CN102915928A - 制造功率器件的方法 - Google Patents

制造功率器件的方法 Download PDF

Info

Publication number
CN102915928A
CN102915928A CN2012102713540A CN201210271354A CN102915928A CN 102915928 A CN102915928 A CN 102915928A CN 2012102713540 A CN2012102713540 A CN 2012102713540A CN 201210271354 A CN201210271354 A CN 201210271354A CN 102915928 A CN102915928 A CN 102915928A
Authority
CN
China
Prior art keywords
drift region
gan
source electrode
layer
power device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2012102713540A
Other languages
English (en)
Inventor
李哉勋
金基世
李正熙
任基植
金东硕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of CN102915928A publication Critical patent/CN102915928A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • H01L29/0878Impurity concentration or distribution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds

Abstract

提供了一种制造功率器件的方法,该方法可通过生长n-GaN而形成第二漂移区,从而晶体不会被破坏并且可确保可靠性。并且,可以不额外使用离子注入装置,从而可简化处理并且可降低成本。此外,第一漂移区和第二漂移区交替布置以形成n-GaN和p-GaN的超结结构,从而当施加反向电压时由于耗尽层的形成而提高了耐受电压。通过降低源电极接触层中的导通电阻,可增加电流密度。具有高于第二漂移区的n型掺杂剂掺杂浓度的n-GaN层可形成在第二漂移区上,并且功率器件能够进行常闭操作,从而可降低功耗。

Description

制造功率器件的方法
相关申请的交叉引用
本申请要求2011年8月1日向韩国知识产权局提交的第10-2011-0076559号韩国专利申请的权益,其公开通过引用并入本文。
技术领域
本发明涉及一种功率器件制造方法,更具体地,涉及一种制造能够进行常闭操作的垂直结构的功率器件的功率器件制造方法。
背景技术
半导体发光器件(LED)是一种当施加电流时基于P-N结处电子和空穴的重新结合产生各种色光的半导体器件。由于半导体LED与灯丝类LED相比具有诸如长使用寿命、低功耗、快速启动、高抗振性等的众多优势,因此对半导体LED的需求持续增长。特别是,在短波长范围内发出蓝光的氮化物半导体已引起关注。
由于信息通信技术已在全球范围内取得了长足的发展,用于高速大容量信号通信的通信技术也同样得以快速发展。特别是,随着对无线通信技术中的个人移动电话、卫星通信、军用雷达、广播通信、通信中继等的需求增加,对于微波波段和毫米波波段的高速信息通信系统所需的高速高功率电子器件的需求增加。同样,对用于高功率的功率器件的研究已经积极开展以减少能源消耗。
特别是,因氮化物半导体具有诸如高能隙、高热稳定性、高化学稳定性、约每秒3×107厘米(cm/sec)的高电子饱和速率的有利特性,氮化物半导体可被容易地用作光学元件,以及高频和高功率电子器件。因此,全世界对于氮化物半导体的研究正积极地进行着。基于氮化物半导体的电子器件可具有多种优点,诸如约每厘米3×106伏特(V/cm)的高击穿场强、最大电流密度、稳定的高温操作、高导热性等。
基于化合物半导体的异质结而生成的异质结构场效应晶体管(HFET)在结的界面处具有高的带阶跃性,在该界面处可以获得高的电子密度,如此电子迁移率会增加。然而,在具有高电子迁移率的氮化铝镓(AlGaN)或氮化镓(GaN)HFET结构中,即使在没有施加信号的状态下电流也流动,如此,电能被消耗。
由于功率器件可能需要高的电流密度,因此常开器件中的电能消耗会是一个很大的缺点。因此,已开发了常闭器件,该常闭器件体现为通过从栅部分移除AlGaN层而获得的金属氧化物半导体(MOS)HFET。
然而,控制AlGaN层具有30纳米(nm)以下的厚度是困难的。同样,功率器件可垂直工作,如此增加了电流密度,可能需要增加AlGaN层的面积。近来,已开发了一种使用SiC基底的垂直结构的场效应晶体管器件。然而,垂直结构的FET器件需要注入装置以注入载流子,以及例如热处理等的处理以激活载流子。
发明内容
本发明的一个方面提供了一种制造能够进行常闭操作的垂直结构功率器件的功率器件制造方法。
根据本发明的一个方面,提供了一种功率器件制造方法,该方法包括:在基底上形成第一漂移区,通过图案化第一漂移区以形成沟槽,通过在沟槽中生长n型氮化镓(GaN)以形成第二漂移区,并交替布置第一漂移区和第二漂移区,在第二漂移区上形成源电极接触层,在源电极接触层上形成源电极和栅电极,以及,在基底的作为第一漂移区的相对侧的一侧上形成漏电极。
第二漂移区的形成可在从约1000℃到约1200℃的温度范围中进行。
该功率器件制造方法可进一步包括:在第二漂移区上形成n-GaN层,并且在n-GaN层上掺杂的n型掺杂剂的掺杂浓度可以比第二漂移区高。
n-GaN层上掺杂的n型掺杂剂的掺杂浓度可在从约1.0×1017/cm3至约1.0×1020/cm3的范围中。
第一漂移区可包括p-GaN和氮化铝镓(AlGaN)中的至少一个。
源电极接触层可包括n+-GaN层和AlGaN与GaN的异质结中的至少一个。
基底可选自n+-GaN、n+-碳化硅(SiC)、蓝宝石和硅(Si)。
源电极可包括选自由铬(Cr)、铝(Al)、钽(Ta)、钼(Mo)、钨(W)、钛(Ti)和金(Au)组成的组的材料。
本发明的其他方面、特征和/或优点部分将在随后的描述中阐明,并且部分将根据描述显而易见,或可通过本发明的实践而获知。
附图说明
通过结合附图对实施方式进行以下描述,本发明的这些和/或其他的方面、特征和优点将变得显而易见并且更容易被理解,在附图中:
图1至图5是描述根据本发明的实施方式的功率器件制造方法的截面图。
具体实施方式
将详细参考本发明的实施方式,其实例在附图中示出,其中,相似的参考标号通篇代表相似的元件。以下参照附图描述实施方式,以解释本发明。
说明书全文中,当描述层、面(侧)、芯片等中的每个被形成在层、面(侧)、芯片等“上”或“下”时,术语“在……上”可包括“直接在……上”和“间接在……上”,并且术语“在……下”可包括“直接在……下”和“间接在……下”。关于各元素的“在……上”和“在……下”的标准可基于相应附图来确定。
图中各元素的尺寸可能为了描述方便而夸大,且不代表实际尺寸。
图1至图5描述了根据本发明实施方式的功率器件制造方法。
参照图1至图5,根据本发明实施方式的功率器件制造方法包括:在基底100上形成第一漂移区200,通过图案化第一漂移区200以形成沟槽,通过在沟槽中生长n-氮化镓(GaN)以形成第二漂移区400,并交替布置第一漂移区200和第二漂移区400,在第二漂移区400上形成源电极接触层700,在源电极接触层700上形成栅电极910和源电极920,以及,在基底100的作为第一漂移区200的相对侧的一侧上形成漏电极930。
如图1所示,第一漂移区200可被形成在基底100上。基底100可以是n+基底,例如,n+-GaN和n+-碳化硅(SiC),但不限于这些实例。并且,基底100可以是绝缘基底,例如,玻璃基底或蓝宝石基底,或可以是硅(Si)基底。
第一漂移区200可以通过在基底100上生长p-GaN或氮化铝镓(AlGaN)来形成。p-GaN或AlGaN可基于各种方案来生长,例如有机金属化学气相沉积(MOCVD)方案、分子束外延(MBE)方案、氢化物气相外延(HVPE)方案等,从而可以形成第一漂移区200,然而,不限于这些实例。第一漂移区200可作为超结结构中的p型导电柱来工作。
随后,如图2所示,在第一漂移区200上形成作为绝缘层工作的钝化层300。钝化层300可包括选自氧化硅(SiOx)、氮化硅(SiNx)、氧化铝(Al2O3)和SiC的材料。钝化层300可用在基于光刻处理图案化第一漂移区200的处理中。
当钝化层300的一部分被去除时,第一漂移区200可被暴露,暴露出的第一漂移区200可被图案化以形成沟槽。在此实例中,可形成多个沟槽,并且可限定将要形成第二漂移区400的部分。
在被图案化的第一漂移区200中可形成多个沟槽。即,第一漂移区200和多个沟槽可被交替布置。
第二漂移区400可以通过在多个沟槽中生长n-GaN来形成。第二漂移区400可通过基于MOCVD方案在多个沟槽的下部处从暴露出的基底100生长n-GaN来形成。在n-GaN生长期间,在第二漂移区400中n型掺杂剂的掺杂浓度可被调整。由于在多个沟槽中生长n-GaN,因此第二漂移区400和第一漂移区200可被交替布置。如此,可形成超结结构。
根据本发明的实施方式制造的功率器件可具有相对高的耐受电压,因为耗尽层由于p-n结之间的超结结构而形成在p-n结的表面附近。在p-n结之间,当自由电子和空穴向对方扩散时,局部建立电势差,并且功率器件处于平衡状态,如此,不包含载流子的耗尽层可被形成在p-n结的表面附近,并且耐受电压可增加。
通过生长n-GaN来形成第二漂移区400可在从约1000℃到约1200℃的温度范围中进行。这里,可在高温下再生长n-GaN,如此,晶体不会被破坏,可确保可靠性。并且,可以不额外使用离子注入装置等,如此,可简化处理并且可降低成本。
如图3所示,在形成第二漂移区400之后,可形成具有比第二漂移区400更高的n型掺杂剂掺杂浓度的n-GaN层500。n-GaN层500的掺杂浓度可以在从约1.0×1017/cm3至1.0×1020/cm3的范围内。由于n-GaN层500具有高于第二漂移区400的n型掺杂剂掺杂浓度,因此n-GaN层500可减小电阻,且二维电子气(2-DEG)不会形成在与栅电极910的下部对应的部分上,如此,功率器件能够进行常闭操作。
在具有高于第二漂移区400的n型掺杂剂掺杂浓度的n-GaN层500上可形成源电极接触层700,当源电极接触层接触源电极920时,源电极接触层700可以减少欧姆电阻的产生。源电极接触层700可包括n+-GaN以及AlGaN与GaN的异质结中的至少一个。即,通过从具有高的n型掺杂剂掺杂浓度的n+-GaN形成源电极接触层700,可降低导通电阻,如此,可增加电流密度。
p-GaN层600可被附加地形成在源电极接触层700与具有高于第二漂移区400的n型掺杂剂掺杂浓度的n-GaN层500之间。当p-GaN层600接触源电极接触层700时,p-GaN层600可减少电阻的产生,且可增加电流密度。
随后,如图4所示,为使器件绝缘,在蚀刻源电极接触层700、p-GaN层600以及具有高于第二漂移区400的n型掺杂剂掺杂浓度的n-GaN层500的上部之后,可形成栅绝缘层800。栅绝缘层800可包括选自SiOx、SiNx、Al2O3、氧化铪(HfO2)和氧化镓(Ga2O3)的材料。
如图5所示,在栅绝缘层800形成之后,源电极920可被形成在源电极接触层700上,并且栅电极910可被形成在绝缘层800上。除了栅绝缘层800之外,另一绝缘层(未示出)可形成在源电极920和栅电极910之间,如此,可防止源电极920和栅电极910之间出现短路。
源电极920可被形成在对应于源电极接触层700的位置上,并且可以包括选自铬(Cr)、铝(Al)、钽(Ta)、钼(Mo)、钨(W)、钛(Ti)和金(Au)的材料。栅电极910可被形成在对应于栅绝缘层800的位置上,并且可被形成在源电极920之间。栅电极910可包括选自以下各项的材料:镍(Ni)、Al、Ti、氮化钛(TiN)、铂(Pt)、Au、氧化钌(RuO2)、钒(V)、W、氮化钨(WN)、铪(Hf)、氮化铪(HfN)、Mo、硅化镍(NiSi)、硅化钴(CoSi2)、硅化钨(WSi2)、硅化铂(PtSi)、铱(Ir)、锆(Zr)、Ta、氮化钽(TaN)、铜(Cu)、钌(Ru)、钴(Co)、及其组合。
漏电极930可被形成在基底100的一侧上,即,第一漂移区200的相对侧上。漏电极930可包括选自Cr、Al、Ta、Mo、W、Ti和Au的材料。漏电极930可被形成为面对源电极920,如此,可形成垂直结构功率器件。
形成漏电极930的处理可因基底100的类型而不同。下文中将描述基于基底100的类型形成漏电极930的各种处理。
当基底100是导电性基底时,漏电极930可被直接形成在基底100上,而无需去除基底100。当基底100是蓝宝石基底时,n+GaN层可被形成在基底100上,蓝宝石基底可通过激光剥离处理而去除,并且可形成漏电极930。当基底100是硅基底时,n+GaN层可被形成在基底100上,硅基底可通过利用氢氧化钾(KOH)溶液进行湿蚀刻处理而去除,并且可形成漏电极930。
基于本发明实施方式制造的功率器件可生长n-GaN以形成第二漂移区,如此,晶体不会被破坏并且可确保可靠性。而且,可以不额外使用离子注入装置等,如此,可简化处理并且可降低成本。第一漂移区和第二漂移区被交替布置以形成超结结构,如此,由于在p-n之间p-n结表面附近形成了耗尽层,因此可增大耐受电压。而且,可减小源电极接触层中的导通电阻。具有高于第二漂移区的n型掺杂剂掺杂浓度的n-GaN层可被形成在第二漂移区上,如此,功率器件能够进行常闭操作,进而可降低功耗。
根据本发明的实施方式,功率器件制造方法可通过生长n-GaN来形成第二漂移区,从而,晶体不会被破坏并且可确保可靠性。并且,可以不额外使用离子注入装置等,如此,可简化处理并且可降低成本。
另外,第一漂移区和第二漂移区被交替布置,以形成n-GaN和p-GaN的超结结构,如此,由于在施加反向电压时在n-GaN和p-GaN之间形成耗尽层,因此可增大耐受电压。
进一步地,通过减小源电极接触层中的导通电阻,可增加电流密度。具有高于第二漂移区的n型掺杂剂掺杂浓度的n-GaN层可被形成在第二漂移区上,并且功率器件能够进行常闭操作,进而可降低功耗。
尽管已示出并描述了本发明的一些实施方式,但本发明不限于所描述的实施方式。相反,本领域技术人员应理解,可对这些实施方式进行修改,而不脱离本发明的原理和精神,本发明的范围由权利要求和其等同物来限定。

Claims (8)

1.一种制造功率器件的方法,所述方法包括:
在基底上形成第一漂移区;
通过图案化所述第一漂移区而形成沟槽;
通过在所述沟槽中生长n-氮化镓(GaN)而形成第二漂移区,
并且交替布置所述第一漂移区和所述第二漂移区;
在所述第二漂移区上形成源电极接触层;
在所述源电极接触层上形成源电极和栅电极;以及
在所述基底的作为所述第一漂移区的相对侧的一侧上形成漏电极。
2.根据权利要求1所述的方法,其中,所述第二漂移区的形成在从1000℃至1200℃的温度范围中进行。
3.根据权利要求1所述的方法,进一步包括:
在所述第二漂移区上形成n-GaN层,
其中,在所述n-GaN层上掺杂的n型掺杂剂的掺杂浓度高于所述第二漂移区。
4.根据权利要求3所述的方法,其中,在所述n-GaN层上掺杂的n型掺杂剂的掺杂浓度在从1.0×1017/cm3至1.0×1020/cm3的范围内。
5.根据权利要求1所述的方法,其中,所述第一漂移区包括p-GaN和氮化铝镓(AlGaN)中的至少一个。
6.根据权利要求1所述的方法,其中,所述源电极接触层包括n+-GaN层以及AlGaN与GaN的异质结中的至少一个。
7.根据权利要求1所述的方法,其中,所述基底选自由n+-GaN、n+-碳化硅(SiC)、蓝宝石和硅(Si)组成的组。
8.根据权利要求1所述的方法,其中,所述源电极包括选自由铬(Cr)、铝(Al)、钽(Ta)、钼(Mo)、钨(W)、钛(Ti)和金(Au)组成的组的材料。
CN2012102713540A 2011-08-01 2012-07-31 制造功率器件的方法 Pending CN102915928A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0076559 2011-08-01
KR1020110076559A KR20130014850A (ko) 2011-08-01 2011-08-01 파워소자의 제조방법

Publications (1)

Publication Number Publication Date
CN102915928A true CN102915928A (zh) 2013-02-06

Family

ID=46801293

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2012102713540A Pending CN102915928A (zh) 2011-08-01 2012-07-31 制造功率器件的方法

Country Status (4)

Country Link
US (1) US8815688B2 (zh)
EP (1) EP2555230A2 (zh)
KR (1) KR20130014850A (zh)
CN (1) CN102915928A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104916694A (zh) * 2014-03-14 2015-09-16 株式会社东芝 半导体装置
CN105428412A (zh) * 2015-12-22 2016-03-23 工业和信息化部电子第五研究所 AlGaN/GaN异质结场效应晶体管及其制备方法
CN107810558A (zh) * 2015-06-26 2018-03-16 通用电气公司 针对碳化硅超结功率装置的有源区设计
CN109888012A (zh) * 2019-03-14 2019-06-14 中国科学院微电子研究所 GaN基超结型垂直功率晶体管及其制作方法
US11289594B2 (en) 2019-03-14 2022-03-29 Institute of Microelectronics, Chinese Academy of Sciences GaN-based superjunction vertical power transistor and manufacturing method thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130076314A (ko) * 2011-12-28 2013-07-08 삼성전자주식회사 파워소자 및 이의 제조방법
CN103531615A (zh) * 2013-10-15 2014-01-22 苏州晶湛半导体有限公司 氮化物功率晶体管及其制造方法
DE102018218704A1 (de) * 2018-10-31 2020-04-30 Robert Bosch Gmbh Isolierschicht-Feldeffekttransistor
CN114203797B (zh) * 2021-11-29 2023-03-21 西安电子科技大学 基于异质结的超结氧化镓晶体管及其制作方法与应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1949461A (zh) * 2005-09-29 2007-04-18 株式会社电装 用于制造半导体器件的方法以及外延生长装置
US20080050877A1 (en) * 2006-08-25 2008-02-28 De Fresart Edouard D Superjunction trench device and method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4764987B2 (ja) 2000-09-05 2011-09-07 富士電機株式会社 超接合半導体素子
JP2007005764A (ja) * 2005-05-27 2007-01-11 Toyota Motor Corp 半導体装置とその製造方法
JP4744958B2 (ja) * 2005-07-13 2011-08-10 株式会社東芝 半導体素子及びその製造方法
US20070138505A1 (en) * 2005-12-12 2007-06-21 Kyma Technologies, Inc. Low defect group III nitride films useful for electronic and optoelectronic devices and methods for making the same
JP2008091595A (ja) * 2006-10-02 2008-04-17 Eudyna Devices Inc 半導体装置およびその製造方法
JP5099116B2 (ja) * 2007-02-27 2012-12-12 富士通株式会社 化合物半導体装置とその製造方法
JP4938531B2 (ja) * 2007-04-09 2012-05-23 株式会社豊田中央研究所 半導体装置
JP4700125B2 (ja) * 2009-07-30 2011-06-15 住友電気工業株式会社 半導体装置およびその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1949461A (zh) * 2005-09-29 2007-04-18 株式会社电装 用于制造半导体器件的方法以及外延生长装置
US20080050877A1 (en) * 2006-08-25 2008-02-28 De Fresart Edouard D Superjunction trench device and method
CN101506940A (zh) * 2006-08-25 2009-08-12 飞思卡尔半导体公司 超结沟槽器件及方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104916694A (zh) * 2014-03-14 2015-09-16 株式会社东芝 半导体装置
CN107810558A (zh) * 2015-06-26 2018-03-16 通用电气公司 针对碳化硅超结功率装置的有源区设计
CN105428412A (zh) * 2015-12-22 2016-03-23 工业和信息化部电子第五研究所 AlGaN/GaN异质结场效应晶体管及其制备方法
CN109888012A (zh) * 2019-03-14 2019-06-14 中国科学院微电子研究所 GaN基超结型垂直功率晶体管及其制作方法
US11289594B2 (en) 2019-03-14 2022-03-29 Institute of Microelectronics, Chinese Academy of Sciences GaN-based superjunction vertical power transistor and manufacturing method thereof
CN109888012B (zh) * 2019-03-14 2022-08-30 中国科学院微电子研究所 GaN基超结型垂直功率晶体管及其制作方法

Also Published As

Publication number Publication date
US20130034939A1 (en) 2013-02-07
KR20130014850A (ko) 2013-02-12
EP2555230A2 (en) 2013-02-06
US8815688B2 (en) 2014-08-26

Similar Documents

Publication Publication Date Title
US10333006B2 (en) Termination structure for gallium nitride Schottky diode including junction barriar diodes
CN102915928A (zh) 制造功率器件的方法
US8927402B2 (en) Method for forming termination structure for gallium nitride Schottky diode
TWI538225B (zh) 半導體裝置及形成半導體裝置的方法
US9136365B2 (en) Power devices and method for manufacturing the same
JP2006210725A (ja) 半導体装置
CN102881714B (zh) 功率器件和制造该功率器件的方法
US20130017657A1 (en) Method of manufacturing power device
JP2006237430A (ja) 窒化物半導体装置
JP2010114219A (ja) 半導体装置及びその製造方法
JP2006245243A (ja) 半導体装置およびその製造方法
JP2009060065A (ja) 窒化物半導体装置
JP2008147552A (ja) 窒化物半導体装置
CN110504327A (zh) 基于纳米阵列的弹道输运肖特基二极管及其制作方法
KR101435479B1 (ko) 반도체 소자 및 그의 제조방법
JP2010267881A (ja) 電界効果トランジスタ及びその製造方法
KR20160102613A (ko) 질화물계 게이트 유전층을 구비하는 질화물계 트랜지스터
Suwon-Si Lee (45) Date of Patent: Feb. 3, 2015
KR20160100524A (ko) 질화물계 절연 게이트 바이폴라 트랜지스터
JP2008177368A (ja) 縦型半導体電子デバイス

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20130206

WD01 Invention patent application deemed withdrawn after publication