CN102910910A - 一种采用固态氮源制备碳氮比例可控的微纳米碳氮化钛粉体的方法 - Google Patents

一种采用固态氮源制备碳氮比例可控的微纳米碳氮化钛粉体的方法 Download PDF

Info

Publication number
CN102910910A
CN102910910A CN2012104631193A CN201210463119A CN102910910A CN 102910910 A CN102910910 A CN 102910910A CN 2012104631193 A CN2012104631193 A CN 2012104631193A CN 201210463119 A CN201210463119 A CN 201210463119A CN 102910910 A CN102910910 A CN 102910910A
Authority
CN
China
Prior art keywords
powder
carbon
sodium
chlor
nitride powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012104631193A
Other languages
English (en)
Other versions
CN102910910B (zh
Inventor
杨瑞嵩
李明田
刘春海
崔学军
金永中
林修洲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan University of Science and Engineering
Original Assignee
Sichuan University of Science and Engineering
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan University of Science and Engineering filed Critical Sichuan University of Science and Engineering
Priority to CN201210463119.3A priority Critical patent/CN102910910B/zh
Publication of CN102910910A publication Critical patent/CN102910910A/zh
Application granted granted Critical
Publication of CN102910910B publication Critical patent/CN102910910B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种采用固态氮源制备碳氮比例可控的微纳米碳氮化钛粉体的方法,1)对氯化铵、钛粉和炭黑粉备料;2)将三者混合均匀;3)向混合粉体中加入氯化钠;4)将第3)步得到的混合粉体研磨混合均匀,再制成坯体;5)将坯体放入熔融氯化钠中,保温冷却后得到载有碳氮化钛粉体的氯化钠盐块;6)将载有碳氮化钛粉体的氯化钠盐块经脱盐处理,去掉氯化钠,即制备出尺寸在300-500nm的碳氮化钛粉体。本发明以炭黑和钛粉作为原料,以氯化铵作为固态氮源,制备Ti(C、N)陶瓷粉体,制备工艺简单、成本低、制备温度低、能耗小,且碳氮比例精确可控。

Description

一种采用固态氮源制备碳氮比例可控的微纳米碳氮化钛粉体的方法
技术领域
本发明涉及碳氮化钛粉体制备方技术的改进,具体涉及一种采用固态氮源制备碳氮比例可控的微纳米碳氮化钛粉体的方法,属于陶瓷材料制备技术领域。
 
背景技术
Ti(C、N)具有高强度、高硬度、耐高温、耐酸碱、耐磨损以及良好的导电、导热性等一系列优点,广泛用于制备金属陶瓷、切削工具、模具、熔炼金属的坩埚、熔盐电解金属用电极的衬里材料,以及电触点和金属表面的被覆材料。尤其是超细粉末作为复合材料的增强相,具有极大的开发价值和应用前景。
现有制备Ti(C、N)陶瓷粉体的主要方法是由一定量的TiN和TiC粉末均匀混合于1700~1800℃热压固溶或于Ar气氛中在更高的温度下固溶而得,或者以TiC粉和Ti粉为原料,混合后在高温和氮气条件下进行长时间碳氮化处理,以生成Ti(C、N)。
现有技术的缺点是反应温度高、时间长,因此生产效率低、能耗大、生产成本高以及C/N比不易准确控制等。
 
发明内容
针对现有技术存在的上述不足,本发明的目的是提供一种工艺简单、能耗低、生产成本低且碳氮比例可控的微纳米碳氮化钛粉体的制备方法。
本发明实现上述目的的技术解决方案如下:
一种采用固态氮源制备碳氮比例可控的微纳米碳氮化钛粉体的方法,其制备步骤为:
1)根据最终制备得到的碳氮化钛粉体中的三种元素的比例对氯化铵、钛粉和炭黑粉备料,钛粉和炭黑粉的粒径不小于200目;
2)将氯化铵、钛粉和炭黑粉混合均匀;
3)向第2)步得到的混合粉体中加入氯化钠,氯化钠加入量为该混合粉体重量的1~2倍;
4)将第3)步得到的混合粉体研磨混合均匀,再将混合均匀的混合粉体制成坯体;
5)将坯体放入800~1100℃的熔融氯化钠中,保温30~120分钟,冷却后得到载有碳氮化钛粉体的氯化钠盐块;
6)将载有碳氮化钛粉体的氯化钠盐块经脱盐处理,去掉氯化钠,即制备出尺寸在300-500nm的碳氮化钛粉体。
第4)步的研磨在行星式球磨机上进行,球磨工艺为:混合粉体装入球磨机的球磨罐后,将球磨罐抽真空至0.1~1.0Pa,再通入氩气,使球磨罐内压力为0.9~1.1atm,再将球磨罐抽真空至0.1~1.0Pa,接着通入氩气,使球磨罐内压力为0.9~1.1atm,然后在球磨机转速100~300转/分、球料比为10:1~20:1下混料5~10小时,即得到球磨均匀的混合粉体;最后在3~5MPa压力下把球磨均匀的混合粉体制成坯体。
第6)步脱盐处理为:将载有碳氮化钛粉体的氯化钠盐块放入水中浸泡10~15小时,水的重量能保证氯化钠完全溶解;待氯化钠完全溶解后,过滤出碳氮化钛粉体并烘干。
现有技术制备碳氮化钛一般需要在高温下,用纯碳和钛或用TiN、氮气作为氮源,所需温度高,能耗大。而本发明以炭黑和钛粉作为原料,以氯化铵作为固态氮源,制备Ti(C、N)陶瓷粉体,制备工艺简单、成本低、制备温度低、能耗小,且碳氮比例精确可控。
 
具体实施方式
本发明制备微纳米碳氮化钛粉体的方法,其制备步骤为:
1)根据最终制备得到的碳氮化钛粉体中的三种元素的比例对氯化铵、钛粉和炭黑粉备料,钛粉和炭黑粉的粒径不小于200目。
2)将氯化铵、钛粉和炭黑粉混合均匀。
3)向第2)步得到的混合粉体中加入氯化钠,氯化钠加入量为该混合粉体重量的1~2倍。
本发明第2)步是为了将反应物均匀混合以有利于后续反应的进行,第3)步在第2)步的基础上加入氯化钠是为了控制最终产物的分散性,防止产物团聚成大颗粒;同时因为氯化钠不参与反应,所以分两步混合效率更高。
4)将第3)步得到的混合粉体研磨混合均匀,再将混合均匀的混合粉体制成坯体;本发明研磨在行星式球磨机上进行,球磨工艺为:混合粉体装入球磨机的球磨罐后,将球磨罐抽真空至0.1~1.0Pa,再通入氩气,使球磨罐内压力为0.9~1.1atm,再将球磨罐抽真空至0.1~1.0Pa,接着通入氩气,使球磨罐内压力为0.9~1.1atm,然后在球磨机转速100~300转/分、球料比为10:1~20:1下混料5~10小时,即得到球磨均匀的混合粉体;最后在3~5MPa压力下把球磨均匀的混合粉体制成坯体。
本发明制成坯体的目的是使坯体的密度大于熔融氯化钠的密度,这样当原料坯体被放入熔融氯化钠时,坯体可以迅速沉入熔融氯化钠中,从而和大气环境隔离,避免发生原料被氧化的情况。
5)将坯体放入800~1100℃的熔融氯化钠中,熔融氯化钠的用量至少要保证能够完全淹没坯体,就是保证坯体在熔融氯化钠中反应,不同外界的空气接触就行,保温30~120分钟,混合粉体在熔盐中发生化学反应,冷却后得到载有碳氮化钛粉体的氯化钠盐块;
反应式为: NH4Clà[N]+3/2H2+HCl,Ti+C+[N]àT(C,N);
或者:NH4Clà[N]+3/2H2+HCl,Ti+CàTiC,TiC+[N]à T(C,N));
6)将载有碳氮化钛粉体的氯化钠盐块经脱盐处理,去掉氯化钠,即制备出尺寸在300-500nm的碳氮化钛粉体。脱盐处理为:将载有碳氮化钛粉体的氯化钠盐块放入水中浸泡10~15小时,水的重量能保证氯化钠完全溶解;待氯化钠完全溶解后,过滤出碳氮化钛粉体并烘干即为碳氮化钛粉体。
本发明的基本构思是,炭黑中的碳与钛粉末在高温下可以发生化学反应生成TiC并放出大量的热,放出的热促使氯化铵分解,并提供氮源和C、Ti以及TiC反应最终得到Ti(C、N)。
在球磨过程中,随着时间的延长,粉体颗粒变小,比表面积增加、活性提高,Ti、C和NH4Cl逐步形成微米级的混合粉末;氯化钠盐的加入可以使得粉体颗粒在球磨中充分分散,在随后的高温熔盐中进行化学反应时,易于形成微纳米尺寸的陶瓷粉体。高温熔盐,不仅提供了化学反应所必需的初始温度,还对生成的陶瓷颗粒有良好的润滑作用,避免了微纳米陶瓷粉体的团聚。
以下给出三个具体实施例以帮助理解本发明。
实施例1:制备TiC0.9N0.1陶瓷粉体
原料为粒径200目的商用钛粉、炭黑和氯化铵,按摩尔比1:0.9:0.1,配料共30克,加入30克NaCl,混合后放入球磨机不锈钢球磨罐中,将钢罐用橡胶圈密封后,抽真空至0.5Pa,充入氩气,压力为0.9atm。再抽真空至0.5Pa,再充入氩气,压力为0.9atm。控制球料比为10:1,控制球磨机转速为300转/分,球磨6个小时后,利用压片机在4MPa的轴向压力下,制成φ20mm的坯体,将坯体放入900℃的熔融NaCl中,保温30分钟。将反应后冷却下来的带有Ti(C、N)陶瓷粉体的盐块放入10倍于盐块重量的水中,浸泡10小时。待NaCl完全溶解于水中后。过滤出Ti(C、N)陶瓷粉体,将Ti(C、N)陶瓷粉体反复用水冲洗烘干后,经测定为粒径为300~500nm的TiC0.9N0.1陶瓷粉体。
实施例2:制备TiC0.8N0.2陶瓷粉体
原料为粒径200目的商用钛粉、炭黑和氯化铵,按摩尔比1:0.8:0.2,配料共30克,加入30克NaCl,混合后放入球磨机不锈钢球磨罐中,将钢罐用橡胶圈密封后,抽真空至1.0Pa,充入氩气,压力为1atm。再抽真空至1.0Pa,再充入氩气,压力为1atm。控制球料比为20:1,控制球磨机转速为200转/分,球磨5个小时后,利用压片机在5MPa的轴向压力下,制成φ20mm的坯体,将坯体放入1000℃的熔融NaCl中,保温30分钟。将反应后冷却下来的带有Ti(C、N)陶瓷粉体的盐块放入10倍于盐块重量的水中,浸泡10小时。待NaCl完全溶解于水中后。过滤出Ti(C、N)陶瓷粉体,将Ti(C、N)陶瓷粉体反复用水冲洗烘干后,经测定为粒径为300~500nm的TiC0.8N0.2陶瓷粉体。
实施例3:制备TiC0.7N0.3陶瓷粉体
原料为粒径200目的商用钛粉、炭黑和氯化铵,按摩尔比1:0.7:0.3,配料共30克,加入30克NaCl,混合后放入球磨机不锈钢球磨罐中,将钢罐用橡胶圈密封后,抽真空至1.0Pa,充入氩气,压力为1.1atm。再抽真空至1.0Pa,再充入氩气,压力为1.1atm。控制球料比为20:1,控制球磨机转速为150转/分,球磨8个小时后,利用压片机在4MPa的轴向压力下,制成φ20mm的坯体,将坯体放入800℃的熔融NaCl中,保温30分钟。将反应后冷却下来的带有Ti(C、N)陶瓷粉体的盐块放入10倍于盐块重量的水中,浸泡10小时。待NaCl完全溶解于水中后。过滤出Ti(C、N)陶瓷粉体,将Ti(C、N)陶瓷粉体反复用水冲洗烘干后,经测定为粒径为300~500nm的TiC0.7N0.3陶瓷粉体。
最后说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的宗旨和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (3)

1.一种采用固态氮源制备碳氮比例可控的微纳米碳氮化钛粉体的方法,其特征在于:其制备步骤为:
1)根据最终制备得到的碳氮化钛粉体中的三种元素的比例对氯化铵、钛粉和炭黑粉备料,钛粉和炭黑粉的粒径不小于200目;
2)将氯化铵、钛粉和炭黑粉混合均匀;
3)向第2)步得到的混合粉体中加入氯化钠,氯化钠加入量为该混合粉体重量的1~2倍;
4)将第3)步得到的混合粉体研磨混合均匀,再将混合均匀的混合粉体制成坯体;
5)将坯体放入800~1100℃的熔融氯化钠中,保温30~120分钟,冷却后得到载有碳氮化钛粉体的氯化钠盐块;
6)将载有碳氮化钛粉体的氯化钠盐块经脱盐处理,去掉氯化钠,即制备出尺寸在300-500nm的碳氮化钛粉体。
2.根据权利要求1所述的制备碳氮比例可控的微纳米碳氮化钛粉体的方法,其特征在于:所述第4)步的研磨在行星式球磨机上进行,球磨工艺为:混合粉体装入球磨机的球磨罐后,将球磨罐抽真空至0.1~1.0Pa,再通入氩气,使球磨罐内压力为0.9~1.1atm,再将球磨罐抽真空至0.1~1.0Pa,接着通入氩气,使球磨罐内压力为0.9~1.1atm,然后在球磨机转速100~300转/分、球料比为10:1~20:1下混料5~10小时,即得到球磨均匀的混合粉体;最后在3~5MPa压力下把球磨均匀的混合粉体制成坯体。
3.根据权利要求1所述的制备碳氮比例可控的微纳米碳氮化钛粉体的方法,其特征在于:所述第6)步脱盐处理为:将载有碳氮化钛粉体的氯化钠盐块放入水中浸泡10~15小时,水的重量能保证氯化钠完全溶解;待氯化钠完全溶解后,过滤出碳氮化钛粉体并烘干。
CN201210463119.3A 2012-11-16 2012-11-16 一种采用固态氮源制备碳氮比例可控的微纳米碳氮化钛粉体的方法 Expired - Fee Related CN102910910B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210463119.3A CN102910910B (zh) 2012-11-16 2012-11-16 一种采用固态氮源制备碳氮比例可控的微纳米碳氮化钛粉体的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210463119.3A CN102910910B (zh) 2012-11-16 2012-11-16 一种采用固态氮源制备碳氮比例可控的微纳米碳氮化钛粉体的方法

Publications (2)

Publication Number Publication Date
CN102910910A true CN102910910A (zh) 2013-02-06
CN102910910B CN102910910B (zh) 2014-03-26

Family

ID=47609517

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210463119.3A Expired - Fee Related CN102910910B (zh) 2012-11-16 2012-11-16 一种采用固态氮源制备碳氮比例可控的微纳米碳氮化钛粉体的方法

Country Status (1)

Country Link
CN (1) CN102910910B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103979538A (zh) * 2014-05-30 2014-08-13 四川理工学院 一种制备微纳米TiC/TiSi2复合粉体的方法
CN109835875A (zh) * 2019-04-08 2019-06-04 陕西科技大学 一种常压化学气相沉积法制备纳米氮化钛粉体的方法
CN110526685A (zh) * 2019-04-09 2019-12-03 厦门钨业股份有限公司 合成超硬复合片用传压元件及其制备方法
CN113151889A (zh) * 2021-04-27 2021-07-23 嘉兴鸷锐新材料科技有限公司 一种定向生长的碳氮化钛晶体、制备方法及其应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1467175A (zh) * 2002-07-12 2004-01-14 石油大学(北京) 一种利用盐浴合成法制备微纳米陶瓷粉体的方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1467175A (zh) * 2002-07-12 2004-01-14 石油大学(北京) 一种利用盐浴合成法制备微纳米陶瓷粉体的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
RUISONG YANG ET AL.: "The Synthesis of Composite Particles in Molten Salts", 《MATERIALS TRANSACTIONS》, vol. 47, no. 3, 15 March 2006 (2006-03-15), pages 584 - 586 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103979538A (zh) * 2014-05-30 2014-08-13 四川理工学院 一种制备微纳米TiC/TiSi2复合粉体的方法
CN109835875A (zh) * 2019-04-08 2019-06-04 陕西科技大学 一种常压化学气相沉积法制备纳米氮化钛粉体的方法
CN109835875B (zh) * 2019-04-08 2021-09-17 陕西科技大学 一种常压化学气相沉积法制备纳米氮化钛粉体的方法
CN110526685A (zh) * 2019-04-09 2019-12-03 厦门钨业股份有限公司 合成超硬复合片用传压元件及其制备方法
CN113151889A (zh) * 2021-04-27 2021-07-23 嘉兴鸷锐新材料科技有限公司 一种定向生长的碳氮化钛晶体、制备方法及其应用
CN113151889B (zh) * 2021-04-27 2022-06-03 嘉兴鸷锐新材料科技有限公司 一种定向生长的碳氮化钛晶体、制备方法及其应用

Also Published As

Publication number Publication date
CN102910910B (zh) 2014-03-26

Similar Documents

Publication Publication Date Title
CN101343699B (zh) 一种铝硅合金精炼剂及其制造方法
CN102644015A (zh) 一种氮化钒铁合金的生产方法
CN101289713B (zh) 一种钒氮合金的生产方法
CN100569645C (zh) 一种高长径比硼酸镁晶须合成方法
CN102910910B (zh) 一种采用固态氮源制备碳氮比例可控的微纳米碳氮化钛粉体的方法
CN103979538B (zh) 一种制备微纳米TiC/TiSi2复合粉体的方法
CN102268686A (zh) 一种熔盐中电化学还原固态金属氧化物低温合成高熔点金属碳化物方法
CN109133995A (zh) 一种通过分解钾长石制备可溶性钾肥的方法
CN105399100A (zh) 一种纳米多孔硅的制备方法
CN102166652A (zh) 一种热喷涂用碳化钛基金属陶瓷粉末材料的制备方法
CN103265048A (zh) 一种TiB2超细粉体材料的制备方法
CN101704682A (zh) 利用自蔓延高温合成制备碳化钛陶瓷微粉的方法
CN104961137B (zh) 一种纳米碱土金属硼化物的制备方法
CN102502627B (zh) 一种工业化超级电容活性炭的生产方法
CN102225761A (zh) 以Ti-Si-Fe合金为原料的TiC材料及其制备方法
CN105483823B (zh) 一种太阳能多晶硅铸锭用氮化硅粉料及其制备方法
CN103979567A (zh) 一种低温制备CrB或CrB2粉体的方法
CN102001634B (zh) 一种氮化锆粉末的生产方法
CN103193231A (zh) 制备碳化钛或碳氮化钛的方法
CN104099634A (zh) 氮化钒的制备方法
CN103014606A (zh) 一种碳素钢渗硼剂制备方法
CN102242341B (zh) 一种耐高温钛膜超硬复合材料及其生产工艺
CN104495845A (zh) 一种纯净 Fe3C 块体的制备工艺
CN102676724B (zh) 海绵铁的制造方法
CN101734659B (zh) 高频感应-碳热还原制备碳化钛粉的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140326

Termination date: 20191116

CF01 Termination of patent right due to non-payment of annual fee