CN110526685A - 合成超硬复合片用传压元件及其制备方法 - Google Patents

合成超硬复合片用传压元件及其制备方法 Download PDF

Info

Publication number
CN110526685A
CN110526685A CN201910876055.1A CN201910876055A CN110526685A CN 110526685 A CN110526685 A CN 110526685A CN 201910876055 A CN201910876055 A CN 201910876055A CN 110526685 A CN110526685 A CN 110526685A
Authority
CN
China
Prior art keywords
pressure transmission
transmission element
powder
composite sheet
ceramic powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910876055.1A
Other languages
English (en)
Other versions
CN110526685B (zh
Inventor
张太全
文晓
刘超
冯炎建
郑建平
蔡晓康
张守全
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen Tungsten Co Ltd
Xiamen Golden Egret Special Alloy Co Ltd
Original Assignee
Xiamen Tungsten Co Ltd
Xiamen Golden Egret Special Alloy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen Tungsten Co Ltd, Xiamen Golden Egret Special Alloy Co Ltd filed Critical Xiamen Tungsten Co Ltd
Publication of CN110526685A publication Critical patent/CN110526685A/zh
Application granted granted Critical
Publication of CN110526685B publication Critical patent/CN110526685B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了合成超硬复合片用传压元件及其制备方法,其成分包括5wt%‑40wt%的氯化钠,余量为陶瓷粉及不可避免的杂质,所述氯化钠和所述陶瓷粉在所述传压元件中均匀分布;所述氯化钠的平均粒径低于所述陶瓷粉的平均粒径。该传压元件采用溶解原位析出渗透法制得混合粉末,再压制成传压元件。该传压元件能大幅降低合成过程中复合片变形开裂的几率,制备方法操作简单,同时也节约原材料成本和后续加工成本。

Description

合成超硬复合片用传压元件及其制备方法
技术领域
本发明涉及超硬材料制造技术领域,特别涉及合成超硬复合片用传压元件及其制备方法。
背景技术
聚晶金刚石(PCD)或聚晶立方氮化硼(PCBN)复合片是在高温高压条件下烧结而成,过程中温度场及压力分布的均匀性决定复合片的质量及其寿命。合成复合片的组装结构中通常会加入盐杯、盐管及盐片等组装件作为传压元件,这是由于盐在高温下呈熔融状态,不但能起到等静压传压作用,且由于其热膨胀系数较大,也可对烧结收缩引起的压力下降起到补压作用。
目前这类传压元件的成分通常为NaCl-0~30wt%ZrO2,制备方法是将氯化钠粉末和氧化锆粉末机械混合均匀后,直接压制成型。然而,高温烧结时,聚晶层会产生烧结收缩导致整个复合片发生较大变形,而熔融盐的流动进一步加剧该变形,该变形不但影响复合片的尺寸精度,更严重的甚至导致复合片开裂。为解决生产效率,同时平衡良好传压和变形开裂的矛盾,需要重新设计复合片周围填充的传压元件。
发明内容
鉴于上述情况,本发明提供合成超硬复合片用传压元件,该传压元件在不降低等静压传压效果前提下,高温下起到有效支撑作用,从而阻止聚晶层的收缩变形。
为实现上述目的,本发明采用如下技术方案:
合成超硬复合片用传压元件,所述传压元件的成分包括:5wt%-40wt%的氯化钠,余量为陶瓷粉及不可避免的杂质;所述氯化钠和所述陶瓷粉在所述传压元件中均匀分布;所述氯化钠的平均粒径低于所述陶瓷粉的平均粒径;所述陶瓷粉选自氧化物陶瓷粉体、氮化物陶瓷粉体、碳化物陶瓷粉体或碳氮化物陶瓷粉体中的至少一种。
本发明发现改变原有以氯化钠为基体的传压元件为以陶瓷材料为基体的传压元件,控制氯化钠颗粒的大小不超过陶瓷材料的颗粒大小,及其在陶瓷材料主体的分布,在高温下陶瓷基体起到支撑作用,阻止熔盐的流动,进而阻止聚晶层的收缩变形,而盐的存在又不降低等静压传压效果。
本发明的另一目的在于提供合成超硬复合片用传压元件的制备方法。
合成超硬复合片用传压元件的制备方法,所述传压元件的成分包括5wt%-40wt%的氯化钠,余量为陶瓷粉及不可避免的杂质,并至少包括如下步骤:将所述传压元件的原料成分在水中溶解制成混合水溶液的工序;将所述混合水溶液加热搅拌制成粘稠浆料的工序;将所述粘稠浆料干燥制得混合粉末的工序;将所述混合粉末压制成型得到所述传压元件。
传统的机械粉末混合法,NaCl原料必需是粉末,陶瓷粉末和氯化钠混合过程中各自相互分离易发生严重团聚,在NaCl含量较低时,其颗粒之间的接触减少,不外加成型剂的情况下,很难直接压制成型,压制获得的元件强度极低,缺边非常严重,多数非常容易发生开裂,下一步的组装极难操作;加入成型剂(如石蜡,PEG等)后,一方面成型剂与粉料的混合均匀性很难保证,另一方面需要在360℃-600℃之间脱除成型剂,在脱除成型剂过程中NaCl同时也易挥发(污染炉腔),由于元件压制时靠成型剂的粘结作用成型,脱除成型剂后元件状态又重新回到与不加成型剂的情况,元件多数开裂,不但无件成品率低下,制备工艺和设备成本急剧增加,更关键的是其仍未解决陶瓷粉末与氯化钠的均匀混合问题。本发明采用溶解原位析出渗透法制备陶瓷-NaCl混合粉末,该混合粉末中低含量较小颗粒的NaCl可将陶瓷粉末颗粒包裹或部分包裹,从而大大提高NaCl之间的接触机率,因而可直接压制成型,即NaCl既是成分,又作为成型剂。
需要说明的是,本发明对氯化钠原料没有特殊的要求,可以是粉状颗粒,也可以是块体材料,可以是微米级颗粒,也可以是毫米级颗粒。
本发明中提及的wt%为重量百分比。
本发明公布的数字范围包括这个范围的所有点值。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合具体实施方式对本发明做进一步详细的说明,但本发明的保护范围不限于下述的实施例,下列实施例中未注明具体条件的实验方法,通常按照常规条件。
对各实施例和对比例进行的性能测试定义如下:
成分测试:采用EDX成分分析设备进行具体成分分析。
平均粒径观测:采用SEM(扫描电子显微镜)观测。
粘度测试:采用NDJ-8S自动数显粘度仪,根据GB/T12008.6所述方法测定。
元件成型性:通过目测观察传压元件的外观。
弯曲强度测试:采用万能强度试验机在室温下测试,试样尺寸5.25mm×6.5mm×20mm,跨距14.5mm,根据GB/T3851所述方法测试。
复合片变形量测试:测量复合片工作面凹凸高度的最大偏差值。通常复合片变形量<0.15mm视为合格。
在推荐的实施方式中,所述氧化物陶瓷粉体为氧化铝、氧化锆、氧化钛或氧化铬中的至少一种;所述氮化物陶瓷粉体为氮化硅、氮化硼或氮化铝中的至少一种;所述碳化物陶瓷粉体为碳化硅、碳化硼或碳化钛中的至少一种;所述碳氮化物陶瓷粉体中碳氮化物的金属选自元素周期表中IVB、VB或VIB族中的一种。上述陶瓷材料高温下不易挥发和分解,可确保合成过程的稳定性;良好的热导性,可保证合成腔体温度的均匀性;较高的热膨胀系数,对烧结收缩起到补压作用。
在推荐的实施方式中,所述氯化钠的颗粒均匀包裹所述陶瓷粉的颗粒。陶瓷材料作为基体,小粒径的氯化钠颗粒间相互接触,更益于混合粉末的成型。
在推荐的实施方式中,所述传压元件的形状为杯状、片状或管状中的至少一种。
在推荐的实施方式中,所述陶瓷粉的平均粒径为0.1μm-300μm。
在推荐的实施方式中,所述陶瓷粉的平均粒径为2μm-20μm。
在推荐的实施方式中,所述粘稠浆料在室温下粘度≥1000mPa·s。混合水溶液加热搅拌过程中,水不断蒸发,氯化钠逐渐析出,在此过程中不断搅拌水溶液防止NaCl偏析和长大,直到形成上述粘度的粘稠浆料,此后NaCl只能原位析出,不再会产生严重偏析。
在推荐的实施方式中,所述加热搅拌是置于90℃以上的水浴中,搅拌速度60r/min-200r/min。
需要说明的是,陶瓷粉的平均粒径、搅拌速度是本行业的常规选择,因此,在实施例中,没有对其范围加以试验和验证。
实施例一
原料准备:陶瓷粉选用平均粒径为20μm的AlN和ZrO2混合陶瓷粉,与配比不同的氯化钠的原料进行混合。
实施例1-3及对比例1-2采用本发明方法:
混合水溶液制取:将上述原料成分在水中分散,加入水至氯化钠完全溶解。
粘稠浆料:将上述混合水溶液置于90℃水浴中,加热搅拌,搅拌速度为60r/min,待室温下粘度为1000mPa·s,停止加热搅拌,得到粘稠浆料。
将上述粘稠浆料干燥制得混合粉末,再经过压制成型得到传压元件。
采用SEM观测所得到的传压元件表面,陶瓷粉的颗粒大小几乎未发生改变,平均粒径为20μm,氯化钠颗粒与陶瓷粉颗粒分散均匀,氯化钠颗粒的平均粒径小于陶瓷粉颗粒的平均粒径,氯化钠颗粒对陶瓷粉颗粒形成部分的包裹。
对比例3-4采用传统方法,即原料混合后,直接压制成型。
对各实施例和对比例进行EDX成分测试,成分测试结果如表1所示。
表1传压元件成分(wt%)
对各实施例和对比例进行性能测试,测试结果如表2所示。
表2传压元件室温弯曲强度(MPa)和合成复合片质量对比
从表2可以看出,实施例1-3在本发明范围内,采用本发明的方法,制得的传压元件成型良好,变形量较小,符合要求;而对比例1由于氯化钠含量较少,成型较差,变形量难以测试,对比例2虽然成型良好,弯曲强度较高,但氯化钠含量过高,在高温高压下易流动,影响复合片尺寸精度,因而复合片变形量较高,不符合要求;采用传统方法的对比例3和对比例4,制得的传压元件成型较差,出现碎裂、缺边或开裂,无法达到要求。
上述实施例仅用于对本发明所提供的技术方案进行解释,并不能对本发明进行限制,凡是依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均落入本发明技术方案的保护范围内。

Claims (9)

1.合成超硬复合片用传压元件,其特征在于,所述传压元件的成分包括:5wt%-40wt%的氯化钠,余量为陶瓷粉及不可避免的杂质;所述氯化钠和所述陶瓷粉在所述传压元件中均匀分布;所述氯化钠的平均粒径低于所述陶瓷粉的平均粒径;所述陶瓷粉选自氧化物陶瓷粉体、氮化物陶瓷粉体、碳化物陶瓷粉体或碳氮化物陶瓷粉体中的至少一种。
2.根据权利要求1所述的合成超硬复合片用传压元件,其特征在于:所述氧化物陶瓷粉体为氧化铝、氧化锆、氧化钛或氧化铬中的至少一种;所述氮化物陶瓷粉体为氮化硅、氮化硼或氮化铝中的至少一种;所述碳化物陶瓷粉体为碳化硅、碳化硼或碳化钛中的至少一种;所述碳氮化物陶瓷粉体中碳氮化物的金属选自元素周期表中IVB、VB或VIB族中的一种。
3.根据权利要求1所述的合成超硬复合片用传压元件,其特征在于:所述氯化钠的颗粒均匀包裹所述陶瓷粉的颗粒。
4.根据权利要求1所述的合成超硬复合片用传压元件,其特征在于:所述传压元件的形状为杯状、片状或管状中的至少一种。
5.根据权利要求1-4任一项所述的合成超硬复合片用传压元件,其特征在于:所述陶瓷粉的平均粒径为0.1μm-300μm。
6.根据权利要求1-4任一项所述的合成超硬复合片用传压元件,其特征在于:所述陶瓷粉的平均粒径为2μm-20μm。
7.合成超硬复合片用传压元件的制备方法,其特征在于,所述传压元件的成分包括5wt%-40wt%的氯化钠,余量为陶瓷粉及不可避免的杂质,所述传压元件的制备方法包括如下步骤:将所述传压元件的原料成分在水中溶解制成混合水溶液的工序;将所述混合水溶液加热搅拌制成粘稠浆料的工序;将所述粘稠浆料干燥制得混合粉末的工序;将所述混合粉末压制成型得到所述传压元件。
8.根据权利要求6所述的合成超硬复合片用传压元件的制备方法,其特征在于:所述粘稠浆料在室温下粘度≥1000mPa·s。
9.根据权利要求6所述的合成超硬复合片用传压元件的制备方法,其特征在于:所述加热搅拌是置于90℃以上的水浴中,搅拌速度60r/min-200r/min。
CN201910876055.1A 2019-04-09 2019-09-17 合成超硬复合片用传压元件及其制备方法 Active CN110526685B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910281172 2019-04-09
CN2019102811723 2019-04-09

Publications (2)

Publication Number Publication Date
CN110526685A true CN110526685A (zh) 2019-12-03
CN110526685B CN110526685B (zh) 2023-04-14

Family

ID=68668829

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910876055.1A Active CN110526685B (zh) 2019-04-09 2019-09-17 合成超硬复合片用传压元件及其制备方法

Country Status (1)

Country Link
CN (1) CN110526685B (zh)

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4389465A (en) * 1979-05-01 1983-06-21 Sumitomo Electric Industries, Ltd. Sintered compact for use in a tool and the method for producing the same
JPS6161631A (ja) * 1984-08-31 1986-03-29 Natl Inst For Res In Inorg Mater 高温超高圧用圧力媒体
JPS6317219A (ja) * 1986-07-04 1988-01-25 Fujitsu Ltd セラミツク粉体の製造方法
EP0454138A2 (de) * 1990-04-26 1991-10-30 Vereinigte Aluminium-Werke Aktiengesellschaft Verbundpulver und Verfahren zum Beschichten von Keramikpulvern
CN1088862A (zh) * 1992-12-21 1994-07-06 金属铸造技术有限公司 压实制品的方法和设备
JPH08309176A (ja) * 1995-05-23 1996-11-26 Denki Kagaku Kogyo Kk 超高圧発生用圧力媒体及びそれを用いた装置
US5910462A (en) * 1993-07-28 1999-06-08 Gani; Mary Susan Jean Zirconia particles
US6143207A (en) * 1996-09-18 2000-11-07 Kabushiki Kaisha Toyota Chuo Kenkyusho Wide-range thermistor material and method for producing it
JP2003146765A (ja) * 2002-09-20 2003-05-21 Murata Mfg Co Ltd 誘電体セラミック原料粉体の製造方法
JP2004067432A (ja) * 2002-08-06 2004-03-04 Sumitomo Electric Ind Ltd セラミックス複合焼結体およびその製造方法
JP2005058836A (ja) * 2003-08-19 2005-03-10 Sumitomo Electric Ind Ltd 固体圧力媒体
JP2005067943A (ja) * 2003-08-22 2005-03-17 Sekisui Chem Co Ltd セラミック組成物用造孔材
JP2012087045A (ja) * 2011-11-14 2012-05-10 Nippon Tokushu Gokin Kk バインダレス合金の製造方法
CN102910910A (zh) * 2012-11-16 2013-02-06 四川理工学院 一种采用固态氮源制备碳氮比例可控的微纳米碳氮化钛粉体的方法
CN106430251A (zh) * 2016-09-05 2017-02-22 中南大学 一种微米级超细球形氯化钠的制备方法
CN107379663A (zh) * 2017-08-15 2017-11-24 郑州磨料磨具磨削研究所有限公司 用于合成超硬材料烧结体的多层复合隔层材料
CN108002825A (zh) * 2017-10-31 2018-05-08 江苏西玉钻石科技有限公司 无压机分球式超高压装置用复合传压介质及制备方法

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4389465A (en) * 1979-05-01 1983-06-21 Sumitomo Electric Industries, Ltd. Sintered compact for use in a tool and the method for producing the same
JPS6161631A (ja) * 1984-08-31 1986-03-29 Natl Inst For Res In Inorg Mater 高温超高圧用圧力媒体
JPS6317219A (ja) * 1986-07-04 1988-01-25 Fujitsu Ltd セラミツク粉体の製造方法
EP0454138A2 (de) * 1990-04-26 1991-10-30 Vereinigte Aluminium-Werke Aktiengesellschaft Verbundpulver und Verfahren zum Beschichten von Keramikpulvern
CN1088862A (zh) * 1992-12-21 1994-07-06 金属铸造技术有限公司 压实制品的方法和设备
US5910462A (en) * 1993-07-28 1999-06-08 Gani; Mary Susan Jean Zirconia particles
JPH08309176A (ja) * 1995-05-23 1996-11-26 Denki Kagaku Kogyo Kk 超高圧発生用圧力媒体及びそれを用いた装置
US6143207A (en) * 1996-09-18 2000-11-07 Kabushiki Kaisha Toyota Chuo Kenkyusho Wide-range thermistor material and method for producing it
JP2004067432A (ja) * 2002-08-06 2004-03-04 Sumitomo Electric Ind Ltd セラミックス複合焼結体およびその製造方法
JP2003146765A (ja) * 2002-09-20 2003-05-21 Murata Mfg Co Ltd 誘電体セラミック原料粉体の製造方法
JP2005058836A (ja) * 2003-08-19 2005-03-10 Sumitomo Electric Ind Ltd 固体圧力媒体
JP2005067943A (ja) * 2003-08-22 2005-03-17 Sekisui Chem Co Ltd セラミック組成物用造孔材
JP2012087045A (ja) * 2011-11-14 2012-05-10 Nippon Tokushu Gokin Kk バインダレス合金の製造方法
CN102910910A (zh) * 2012-11-16 2013-02-06 四川理工学院 一种采用固态氮源制备碳氮比例可控的微纳米碳氮化钛粉体的方法
CN106430251A (zh) * 2016-09-05 2017-02-22 中南大学 一种微米级超细球形氯化钠的制备方法
CN107379663A (zh) * 2017-08-15 2017-11-24 郑州磨料磨具磨削研究所有限公司 用于合成超硬材料烧结体的多层复合隔层材料
CN108002825A (zh) * 2017-10-31 2018-05-08 江苏西玉钻石科技有限公司 无压机分球式超高压装置用复合传压介质及制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
王天石等: "氯化钠粉压体热挤压成形性能", 《清华大学学报(自然科学版)》 *
龙政鑫等: "无压机分球式高压装置用复合传压介质的制备研究", 《金刚石与磨料磨具工程》 *

Also Published As

Publication number Publication date
CN110526685B (zh) 2023-04-14

Similar Documents

Publication Publication Date Title
JP4261130B2 (ja) シリコン/炭化ケイ素複合材料
US4560668A (en) Substantially pore-free shaped articles of polycrystalline silicon carbide, and a process for their manufacture by isostatic hot-pressing
CN109534828B (zh) 一种碳化硅复合陶瓷材料的造粒方法
US20230250025A1 (en) Performance of technical ceramics
CN108249924B (zh) 一种碳化硅陶瓷及其制备方法和Al-SiC复合材料
US20040159984A1 (en) Sintered Y2O3 and the manufacturing method for the same
Arias-Serrano et al. High-performance Ni–YSZ thin-walled microtubes for anode-supported solid oxide fuel cells obtained by powder extrusion moulding
CN112250424A (zh) 一种氧化铝粉体、氧化铝陶瓷及其制备方法
CN113355611B (zh) 一种碳纤维增强MoCoB金属陶瓷及制备方法
US4814302A (en) Stable slip-casting compositions having a base of powders containing finely divided aluminum nitride
CN110526685A (zh) 合成超硬复合片用传压元件及其制备方法
JP2004067432A (ja) セラミックス複合焼結体およびその製造方法
JPH05186804A (ja) タングステン複合粉、タングステン複合板材、及びその製造方法
JP4295491B2 (ja) 銅−タングステン合金およびその製造方法
WO2002045889A2 (en) Improvement of flow characteristics of metal feedstock for injection molding
KR101897200B1 (ko) 부식저항성과 절삭가공성을 개선한 생체재료용 고밀도 소결 니켈-크롬-몰리브덴 합금의 제조방법
JP4612608B2 (ja) シリコン/炭化ケイ素複合材料の製造方法
JP2016145387A (ja) セラミックス成形体の製造方法及びセラミックス焼結体の製造方法
CN118146018B (zh) 一种高抗热震性反应烧结碳化硅陶瓷及其制备方法
US6589310B1 (en) High conductivity copper/refractory metal composites and method for making same
JPS5828321B2 (ja) 粉末冶金用原料粉末の均質混合法
JP2005035846A (ja) ジルコニア粉末、ジルコニア焼結体及びその製造方法
JP4789293B2 (ja) SiC焼結体
EP0672638A1 (fr) Matériau isolant thermique à base de fibres d&#39;alumine et sa fabrication
JPH10245269A (ja) セラミックススラリーの調製方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant