CN102884003A - 钛酸锂结晶结构体、钛酸锂结晶结构体和碳的复合体、其制造方法、使用了该复合体的电极及电化学元件 - Google Patents

钛酸锂结晶结构体、钛酸锂结晶结构体和碳的复合体、其制造方法、使用了该复合体的电极及电化学元件 Download PDF

Info

Publication number
CN102884003A
CN102884003A CN2011800221761A CN201180022176A CN102884003A CN 102884003 A CN102884003 A CN 102884003A CN 2011800221761 A CN2011800221761 A CN 2011800221761A CN 201180022176 A CN201180022176 A CN 201180022176A CN 102884003 A CN102884003 A CN 102884003A
Authority
CN
China
Prior art keywords
lithium titanate
crystalline texture
titanate crystalline
texture body
complex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011800221761A
Other languages
English (en)
Other versions
CN102884003B (zh
Inventor
直井胜彦
直井和子
石本修一
玉光贤次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemi Con Corp
Original Assignee
Nippon Chemi Con Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemi Con Corp filed Critical Nippon Chemi Con Corp
Publication of CN102884003A publication Critical patent/CN102884003A/zh
Application granted granted Critical
Publication of CN102884003B publication Critical patent/CN102884003B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B1/00Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • C01G23/005Alkali titanates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/773Nanoparticle, i.e. structure having three dimensions of 100 nm or less
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/778Nanostructure within specified host or matrix material, e.g. nanocomposite films
    • Y10S977/784Electrically conducting, semi-conducting, or semi-insulating host material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/811Of specified metal oxide composition, e.g. conducting or semiconducting compositions such as ITO, ZnOx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/89Deposition of materials, e.g. coating, cvd, or ald
    • Y10S977/892Liquid phase deposition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/895Manufacture, treatment, or detection of nanostructure having step or means utilizing chemical property
    • Y10S977/896Chemical synthesis, e.g. chemical bonding or breaking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2918Rod, strand, filament or fiber including free carbon or carbide or therewith [not as steel]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明提供适于制造电特性优异的电极或电化学元件的钛酸锂结晶结构体和该钛酸锂结晶结构体和碳纳米纤维的复合体。所述钛酸锂结晶结构体具有数原子层水平的厚度,使二维面呈平面状的钛酸理结晶结构体分散负载于碳纳米纤维(CNF)。钛酸理结晶结构体的前体和负载其的CNF通过在旋转的反应器内对反应物施加剪切应力和离心力的机械化学反应来制作。优选钛酸锂结晶结构体和碳纳米纤维的质量比为75:25~85:15。碳纳米纤维优选其外径为10~30nm,外比表面积为150~350cm2/g。将该复合体与粘合剂混合后进行成形而得到电极,将该电极用于电化学元件。

Description

钛酸锂结晶结构体、钛酸锂结晶结构体和碳的复合体、其制造方法、使用了该复合体的电极及电化学元件
技术领域
本发明涉及钛酸锂结晶结构体、钛酸锂结晶结构体和碳的复合体、其制造方法、使用该复合体的电极及电化学元件。
背景技术
目前,作为锂电池的电极,可使用储存、放出锂的碳材料,但由于负极电位比电解液的还原分解电位低,因此,存在电解液分解这样的危险性。于是,如专利文献1或专利文献2中所记载,研究了负极电位比电解液的还原分解电位低的钛酸锂的使用,但存在钛酸锂的输出特性低这样的问题。于是,存在通过将碳酸锂进行纳米粒子化、使其负载于碳而形成的电极来提高输出特性的尝试。
现有专利文献
专利文献
专利文献1:日本特开2007-160151号公报
专利文献2:日本特开2008-270795号公报
发明内容
发明要解决的课题
这些专利文献中记载的发明利用在旋转的反应器内对反应物施加剪切应力和离心力来促进化学反应的方法(通常称为机械化学反应)而得到分散负载于碳的钛酸锂。此时,作为反应物,例如使用作为钛酸锂的起始原料的烃氧基钛和醋酸锂及碳纳米管和炭黑等碳、醋酸等。
这些专利文献中记载的使用负载了钛酸锂结晶结构体的碳的电极虽然发挥优异的输出特性,但近来在这种电极中存在进一步提高输出特性并提高电导率的要求。
本发明是为了解决如上所述的现有技术的问题而提出的,其目的在于,提供可得到能够提高输出特性及电导率的电极或电化学元件的钛酸锂结晶结构体、钛酸锂结晶结构体和碳的复合体、其制造方法。另外,本发明的其它的目的在于,提供使用了所述复合体的电极及电化学元件。
用于解决课题的手段
本发明的钛酸锂结晶结构体的特征在于,具有2~5原子层水平的厚度,二维面的一边展开成5~100nm的平板状。特别是该二维面为(111)面,另外,本发明的钛酸锂结晶结构体为具有以2~5原子层水平计1nm以下的厚度,因此,优选厚度和二维面的一边的比成为1:5~1:350,二维面展开成平板状。对该钛酸锂结晶结构体而言,可以对含有钛源和锂源的溶液施加剪切应力和离心力并使其反应来制造钛酸锂结晶结构体的前体,对该前体进行加热而生成具有数原子层水平的厚度的平板状的结晶结构体。
本发明的钛酸锂结晶结构体和碳的复合体的特征在于,使所述钛酸锂结晶结构体分散负载于碳纳米纤维(以下,称为CNF)。此时,优选钛酸锂结晶结构体和碳的比率为75:25~85:15,特别优选80:20。另外,作为CNF,优选其外径为10~30nm,外比表面积为150~350cm2/g。对于该复合体而言,对含有使制造的复合体的钛酸锂结晶结构体和碳纳米纤维的质量比为75:25~85:15的量的钛源、锂源及碳纳米纤维的溶液施加剪切应力和离心力并使其反应来制造钛酸锂结晶结构体的前体和碳纳米纤维的复合体、对该复合体进行加热而生成该复合体。
进而,如上述的钛酸锂结晶结构体或钛酸锂结晶结构体和碳的复合体的制造方法及使用了上述复合体的电极或电化学元件也包含在本发明中。
发明效果
根据本发明,钛酸锂结晶结构体为厚度为2~5原子层水平的超薄膜结构体,其厚度极薄,单位体积的表面积极大,因此,构成结晶结构体的锂原子的露出度大。因此,单位电极体积的锂的吸附、脱附的位置(site)(表面积)接近于无限大,因此,电容高,充电率特性变得良好。在将该结晶结构体用于电极或电化学元件的情况下,电子或离子的移动变得容易,可提高电导率。
附图说明
图1是表示实施例1的钛酸锂结晶结构体和碳的复合体的TEM像的附图代用照片;
图2是表示将实施例1的钛酸锂结晶结构体和碳的复合体放大的TEM像和FET解析结果的附图代用照片;
图3是表示将实施例1的钛酸锂结晶结构体和碳的复合体的另外的部分放大的TEM像和FET解析结果的附图代用照片;
图4是表示将实施例1的钛酸锂结晶结构体和碳的复合体的另外的部分放大的TEM像和FET解析结果的附图代用照片;
图5是表示用于本发明的制造方法的反应器的一个例子的立体图。
具体实施方式
以下,对用于实施本发明的方式进行说明。
(机械化学反应)
在本发明中使用的反应方法为与本申请人等之前申请专利的专利文献1及专利文献2所示的方法同样的机械化学反应,在化学反应的过程中,在旋转的反应器内对反应物施加剪切应力和离心力来促进化学反应。
该反应方法例如可以使用如图5所示的反应器进行。如图5所示,反应器由在开口部具有挡板1-2的外筒1和具有通孔2-1的旋转的内筒2构成。在该反应器的内筒内部投入反应物,使内筒旋转,由此通过其离心力,内筒内部的反应物通过内筒的通孔移至外筒的内壁1-3。此时反应物通过内筒的离心力与外筒的内壁碰撞,形成薄膜状而滑向内壁的上部。在该状态下,对反应物同时施加与内壁之间的剪切应力和来自内筒的离心力两者,对薄膜状的反应物施加大的机械能量。认为该机械性的能量转化为反应所需要的化学能量、所谓的活化能,在短时间内进行反应。
在该反应中,为薄膜状时,施加于反应物的机械能变大,因此,薄膜的厚度为5mm以下,优选为2.5mm以下,更优选为1.0mm以下。需要说明的是,薄膜的厚度可以根据挡板的宽度、反应液的量进行设定。
认为该反应方法可以通过施加于反应物的剪切应力和离心力的机械能来实现,但该剪切力和离心力通过施加于内筒内的反应物的离心力而产生。因此,本发明需要的施加于内筒内的反应物的离心力为1500N(kgms-2)以上,优选为60000N(kgms-2)以上,更优选为270000N(kgms-2)以上。
认为,在该反应方法中,是由通过对反应物同时施加剪切应力和离心力两种机械能,该能量转化为化学能而引起的,但可以以以往没有的速度促进化学反应。
(钛酸锂结晶结构体)
本发明的钛酸锂结晶结构体例如使用烃氧基钛等钛源、醋酸锂、硝酸锂、碳酸锂、氢氧化锂等锂源作为起始原料,通过上述机械化学反应,生成钛酸锂结晶结构体的前体。在本实施例中,通过将该钛酸锂结晶结构体的前体在氮气氛中进行加热,生成在氧缺陷的位置掺杂有氮的钛酸锂结晶结构体。
(碳)
通过在反应过程中加入CNF,可以得到5~100nm的钛酸锂结晶结构体和碳的复合体。即,在反应器的内筒的内部投入上述钛源和锂源、反应抑制剂和规定量的CNF,使内筒旋转来将金属盐、反应抑制剂和CNF混合、分散。进而一边使内筒旋转一边投入氢氧化钠等催化剂使水解、缩合反应进行,在生成钛酸锂的同时以分散状态混合该钛酸锂和碳,反应结束后通过将其迅速加热,可以形成高分散负载有钛酸锂结晶结构体的碳。
作为在此使用的碳,优选使用CNF。CNF具有中空状的结构,但由于内表面小,其直径粗,因此在负载有钛酸锂结晶结构体的情况下,钛酸锂结晶结构体内包于CNF的量少,负载在CNF的外表面上的量多。而且,由于CNF的直径粗、简言之“比表面积(外比表面积)小”,因此在如上所述的机械化学反应下,负载的钛酸锂粒子沿CNF的表面向外生长而结晶化,成为片状。
碳纳米管(以下,称为CNT)为中空状态,但由于钛酸锂结晶结构体被内包于呈筒状的CNT,因此不适于本发明。即,本实施例所示的CNF(多层的CNT的直径粗的材料)的外比表面积为150~350cm2/g,一般的多层的CNT的比表面积为200~400cm2/g,单层的CNT的比表面积为400~500cm2/g,SGCNT(超级生长碳纳米管)为600~1100cm2/g,科琴黑为600~800cm2/g。
为了使钛酸锂结晶结构体大量负载于碳,优选使碳的外比表面积为150~350cm2/g的范围,作为采用这样的外比表面积的CNF,优选其外径为10~30nm的粗细的材料。若外径比该范围细,则外比表面积变大,钛酸锂结晶结构体难以向外生长。若外径比该范围大,则外比表面积变小,难以负载75/25(w/w)以上的钛酸锂结晶结构体。
(钛酸锂结晶结构体和碳的量)
在复合体中,钛酸锂结晶结构体和碳的比例为75:25~85:15,特别是该比例相比以往所提出的70:30,钛酸锂结晶结构体的比例多,因此,在机械化学反应下,有助于钛酸锂向反应器的周围方向片状成长。另外,该范围的临界性意义通过单位电极的电容确定,在该范围中可以得到较大的电极电容。
(溶剂)
作为溶剂,可以使用醇类、水、它们的混合溶剂。例如可以使用将醋酸和醋酸锂溶解于异丙醇和水的混合物的混合溶剂。
(反应抑制剂)
在使用烃氧基钛作为起始原料的情况下,如专利文献2中记载的那样,可以在适用上述机械化学反应的规定的烃氧基钛中添加与该烃氧基钛形成络合物的规定的化合物作为反应抑制剂。由此可以抑制过度促进化学反应。
即,通过在烃氧基钛中相对于1摩尔烃氧基钛添加1~3摩尔与其形成络合物的醋酸等规定的化合物形成络合物,可以对反应进行抑制、控制。需要说明的是,通过该反应所生成的是作为钛酸锂结晶结构体的前体的锂和氧化钛的复合体的纳米粒子,通过对其进行烧成,得到钛酸锂结晶结构体。
这样,通过添加醋酸等规定的化合物作为反应抑制剂可以抑制过度促进化学反应被认为是由于醋酸等规定的化合物与烃氧基钛形成稳定的络合物。
作为可以与烃氧基钛形成络合物的物质,除醋酸外,可举出:柠檬酸、草酸、甲酸、乳酸、酒石酸、富马酸、琥珀酸、丙酸、乙酰丙酸(レプリン酸)等羧酸;EDTA等氨基多羧酸;三乙醇胺等氨基醇所代表的络合剂。
(加热)
在本发明中,在通过机械化学反应得到使碳纳米粒子的结构体的内部负载钛酸锂结晶结构体的前体而成的复合体的同时,通过对该钛酸锂结晶结构体和碳的复合体进行加热,促进钛酸锂的结晶化,提高使用了该复合体的电极或电化学元件的电容、输出特性。
即,所得到的钛酸锂结晶结构体的前体和CNF由于“比表面积小”,因此,负载的钛酸锂结晶结构体向外生长而成为片状。上述加热温度为700℃至900℃,若低于该温度,则无法进行良好的结晶化,若超过该温度,则由于相转变,无法得到能量储存特性良好的钛酸锂。在本实施例中,通过在700℃下进行加热,可得到优异的电特性。
在本发明中,上述加热优选在氮气氛中进行。即,认为通过在氮气氛中对钛酸锂进行加热,在其结晶结构体中产生氧缺陷,锂在该位置进行吸藏、脱附,因此,在使用了该复合体的电极或电化学元件中,电容、输出特性提高。另外,一般认为,氮在该氧缺陷的位置掺杂,使钛酸锂的电导率提高,输出特性提高。
(电极)
通过本发明得到的钛酸锂结晶结构体和碳的复合体可以与粘合剂混炼、成形,制成电化学元件的电极即电能储存用电极,该电极显示出高输出特性、高电容特性。
(电化学元件)
可以使用该电极的电化学元件为使用含有锂或镁等金属离子的电解液的电化学电容器、电极。即,本发明的电极可以进行金属离子的吸藏、脱附,作为负极或正极进行动作。因此,可以通过使用含有锂离子的电解液,使用活性炭、吸藏、脱附锂离子的碳或金属氧化物等作为对极,由此构成电化学电容器、电极。
实施例
以下,通过实施例,进一步具体地说明本发明。
(实施例1)
相对于1摩尔烃氧基钛,将成为1.8摩尔醋酸、1摩尔醋酸锂的量的醋酸和醋酸锂溶解于异丙醇和水的混合物,制作混合溶剂。将该混合溶剂和烃氧基钛、CNF投入旋转反应器内,以66000N(kgms-2)的离心力使内筒旋转5分钟,在外筒的内壁形成反应物的薄膜的同时对反应物施加剪切应力和离心力促进化学反应,得到高分散负载了钛酸锂结晶结构体的前体的CNF。该情形下,溶解于混合溶剂的烃氧基钛和CNF的量以得到的复合体的组成为钛酸锂/CNF为80/20的质量比(w/w)的方式进行设定。
通过在真空中在80℃对得到的高分散负载有钛酸锂结晶结构体的前体的CNF干燥17小时,得到钛酸锂结晶结构体的前体高分散负载于CNF的复合体粉末。
通过将得到的钛酸锂结晶结构体的前体高分散负载于CNF的复合体粉末在氮气氛中在700℃下进行加热,进行含有锂的氧化物的结晶化,得到钛酸锂的纳米粒子形成平面状的结晶结构体高分散负载于CNF的复合体粉末。
将如上得到的实施例1的负载了钛酸锂结晶结构体的CNF的各TEM像示于图1。在图1中,可知5nm~20nm的钛酸锂结晶结构体高分散负载于CNF。
特别是如图1的TEM像发现那样,本实施例的“钛酸锂结晶结构体和碳的复合体”采用CNF所连接的“石墨碎片的构建结构”,在该结构体中高分散负载有钛酸锂结晶结构体。
图2~图4表示用高分辨率TEM观察实施例1的高分散负载了钛酸锂的前体的CNF的图。即为将钛酸锂负载(附着)于碳纳米纤维的部分放大的摄影图。图中出现许多平行线,该线表示晶格。另外,所谓面间距:
Figure BDA00002347857300081
面间距:
Figure BDA00002347857300082
是指拍摄了TEM照片的钛酸锂片的面为结晶的(111)面,面间距表示存在2个结晶。
由图2~图4可知,钛酸锂结晶结构体成为超薄膜结构。该超薄膜结构体具有2~5个原子层水平且1nm以下的结构,二维面的一边呈5~100nm的平板状。另外,二维面成为(111)面。另外,对于几乎所有的钛酸锂结晶结构体而言,其厚度和二维面的一边之比在1:5~1:350的范围。
这样的超薄膜结构体厚度极薄,单位体积的表面积极大。因此,可以显示高输出特性。对于单位体积的表面积,厚度无限接近于零的超薄膜结构体的表面积最大,但本发明的钛酸锂结晶结构体具有接近这样的超薄膜结构体的具有数原子层水平的厚度的结构。
以上的超薄膜结构体被认为是在旋转的反应器内对含有钛酸锂的起始原料和CNF粉末的溶液施加剪切应力和离心力并使其反应的同时、通过之后的加热处理而形成的。
(实施例2)
以得到的钛酸锂结晶结构体和CNF的配合比为75/25的方式变更溶解于混合溶液的烃氧基钛和CNF的量,除此以外,与上述实施例同样地制作钛酸锂结晶结构体和CNF的复合体粉末。
(实施例3)
以得到的钛酸锂结晶结构体和CNF的配合比为85/15的方式变更溶解于混合溶液的烃氧基钛和CNF的量,除此以外,与上述实施例同样地制作钛酸锂结晶结构体和CNF的复合体粉末。
(比较例1)
以得到的钛酸锂结晶结构体和CNF的配合比为70/30的方式变更溶解于混合溶液的烃氧基钛和CNF的量,除此以外,与上述实施例同样地制作钛酸锂结晶结构体和CNF的复合体粉末。
将如上构成的实施例1和比较例1中得到的复合体粉末与作为粘合剂的聚偏氟乙烯PVDF一起(Li4Ti5O12/CNF/PVDF 56:24:20)投入熔接在SUS板上而成的SUS网中,从而形成工作电极W.E.。在上述电极上载置隔板和对电极C.E.及作为参比电极的锂箔,使其浸透作为电解液的1.0M四氟硼酸锂(LiBF4)/碳酸乙烯酯EC:碳酸二甲酯DEC(1:1w/w),从而形成电池。
进而,对于具有使用了实施例1~3和比较例1的复合体粉末的电极的电池,比较由其充放电行为算出的电容,结果如下所述。
(1)实施例1Li4Ti5O12:CNF=80:20电容:131mAh/g
(2)实施例2Li4Ti5O12:CNF=75:25电容:125mAh/g
(3)实施例3Li4Ti5O12:CNF=85:15电容:137mAh/g
(4)比较例1Li4Ti5O12:CNF=70:30电容:118mAh/g
如该结果所表明的那样,可确认在使用了钛酸锂结晶结构体和碳纳米纤维的质量比为75:25~85:15的本实施例的复合体的情况下,与比较例相比,电容增加。另外,输出特性也良好。
(实施例4)
将实施例1的9重量份复合体粉末和1重量份的PVDF(聚偏氟乙烯)粘合剂混炼,压延形成片材。将该片材真空干燥后接合于铜箔,从而形成负极。
另外,将8重量份活性炭(クラレケミカル公司制,RD-20)和1重量份的PTFE粘合剂(聚四氟乙烯)、作为导电性材料的1重量份乙炔黑混炼,压延形成片材。将该片材真空干燥后接合于铝箔,从而形成正极。
使这些电极在注入了LiBF4、碳酸丙烯酯溶液的烧杯中经由纤维素系的隔板对向而制作混合电容器电池。
(实施例5)
使用实施例2的复合体粉末,同样地制作混合电容器电池。
(实施例6)
使用实施例3的复合体粉末,同样地制作混合电容器电池。
(比较例2)
使用比较例1的复合体粉末,同样地制作混合电容器电池。
测定这些混合电容器电池的电容。结果,实施例4~6电容分别为29.4mAh/g、29.0mAh/g、29.8mAh/g、28.4mAh/g,与比较例2的28.4mAh/g相比,显示大的电容,可知本申请的混合电容器电池的特性良好。

Claims (13)

1.钛酸锂结晶结构体,其具有以2~5个原子层水平计1nm以下的厚度,二维面的一边展开成5~100nm的平板状。
2.如权利要求1所述的钛酸锂结晶结构体,其中,二维面为(111)面。
3.如权利要求1所述的钛酸锂结晶结构体,其中,厚度和二维面的一边的比为1:5~1:350。
4.如权利要求1~3中任一项所述的钛酸锂结晶结构体,其包括具有数原子层水平的厚度的平板状的结晶结构体,所述平板状的结晶结构体是对含有钛源和锂源的溶液施加剪切应力和离心力并使其反应来制造钛酸锂结晶结构体的前体、对该前体进行加热而得到的。
5.钛酸锂结晶结构体和碳的复合体,其是使权利要求1所述的钛酸锂结晶结构体分散负载于碳纳米纤维而成的。
6.如权利要求5所述的钛酸锂结晶结构体和碳的复合体,其中,钛酸锂结晶结构体和碳纳米纤维的质量比为75:25~85:15。
7.如权利要求5所述的钛酸锂结晶结构体和碳的复合体,其中,对所述碳纳米纤维而言,其外径为10~30nm,外比表面积为150~350cm2/g。
8.如权利要求5所述的钛酸锂结晶结构体和碳的复合体,其中,在旋转的反应器内对含有使制造的复合体的钛酸锂结晶结构体和碳纳米纤维的质量比成为75:25~85:15的量的钛源、锂源及碳纳米纤维的溶液施加剪切应力和离心力并使其反应来制造钛酸锂结晶结构体的前体和碳纳米纤维的复合体,对该复合体进行加热而得到的具有数原子层水平的厚度的平板状的钛酸锂结晶结构体被负载于碳纳米纤维。
9.电极,其是将权利要求5所述的复合体与粘合剂混合后进行成形而得到的。
10.电化学元件,其使用了权利要求5所述的电极。
11.电化学电容器,其将权利要求9所述的电极用作负极,将极化电极用作正极。
12.钛酸锂结晶结构体的制造方法,其特征在于,在旋转的反应器内对含有钛源和锂源的溶液施加剪切应力和离心力并使其反应来制造钛酸锂结晶结构体的前体,对该前体进行加热来制造具有数原子层水平的厚度的平板状的钛酸锂结晶结构体。
13.钛酸锂结晶结构体和碳纳米纤维的复合体的制造方法,其特征在于,在旋转的反应器内对含有使制造的复合体的钛酸锂结晶结构体和碳纳米纤维的质量比成为75:25~85:15的量的的钛源、锂源及碳纳米纤维的溶液施加剪切应力和离心力并使其反应来制造钛酸锂结晶结构体的前体和碳纳米纤维的复合体,对该前体和碳纳米纤维的复合体进行加热而生成具有数原子层水平的厚度的平板状的钛酸锂结晶结构体和碳纳米纤维的复合体。
CN201180022176.1A 2010-05-04 2011-05-02 钛酸锂结晶结构体和碳的复合体及其制造方法 Active CN102884003B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010-106052 2010-05-04
JP2010106052A JP5836568B2 (ja) 2010-05-04 2010-05-04 チタン酸リチウム結晶構造体とカーボンの複合体、その製造方法、その複合体を用いた電極及び電気化学素子
PCT/JP2011/002530 WO2011138866A1 (ja) 2010-05-04 2011-05-02 チタン酸リチウム結晶構造体、チタン酸リチウム結晶構造体とカーボンの複合体、その製造方法、その複合体を用いた電極及び電気化学素子

Publications (2)

Publication Number Publication Date
CN102884003A true CN102884003A (zh) 2013-01-16
CN102884003B CN102884003B (zh) 2016-02-24

Family

ID=44903721

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201180022176.1A Active CN102884003B (zh) 2010-05-04 2011-05-02 钛酸锂结晶结构体和碳的复合体及其制造方法

Country Status (5)

Country Link
US (2) US9005814B2 (zh)
JP (1) JP5836568B2 (zh)
KR (1) KR101793307B1 (zh)
CN (1) CN102884003B (zh)
WO (1) WO2011138866A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107428553A (zh) * 2015-03-31 2017-12-01 日本贵弥功株式会社 钛氧化物粒子、钛氧化物粒子的制造方法、包含钛氧化物粒子的蓄电元件用电极、具备包含钛氧化物粒子的电极的蓄电元件
CN107614439A (zh) * 2015-03-31 2018-01-19 日本贵弥功株式会社 钛氧化物结晶体、包含钛氧化物结晶体的蓄电设备用电极
CN109313991A (zh) * 2016-06-22 2019-02-05 日本贵弥功株式会社 混合电容器及其制造方法
CN110400924A (zh) * 2019-07-29 2019-11-01 卢昌琴 一种锂离子动力电池负极材料及其制备方法
CN113659127A (zh) * 2021-08-19 2021-11-16 电子科技大学长三角研究院(湖州) 一种碳纳米纤维/钛酸锂复合电极材料及其制备方法和应用

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5664404B2 (ja) * 2011-03-29 2015-02-04 東レ株式会社 金属化合物−導電剤複合体およびそれを用いてなるリチウム二次電池、および金属化合物−導電剤複合体の製造方法
JP5694254B2 (ja) * 2012-08-07 2015-04-01 株式会社東芝 活物質、非水電解質電池および電池パック
DE102012112909A1 (de) * 2012-12-21 2014-07-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Mit einem Faraday'schen Speichermaterial beschichtete Partikel mit großer Oberfläche, Hybridelektroden, die diese Partikel enthalten und Verwendung der Hybridelektroden in hochkapazitiven Doppelschichtkondensatoren und schnellen Batterien
JP2015050170A (ja) * 2013-09-04 2015-03-16 日本ケミコン株式会社 電極材料、該電極材料を備えた蓄電デバイス及び電極材料の製造方法
JP5965015B2 (ja) * 2015-03-23 2016-08-03 日本ケミコン株式会社 チタン酸リチウム結晶構造体
US10297879B2 (en) 2016-06-30 2019-05-21 GM Global Technology Operations LLC Titanium diboride nanotubes for trapping gases in lithium ion batteries
CN108134072B (zh) * 2018-01-30 2022-01-28 中国科学院宁波材料技术与工程研究所 一种钛酸锂基复合材料及其制备方法
JP7457228B1 (ja) 2023-06-30 2024-03-28 artience株式会社 二次電池電極用複合物の製造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007066581A1 (ja) * 2005-12-09 2007-06-14 K & W Limited 反応方法及びこの方法で得られた金属酸化物ナノ粒子、またはこの金属酸化物ナノ粒子を担持したカーボン及びこのカーボンを含有する電極、並びにこれを用いた電気化学素子
JP2008270795A (ja) * 2007-03-28 2008-11-06 Nippon Chemicon Corp 反応方法及びこの方法で得られた金属酸化物ナノ粒子、またはこの金属酸化物ナノ粒子を担持したカーボン及びこのカーボンを含有する電極並びにこの電極を用いた電気化学素子

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7291271B2 (en) 2003-12-09 2007-11-06 Separation Design Group, Llc Meso-frequency traveling wave electro-kinetic continuous adsorption system
CA2506104A1 (en) 2005-05-06 2006-11-06 Michel Gauthier Surface modified redox compounds and composite electrode obtain from them

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007066581A1 (ja) * 2005-12-09 2007-06-14 K & W Limited 反応方法及びこの方法で得られた金属酸化物ナノ粒子、またはこの金属酸化物ナノ粒子を担持したカーボン及びこのカーボンを含有する電極、並びにこれを用いた電気化学素子
JP2008270795A (ja) * 2007-03-28 2008-11-06 Nippon Chemicon Corp 反応方法及びこの方法で得られた金属酸化物ナノ粒子、またはこの金属酸化物ナノ粒子を担持したカーボン及びこのカーボンを含有する電極並びにこの電極を用いた電気化学素子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KATSUHIKO NAOI ET AL.: "High-rate nano-crystalline Li4Ti5O12 attached on carbon nano-fibers for hybrid supercapacitors", 《JOURNAL OF POWER SOURCES》 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107428553A (zh) * 2015-03-31 2017-12-01 日本贵弥功株式会社 钛氧化物粒子、钛氧化物粒子的制造方法、包含钛氧化物粒子的蓄电元件用电极、具备包含钛氧化物粒子的电极的蓄电元件
CN107614439A (zh) * 2015-03-31 2018-01-19 日本贵弥功株式会社 钛氧化物结晶体、包含钛氧化物结晶体的蓄电设备用电极
US10438751B2 (en) 2015-03-31 2019-10-08 Nippon Chemi-Con Corporation Titanium oxide crystal body and power storage device electrode including titanium oxide crystalline body
US10490316B2 (en) 2015-03-31 2019-11-26 Nippon Chemi-Con Corporation Titanium oxide particles, titanium oxide particle production method, power storage device electrode including titanium oxide particles, and power storage device provided with electrode including titanium oxide particles
CN107428553B (zh) * 2015-03-31 2020-09-29 日本贵弥功株式会社 钛氧化物粒子、钛氧化物粒子的制造方法、蓄电元件用电极、及蓄电元件
CN107614439B (zh) * 2015-03-31 2020-09-29 日本贵弥功株式会社 钛氧化物结晶体、包含钛氧化物结晶体的蓄电设备用电极
CN109313991A (zh) * 2016-06-22 2019-02-05 日本贵弥功株式会社 混合电容器及其制造方法
US10984961B2 (en) 2016-06-22 2021-04-20 Nippon Chemi-Con Corporation Hybrid capacitor and manufacturing method thereof
CN109313991B (zh) * 2016-06-22 2021-09-21 日本贵弥功株式会社 混合电容器及其制造方法
CN110400924A (zh) * 2019-07-29 2019-11-01 卢昌琴 一种锂离子动力电池负极材料及其制备方法
CN113659127A (zh) * 2021-08-19 2021-11-16 电子科技大学长三角研究院(湖州) 一种碳纳米纤维/钛酸锂复合电极材料及其制备方法和应用

Also Published As

Publication number Publication date
JP2011236061A (ja) 2011-11-24
US20150255790A1 (en) 2015-09-10
KR20130064749A (ko) 2013-06-18
US9005814B2 (en) 2015-04-14
CN102884003B (zh) 2016-02-24
KR101793307B1 (ko) 2017-11-02
WO2011138866A1 (ja) 2011-11-10
US9368793B2 (en) 2016-06-14
JP5836568B2 (ja) 2015-12-24
US20130115516A1 (en) 2013-05-09

Similar Documents

Publication Publication Date Title
CN102884003B (zh) 钛酸锂结晶结构体和碳的复合体及其制造方法
KR101846587B1 (ko) 금속 산화물 나노 입자와 카본의 복합체, 그의 제조 방법, 이 복합체를 이용한 전극 및 전기 화학 소자
Tang et al. LiMn2O4 nanotube as cathode material of second-level charge capability for aqueous rechargeable batteries
CN102869611B (zh) 钛酸锂纳米粒子、钛酸锂纳米粒子和碳的复合体、其制造方法、由该复合体构成的电极材料、使用该电极材料的电极、电化学元件及电化学电容器
KR20110123799A (ko) 전극 재료 및 이 전극 재료를 함유하는 전극
US9299977B2 (en) Manufacturing method of electrode material
KR102178542B1 (ko) 금속 주석-탄소 복합체, 그 제조 방법, 그것으로 얻어진 비수계 리튬 이차전지용 음극 활물질, 이것을 포함하는 비수계 리튬 이차전지용 음극 및 비수계 리튬 이차전지
JP2011029151A (ja) 電極材料およびリチウムイオン二次電池
KR20150063041A (ko) 전극 재료 및 그의 제조 방법
US20140287314A1 (en) Sheet composite, manufacturing method thereof, and electrode and electrochemical element employing said composite
US10056622B2 (en) Nanotubular intermetallic compound catalyst for positive electrode of lithium air battery and method of preparing the same
WO2017123532A1 (en) Nanoparticle/porous graphene composite, synthesizing methods and applications of same
TW202106618A (zh) 複合碳粒子、其製造方法及其用途
JPWO2017061468A1 (ja) リチウムイオン二次電池
JP2018056021A (ja) リチウムイオン二次電池
JP6775937B2 (ja) 電極材料、電極材料の製造方法、および電極材料を備えた蓄電デバイス
JP5877630B2 (ja) 電気化学キャパシタ
TW202104073A (zh) 複合碳粒子、其製造方法及其用途
JP6678012B2 (ja) 電極材料、電極材料の製造方法、電極、および蓄電デバイス
JP7062159B2 (ja) リチウムマンガン酸化物系正極活物質の製造方法
JP2017228437A (ja) リチウムナトリウムチタン酸化物粒子、リチウムナトリウムチタン酸化物粒子を含む蓄電デバイス用電極、及びリチウムナトリウムチタン酸化物粒子の製造方法
EP3621094B1 (en) Process for preparing anode active material for pseudocapacitor
JP5965015B2 (ja) チタン酸リチウム結晶構造体
CN116960305A (zh) 一种三维多孔MXene材料、制备方法及其应用
JP2015050170A (ja) 電極材料、該電極材料を備えた蓄電デバイス及び電極材料の製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant