氮烷,生成纯的Si3N4。由此可见,通过选择热解气氛(NH3、N2、H2、Ar或其混合物),可得到SiC含量为0-43%(重量)的Si3N4/SiC烧结块。
Si3N4/SiC复合物的结构特征是Si3N4基体的颗粒生长受到很大的抑制,这是由于分散的SiC颗粒的存在。Si3N4颗粒具有细长形状,其直径小于1μm,长与直径的比为5∶1-10∶1。近似等轴的SiC颗粒的平均直径小于0.8μm。
根据本发明制备的可烧结陶瓷粉末含有40-55%(重量)Si、0.05-25%(重量)C、10-35%(重量)N、5-15%(重量)O及2-10%(重量)一种或多种元素Mg、Al、Y、Dy、Ho、Er、Tm、Yb、Ti、Zr和Hf,所有上述元素均匀地分散于粉状颗粒中,特别是Si、C和N以非晶形材料的形式相连接。除Si、C、N和O之外存在的元素优选为Mg、Al、Y、Dy、Ho、Er、Tm、Yb、Ti、Zr和Hf。特别适宜的是Mg、Al、Y、Yb和Ti在可烧结陶瓷粉末中的含量尤为2-10%(重量)。
还优选含5-25%(重量)的碳,如上所述,可通过选择热解所用惰性气体的组成来调节该含量。
根据本发明制备的氮化硅陶瓷是很致密的,其最大孔隙度为3%。 该陶瓷最好含有10-60%(重量)晶形SiC、35-85%(重量)晶形Si3N4并在上述颗粒间含有3-20%(重量)非晶形或部分晶形相,其中含有烧结添加剂和氧。可通过改变热解过程中所用惰性气体的组成来控制陶瓷的组成。
本发明的氮化硅陶瓷可用于制造用于高机械强度、高温和腐蚀环境的部件。
实施例1
制备可烧结陶瓷粉末
在一个带旋塞的单颈圆底烧瓶中,于惰性氩气氛保护下将80克聚硅氮烷〔CH3SiHNH〕n〔CH3SiN〕n(n=10-12)溶于300毫升THF中。将8.4克Al2O3和3.6克Y2O3悬浮于该溶液中。超声处理后,于室温和10-2毫巴(mbar)及剧烈搅拌下,蒸除THF。然后将得到的残余物在带旋塞的石英管内于氩气流中热解。加热速率为4K/分,直至550℃。在该温度下发生分解,在该温度下保温1小时。通过将热解产物以4K/分的加热速率加热至1000℃并在该温度下保温1小时使热解完全。对残余非晶形物进行X-射线分析,证明含有85%(重量)热解产物、10.5%(重量)Al2O3和4.5%(重量)Y2O3,元素分析证明具有下述组成(重量百分比):Si(51.0%),C(12.4%),N(19.4%),O(8.8%),Al(5.6%),Y(2.8%)。在正己烷中将得到的热解产物研磨3小时,由此粉碎热解过程中生成的硬块。研磨后的热解产物的平均粒径为0.7μm,BET比表面积为17m2/g。
实施例2
制造氮化硅陶瓷
将根据实施例1所述方法制备的可烧结陶瓷粉末筛选(筛格尺寸d=160μm),在等温条件下于640兆巴(Mbar)冷压并烧结。将密实烧结块(直径=10毫米,高=12毫米)在不加压的条件下在静态氮气中烧结,加热速率为20K/分,直至1750℃并在该温度下保温1小时。附设膨胀计记录表明,1750℃以上没有进一步压紧。烧结产物的密度为3.2克/立方厘米,相当于理论密度3.33克/立方厘米的97%。用元素分析测定碳的含量,证明在Si3N4/SiC烧结块中有23%(重量)SiC。该复合物的结构中平均粒径0.4μm。最大粒径约为1μm。

Claims (7)

1、一种制造氮化硅陶瓷的方法,该方法包括将具有通式(Ⅰ)的聚硅氮烷
[CH3SiHNH]n[CH3SiN]n
(其中n约为10-12)溶于甲苯、已烷或四氢呋喃中,将粉末状烧结助剂悬浮于该溶液中,然后蒸去溶剂,于500-1600℃在惰性气体气氛中热解残余物,于非质子溶剂中研磨热解产物,将该研磨产物成型为定型制品,于1700-2000℃和1-150巴下在氮气氛中烧结该制品。
2、权利要求1所述的方法,其中烧结步骤于1750-1850℃和1-10巴下在氮气氛中进行。
3、权利要求1所述的方法,其中热解步骤于800-1200℃进行。
4、权利要求1所述的方法,其中一种或多种元素Mg、Al、Y、Dy、Ho、Er、Tm、Yb、Ti、Zr和Hf的氧化物、醇盐、硝酸盐、乙酸盐、乙酰丙酮化物、碳酸盐、草酸盐或卤化物用作烧结助剂。
5、权利要求4所述的方法,其中一种或多种元素Mg、Al、Y、Yb和Ti以其氧化物形式使用。
6、权利要求4或5所述的方法,其中每100克聚硅氮烷使用0.02-0.2摩尔烧结助剂。
7、权利要求1所述的方法,其中N2、Ar、NH3或其混合物用作热解步骤中的惰性气体。
CN89108962A 1988-12-03 1989-12-02 一种制造氮化硅陶瓷的方法 Expired - Fee Related CN1029954C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 92105800 CN1034654C (zh) 1988-12-03 1992-07-16 可烧结陶瓷粉的制备方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DEP3840773.6 1988-12-03
DE3840773A DE3840773A1 (de) 1988-12-03 1988-12-03 Sinterfaehiges keramikpulver, verfahren zu seiner herstellung, daraus hergestellte siliziumnitridkeramik, verfahren zu deren herstellung sowie deren verwendung

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN 92105800 Division CN1034654C (zh) 1988-12-03 1992-07-16 可烧结陶瓷粉的制备方法

Publications (2)

Publication Number Publication Date
CN1044272A CN1044272A (zh) 1990-08-01
CN1029954C true CN1029954C (zh) 1995-10-11

Family

ID=6368394

Family Applications (1)

Application Number Title Priority Date Filing Date
CN89108962A Expired - Fee Related CN1029954C (zh) 1988-12-03 1989-12-02 一种制造氮化硅陶瓷的方法

Country Status (6)

Country Link
US (1) US5081078A (zh)
EP (1) EP0372382B1 (zh)
JP (1) JPH02204313A (zh)
CN (1) CN1029954C (zh)
CA (1) CA2004403A1 (zh)
DE (2) DE3840773A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3909978A1 (de) * 1989-03-25 1990-09-27 Hoechst Ag Sinterfaehiges keramikpulver, verfahren zu seiner herstellung, daraus hergestellte siliziumnitridkeramik, verfahren zu deren herstellung sowie deren verwendung
JPH0437644A (ja) * 1990-05-29 1992-02-07 Chisso Corp セラミック組成物及びその製造法
FR2680986A1 (fr) * 1991-09-05 1993-03-12 Rhone Poulenc Chimie Preparation d'un revetement a partir d'une barbotine comprenant un polymere precurseur de ceramique.
DE4237721B4 (de) * 1992-11-09 2005-09-01 Rheinmetall Defence Electronics Gmbh Verfahren und Vorrichtung zur Identifizierung von Verkehrsteilnehmern
DE69427457T2 (de) * 1993-12-17 2001-09-27 Honda Motor Co Ltd Yttrium-enthaltendes Verbundpulver, gesinterter Verbundwerkstoff, und Verfahren zu dessen Herstellung
ZA956408B (en) * 1994-08-17 1996-03-11 De Beers Ind Diamond Abrasive body
DE19706028C1 (de) * 1997-02-17 1998-07-02 Bayer Ag Neue Carbodiimid-Polymere als Vorstufen für C/N- und B/C/N-Werkstoffe
KR100491022B1 (ko) * 2002-06-29 2005-05-24 한국기계연구원 미세다공질 세라믹스 소재 및 그 제조방법
US7128850B2 (en) * 2003-06-02 2006-10-31 The Regents Of The University Of California Electrically conductive Si-Ti-C-N ceramics
CN1312028C (zh) * 2005-07-15 2007-04-25 清华大学 一种合成Si基一维纳米材料的方法
CN112723327A (zh) * 2021-03-16 2021-04-30 福建臻璟新材料科技有限公司 一种掺杂氮化硅粉体的制备方法
CN116477958A (zh) * 2023-04-28 2023-07-25 长沙新立硅材料科技有限公司 一种高纯一体化氮化硅散热基板的制作方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2218960A1 (de) * 1972-04-19 1973-11-08 Bayer Ag Formkoerper aus mogenen mischungen von siliciumcarbid und siliciumnitrid und verfahren zu ihrer erstellung
DE2243527A1 (de) * 1972-09-05 1974-04-18 Bayer Ag Formkoerper aus homogenen mischungen von siliciumcarbid und siliciumnitrid und verfahren zu ihrer herstellung
US4184882A (en) * 1976-03-25 1980-01-22 Westinghouse Electric Corp. Silicon nitride-silicon carbide composite material
US4482669A (en) * 1984-01-19 1984-11-13 Massachusetts Institute Of Technology Preceramic organosilazane polymers
US4482689A (en) * 1984-03-12 1984-11-13 Dow Corning Corporation Process for the preparation of polymetallo(disily)silazane polymers and the polymers therefrom
US4595775A (en) * 1984-04-06 1986-06-17 Petrarch Systems, Inc. N-methylhydridosilazanes, polymers thereof, methods of making same and silicon nitrides produced therefrom
US4535007A (en) * 1984-07-02 1985-08-13 Dow Corning Corporation Silicon nitride-containing ceramics
US4757035A (en) * 1984-09-21 1988-07-12 Dow Corning Corporation Ceramic materials with increased crystallinity from silazane polymers
US4650837A (en) * 1985-09-30 1987-03-17 Massachusetts Institute Of Technology Method for converting Si-H containing polycarbosilanes to new and useful preceramic polymers and ceramic materials
JPH0764642B2 (ja) * 1986-06-13 1995-07-12 東燃株式会社 窒化物系セラミツクスの製法
JPS6325276A (ja) * 1986-07-12 1988-02-02 新日本製鐵株式会社 窒化けい素焼結体の製造方法
JPS6321253A (ja) * 1986-07-14 1988-01-28 新日本製鐵株式会社 窒化けい素焼結体の製造方法
US4720532A (en) * 1986-08-22 1988-01-19 Massachusetts Institute Of Technology Organopolysilazane precursors to silicon nitride-rich mixed SiC/Si3 N4
US4869854A (en) * 1986-10-31 1989-09-26 Shin-Etsu Chemical Co., Ltd. Process for manufacturing organic silazane polymers and ceramics therefrom
US4861532A (en) * 1986-11-04 1989-08-29 Dow Corning Corporation Method of preparing ceramics from polymers derived from cyclic silazanes, and halosilanes
US4800182A (en) * 1987-01-22 1989-01-24 Mitsubishi Gas Chemical Company, Inc. Silicon nitride-silicon carbide composite material and process for production thereof
JPS63210133A (ja) * 1987-02-25 1988-08-31 Shin Etsu Chem Co Ltd 有機シラザン重合体の製造方法
JPS63242962A (ja) * 1987-03-31 1988-10-07 新日本製鐵株式会社 有機金属高分子を用いた非酸化物系セラミツクス焼成体の製造方法

Also Published As

Publication number Publication date
EP0372382A3 (de) 1991-03-27
EP0372382B1 (de) 1995-11-15
JPH02204313A (ja) 1990-08-14
DE58909501D1 (de) 1995-12-21
DE3840773A1 (de) 1990-06-07
EP0372382A2 (de) 1990-06-13
CN1044272A (zh) 1990-08-01
CA2004403A1 (en) 1990-06-03
US5081078A (en) 1992-01-14

Similar Documents

Publication Publication Date Title
CN1029954C (zh) 一种制造氮化硅陶瓷的方法
Chang et al. Chemical vapor processing and applications for nanostructured ceramic powders and whiskers
CN111675541A (zh) 一种含碳max相材料的制备方法
CN111646799A (zh) 一种燃烧法制备Tin+1ACn材料的方法
US4962069A (en) Highly densified bodies from preceramic polysilazanes filled with silicon carbide powders
GB2048953A (en) Sintering silicon carbide in boron containing atmosphere
EP2456733A2 (en) Methods of forming sintered boron carbide
Löffelholz et al. Novel access to polyboro‐and polyalumosilazanes suitable as precursors for ternary nitride ceramics
EP0325388A1 (en) Method for producing a high-density sintered body of silicon carbide
US3917780A (en) Preparation of lead lanthanum zirconate titanate bodies
JPS61261272A (ja) 六ホウ化ランタンを基材とする多結晶焼結体及びその製造方法
CN1034654C (zh) 可烧结陶瓷粉的制备方法
EP0402672A2 (en) Process for preparing polycrystalline cubic boron nitride and resulting product
EP0257134B1 (en) A method for producing high-density sintered silicon carbide articles
US5602062A (en) Method for preparing a boron nitride composite
CN1369463A (zh) 含反应合成碳硼铝化合物相的碳化硅陶瓷及其液相烧结法
CN1260179C (zh) 一种煤系高岭土合成高纯赛隆材料的方法
US5162272A (en) Sinterable ceramic powder, process for its production, silicon nitride ceramic produced therefrom, process for its production and its use
CN1096283A (zh) 采用急骤热解制备金属和/或非金属氮化物和/或碳化物陶瓷粉末的方法及由此获得的粉末
CN1113831C (zh) 原位合成TiN/O′-Sialon复相材料的制备方法
CN103073317A (zh) 一种铝氮化钛/二硼化钛复合材料及其制备方法
Yang et al. Study on Preparation and Reaction Mechanism of B 4 C/β-Sialon/SiC/Al 2 O 3 Composite Powder
JP2004292176A (ja) 複合セラミックスおよびその製造方法
JPH0455142B2 (zh)
EP0512762A2 (en) Process for preparing polycrystalline cubic boron nitride and resulting product

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee