CN102971903A - 固体电解质材料及锂电池 - Google Patents

固体电解质材料及锂电池 Download PDF

Info

Publication number
CN102971903A
CN102971903A CN2011800271347A CN201180027134A CN102971903A CN 102971903 A CN102971903 A CN 102971903A CN 2011800271347 A CN2011800271347 A CN 2011800271347A CN 201180027134 A CN201180027134 A CN 201180027134A CN 102971903 A CN102971903 A CN 102971903A
Authority
CN
China
Prior art keywords
solid electrolyte
electrolyte material
active material
electrode active
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011800271347A
Other languages
English (en)
Other versions
CN102971903B (zh
Inventor
入山恭寿
熊崎翔太
穆鲁加恩·拉马斯瓦米
广濑宽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shizuoka University NUC
Toyota Motor Corp
Original Assignee
Shizuoka University NUC
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shizuoka University NUC, Toyota Motor Corp filed Critical Shizuoka University NUC
Publication of CN102971903A publication Critical patent/CN102971903A/zh
Application granted granted Critical
Publication of CN102971903B publication Critical patent/CN102971903B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • C04B35/6262Milling of calcined, sintered clinker or ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/122Ionic conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/762Cubic symmetry, e.g. beta-SiC
    • C04B2235/764Garnet structure A3B2(CO4)3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte
    • H01M6/185Cells with non-aqueous electrolyte with solid electrolyte with oxides, hydroxides or oxysalts as solid electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Thermal Sciences (AREA)
  • Secondary Cells (AREA)
  • Conductive Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明的主要目的是提供具有良好致密性的Li-La-Zr-O系固体电解质材料。本发明通过提供以具有Li、La、Zr、Al、Si和O、并具有石榴石型结构、且为烧结体为特征的固体电解质材料,从而解决上述课题。

Description

固体电解质材料及锂电池
技术领域
本发明涉及具有良好致密性的Li-La-Zr-O系固体电解质材料。
背景技术
伴随着近年来个人电脑、摄像机和便携式电话等信息相关设备、通信设备等的急速普及,作为其电源而利用的电池的开发受到重视。另外,在汽车产业界等,也进行着用于电动汽车或用于混合动力汽车的高输出功率且高容量的电池的开发。现在,在各种电池中,从能量密度高的观点考虑,锂电池受到关注。
现在市售的锂电池使用含有可燃性有机溶剂的电解液,所以需要安装抑制短路时的温度上升的安全装置、用于防止短路的结构·材料方面的改善。针对此,认为以固体电解质层代替电解液而将电池全固体化的锂电池由于在电池内不使用可燃性的有机溶剂,所以能够实现安全装置的简单化,制造成本、生产率优异。
作为用于全固体型锂电池的固体电解质材料,已知Li-La-Zr-O系固体电解质材料。例如,在专利文献1中,公开了含有Li、La、Zr、O和Al的陶瓷材料。在专利文献2中,公开了作为固体电解质的微粒而使用了陶瓷材料的固体电解质结构体的制造方法,所述陶瓷材料具有由Li、La、Zr、O构成的石榴石型或类似石榴石的晶体结构,且含有Al。在专利文献3中公开了具备含有陶瓷的固体电解质的全固体锂电池,所述陶瓷具有由Li、La、Zr、O构成的石榴石型或类似石榴石的晶体结构。另外,在专利文献4、5中公开了在正极层与硫化物固体电解质层之间具备含有Li7La3Zr2O12的缓冲层的锂电池。在专利文献6中公开了具有Li7La3Zr2O12的基本组成的含锂石榴石型氧化物。
现有技术文献
专利文献
专利文献1:美国专利申请公报第2010/0047696号说明书
专利文献2:日本特开2009-238739号公报
专利文献3:日本特开2010-045019号公报
专利文献4:日本特开2009-245913号公报
专利文献5:日本特开2010-040439号公报
专利文献6:日本特开2010-102929号公报
发明内容
Li-La-Zr-O系固体电解质材料含有Al时,存在固体电解质材料的致密性降低的问题。本发明是鉴于上述情况而进行的,主要目的是提供具有良好致密性的Li-La-Zr-O系固体电解质材料。
为了解决上述课题,在本发明中提供一种固体电解质材料,其特征在于,具有Li、La、Zr、Al、Si和O,并具有石榴石型结构,且为烧结体。
根据本发明,通过含有Si,即使含有Al的情况下,也可以制成具有良好致密性的固体电解质材料。
在上述发明中,优选上述Li、上述La和上述Zr的比例以摩尔基准计为Li:La:Zr=7:3:2。
在上述发明中,优选Li离子传导率为2.0×10-4S/cm以上。这是因为能够制成Li离子传导率比Li7La3Zr2O12高的固体电解质材料。
在上述发明中,优选上述Al含量(重量%)相对于上述Si含量(重量%)的比例(Al/Si)为4.6~11.9的范围内。这是因为能够制成Li离子传导率更高的固体电解质材料。
另外,在本发明中提供一种锂电池,其特征在于,具有含有正极活性物质的正极活性物质层、含有负极活性物质的负极活性物质层、和在上述正极活性物质层与上述负极活性物质层之间形成的固体电解质层,上述固体电解质层含有上述固体电解质材料。
根据本发明,通过使用上述固体电解质材料,可以制成具有致密固体电解质层的锂电池。
在本发明中,发挥能够得到具有良好致密性的Li-La-Zr-O系固体电解质材料的效果。
附图说明
图1是表示本发明的锂电池的一个例子的剖面示意图。
图2是实施例1~5和比较例1中得到的固体电解质材料的致密性评价的结果。
图3是实施例1~5和比较例1中得到的固体电解质材料的XRD测定结果。
图4是实施例1~5和比较例1中得到的固体电解质材料的Li离子传导率测定结果。
具体实施方式
以下,对本发明的固体电解质材料和锂电池详细进行说明。
A.固体电解质材料
首先,对本发明的固体电解质材料进行说明。本发明的固体电解质材料的特征是具有Li、La、Zr、Al、Si和O,并具有石榴石型结构,且为烧结体。
根据本发明,通过含有Si,即使在含有Al的情况下,也可以制成具有良好致密性的固体电解质材料。固体电解质材料具有良好的致密性时,具有能够有助于提高Li离子传导性的优点、能够有助于提高机械性强度的优点等。例如,Li离子传导性高时,可以制成适合电池的高输出功率化的固体电解质材料。另外,例如,机械性强度高时,可以制成适合电池的高耐久化的固体电解质材料。
另外,固体电解质材料中含有的Al如后述的实施例所记载,认为具有提高结晶性的功能,但是反过来存在导致致密性降低的问题。与此相对,在本发明中,通过在固体电解质材料中加入Al并加入Si,可以制成具有良好致密性的固体电解质材料。
本发明的固体电解质材料的特征之一是具有Li、La、Zr、Al、Si和O。另外,本发明的固体电解质材料通常为氧化物固体电解质材料。本发明的固体电解质材料的组成比可以采用如下方式确定。首先,用碳酸钠和硼酸的混合熔剂熔解固体电解质材料,接着,通过将该熔解物溶解于稀硝酸中,得到评价用溶液。使用该评价用溶液,对于Li的组成,可以利用原子吸光分析法来确定,对于Si、Al和其它元素的组成,可以利用ICP发光分光分析法来确定。
另外,固体电解质材料中的Li、La和Zr的比例只要是能够得到具有石榴石型结构的固体电解质材料的比例,就没有特别限定,通常,以摩尔基准计,为Li:La:Zr=7:3:2。但是,该比例能够稍微变动,因此,“Li:La:Zr=7:3:2”意味着Li:La:Zr=7:2.8~3.2:1.8~2.2。但是,对于Li的插入脱离不进行考虑。
另外,固体电解质材料中的Al的比例没有特别限定,例如,优选为0.1重量%~2.2重量%的范围内。这是因为Al的比例过少时,存在不能得到结晶性高的固体电解质材料的可能性,Al的比例过多时,存在固体电解质材料的致密性大幅降低的可能性。另一方面,固体电解质材料中的Si的比例没有特别限定,例如,优选为0.005重量%~1.00重量%的范围内。
另外,在本发明中,Al含量(重量%)相对于Si含量(重量%)的比例(Al/Si)没有特别限定。其中,在本发明中,优选Al/Si的值是能够得到具有Li7La3Zr2O12的Li离子传导率(2.0×10-4S/cm)以上的Li离子传导率的固体电解质材料的值。这是因为能够制成适合电池的高输出功率化的固体电解质材料。Al/Si的值例如优选为0.6~170的范围内,更优选为2~150的范围内。另外,本发明的固体电解质材料的Li离子传导率(室温)优选为较高,例如优选为8.0×10-5S/cm以上,更优选为2.0×10-4S/cm以上。
此外,固体电解质材料中的氧(O)的比例基本以与各金属离子的关系满足电中性原理的方式确定,根据合成方法,存在发生氧欠缺、氧过剩的情况。
另外,本发明的固体电解质材料的特征之一是具有石榴石型结构。本发明的石榴石型结构不仅包括严格的石榴石型结构,而且还包括石榴石型类似结构。固体电解质材料具有石榴石型结构的情况可以通过确认X射线衍射(XRD)的峰位置来进行特定。例如,在利用了CuKα射线的XRD测定中,如果在2θ=17°、26°、28°、31°、34°、38°、43°、51°、52°、53°的位置具有峰,就可以特定为石榴石型结构。
另外,本发明的固体电解质材料的特征之一是为烧结体。在本发明中,通过除了Al之外还含有Si,可以制成致密的烧结体。本发明的固体电解质材料的形状只要是能够以烧结体的形式存在的形状,就没有特别限定,例如可以举出颗粒状、薄膜状等。另外,本发明的固体电解质材料的厚度根据固体电解质材料的用途而不同,用作锂电池的固体电解质层时,其厚度例如优选在0.1μm~1000μm的范围内。
另外,本发明的固体电解质材料的用途没有特别限定,例如可以举出锂电池用途、金属-空气电池用途。另外,将本发明的固体电解质材料用于金属-空气电池用途时,可以作为隔板配置在正极活性物质层与负极活性物质层之间。此时,可以用作防止气体(例如O2气体等)透过的隔板。
接着,对本发明的固体电解质材料的制造方法进行说明。本发明的固体电解质材料的制造方法只要是能够得到上述固体电解质材料的方法就没有特别限定。作为固体电解质材料的制造方法的一个例子,可以举出包括以下工序的制造方法:制备工程,制备具有Li、La、Zr、Al和Si的原料组合物;合成工程,将上述原料组合物煅烧,合成具有石榴石型结构且为烧结体的固体电解质材料。
在上述制备工程中,原料组合物是具有Li、La、Zr、Al和Si的组合物。作为Li源,例如可以举出LiOH·H2O、Li2CO3、CH3COOLi、LiNO3等。作为La源,例如可以举出La(OH)3、La2O3等。作为Zr源,例如可以举出ZrO2等。作为Al源,例如可以举出Al2O3等。作为Si源,例如可以举出SiO2等。此外,本发明的固体电解质材料的组成可以通过调整上述金属源的比例来进行控制。另外,原料组合物中的各金属源的比例优选在考虑挥发等影响的基础上适当调整。
在上述合成工程中,通过煅烧原料组合物来合成固体电解质材料。煅烧气氛没有特别限定,但优选为含氧气氛。这是因为可以作为固体电解质材料的氧源。作为含氧气氛,例如可以举出大气气氛。另外,煅烧时的压力可以为大气压下,也可以为减压下。进而,煅烧时的加热温度只要是目标固体电解质材料的结晶化温度以上的温度即可,例如优选为1200℃~1250℃的范围内。另外,煅烧时间例如为24小时~48小时的范围内。作为煅烧方法,例如可以举出利用煅烧炉的方法等。
B.锂电池
接着,对本发明的锂电池进行说明。本发明的锂电池,其特征在于,具有含有正极活性物质的正极活性物质层、含有负极活性物质的负极活性物质层、和在上述正极活性物质层与上述负极活性物质层之间形成的固体电解质层,上述固体电解质层含有上述固体电解质材料。
根据本发明,通过使用上述固体电解质材料,可以制造具有致密的固体电解质层的锂电池。
图1是表示本发明的锂电池的一个例子的剖面示意图。图1中的锂电池10具有:含有正极活性物质的正极活性物质层1、含有负极活性物质的负极活性物质层2、在正极活性物质层1与负极活性物质层2之间形成的固体电解质层3、进行正极活性物质层1的集电的正极集电体4、进行负极活性物质层2的集电的负极集电体5、和收纳这些部件的电池外壳6。本发明中,最大特征是固体电解质层3含有上述“A.固体电解质材料”中记载的固体电解质材料。
以下,对本发明的锂电池的各个构成进行说明。
1.固体电解质层
首先,对本发明中的固体电解质层进行说明。本发明中的固体电解质层含有上述的固体电解质材料。固体电解质层的厚度范围优选与上述固体电解质材料的厚度范围相同。另外,本发明中的固体电解质层可以仅由上述固体电解质材料构成,也可以进一步含有其它固体电解质材料。
2.正极活性物质层
接着,对本发明中的正极活性物质层进行说明。本发明中的正极活性物质层是至少含有正极活性物质的层,根据需要,可以含有导电材料、固体电解质材料和粘结材料中的至少一种。作为正极活性物质,例如可以举出LiCoO2、LiMnO2、Li2NiMn3O8、LiVO2、LiCrO2、LiFePO4、LiCoPO4、LiNiO2、LiNi1/3Co1/3Mn1/3O2等。
本发明中的正极活性物质层可以进一步含有导电材料。通过添加导电材料,可以提高正极活性物质层的导电性。作为导电材料,例如可以举出乙炔炭黑、科琴黑、碳纤维等。另外,正极活性物质层还可以进一步含有固体电解质材料。通过固体电解质材料的添加,可以提高正极活性物质层的Li离子传导性。作为固体电解质材料,例如可以举出氧化物固体电解质材料和硫化物固体电解质材料等。另外,正极活性物质层可以进一步含有粘结材料。作为粘结材料,例如,可以举出聚四氟乙烯(PTFE)等含氟粘结材料等。正极活性物质层的厚度例如优选为0.1μm~1000μm的范围内。
3.负极活性物质层
接着,对本发明中的负极活性物质层进行说明。本发明中的负极活性物质层是至少含有负极活性物质的层,根据需要可以含有导电材料、固体电解质材料和粘结材料中的至少一种。作为负极活性物质,例如可以举出金属活性物质和碳活性物质。作为金属活性物质,例如可以举出In、Al、Si和Sn等。另一方面,作为碳活性物质,例如可以举出中间相碳微球(MCMB)、高定向石墨(HOPG)、硬碳、软碳等。
此外,对于用于负极活性物质层的导电材料、固体电解质材料和粘结材料,与上述的正极活性物质层中的情况相同。另外,负极活性物质层的厚度例如优选为0.1μm~1000μm的范围内。
4.其他构成
本发明的锂电池至少具有上述的固体电解质层、正极活性物质层和负极活性物质层。进而,通常具有进行正极活性物质层的集电的正极集电体、以及进行负极活性物质层的集电的负极集电体。作为正极集电体的材料,例如可以举出SUS、铝、镍、铁、钛和碳等,其中,优选SUS。另一方面,作为负极集电体的材料,例如可以举出SUS、铜、镍和碳等,其中优选SUS。另外,对于正极集电体和负极集电体的厚度、形状等,优选根据锂电池的用途等进行适当选择。另外,用于本发明的电池外壳可以使用通常的锂电池的电池外壳。作为电池外壳,例如可以举出SUS制电池外壳等。
5.锂电池
本发明的锂电池可以是一次电池,也可以是二次电池,其中,优选为二次电池。这是因为可以反复进行充放电,例如作为车载用电池而有用。作为本发明的锂电池的形状,例如可以举出硬币形、层叠形、圆筒形和方形等。另外,本发明的锂电池的制造方法只要是能够得到上述锂电池的方法,就没有特别限定,可以使用与通常的锂电池的制造方法相同的方法。例如,可以举出将构成正极活性物质层的材料、构成固体电解质层的材料、以及构成负极活性物质层的材料依次冲压来制作发电元件,将该发电元件收纳在电池外壳的内部,将电池外壳铆接的方法等。
此外,本发明不限于上述实施方式。上述实施方式为例示,与本发明的权利要求书中记载的技术思想具有实质上相同的构成、发挥同样作用效果的技术方案均包含在本发明的技术范围内。
实施例
以下举出实施例进一步具体说明本发明。
[实施例1]
准备Li源(LiOH·H2O)、La源(La2O3)、Zr源(ZrO2)、Al源(Al2O3)、Si源(SiO2)作为起始原料。接着,添加规定量的Li源、La源、Zr源、Al源、Si源并进行混合。由此得到原料组合物。
然后,将原料组合物进行颗粒成型,在大气压下、大气气氛下进行热处理(烧结)。具体而言,首先,将颗粒成型的原料组合物经15小时升温至900℃,在900℃保持12小时,然后,经6小时降温至室温(预煅烧)。接着,将得到的试样用球磨机粉碎,再次进行颗粒成型,经15小时升温至1125℃,在1125℃保持15小时,然后,经8小时降温至室温(形成前体)。接着,将得到的试样用球磨机粉碎,再次进行颗粒成型,经20小时升温至1235℃,在1235℃保持36小时,然后,经12小时降温至室温(煅烧)。由此,得到了作为颗粒状烧结体的固体电解质材料。在得到的固体电解质材料中,Li、La和Zr的摩尔比为Li:La:Zr=7:3:2。另外,在得到的固体电解质材料中,Al含量为0.19重量%,Si含量为0.31重量%。此外,对于Li的组成,利用原子吸光分析法进行确定,对于其它元素的组成,利用ICP发光分光分析法进行确定。
[实施例2~5]
如下述表1所示地变更Al源和Si源的量,除此以外,与实施例1同样地进行,得到固体电解质材料。
[比较例1]
不使用Al源和Si源,除此以外,与实施例1同样地进行,得到了固体电解质材料。
[评价]
(致密性评价)
评价在实施例1~5和比较例1中得到的固体电解质材料的致密性。首先,测定固体电解质材料的干燥重量,接着,由固体电解质材料的实际尺寸算出体积,通过用体积除干燥重量,算出烧结密度(g/cm3)。另外,由该烧结密度和理论密度算出作为相对密度的烧结密度(%)。此外,上述理论密度使用的是不具有Al和Si的Li7La3Zr2O12的理论密度(5.115g/cm3)。将得到的结果示于表1和图2。
[表1]
A1(wt%) Si(wt%) Al/Si 烧结密度(g/cm3) 烧结密度(%)
比较例1 0 0 - 4.71 92.0
实施例1 0.19 0.31 0.61 4.77 93.2
实施例2 0.36 0.43 0.83 4.85 94.8
实施例3 1.29 0.28 4.60 4.95 96.8
实施例4 1.67 0.14 11.9 4.76 93.0
实施例5 1.33 0.008 166 4.46 87.2
如表1和图2所示,在实施例1~4中,能够得到烧结密度高、致密性良好的固体电解质材料。另一方面,在实施例5中,烧结密度降低到87.2%,烧结密度低于比较例1。但是,考虑到比较对象,可以容易理解该结果的妥当性。即,考虑到实施例5中的Si含量为极微量,可以说这是表示Al的添加所导致的致密性降低的结果。换言之,可以说是表示Al的添加所导致的致密性降低的影响大于Si的添加所导致的致密性提高的影响的结果。
将实施例5(添加了Al和Si的体系)和比较例1(未添加Al和Si的体系)进行比较,乍一看好像不妥,但假设仅添加了Al的固体电解质材料,将该固体电解质材料作为比较对象时,认为实施例5通过添加Si而显示出致密性提高的结果。同样,将仅添加了Al的固体电解质材料作为比较对象时,认为实施例1~4显示出致密性大幅提高。
(X射线衍射测定)
对实施例1~5和比较例1中得到的固体电解质材料进行利用了CuKα射线的X射线衍射(XRD)测定。将其结果示于图3。如图3所示,在实施例1~5和比较例1中,确认了大致相同的峰,所以提示固体电解质材料中所含的Si不对主体的晶体结构带来影响,而是作用于晶界的界面。
(Li离子传导率测定)
对实施例1~5和比较例1中得到的固体电解质材料进行利用交流阻抗法的Li离子传导率(室温)的测定。测定中利用Solartron公司制Impedance/Gain-Phaze Analyzer 1260,测定条件为施加电压10mV、测定频率范围3.2MHz~10Hz或32MHz~10Hz。将其结果示于表2和图4。
[表2]
Al(wt%) Si(wt%) Al/Si Li+传导率(S/cm)
比较例1 0 0 - 2.0×10-4
实施例1 0.19 0.31 0.61 8.3×10-5
实施例2 0.36 0.43 0.83 1.0×10-4
实施例3 1.29 0.28 4.60 3.9×10-4
实施例4 1.67 0.14 11.9 5.8×10-4
实施例5 1.33 0.008 166 1.6×10-4
如表2和图4所示,在实施例3、4中,Li离子传导率高于比较例1。由此,可以确认通过适当调整Al/Si的值,能够得到具有Li离子传导率比作为以往的固体电解质材料的比较例1的Li离子传导率(2.0×10-4S/cm)高的固体电解质材料。
在实施例1、2中,虽然不确定Li离子传导率低于比较例1的理由,但是在上述图3的XRD结果中,实施例1、2比比较例1略宽,结晶性低。进而,实施例1、2中,Si相对于Al的含量多(Al/Si小)。由以上事实可以推测,如果Si过多,则虽然对提高致密性起到有利作用,但导致结晶性的降低,该结晶性的降低引起Li离子传导率的降低。
另一方面,在实施例5中,虽然也没有确定Li离子传导率低于比较例1的理由,但是在上述图3的XRD结果中,实施例5与比较例1同样,结晶性高。进而,在实施例5中,Si相对于Al的含量少(Al/Si大)。由以上事实可以推测,如果Al过多,则虽然对提高结晶性起到有利作用,但是导致致密性降低,该致密性的降低引起Li离子传导率的降低。
另外,可以推测在实施例3、4中,通过均衡良好地含有提高结晶性的Al和提高致密性的Si,Li离子传导率得到提高。此外,虽然没有图示,但在实施例3、4中,可以确认在阻抗测定中晶界电阻减少。另外,由上述图3的XRD结果提示,在固体电解质材料中含有的Si对主体的晶体结构不带来影响,而是作用于晶界的界面。根据以上,可以考虑形成了Li-Al-Si-O的Li离子传导通路的可能性。
符号说明
1…正极活性物质层
2…负极活性物质层
3…固体电解质层
4…正极集电体
5…负极集电体
6…电池外壳
10…锂电池

Claims (5)

1.一种固体电解质材料,其特征在于,具有Li、La、Zr、Al、Si和O,并具有石榴石型结构,且为烧结体。
2.根据权利要求1所述的固体电解质材料,其特征在于,所述Li、所述La和所述Zr的比例以摩尔基准计为Li:La:Zr=7:3:2。
3.根据权利要求1或2所述的固体电解质材料,其特征在于,Li离子传导率为2.0×10-4S/cm以上。
4.根据权利要求1~3中任一项所述的固体电解质材料,其特征在于,所述Al的以重量%表示的含量相对于所述Si的以重量%表示的含量的比例Al/Si为4.6~11.9的范围内。
5.一种锂电池,其特征在于,具有:含有正极活性物质的正极活性物质层、含有负极活性物质的负极活性物质层、和在所述正极活性物质层与所述负极活性物质层之间形成的固体电解质层,
所述固体电解质层含有权利要求1~4中任一项所述的固体电解质材料。
CN201180027134.7A 2010-07-07 2011-07-06 固体电解质材料及锂电池 Active CN102971903B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010-154639 2010-07-07
JP2010154639A JP5358522B2 (ja) 2010-07-07 2010-07-07 固体電解質材料およびリチウム電池
PCT/JP2011/065489 WO2012005296A1 (ja) 2010-07-07 2011-07-06 固体電解質材料およびリチウム電池

Publications (2)

Publication Number Publication Date
CN102971903A true CN102971903A (zh) 2013-03-13
CN102971903B CN102971903B (zh) 2015-04-29

Family

ID=45441273

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201180027134.7A Active CN102971903B (zh) 2010-07-07 2011-07-06 固体电解质材料及锂电池

Country Status (6)

Country Link
US (1) US8865355B2 (zh)
EP (1) EP2592683B1 (zh)
JP (1) JP5358522B2 (zh)
KR (1) KR101496533B1 (zh)
CN (1) CN102971903B (zh)
WO (1) WO2012005296A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102867987A (zh) * 2012-09-04 2013-01-09 宁波大学 一种B3+,Al3+,Mg2+,Y3+,F-共掺杂固体电解质Li7La3Zr2O12
CN103247823A (zh) * 2013-04-19 2013-08-14 清华大学 全固态锂离子电池及其制备方法
CN105742699A (zh) * 2014-12-30 2016-07-06 现代自动车株式会社 石榴石型固体电解质及其制备方法
CN107848894A (zh) * 2015-07-29 2018-03-27 中央硝子株式会社 石榴石型氧化物烧结体和其制造方法
CN108511794A (zh) * 2017-02-27 2018-09-07 国立大学法人北陆先端科学技术大学院大学 氧化物全固体电池
CN109534813A (zh) * 2017-09-21 2019-03-29 丰田自动车株式会社 石榴石型离子传导性氧化物和氧化物电解质烧结体的制造方法

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5617417B2 (ja) * 2010-08-02 2014-11-05 株式会社豊田中央研究所 ガーネット型リチウムイオン伝導性酸化物及びその製法
DE102011079401A1 (de) * 2011-07-19 2013-01-24 Robert Bosch Gmbh Lithiumionen leitende, granatartige Verbindungen
WO2013128759A1 (ja) * 2012-03-02 2013-09-06 日本碍子株式会社 固体電解質セラミックス材料及びその製造方法
JP5905076B2 (ja) * 2012-03-23 2016-04-20 株式会社東芝 電池及び電池パック
CN102769147B (zh) * 2012-07-18 2015-07-15 宁波大学 一种Mg2+,Al3+,Zr4+,S2-离子共掺杂石榴石型固体电解质
CN102867985B (zh) * 2012-09-04 2015-06-17 宁波大学 一种B3+,Al3+,Mg2+,Y3+,S2-共掺杂固体电解质Li7La3Zr2O12
JP6260250B2 (ja) * 2012-12-29 2018-01-17 株式会社村田製作所 固体電解質用材料
US9362546B1 (en) 2013-01-07 2016-06-07 Quantumscape Corporation Thin film lithium conducting powder material deposition from flux
WO2015103548A1 (en) * 2014-01-03 2015-07-09 Quantumscape Corporation Thermal management system for vehicles with an electric powertrain
ES2890654T3 (es) * 2013-10-07 2022-01-21 Quantumscape Battery Inc Materiales de granate para baterías secundarias de Li y métodos de fabricación y uso de los materiales de granate
US11011783B2 (en) 2013-10-25 2021-05-18 Quantumscape Battery, Inc. Thermal and electrical management of battery packs
KR101526703B1 (ko) * 2013-11-12 2015-06-05 현대자동차주식회사 Al 치환된 가넷의 합성 방법
WO2015079509A1 (ja) * 2013-11-27 2015-06-04 株式会社日立製作所 リチウムイオン伝導性酸化物および蓄電デバイス
US9660270B2 (en) 2014-04-24 2017-05-23 Daiichi Kigenso Kagaku Kogyo Co., Ltd. Method for producing garnet-type compound, garnet-type compound, and all-solid lithium secondary cell containing said garnet-type compound
KR101592752B1 (ko) 2014-08-18 2016-02-12 현대자동차주식회사 가넷 분말, 이의 제조방법, 핫프레스를 이용한 고체전해질 시트 및 이의 제조방법
JP6333133B2 (ja) * 2014-09-09 2018-05-30 日本特殊陶業株式会社 リチウムイオン伝導性セラミックス焼結体、リチウム電池、及びリチウムイオン伝導性セラミックス焼結体の製造方法
US10026990B2 (en) 2014-10-16 2018-07-17 Corning Incorporated Lithium-ion conductive garnet and method of making membranes thereof
JP6565724B2 (ja) * 2015-03-10 2019-08-28 Tdk株式会社 ガーネット型リチウムイオン伝導性酸化物及び全固体型リチウムイオン二次電池
WO2016160703A1 (en) 2015-03-27 2016-10-06 Harrup Mason K All-inorganic solvents for electrolytes
KR102609408B1 (ko) 2015-04-16 2023-12-04 퀀텀스케이프 배터리, 인코포레이티드 고체 전해질 제조를 위한 세터 플레이트 및 그를 사용하여 치밀한 고체 전해질을 제조하는 방법
CN107851774A (zh) * 2015-07-21 2018-03-27 昆腾斯科普公司 铸造和烧结生坯石榴石薄膜的方法和材料
US9966630B2 (en) 2016-01-27 2018-05-08 Quantumscape Corporation Annealed garnet electrolyte separators
US20170331092A1 (en) 2016-05-13 2017-11-16 Quantumscape Corporation Solid electrolyte separator bonding agent
US11158880B2 (en) 2016-08-05 2021-10-26 Quantumscape Battery, Inc. Translucent and transparent separators
US10707531B1 (en) 2016-09-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes
EP3529839A1 (en) 2016-10-21 2019-08-28 QuantumScape Corporation Lithium-stuffed garnet electrolytes with a reduced surface defect density and methods of making and using the same
CN108727025A (zh) 2017-04-17 2018-11-02 中国科学院上海硅酸盐研究所 锂石榴石复合陶瓷、其制备方法及其用途
EP4369453A3 (en) 2017-06-23 2024-10-02 QuantumScape Battery, Inc. Lithium-stuffed garnet electrolytes with secondary phase inclusions
US10347937B2 (en) 2017-06-23 2019-07-09 Quantumscape Corporation Lithium-stuffed garnet electrolytes with secondary phase inclusions
WO2019090360A1 (en) 2017-11-06 2019-05-09 Quantumscape Corporation Lithium-stuffed garnet thin films and pellets having an oxyfluorinated and/or fluorinated surface and methods of making and using the thin films and pellets
KR20200093620A (ko) * 2017-11-30 2020-08-05 더 리젠츠 오브 더 유니버시티 오브 미시건 가넷 구조화된 이온 전도체의 핫-프레싱 온도를 감소시키기 위한 방법
CA3101863A1 (en) 2018-06-06 2019-12-12 Quantumscape Corporation Solid-state battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1925203A (zh) * 2005-08-31 2007-03-07 株式会社小原 锂离子二次电池和用于其的固体电解质
WO2009003695A2 (de) * 2007-07-02 2009-01-08 Basf Se Ionenleiter mit granatstruktur
CN102308425A (zh) * 2009-02-04 2012-01-04 株式会社丰田中央研究所 石榴石型锂离子传导性氧化物和含有所述氧化物的全固态锂离子二次电池

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06100362A (ja) * 1992-08-06 1994-04-12 Shinagawa Refract Co Ltd 固体電解質
DE102004010892B3 (de) * 2004-03-06 2005-11-24 Christian-Albrechts-Universität Zu Kiel Chemisch stabiler fester Lithiumionenleiter
US20090092903A1 (en) * 2007-08-29 2009-04-09 Johnson Lonnie G Low Cost Solid State Rechargeable Battery and Method of Manufacturing Same
JP5151692B2 (ja) 2007-09-11 2013-02-27 住友電気工業株式会社 リチウム電池
JP5376364B2 (ja) * 2008-03-07 2013-12-25 公立大学法人首都大学東京 固体電解質構造体の製造方法、全固体電池の製造方法、固体電解質構造体及び全固体電池
JP5173626B2 (ja) 2008-06-23 2013-04-03 株式会社エヌ・ティ・ティ・ドコモ 集中制御基地局及び信号制御方法
JP2010045019A (ja) * 2008-07-16 2010-02-25 Tokyo Metropolitan Univ 全固体リチウム二次電池及びその製造方法
JP2010040439A (ja) 2008-08-07 2010-02-18 Sumitomo Electric Ind Ltd リチウム電池
JP5132639B2 (ja) 2008-08-21 2013-01-30 日本碍子株式会社 セラミックス材料及びその製造方法
JP5262572B2 (ja) 2008-10-23 2013-08-14 株式会社豊田中央研究所 リチウム含有ガーネット型酸化物、リチウム二次電池及び固体電解質の製造方法
JP5287499B2 (ja) * 2009-05-21 2013-09-11 株式会社豊田中央研究所 全固体型リチウムイオン二次電池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1925203A (zh) * 2005-08-31 2007-03-07 株式会社小原 锂离子二次电池和用于其的固体电解质
WO2009003695A2 (de) * 2007-07-02 2009-01-08 Basf Se Ionenleiter mit granatstruktur
CN102308425A (zh) * 2009-02-04 2012-01-04 株式会社丰田中央研究所 石榴石型锂离子传导性氧化物和含有所述氧化物的全固态锂离子二次电池

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102867987A (zh) * 2012-09-04 2013-01-09 宁波大学 一种B3+,Al3+,Mg2+,Y3+,F-共掺杂固体电解质Li7La3Zr2O12
CN102867987B (zh) * 2012-09-04 2015-11-25 宁波大学 一种B3+,Al3+,Mg2+,Y3+,F-共掺杂固体电解质Li7La3Zr2O12
CN103247823A (zh) * 2013-04-19 2013-08-14 清华大学 全固态锂离子电池及其制备方法
CN103247823B (zh) * 2013-04-19 2016-02-24 清华大学 全固态锂离子电池及其制备方法
CN105742699A (zh) * 2014-12-30 2016-07-06 现代自动车株式会社 石榴石型固体电解质及其制备方法
CN105742699B (zh) * 2014-12-30 2019-05-10 现代自动车株式会社 石榴石型固体电解质及其制备方法
CN107848894A (zh) * 2015-07-29 2018-03-27 中央硝子株式会社 石榴石型氧化物烧结体和其制造方法
CN108511794A (zh) * 2017-02-27 2018-09-07 国立大学法人北陆先端科学技术大学院大学 氧化物全固体电池
CN108511794B (zh) * 2017-02-27 2021-04-13 国立大学法人北陆先端科学技术大学院大学 氧化物全固体电池
CN109534813A (zh) * 2017-09-21 2019-03-29 丰田自动车株式会社 石榴石型离子传导性氧化物和氧化物电解质烧结体的制造方法
CN109534813B (zh) * 2017-09-21 2022-09-06 丰田自动车株式会社 石榴石型离子传导性氧化物和氧化物电解质烧结体的制造方法

Also Published As

Publication number Publication date
EP2592683B1 (en) 2018-11-14
CN102971903B (zh) 2015-04-29
EP2592683A8 (en) 2013-09-18
JP2012018792A (ja) 2012-01-26
US20130084505A1 (en) 2013-04-04
WO2012005296A1 (ja) 2012-01-12
EP2592683A1 (en) 2013-05-15
KR20130008623A (ko) 2013-01-22
US8865355B2 (en) 2014-10-21
EP2592683A4 (en) 2015-03-04
KR101496533B1 (ko) 2015-02-26
JP5358522B2 (ja) 2013-12-04

Similar Documents

Publication Publication Date Title
CN102971903B (zh) 固体电解质材料及锂电池
EP3145870B1 (en) Doped nickelate materials
KR100767614B1 (ko) 리튬 이온 전지 및 리튬 이온 폴리머 전지의 정극으로서의 니켈 풍부 및 망간 풍부 4원 금속 산화물 재료
JP5594379B2 (ja) 二次電池用正極、二次電池用正極の製造方法、及び、全固体二次電池
WO2019039567A1 (ja) 非水系電解質二次電池用正極活物質とその製造方法、非水系電解質二次電池用正極合材ペーストおよび非水系電解質二次電池
JP7056598B2 (ja) 負極層および全固体電池
KR20170125074A (ko) 비수계 전해질 이차 전지용 정극 활물질 및 그의 제조 방법
CN103119772A (zh) 电池用烧结体、电池用烧结体的制造方法以及全固体锂电池
WO2021040032A1 (ja) リチウムイオン二次電池用正極活物質およびリチウムイオン二次電池
JP2015130273A (ja) リチウムイオン二次電池用正極活物質、それを用いたリチウムイオン二次電池用正極及びリチウムイオン二次電池、並びに、リチウムイオン二次電池用正極活物質の製造方法
JP7468590B2 (ja) リチウム化合物粉末
JPWO2020027158A1 (ja) リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極活物質の製造方法、リチウムイオン二次電池
JP5997087B2 (ja) リチウム二次電池用正極材料の製造方法
KR102378488B1 (ko) 황화물 고체전해질, 황화물 고체전해질의 전구체, 전고체전지 및 황화물 고체전해질의 제조 방법
JP7059951B2 (ja) 負極層および全固体電池
WO2020171126A1 (ja) リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極活物質の製造方法、リチウムイオン二次電池
WO2020171125A1 (ja) リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極活物質の製造方法、リチウムイオン二次電池
WO2020171111A1 (ja) リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極活物質の製造方法、リチウムイオン二次電池
JP2012104280A (ja) 電池用焼結体、全固体リチウム電池および電池用焼結体の製造方法
JP2020107536A (ja) リチウムイオン二次電池用正極活物質およびその製造方法
JP2011216201A (ja) 電極活物質及びリチウムイオン電池
JP2016039031A (ja) 全固体電池システム
CN111919317B (zh) 非水电解质二次电池用正极活性物质
JP2022038350A (ja) リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極活物質の製造方法、リチウムイオン二次電池
JP2020140778A (ja) リチウムイオン二次電池用正極活物質の製造方法、リチウムイオン二次電池用正極活物質、およびリチウムイオン二次電池

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant