CN116477958A - 一种高纯一体化氮化硅散热基板的制作方法 - Google Patents

一种高纯一体化氮化硅散热基板的制作方法 Download PDF

Info

Publication number
CN116477958A
CN116477958A CN202310474135.0A CN202310474135A CN116477958A CN 116477958 A CN116477958 A CN 116477958A CN 202310474135 A CN202310474135 A CN 202310474135A CN 116477958 A CN116477958 A CN 116477958A
Authority
CN
China
Prior art keywords
silicon nitride
purity
heat dissipation
furnace
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310474135.0A
Other languages
English (en)
Inventor
刘立新
王中然
李琳伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changsha Xinli Silicon Material Technology Co ltd
Original Assignee
Changsha Xinli Silicon Material Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changsha Xinli Silicon Material Technology Co ltd filed Critical Changsha Xinli Silicon Material Technology Co ltd
Priority to CN202310474135.0A priority Critical patent/CN116477958A/zh
Publication of CN116477958A publication Critical patent/CN116477958A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/587Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4803Insulating or insulated parts, e.g. mountings, containers, diamond heatsinks
    • H01L21/4807Ceramic parts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3731Ceramic materials or glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Ceramic Products (AREA)

Abstract

本发明公开了一种高纯一体化氮化硅散热基板的制作方法,属于大功率半导体模块封装的技术领域,包括:S1、将高纯氮化硅粉体与全氢聚硅氮烷(PHPS)充分混合,加入无水乙醇,充分搅拌均匀后,制得氮化硅基的浆料;S2、将S1中的浆料注入薄膜流延设备,流延成型为一定的厚度的薄基板;S3、将S2中得到的薄基板放置于干燥烘干设备中进行烘干处理;S4、将S3处理好的氮化硅基板放置于烧结炉中,抽真空,充入氮气和/或者氨气,维持正压,升温至熔融状态,待炉内温度稳定一段时间后断电,降温处理,随炉冷却制得高纯一体化氮化硅基板。该基板可用于大功率电子半导体模块的散热使用。

Description

一种高纯一体化氮化硅散热基板的制作方法
技术领域
本申请涉及散热基板加工技术领域,尤其涉及一种高纯一体化氮化硅散热基板的制作方法。
背景技术
大功率散热基板材料要求具有低成本、高电绝缘性、高稳定性、高导热性及与芯片匹配的热膨胀系数(CTE)、平整性和较高的强度等问题。为了满足这些要求,人们将目光投向了金属氧化物、陶瓷、聚合物、复合材料等。主要应用的散热基板材料有Al2O3,、AIN、Be0、SiC、BN、Si等。
金属氧化物Al2O3,虽然具有机械强度高、耐热冲击和介质损耗小等优点,但因为具有较低的热导率且高纯氧化铝难以烧结造价昂贵,故已不能满足大功率散热基板材料的要求;BeO热导率高,但其线膨胀系数与Si相差很大,高温时热导率急剧下降且制造时有毒,限制了其应用范围;BN虽然具有较好的综合性能,但作为基板材料价格太昂贵目前只处于研究和推广之中;SiC具有高强度和高热导率,但其电阻和绝缘耐压值都较低,介电常数偏大,不宜作为基板材料。硅作为散热基板材料加工困难,成本高;单一金属材料具有导电及热膨胀系数失配等问题,因此以上材料很难满足未来大功率散热基板材料的苛刻要求。
到目前为止,人们研究发现,AIN表现出高达200W/(m·K)的热导率,因此AIN高热导率散热材料已开始被应用在一些重要的大功率电子芯片的散热基板中。然而,由于AIN的机械性能不能充分满足大功率散热基板材料的要求(一般来说,弯曲强度300-400MPa,断裂韧性3-4MPa·m),导致基板可靠性低。同时AIN的烧结温度很高(1900℃左右)且在水中容易水解形成偏铝酸,这也限制了AIN的应用。研究者们迫切希望寻求一种可替代AIN的具有高热导率和优良综合性能的散热基板材料,因此人们把注意力转向Si3N4,陶瓷材料Si3N4是一种共价键化合物,主要有α和两种晶体结构,均为六角晶形。其中B-Si3N4在平均原子量、原子键键强等方面与碳化硅、氮化铝较为相似,但结构相对复杂对声子散射比较大,故在早期阶段人们认为氮化硅的热导率很低”。直到1995年,Haggerty等"提出复杂的晶体结构并非氮化硅低热导率的原因,而是晶格内缺陷、杂质等原因,并预测B-Si陶瓷热导率可以达到200-320W/(mK)。在1999年,Watar等用热等静压法在温度2773K,氮气压力200MPa的条件下制备出了热导率为155W/(m·K)氮化硅陶瓷,用实验的方法证明了氨化硅陶瓷具有很高的热导率。此外,研究者们对Si3N4热膨胀系数,机械性能、抗氧化性、电绝缘性、对环境的影响等方面分别进行了不懈的研究,发现均能获得令人满意的结果,因此氮化硅被认为是一种很有潜力的高速电路和大功率电子器件散热基板和封装材料。
氮化硅由于其高强度,低密度,热导率优异,同为硅基材料,具有与芯片匹配的热膨胀系数一时间成为最优异的散热基板的理想材料,理想的氮化硅基板强度高,热导率可达200~300W/(m·K),但现实中使用的氮化硅的热导率却只有80~130W/(m·K),导致这种现象的主要原因是因为氮化硅粉末在高温烧结时直接气化不能形成有效的熔区,在现阶段制备氮化硅的过程中一般添加稀土氧化物或者金属氧化物作为烧结剂,这种烧结剂的引入势必减弱氮化硅本身的热导率,所以氮化硅作为优秀的散热基板材料受制于在满足较强的机械性能的前提下能否找到无氧烧结剂,不引入氧元素能够很大程度提高热导率。
发明内容
本申请实施例的目的是提供一种高纯一体化氮化硅散热基板的制作方法,以解决上述背景技术中存在的氮化硅烧结剂采用氧化物的问题,进一步解决大功率半导体芯片的散热基板在机械力学性能和高温下散热方面的问题
本发明采用以下的技术方案:一种高纯一体化氮化硅散热基板的制作方法,包括:
S1、将高纯氮化硅粉体与全氢聚硅氮烷(PHPS)充分混合,加入无水乙醇,充分搅拌均匀后,制得氮化硅基的浆料;
S2、将S1中的浆料注入薄膜流延设备,流延成型为一定的厚度的薄基板;
S3、将S2中得到的薄基板放置于干燥烘干设备中进行烘干处理;
S4、将S3处理好的氮化硅基板放置于烧结炉中,抽真空,充入氮气和/或者氨气,维持正压,升温至熔融状态,待炉内温度稳定一段时间后断电,降温处理,随炉冷却制得高纯一体化氮化硅基板。
优选地,S1中,所述高纯氮化硅粉体与全氢聚硅氮烷(PHPS)的质量比为100:(80-95),加入无水乙醇配置成固含量在30-45%的浆料。
优选地,S1中,所述高纯氮化硅粉体纯度达到99.98%,粒径1-3um。
优选地,S1中,所述全氢聚硅氮烷(PHPS)仅含有C、H、N、Si且熔点低于氮化硅气化临界点的聚合物,调整聚合物和有机溶剂的比例使得得到的浆料固含量维持在30-45%。
优选地,S2中,薄膜流延设备要具备流延成型厚度在0.1-1mm。
优选地,S3中,所述干燥烘干处理的设备设定在60-80℃的环境下烘干处理30-45小时。
优选地,S4中,真空炉充入的氮气或者氨气中的一种或者多种;优选地,混合充入的时候,按照氮气:氨气体积分数为1:1充入。
优选地,S4中,所述的烧结炉,气密性良好,炉内氮气和/或者氨气的正压维持在5-10MPa,升温至1700℃-1800℃,温升速率为1-30℃/min,保温25-30小时,随炉冷却。
本申请的实施中例提供的技术方案可以包括以下有益效果:
本发明采用全氢聚硅氮烷(PHPS)作为烧结剂,由于硅氮烷这类的聚合物只含有Si、N、H、C元素,在高温烧结的时候,在熔区与氮化硅反应生成的是氮化硅和少量的碳化硅,这两种材料都是散热性能远远优于当前的金属氧化物如氧化锆,氧化铝制成的散热基板,如果烧结氛围温度控制的好,就不会生成碳化硅,这样制得氮化硅基板纯度很高,热导率达到180W/(m·K)以上,同时具有较高的机械性能,不易变形折弯,又因为和芯片同为硅基,有着相接近的热膨胀系数,能有效避免由于热胀导致的芯片光失效的问题,这种高纯氮化硅基板可以说是大功率电子半导体散热基板的理想选择。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本申请。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本申请的实施例,并与说明书一起用于解释本申请的原理。
图1是根据一示例性实施例示出的一种高纯一体化氮化硅散热基板的制作方法中烧结剂与氮化硅熔区的结合示意图。
图中的附图标记有:
1、氮化硅单元体;2、烧结剂单元体;3、熔区。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本申请的一些方面相一致的装置和方法的例子。
在本申请使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本申请可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本申请范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“相应于确定”。
参考图1,一种高纯一体化氮化硅散热基板的制作方法,包括如下步骤:
S1、将氮化硅单元体1(高纯氮化硅粉体)与烧结剂单元体2(全氢聚硅氮烷(PHPS))充分混合,加入无水乙醇,充分搅拌均匀后,制得氮化硅基的浆料;
S2、将S1中的浆料注入薄膜流延设备,流延成型为一定的厚度的薄基板;
S3、将S2中得到的薄基板放置于干燥烘干设备中进行脱除溶剂的处理;
S4、将S3处理好的氮化硅基板放置于烧结炉中,抽真空,充入氮气和/或者氨气,维持正压,升温至熔融状态,参考图1中的熔区3的示意图,此时,氮化硅单元体1缝隙中的烧结剂单元体2已经完全融化,周围的氮化硅单元体1被紧密烧结粘连到一起形成完整一体的氮化硅基体,待炉内温度稳定一段时间后断电,降温处理,随炉冷却制得高纯一体化氮化硅基板。
实例1
S1、将纯度≥99.98%,粒径1um的高纯氮化硅粉体100质量份与80质量份的全氢聚硅氮烷(PHPS)充分混合,加入适量无水乙醇,充分搅拌均匀后,制得氮化硅基的浆料,浆料的固含量在30%;
S2、将步骤1中的浆料注入薄膜流延设备,流延成型为厚度在0.1mm的氮化硅基板基体薄片;
S3、将步骤2中得到的氮化硅基板基体放置于干燥烘干设备中,在60℃的环境下烘干处理45小时左右;
S4、将处理好的氮化硅基板基体放置于烧结炉中,充入的氮气后,开启加热电源,精确控制温度为缓慢升温,温升速率为30℃/min,在最后升温至1700℃,保温25小时,待炉内温度稳定后断电,降温处理,随炉冷却制得高纯一体化氮化硅散热基板。
实例2
S1、将纯度≥99.98%,粒径3um的高纯氮化硅粉体100质量份与95质量份的全氢聚硅氮烷(PHPS)充分混合,加入适量无水乙醇,充分搅拌均匀后,制得氮化硅基的浆料,浆料的固含量在40%;
S2、将步骤1中的浆料注入薄膜流延设备,流延成型为厚度在0.5mm的氮化硅基板基体薄片;
S3、将步骤2中得到的氮化硅基板基体放置于干燥烘干设备中,在70℃的环境下烘干处理20小时左右;
S4、将处理好的氮化硅基板基体放置于烧结炉中,充入的氨气后,开启加热电源,精确控制温度为缓慢温升,温升速率为1℃/min,最后升温至1800℃,保温30小时,待炉内温度稳定后断电,降温处理,随炉冷却制得高纯一体化氮化硅散热基板。
实例3
S1、将纯度≥99.98%,粒径3um的高纯氮化硅粉体100质量份与85质量份的全氢聚硅氮烷(PHPS)充分混合,加入适量无水乙醇,充分搅拌均匀后,制得氮化硅基的浆料,浆料的固含量在45%;
S2、将步骤1中的浆料注入薄膜流延设备,流延成型为厚度在1mm的氮化硅基板基体薄片;
S3、将步骤2中得到的氮化硅基板基体放置于干燥烘干设备中,在80℃的环境下烘干处理30小时左右;
S4、将处理好的氮化硅基板基体放置于烧结炉中,充入氮气和氨气的混合气体,且氮气:氨气=1:1,开启加热电源,精确控制温度缓慢升温,温升速率为30℃/min,最后升温至1800℃,保温35小时,待炉内温度稳定后断电,降温处理,随炉冷却制得高纯一体化氮化硅散热基板。
本申请旨在涵盖本申请的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本申请的一般性原理并包括本申请未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本申请的真正范围和精神由权利要求指出。
应当理解的是,本申请并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本申请的范围仅由所附的权利要求来限制。

Claims (8)

1.一种高纯一体化氮化硅散热基板的制作方法,其特征在于,包括:
S1、将高纯氮化硅粉体与全氢聚硅氮烷(PHPS)充分混合,加入无水乙醇,充分搅拌均匀后,制得氮化硅基的浆料;
S2、将S1中的浆料注入薄膜流延设备,流延成型为一定的厚度的薄基板;
S3、将S2中得到的薄基板放置于干燥烘干设备中进行烘干处理;
S4、将S3处理好的氮化硅基板放置于烧结炉中,抽真空,充入氮气和/或者氨气,维持正压,升温至熔融状态,待炉内温度稳定一段时间后断电,降温处理,随炉冷却制得高纯一体化氮化硅基板。
2.根据权利要求1所述的一种高纯一体化氮化硅散热基板的制作方法,其特征在于,S1中,所述高纯氮化硅粉体与全氢聚硅氮烷(PHPS)的质量比为100:(80-95),加入无水乙醇配置成固含量在30-45%的浆料。
3.根据权利要求1所述的一种高纯一体化氮化硅散热基板的制作方法,其特征在于,S1中,所述高纯氮化硅粉体纯度达到99.98%,粒径1-3um。
4.根据权利要求1所述的一种高纯一体化氮化硅散热基板的制作方法,其特征在于,S1中,所述全氢聚硅氮烷(PHPS)仅含有C、H、N、Si且熔点低于氮化硅气化临界点的聚合物,调整聚合物和有机溶剂的比例使得得到的浆料固含量维持在30-45%。
5.根据权利要求1所述的一种高纯一体化氮化硅散热基板的制作方法,其特征在于,S2中,薄膜流延设备要具备流延成型厚度在0.1-1mm。
6.根据权利要求1所述的一种高纯一体化氮化硅散热基板的制作方法,其特征在于,S3中,所述干燥烘干处理的设备设定在60-80℃的环境下烘干处理30-45小时。
7.根据权利要求1所述的一种高纯一体化氮化硅散热基板的制作方法,其特征在于,S4中,真空炉充入的氮气或者氨气中的一种或者多种;优选地,混合充入的时候,按照氮气:氨气体积分数为1:1充入。
8.根据权利要求1所述的一种高纯一体化氮化硅散热基板的制作方法,其特征在于,S4中,所述的烧结炉,气密性良好,炉内氮气和/或者氨气的正压维持在5-10MPa,升温至1700℃-1800℃,温升速率为1-30℃/min,保温25-35小时,随炉冷却。
CN202310474135.0A 2023-04-28 2023-04-28 一种高纯一体化氮化硅散热基板的制作方法 Pending CN116477958A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310474135.0A CN116477958A (zh) 2023-04-28 2023-04-28 一种高纯一体化氮化硅散热基板的制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310474135.0A CN116477958A (zh) 2023-04-28 2023-04-28 一种高纯一体化氮化硅散热基板的制作方法

Publications (1)

Publication Number Publication Date
CN116477958A true CN116477958A (zh) 2023-07-25

Family

ID=87211621

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310474135.0A Pending CN116477958A (zh) 2023-04-28 2023-04-28 一种高纯一体化氮化硅散热基板的制作方法

Country Status (1)

Country Link
CN (1) CN116477958A (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0341924A2 (en) * 1988-05-11 1989-11-15 Ethyl Corporation Densified silicon nitride ceramics and their production
JPH02175657A (ja) * 1988-12-28 1990-07-06 Chisso Corp セラミツク組成物およびその製造方法、成形助剤
CN1044272A (zh) * 1988-12-03 1990-08-01 赫彻斯特股份公司 可烧结陶瓷粉及其制备方法以及用该陶瓷粉制造的氮化硅陶瓷及其制造方法和用途
US5145812A (en) * 1988-02-29 1992-09-08 Toa Nenryo Kogyo Kabushiki Kaisha Molded articles formed of silicon nitride based ceramic and process for producing same
JPH06204214A (ja) * 1992-12-28 1994-07-22 Tonen Corp スパッタリング用窒化珪素系ターゲット材料
CN107500802A (zh) * 2017-09-26 2017-12-22 广东工业大学 一种氮化硅陶瓷浆料和多孔氮化硅陶瓷的制备方法
CN111170745A (zh) * 2020-01-09 2020-05-19 北京科技大学 一种高导热氮化硅基板的制备方法
CN114773069A (zh) * 2022-05-09 2022-07-22 秦皇岛光岩科技有限公司 大功率集成电路用高热导率氮化硅陶瓷基板的制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5145812A (en) * 1988-02-29 1992-09-08 Toa Nenryo Kogyo Kabushiki Kaisha Molded articles formed of silicon nitride based ceramic and process for producing same
EP0341924A2 (en) * 1988-05-11 1989-11-15 Ethyl Corporation Densified silicon nitride ceramics and their production
CN1044272A (zh) * 1988-12-03 1990-08-01 赫彻斯特股份公司 可烧结陶瓷粉及其制备方法以及用该陶瓷粉制造的氮化硅陶瓷及其制造方法和用途
JPH02175657A (ja) * 1988-12-28 1990-07-06 Chisso Corp セラミツク組成物およびその製造方法、成形助剤
JPH06204214A (ja) * 1992-12-28 1994-07-22 Tonen Corp スパッタリング用窒化珪素系ターゲット材料
CN107500802A (zh) * 2017-09-26 2017-12-22 广东工业大学 一种氮化硅陶瓷浆料和多孔氮化硅陶瓷的制备方法
CN111170745A (zh) * 2020-01-09 2020-05-19 北京科技大学 一种高导热氮化硅基板的制备方法
CN114773069A (zh) * 2022-05-09 2022-07-22 秦皇岛光岩科技有限公司 大功率集成电路用高热导率氮化硅陶瓷基板的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
徐维新等: "精细陶瓷技术", 31 October 1989, 上海交通大学出版社, pages: 84 *
齐共金等: "全氢聚硅氮烷的合成与表征", 《国防科技大学学报》, vol. 27, no. 6, pages 16 *

Similar Documents

Publication Publication Date Title
Huang et al. High thermal conductive AlN substrate for heat dissipation in high-power LEDs
US6613443B2 (en) Silicon nitride ceramic substrate, silicon nitride ceramic circuit board using the substrate, and method of manufacturing the substrate
Hirao et al. High thermal conductivity silicon nitride ceramics
EP4282848A1 (en) Preparation method for copper plate-covered silicon nitride ceramic substrate
US20210269368A1 (en) Method for manufacturing active metal-brazed nitride ceramic substrate with excellent joining strength
CN1654427A (zh) 以氮化硅镁为烧结助剂的高热导氮化硅陶瓷的制备方法
WO2015003508A1 (zh) 高绝缘碳化硅/氮化硼陶瓷材料及其制备方法
JP6992364B2 (ja) 窒化ケイ素焼結基板
CN112811909A (zh) 一种热压烧结制备高强度高热导率氮化铝的方法
JP7075612B2 (ja) 窒化ケイ素焼結基板
US8791566B2 (en) Aluminum nitride substrate, aluminum nitride circuit board, semiconductor apparatus, and method for manufacturing aluminum nitride substrate
JP2007230791A (ja) セラミック回路基板およびその製造方法
JP3408298B2 (ja) 高熱伝導性窒化けい素メタライズ基板,その製造方法および窒化けい素モジュール
CN116477958A (zh) 一种高纯一体化氮化硅散热基板的制作方法
KR20190032966A (ko) 질화규소 소결체 제조를 위한 테이프 캐스팅용 슬러리 조성물
JP2678213B2 (ja) 窒化アルミニウム焼結体の製造方法
KR20190063580A (ko) 신규한 질화규소 분말의 제조방법
KR102299212B1 (ko) 고강도 질화알루미늄 소결체
JPH0725617B2 (ja) 窒化アルミニウム基板およびその製造方法
CN116410002B (zh) 一种基板、制备方法及应用
JPH0450171A (ja) AlN焼結体の製造方法
KR102626997B1 (ko) 산화스칸듐을 소결조제로 포함하는 질화알루미늄 세라믹스 제조용 조성물, 질화알루미늄 세라믹스 및 그 제조방법
KR20180097052A (ko) 저유전손실의 질화 알루미늄 세라믹 소재, 세라믹히터 및 이의 제조방법
JPS6252181A (ja) 窒化アルミニウム焼結体の製造方法
JP2003192445A (ja) 窒化けい素基板、その製造方法およびその基板を用いた薄膜付き窒化けい素基板

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination