CN102648281A - Axmi-205杀虫基因和它的使用方法 - Google Patents

Axmi-205杀虫基因和它的使用方法 Download PDF

Info

Publication number
CN102648281A
CN102648281A CN201080038789XA CN201080038789A CN102648281A CN 102648281 A CN102648281 A CN 102648281A CN 201080038789X A CN201080038789X A CN 201080038789XA CN 201080038789 A CN201080038789 A CN 201080038789A CN 102648281 A CN102648281 A CN 102648281A
Authority
CN
China
Prior art keywords
sequence
amino acid
polypeptide
nucleotide sequence
plant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201080038789XA
Other languages
English (en)
Other versions
CN102648281B (zh
Inventor
N·德赛
J·辛森
D·巴鲁萨布瑞曼尼安
K·S·桑普森
D·J·汤姆索
D·A·莱特宁
N·B·达克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
BASF Agricultural Solutions Seed US LLC
Original Assignee
Athenix Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Athenix Corp filed Critical Athenix Corp
Publication of CN102648281A publication Critical patent/CN102648281A/zh
Application granted granted Critical
Publication of CN102648281B publication Critical patent/CN102648281B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8279Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
    • C12N15/8285Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for nematode resistance
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/22Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Neisseriaceae (F)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/12Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria
    • C07K16/1203Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria from Gram-negative bacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8279Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
    • C12N15/8286Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for insect resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/146Genetically Modified [GMO] plants, e.g. transgenic plants

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Pest Control & Pesticides (AREA)
  • Insects & Arthropods (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Pretreatment Of Seeds And Plants (AREA)

Abstract

提供了赋予对细菌、植物、植物细胞、组织和种子的杀虫活性的组合物和方法。提供了包含杀虫多肽的编码序列的组合物。所述编码序列可以用于DNA构建体或者表达盒中用于在植物和细菌中的转化和表达。组合物也包含转化的细菌、植物、植物细胞、组织和种子。特别地,提供了分离的杀虫核酸分子。此外,包含了相应于所述多核苷酸的氨基酸序列。特别地,本发明提供了核酸分子,其包含编码在SEQ ID NO:2,3,或者4中显示的氨基酸序列的核苷酸序列,在SEQ ID NO:1,9,10或者11中给出的核苷酸序列以及它们的变体和片段。

Description

AXMI-205杀虫基因和它的使用方法
对相关申请的交叉参考
本申请要求在2009年7月2日提交的美国临时申请系列号61/222,778的权益,所述临时申请的内容完整并入本文作为参考。
发明领域
本发明涉及分子生物学领域。提供了编码杀虫蛋白的新基因。这些蛋白质和编码它们的核酸序列可用于制备杀虫制剂和生产转基因抗虫植物。发明背景
DDT(二氯-二苯基-三氯乙烷)的引入和随后向合成化学杀虫剂滥用的发展导致水和食品来源的污染、非靶标有益昆虫的被毒害和昆虫害虫对化学杀虫剂抗性的发展。在化学杀虫剂的滥用对环境的不利影响上增加的公众关注推动了寻找用于昆虫害虫控制的备选方法。
一种有希望的备选方案已经是使用生物学控制剂。有Bt(苏云金芽孢杆菌,一种革兰氏阳性土壤细菌)作为有效的生物杀虫剂的安全应用的详实记录并且可得到δ-内毒素基因在农作物植物中表达的很多报告。Bt转基因农作物只需要很少的杀虫剂喷雾,这不仅节约成本和时间,还减少了健康风险。在一些情况下,昆虫可以发展出对不同的杀虫剂化合物的抗性,所述抗性增加了鉴定用于害虫控制的备选生物学控制剂的需要。
发明概述
提供了赋予细菌、植物、植物细胞、组织和种子的杀虫活性的组合物和方法。组合物包括编码杀害虫和杀昆虫多肽序列的核酸分子、包含这些核酸分子的载体和包含该载体的宿主细胞。组合物也包括杀虫多肽序列和这些多肽的抗体。所述核苷酸序列可用于DNA构建体或者表达盒中用于在生物包括微生物和植物中的转化和表达。该核苷酸或者氨基酸序列可以是合成序列,其已经被设计用于在生物,包括但不限于微生物或植物中表达。组合物也包含转化的细菌、植物、植物细胞、组织和种子。
特别地,提供了编码杀虫蛋白的分离的或者重组的核酸分子。此外,包含了相应于杀虫蛋白的氨基酸序列。特别地,本发明提供分离的核酸分子,其包含编码在SEQ ID NO:2,3,4,5,6,7或者8中显示的氨基酸序列的核苷酸序列,或者在SEQ ID NO:1,9,10或者11中给出的核苷酸序列以及它们的变体和片段。也包含与本发明的核苷酸序列互补的核苷酸序列或者与本发明的序列杂交的序列。
提供了产生本发明的多肽和使用这些多肽来控制或者杀死鳞翅目害虫、鞘翅目害虫、线虫或者双翅目害虫的方法。也包括检测样品中本发明的核酸和多肽的方法和试剂盒。
本发明的组合物和方法在产生具有增强的害虫抗性或者耐受性的生物中是有用的。这些生物和组合物包含期望用于农业目的的生物。本发明的组合物对于产生具有杀虫活性的改变的或者改进的蛋白质,或者对于检测产品或者生物中杀虫蛋白或者核酸的存在也是有用的。
附图简述
图1显示了AXMI-205(SEQ ID NO:2)与来自发光光杆状菌(Photorh abdus luminescens)(SEQ ID NO:14)和密执安棍状杆菌(Clavibactermichiganensis)(SEQ ID NO:15)的MACPF蛋白的比对。
发明详述
本发明涉及在生物特别是植物或者植物细胞中调节害虫抗性或者耐受性的组合物和方法。“抗性”意指害虫(例如昆虫)在摄食或者与本发明的多肽接触时被杀死。“耐受性”意指害虫的运动、进食、繁殖或者其他功能的损伤或者减弱。所述方法涉及用编码本发明的杀虫蛋白的核苷酸序列转化生物。特别地,本发明的核苷酸序列可用于制备具有杀虫活性的植物和微生物。因此,提供了转化的细菌、植物、植物细胞、植物组织和种子。组合物是细菌种类的杀虫核酸和蛋白质。所述序列可用于表达载体的构建中用于随后转化到目的生物中,作为探针用于分离其他同源的(或者部分同源的)基因,或者通过本领域已知的方法如结构域交换或者DNA改组用于产生改变的杀虫蛋白。蛋白质可用于控制或者杀死鳞翅目、鞘翅目、双翅目和线虫类害虫种群并且用于产生具有杀虫活性的组合物。
“杀虫毒性”或者“杀虫蛋白”意指对一种或者多种害虫具有毒性活性的毒素或者与此种蛋白质具有同源性的蛋白质,所述害虫包括但不限于鳞翅目、双翅目和鞘翅目或者线虫纲的成员。已经从生物包括例如芽孢杆菌属(Bacillus sp.)、双酶梭菌(Clostridium bifermentans)和波林芽孢杆菌(Paenibacillus popilliae)中分离出杀虫蛋白。杀虫蛋白包括从本文公开的全长核苷酸序列推导的氨基酸序列和比全长序列更短的氨基酸序列,这是由于使用备选的下游起始位点或者由于加工产生了较短的具有杀虫活性的蛋白质。加工可以在表达该蛋白质的生物中发生或者在摄食该蛋白质后在害虫中发生。
因此,本文提供的是赋予杀虫活性的新分离的或者重组的核苷酸序列。也提供了杀虫蛋白的氨基酸序列。从该基因的翻译得到的蛋白质允许细胞控制或者杀死摄食它的害虫。
分离的核酸分子以及它们的变体和片段
本发明的一个方面涉及分离的或者重组的核酸分子,其包含编码杀虫蛋白和多肽或者它们的生物学活性部分的核苷酸序列以及足够用作杂交探针的核酸分子,所述探针用于鉴定编码具有序列同源性区域的蛋白质的核酸分子。此处使用的术语“核酸分子”意在包括DNA分子(例如重组DNA、cDNA或者基因组DNA)和RNA分子(例如mRNA)以及使用核苷酸类似物产生的DNA或者RNA类似物。核酸分子可以是单链或者双链的,但优选地是双链DNA。
此处使用的“分离的”核酸序列(或者DNA)指的是不再处于它的天然环境中的核酸序列(或者DNA),例如在体外或者在重组的细菌或者植物宿主细胞中。在一些实施方案中,“分离的”核酸不含在该核酸来源的生物基因组DNA中天然位于该核酸侧翼(即位于该核酸的5’和3’末端的序列)的序列(优选地蛋白质编码序列)。为本发明的目的,当使用“分离的”时指的是除了分离的染色体以外的核酸分子。例如,在多种实施方案中,编码杀虫蛋白的分离的核酸分子可以含有少于约5kb,4kb,3kb,2kb,1kb,0.5kb或者0.1kb的核苷酸序列,所述核苷酸序列在核酸来源的细胞的基因组DNA中天然地位于该核酸分子的侧翼。基本上不含细胞物质的杀虫蛋白包括蛋白质制剂,其具有少于约30%,20%,10%,或者5%(以干重计)的非杀虫蛋白(此处也指作“污染蛋白质”)。
编码本发明的蛋白质的核苷酸序列包括在SEQ ID NO:1,9,10或者11中给出的序列,和它们的变体、片段和互补序列。“互补序列”意指核苷酸序列,其与给定的核苷酸序列足够互补以致它能与该给定的核苷酸序列杂交从而形成稳定的双链体。在SEQ ID NO:2,3或者4中给出了此种核苷酸序列编码的杀虫蛋白的相应的氨基酸序列。
本发明也包含编码杀虫蛋白的这些核苷酸序列的片段的核酸分子。“片段”意指编码杀虫蛋白的核苷酸序列的部分。核苷酸序列的片段可以编码杀虫蛋白的生物学活性部分,或者它可以是使用在下文公开的方法可用作杂交探针或者PCR引物的片段。编码杀虫蛋白的核苷酸序列的片段的核酸分子包含至少约50个,100个,200个,300个,400个,500个,600个,700个,800个,900个,1000个,1100个,1200个,1300个,1350个,1400个,1450个,1500个,1550个,1600个连续核苷酸,或者多达编码本文公开的杀虫蛋白的全长核苷酸序列中存在的核苷酸数目,所述核苷酸的数目取决于预期的用途。“连续的”意指彼此直接相邻的核苷酸残基。本发明的核苷酸序列的片段将编码蛋白质片段,所述蛋白质片段保留杀虫蛋白的生物学活性,并且因此保留杀虫活性。“保留活性”意指预期该片段将具有杀虫蛋白的至少约30%,至少约50%,至少约70%,80%,90%,95%或者更高的杀虫活性。在一个实施方案中,杀虫活性是杀鞘翅目的活性。在另一个实施方案中,杀虫活性是杀鳞翅目的活性。在另一个实施方案中,杀虫活性是杀线虫的活性。在另一个实施方案中,杀虫活性是杀双翅目的活性。测定杀虫活性的方法在本领域是众所周知的。见,例如Czapla和Lang(1990)J.Econ.Entomol.83:2480-2485;Andrews等人,(1988)Biochem.J.252:199-206;Marrone等人,(1985)J.of Economic Entomology 78:290-293;和美国专利号5,743,477,将它们全部完整并入本文作为参考。
编码杀虫蛋白的核苷酸序列的片段,其编码本发明的蛋白质的生物学活性部分,将编码至少约15个,25个,30个,50个,75个,100个,125个,150个,175个,200个,250个,300个,350个,400个,450个,500个,550个或者600个连续的氨基酸,或者多达在本发明的全长杀虫蛋白中存在的氨基酸总数目。在一些实施方案中,片段是相对于SEQ ID NO:2,3或者4至少约1个,2个,3个,4个,5个,6个,7个,8个,9个,10个,11个,12个,13个,14个,15个,16个,17个,18个,19个,20个,25个或者更多氨基酸的N-末端或者C-末端截短。在一些实施方案中,本文包含的片段例如通过蛋白水解或者通过在编码序列中插入终止密码子,从C-末端除去1个,2个,3个,4个,5个,6个,7个,8个,9个,10个,11个,12个,13个,14个,15个,16个,17个,18个,19个,20个,25个或者更多的氨基酸得到。
通过与SEQ ID NO:1,9,10或者11的核苷酸序列具有足够的同一性的核苷酸序列编码本发明优选的杀虫蛋白。“足够的同一性”意指氨基酸或者核苷酸序列,使用本文描述的一种比对程序,使用标准参数与参考序列相比,所述氨基酸或者核苷酸序列具有至少约60%或者65%的序列同一性,约70%或者75%的序列同一性,约80%或85%的序列同一性,约90%,91%,92%,93%,94%,95%,96%,97%,98%,99%或者更高的序列同一性。本领域技术人员将认识到通过考虑密码子的简并性、氨基酸的相似性、可读框的位置等等,可以合适地调整这些值来确定两种核苷酸序列编码的蛋白质的相应的同一性。
为确定两种氨基酸序列或者两种核酸的百分比同一性,序列被比对以用于最优的比较目的。两种序列之间的百分比同一性是序列共有的相同位置的数目的函数(即百分比同一性=相同位置的数目/位置的总数目(例如,重叠位置)x100)。在一个实施方案中,两种序列的长度相同。在另一个实施方案中,在参考序列的全长中进行比较(例如在SEQ ID NO:1,9,10或者11中的一个的全长中进行,或者在SEQ ID NO:2,3,4,5,6,7,或者8中的一个的全长中进行)。使用与下文描述的那些相似的技术,允许或不允许空位,可以确定两种序列间的百分比同一性。在计算百分比同一性中,通常计数正确匹配。
使用数学算法可以实现两种序列之间的百分比同一性的确定。用于两种序列比较的数学算法的一个非限制性实例是Karlin和Altschul在(1990)Proc.Natl.Acad.Sci.USA 87:2264中的算法,在Karlin和Altschul(1993)Proc.Natl.Acad.Sci.USA 90:5873-5877中所述算法被修改。此种算法被整合进Altschul等人(1990)J.Mol.Biol.215:403中的BLASTN和BLASTX程序中。用BLASTN程序,评分=100,字长=12可以进行BLAST核苷酸搜索来得到与本发明的杀虫样的核酸分子同源的核苷酸序列。用BLASTX程序,评分=50,字长=3可以进行BLAST蛋白质搜索来得到与本发明的杀虫蛋白分子同源的氨基酸序列。为得到用于比较目的的空位比对,可以使用如Altschul等人在(1997)Nucleic Acids Res.25:3389中描述的空位BLAST(在BLAST 2.0中)。备选地,可以使用PSI-Blast来进行迭代搜索,其检测分子间的远源关系。见Altschul等人,(1997)同上。当使用BLAST,空位BLAST,和PSI-Blast程序时,可以使用各自程序的默认参数(如BLASTX和BLASTN)。也可以通过检查人工进行比对。
用于序列比较的数学算法的另一个非限制性实例是ClustalW算法(Higgins等人,(1994)Nucleic Acids Res.22:4673-4680)。ClustalW比较序列和比对整个氨基酸或者DNA序列,并且因此可以提供关于整个氨基酸序列的序列保守性的数据。ClustalW算法被用于一些商业上可得到的DNA/氨基酸分析软件包中,如Vector NTI程序组(InvitrogenCorporation,Carlsbad,CA)的ALIGNX模块中。在用ClustalW比对氨基酸序列后,可以评估百分比氨基酸同一性。用于ClustalW比对分析的软件程序的非限制性的实例是GENEDOCTM。GENEDOCTM(Karl Nicholas)允许评估多种蛋白质之间的氨基酸(或者DNA)相似性和同一性。用于序列比较的数学算法的另一个非限制性实例是Myers和Miller(1988)CABIOS4:11-17中的算法。将这种算法整合到ALIGN程序(版本2.0)中,所述ALIGN程序是GCG Wisconsin遗传学软件包,版本10(从Accelrys,Inc.,9685 Scranton Rd.,San Diego,CA,美国得到)的一部分。当使用ALIGN程序比较氨基酸序列时,可以使用PAM120权重残基表,12的空位长度罚分和4的空位罚分。
除非指出相反,否则GAP版本10(其使用Needleman和Wunsch在(1970)J.Mol.Biol.48(3):443-453中的算法)将用于确定序列的同一性或相似性,使用以下的参数:对于核苷酸序列的%同一性和%相似性,使用50的空位权重和3的长度权重和nwsgapdna.cmp得分矩阵;对于氨基酸序列的%同一性和%相似性,使用8的空位权重和2的长度权重和BLOSUM62得分程序。也可以使用等同的程序。“等同的程序”意指任何序列比较程序,对于任一被考虑的两种序列,当与GAP版本10产生的相应的比对比较时,产生具有相同的核苷酸残基匹配和相同的百分比序列同一性的比对。
本发明也包含变体核酸分子。编码杀虫蛋白的“变体”的核苷酸序列包括这些序列,其编码本文公开的杀虫蛋白但是因为遗传密码的简并性而在保守性上不同以及这些上文讨论的足够同一的那些序列。使用公知的分子生物学技术,如下文概述的聚合酶链反应(PCR)和杂交技术可以鉴定天然存在的等位基因变体。变体核苷酸序列也包括合成来源的核苷酸序列,例如通过使用定点诱变已经产生所述核苷酸序列但是仍然编码本发明公开的杀虫蛋白,如下文讨论。本发明包含的变体蛋白质有生物学活性,就是说它们仍然具有天然蛋白预期的生物学活性,即保留杀虫活性。“保留活性”意指变体将具有至少约30%,至少约50%,至少约70%,或者至少约80%的天然蛋白的杀虫活性。测定杀虫活性的方法在本领域是众所周知的。见,例如Czapla和Lang(1990)J.Econ.Entomol.83:2480-2485;Andrews等人,(1988)Biochem.J.252:199-206;Marrone等人,1985)J.of EconomicEntomology 78:290-293;和美国专利号5,743,477,将它们全部完整并入本文作为参考。
技术人员将进一步理解可以通过本发明的核苷酸序列的突变引入改变,从而导致编码的杀虫蛋白的氨基酸序列的改变,而不改变蛋白质的生物学活性。因此,通过将一个或者多个核苷酸的取代、添加或者缺失引入到本文公开的相应的核苷酸序列中可以产生变体分离的核酸分子,以便将一个或者多个氨基酸取代、添加或者缺失引入到编码的蛋白质中。通过标准技术如定点诱变和PCR-介导的诱变可以引入突变。本发明也包含这些变体核苷酸序列。
例如,可以在一个或者多个预测的非必需的氨基酸残基上进行保守的氨基酸取代。“非必需的”氨基酸残基是可以从杀虫蛋白的野生型序列改变而不会改变生物学活性的残基,然而“必需的”氨基酸残基是生物学活性需要的。“保守的氨基酸取代”是其中氨基酸残基用具有相似侧链的氨基酸残基代替。在本领域已经确定了具有相似侧链的氨基酸残基家族。这些家族包括具有碱性侧链的氨基酸(例如赖氨酸、精氨酸、组氨酸),具有酸性侧链的氨基酸(例如天冬氨酸、谷氨酸),具有不带电的极性侧链的氨基酸(例如甘氨酸、天冬酰胺、谷氨酰胺、丝氨酸、苏氨酸、酪氨酸、半胱氨酸),具有非极性侧链的氨基酸(例如,丙氨酸、缬氨酸、亮氨酸、异亮氨酸、脯氨酸、苯丙氨酸、甲硫氨酸、色氨酸),具有β-分枝的侧链氨基酸(例如,苏氨酸、缬氨酸、异亮氨酸)和具有芳香侧链的氨基酸(例如酪氨酸、苯丙氨酸、色氨酸、组氨酸)。
可以在非保守区域进行保持功能的氨基酸取代。通常,对于保守的氨基酸残基或者位于保守基序中的氨基酸残基不进行此种取代,所述残基对蛋白质的活性是必需的。保守的并且对蛋白质的活性是必需的残基的实例包括,例如,在相似的或者相关的毒素与本发明的序列的比对中包含的全部蛋白质之间相同的残基(例如在同源蛋白质的比对中相同的残基)。保守的但可以允许保守氨基酸取代并且仍然保持活性的残基的实例包括,例如在相似的或者相关的毒素与本发明的序列的比对中包含的全部蛋白质中只具有保守取代的残基(例如在比对同源蛋白质中包含的全部蛋白质之间只具有保守取代的残基)。然而,本领域的技术人员将理解功能变体在保守残基中可以有微小的保守或非保守的改变。
备选地,通过在全部或者部分编码序列随机引入突变,如通过饱和诱变可以制备变体核苷酸序列,并且可以筛选得到的突变体赋予杀虫活性的能力来鉴定保持活性的突变体。在诱变后,可以重组表达编码的蛋白质,并且可以使用标准测定技术测定蛋白质的活性。
使用如PCR、杂交等方法可以鉴定相应的杀虫序列,此种序列具有与本发明的序列基本的同一性。见,例如,Sambrook和Russell(2001)Molecular Cloning:A Laboratory Manual.(Cold Spring HarborLaboratory Press,Cold Spring Harbor,NY)和Innis,等人,(1990)PCRProtocols:A Guide to Methods and Applications(Academic Press,NY)。
在杂交方法中,全部或者部分的杀虫核苷酸序列可以用于筛选cDNA或者基因组文库。构建这种cDNA或者基因组文库的方法在本领域是公知的并且在Sambrook和Russell,2001,前文中公开了。所称作的杂交探针可以是基因组DNA片段、cDNA片段、RNA片段或者其它的寡核苷酸,并且可以用可检测基团如32P,或者任何其他的可检测标记如其他的放射性同位素、荧光化合物、酶或者酶辅因子标记。可以通过基于本文公开的杀虫蛋白编码核苷酸序列标记合成的寡核苷酸制备用于杂交的探针。可以额外地使用基于核苷酸序列或者编码的氨基酸序列中保守的核苷酸或者氨基酸残基设计的简并引物。探针通常包含核苷酸序列区,所述序列区在严格条件下与编码本发明的杀虫蛋白或者它们的片段或者变体的核苷酸序列的至少约12个,至少约25个,至少约50个,75个,100个,125个,150个,175个,或者200个连续核苷酸杂交。制备用于杂交的探针的方法在本领域是公知的并且在Sambrook和Russell,2001,上文中公开了,将其并入本文作为参考。
例如,本文公开的完整杀虫蛋白序列,或者它的一个或者多个部分可以用作能与相应的杀虫蛋白样序列和信使RNAs特异性杂交的探针。为实现在多种条件下特异性地杂交,此种探针包括独特的并且优选地至少约10个核苷酸的长度或者至少约20个核苷酸的长度的序列。通过PCR可以将此种探针用于从选择的生物中扩增相应的杀虫序列。此种技术可以用于从期望的生物中分离其他的编码序列或者作为诊断测定来确定生物中编码序列的存在。杂交技术包括平板接种的DNA文库(噬菌斑或者菌落,见例如Sambrook等人,(1989)Molecular Cloning:A Laboratory Manual(2d ed.,Cold Spring Harbor Laboratory Press,Cold Spring Harbor,New York)的杂交筛选。
可以在严格条件下进行此类序列的杂交。“严格条件”或者“严格杂交条件”意指条件,在所述条件下探针将与它的靶序列杂交达到比与与其他的序列杂交可检测的更高程度(例如,至少是背景的2倍)。严格条件是序列依赖的并且在不同的环境中将不同。通过控制杂交和/或洗涤条件的严格性,可以鉴定出与探针100%互补的靶序列(同源探测)。备选地,可以调整严格条件来允许序列中的一定错配以便检测更低程度的相似性(异源探测)。通常,探针少于约1000个核苷酸的长度,优选地少于500个核苷酸的长度。
通常,严格条件将是那样的条件,在所述条件下盐浓度低于约1.5MNa离子,通常是在pH 7.0至8.3下约0.01至1.0M Na离子浓度(或者其他的盐),并且对于短探针(例如10至50个核苷酸)温度至少是约30℃,对于长探针(例如多于50个核苷酸)温度至少是约60℃。严格条件也可以通过添加去稳定剂如甲酰胺实现。示例性的低严格条件包括在37℃用30至35%的甲酰胺,1M NaCl,1%SDS(十二烷基硫酸钠)的缓冲液杂交,并且在50至55℃下用1X至2X SSC(20X SSC=3.0M NaCl/0.3M柠檬酸钠)洗涤。示例性的中等严格条件包括在37℃用40至45%的甲酰胺,1.0MNaCl,1%SDS杂交,并且在55至60℃用0.5X至1X SSC洗涤。示例性的高严格条件包括在37℃用50%的甲酰胺,1M NaCl,1%SDS杂交,并且在60至65℃用0.1X SSC洗涤。任选地,洗涤缓冲液可以包含约0.1%至约1%的SDS。杂交的持续时间一般少于约24小时,通常约4至约12小时。
特异性通常是杂交后洗涤的函数,关键因子是离子强度和最终洗涤溶液的温度。对于DNA-DNA杂合体,Tm可以从Meinkoth和Wahl(1984)Anal.Biochem.138:267-284的等式近似得到:Tm=81.5℃+16.6(log M)+0.41(%GC)-0.61(%form)-500/L;其中M是单价阳离子的摩尔浓度,%GC是DNA中鸟嘌呤和胞嘧啶核苷酸的百分比,%form是杂交溶液中甲酰胺的百分比,并且L是碱基对中杂合体的长度。Tm是(在确定的离子强度和pH下)50%的互补靶序列与完全匹配探针杂交的温度。对于每1%的错配,Tm降低约1℃;因此,可以调整Tm、杂交和/或洗涤条件来与期望同一性的序列杂交。例如,如果要寻找≥90%同一性的序列,可以将Tm降低10℃。一般,对于在确定的离子强度和pH下的特定序列和它的互补序列,选择的严格条件比热解链温度(Tm)低约5℃。然而,重度严格条件可以利用比热解链温度(Tm)低1,2,3或者4℃下的杂交和/或洗涤;中度严格条件可以利用比热解链温度(Tm)低6,7,8,9或者10℃下的杂交和/或洗涤;低严格条件可以利用比热解链温度(Tm)低11,12,13,14,15或者20℃下的杂交和/或洗涤。使用该等式,杂交和洗涤组合物,以及期望的Tm,技术人员将理解杂交严格性和/或洗涤溶液的变化是固有描述的。如果错配的期望程度导致少于45℃(水溶液)或者32℃(甲酰胺溶液)的Tm,优选地增加SSC的浓度以便可以使用更高的温度。在Tijssen(1993)Laboratory Techniques in Biochemistry and MolecularBiology-Hybridization with Nucleic Acid Probes,Part I,Chapter 2(Elsevier,New York);和Ausubel等人,eds.(1995)Current Protocols inMolecular Biology,Chapter 2(Greene Publishing和Wiley-Interscience,New York).See Sambrook等人,(1989)Molecular Cloning:A LaboratoryManual(2d ed.,Cold Spring Harbor Laboratory Press,Cold SpringHarbor,New York)中发现核酸杂交的广泛指导。
分离的蛋白质和它们的变体以及片段
在本发明中也包含杀虫蛋白。“杀虫蛋白”意指具有在SEQ ID NO:2,3或者4中给出的氨基酸序列的蛋白质。其片段、生物学活性部分和变体(如SEQ ID NO:5,6,7和8)也被提供并且可用于实施本发明的方法。“分离的蛋白质”用于指不再处于它的天然环境中的蛋白质,例如在体外或者在重组的细菌或者植物宿主细胞中。
“片段”或者“生物学活性部分”包括多肽片段,其包含与SEQ ID NO:2,3或者4中给出的氨基酸序列具有足够的同一性并且显示杀虫活性的氨基酸序列。杀虫蛋白的生物学活性部分可以是例如10个,25个,50个,100个,150个,200个,250个或者更多个氨基酸长度的多肽。可以通过重组技术制备此类生物学活性部分并且评估其杀虫活性。测定杀虫活性的方法在本领域是众所周知的。见,例如Czapla和Lang(1990)J.Econ.Entomol.83:2480-2485;Andrews等人,(1988)Biochem.J.252:199-206;Marrone等人,(1985)J.of Economic Entomology 78:290-293;和美国专利号5,743,477,它们全部完整并入本文作为参考。
此处使用的片段包含SEQ ID NO:2,3或者4中的至少8个连续的氨基酸。然而,本发明包含其他的片段,如蛋白质中多于约10个,20个,30个,50个,100个,150个,200个,250个,300个,350个,400个,450个,500个,550个或者更多氨基酸的任一片段。
在一些实施方案中,片段是相对于SEQ ID NO:2,3或者4至少约1个,2个,3个,4个,5个,6个,7个,8个,9个,10个,11个,12个,13个,14个,15个,16个,17个,18个,19个,20个,25个或者更多氨基酸的N-末端或者C-末端截短(例如SEQ ID NO:7或者8)。在一些实施方案中,本文包含的片段例如通过蛋白水解或者通过在编码序列中插入终止密码子除去C-末端1个,2个,3个,4个,5个,6个,7个,8个,9个,10个,11个,12个,13个,14个,15个,16个,17个,18个,19个,20个,25个或者更多氨基酸得到。
“变体”意指蛋白质或者多肽,其具有与SEQ ID NO:2,3,4,5,6,7或者8的氨基酸序列至少约60%,65%,约70%,75%,约80%,85%,约90%,91%,92%,93%,94%,95%,96%,97%,98%或者99%同一性的氨基酸序列。变体也包括核酸分子编码的多肽,所述核酸分子在严格条件下与SEQID NO:1,9,10或者11的核酸分子或者它们的互补序列杂交。变体包括由于诱变导致氨基酸序列不同的多肽。本发明包含的变体蛋白质是有生物学活性的,就是说它们持续具有天然蛋白期望的生物学活性,即保留杀虫活性。在一些实施方案中,变体具有改进的活性。测定杀虫活性的方法在本领域是众所周知的。见,例如Czapla和Lang(1990)J.Econ.Entomol.83:2480-2485;Andrews等人,(1988)Biochem.J.252:199-206;Marrone等人,1985)J.of Economic Entomology 78:290-293;和美国专利号5,743,477,它们全部完整并入本文作为参考。
在一些实施方案中,变体蛋白质或者多肽在氨基酸位置上包含一个或者多个取代,所述氨基酸位置选自相对于SEQ ID NO:2的307位,315位,317位,349位,351位,353位,355位,395位,399位,407位,419位,435位,443位,465位,467位,483位,487位,495位,497位,499位,509位和513位。在特定的实施方案中,取代是在所引用的位置上丙氨酸取代天然氨基酸。也包含编码变体蛋白质或者多肽的核苷酸序列。
细菌基因,如本发明的axmi基因,经常在接近可读框的起始处具有多个甲硫氨酸起始密码子。通常,在一个或者多个这些起始密码子处的翻译起始将导致功能蛋白质的产生。这些起始密码子可以包括ATG密码子。例如,SEQ ID NO:3和4代表了SEQ ID NO:1编码的备选起始位点蛋白质。然而,细菌如芽孢杆菌属也将密码子GTG识别为起始密码子,并且在GTG密码子处起始翻译的蛋白质在第一个氨基酸上含有甲硫氨酸。很少的情况下,细菌系统中的翻译可以在TTG密码子处起始,尽管在这种情况下TTG编码甲硫氨酸。此外,通常不确定先验(priori),其中这些密码子在细菌中天然地被使用。因此,理解使用一种备选的甲硫氨酸密码子也可以导致杀虫蛋白的产生。这些杀虫蛋白被包含在本发明中并且可用于本发明的方法中。将理解,当在植物中表达时,为合适的翻译将需要把备选的起始密码子改变成ATG。
也包含针对本发明多肽的抗体,或者它们的变体或者片段。产生抗体的方法在本领域是众所周知的(见,例如Harlow和Lane(1988)Antibodies:A Laboratory Manual,Cold Spring Harbor Laboratory,Cold SpringHarbor,NY;美国专利号4,196,265)。
改变的或者改进的变体
认识到通过多种方法可以改变杀虫蛋白的DNA序列,并且这些改变可以导致DNA序列编码与本发明的杀虫蛋白的氨基酸序列不同的蛋白质。可以通过包括SEQ ID NO:2,3或者4的一个或者多个氨基酸的氨基酸取代、缺失、截短和插入的多种方式改变这种蛋白质,包括多达约2,约3,约4,约5,约6,约7,约8,约9,约10,约15,约20,约25,约30,约35,约40,约45,约50,约55,约60,约65,约70,约75,约80,约85,约90,约100,约105,约110,约115,约120,约125,约130,约135,约140,约145,约150,约155或者更多的氨基酸取代、缺失或者插入。此类操作的方法在本领域是公知的。例如,可以通过DNA中的突变制备杀虫蛋白的氨基酸序列的变体。这也可以通过诱变的几种形式中的一种和/或定向进化完成。在一些方面,在氨基酸序列上编码的改变将基本上不影响蛋白质的功能。这种变体将具有预期的杀虫活性。然而,理解通过在本发明的组合物上使用这种技术可以改进杀虫蛋白赋予杀虫活性的能力。例如,可以在宿主细胞中表达杀虫蛋白,所述宿主细胞在DNA复制时显示高比率的碱基错误掺入,如XL-1Red(Stratagene,La Jolla,CA)。在此种株系中增殖后,可以分离DNA(例如通过制备质粒DNA,或者通过PCR扩增并且将得到的PCR片段克隆到载体中),在非诱变的株系中培养杀虫蛋白突变,并且例如通过进行测试杀虫活性的测定鉴定具有杀虫活性的突变基因。一般,蛋白质被混合并用于喂食测定。见,例如Marrone等人,(1985)J.of EconomicEntomology 78:290-293。此种测定可以包括植物与一种或者多种害虫接触并且确定植物存活和/或引起害虫死亡的能力。在Schnepf等人,(1998)Microbiol.Mol.Biol.Rev.62:775-806中发现了突变导致增加的毒性的实例。
备选地,可以在许多蛋白质的蛋白质序列的氨基末端或者羧基末端进行改变而基本上不会影响活性。这可以包括通过现代分子方法如PCR引入的插入、缺失或者改变,所述PCR包括PCR扩增,由于在所述PCR扩增中在使用的寡核苷酸中包括氨基酸编码序列,所述PCR扩增改变或者延伸蛋白质编码序列。备选地,添加的蛋白质序列可以包括完整的蛋白质编码序列,如在本领域常用的以产生蛋白质融合物的那些。这种融合蛋白常用于(1)增加目的蛋白质的表达(2)引入方便蛋白质的纯化、蛋白质的检测或者本领域已知的其他实验用途的结合结构域、酶促活性或者表位(3)蛋白质向亚细胞细胞器中的靶向分泌或者翻译,所述细胞器如革兰氏阴性细菌的周质空间,或者真核细胞的内质网,后者常导致蛋白质的糖基化。
本发明的变体核苷酸和氨基酸序列也包含从诱变和重组基因方法如DNA改组得到的序列。通过这种方法,一个或者多个不同的杀虫蛋白编码区可用于产生具有期望性质的新的杀虫蛋白。以此种方式,从相关序列多核苷酸群体中产生重组多核苷酸文库,所述相关序列多核苷酸包含具有基本上序列同一性的序列区域并且可以在体外和体内被同源重组。例如,使用这种方法,可以在本发明的杀虫基因和其他已知的杀虫基因之间改组编码目的结构域的序列基序来得到新基因,所述新基因编码具有改进的目的性质如增加的杀虫活性的蛋白质。本领域已知这种DNA改组策略。见,例如Stemmer(1994)Proc.Natl.Acad.Sci.USA 91:10747-10751;Stemmer(1994)Nature 370:389-391;Crameri等人,(1997)Nature Biotech.15:436-438;Moore等人,(1997)J.Mol.Biol.272:336-347;Zhang等人,(1997)Proc.Natl.Acad.Sci.USA 94:4504-4509;Crameri等人,(1998)Nature 391:288-291;和美国专利号5,605,793及5,837,458。
结构域交换或者改组是用于产生改变的杀虫蛋白的另一个机制。可以在杀虫蛋白之间交换结构域来得到具有改进的杀虫活性或者靶标谱的杂合或者嵌合毒素。产生重组蛋白质和测试它们的杀虫活性的方法在本领域是众所周知的(见,例如,Naimov等人,(2001)Appl.Environ.Microbiol.67:5328-5330;de Maagd等人,(1996)Appl.Environ.Microbiol.62:1537-1543;Ge等人,(1991)J.Biol.Chem.266:17954-17958;Schnepf等人,(1990)J.Biol.Chem.265:20923-20930;Rang等人,91999)Appl.Environ.Microbiol.65:2918-2925)。
载体
可以在用于目的植物中表达的表达盒中提供本发明的杀虫序列。“植物表达盒”意指能在植物细胞中导致从可读框中表达蛋白质的DNA构建体。通常这些包含增强子和编码序列。通常,此类构建体也将包含3’非翻译区。这种构建体也包含方便肽的共翻译或者翻译后转运至某些细胞内结构如叶绿体(或其他质体),内质网或高尔基体的“信号序列”或者“前导序列”。
“信号序列”意指已知或者怀疑导致共翻译或者翻译后肽的跨细胞膜转运的序列。在真核细胞中,这种信号序列通常涉及向高尔基体中的分泌,一些导致糖基化。细菌的杀虫毒素通常合成为前毒素,所述前毒素在靶害虫的肠中被蛋白水解激活(Chang(1987)Methods Enzymol.153:507-516)。在本发明的一些实施方案中,信号序列位于天然序列中或者可以来源于本发明的序列。“前导序列”意指任何序列,当其被翻译时,导致足够引发肽链的共同翻译转运至亚细胞细胞器的氨基酸序列。因此,这包括通过进入内质网,进入液泡,质体包括叶绿体,线粒体等等的前导序列靶向转运和/或糖基化。
“植物转化载体”意指DNA分子,其对于植物细胞的有效转化是必需的。这种分子可以由一个或者多个植物表达盒组成,并且可以被组装成超过一种“载体”DNA分子。例如,二元载体是植物转化载体,其利用两种非连续的DNA载体来编码植物细胞转化需要的全部顺式和反式-作用功能(Hellens和Mullineaux(2000)Trends in Plant Science 5:446-451)。“载体”指的是为在不同的宿主细胞之间转移设计的核酸构建体。“表达载体”指的具有在外来细胞中掺入、整合或者表达异源DNA序列或者片段的能力的载体。该盒将包括与本发明的序列有效连接的5′和3′调节序列。“有效连接”意指启动子和第二序列间的功能连接,其中启动子序列起始和介导相应于第二序列的DNA序列的转录。通常,有效连接指的是被连接的核酸序列是连续的,并且必要时连接两种蛋白质编码区,是连续并且在相同的可读框中。另外,所述盒可以额外包含待共转化至生物中的至少一个额外的基因。备选地,可以在多种表达盒上提供额外的基因。
“启动子”指的是发挥指导下游编码序列转录的功能的核酸序列。启动子以及其他的转录以及翻译调节核酸序列(也称作“控制序列”)一起对于目的DNA序列的表达是必需的。
这种表达盒提供了使杀虫序列的插入处于调节区域的转录调节下的多种限制酶切位点。
表达盒将包括5′至3′方向的转录、转录和翻译起始区(即启动子)、本发明的DNA序列、在植物中有功能的翻译和转录终止区(即终止区)。对于植物宿主和/或本发明的DNA序列,启动子可以是天然的或者类似的、外源的或者异源的。此外,启动子可以是天然序列或者备选地是合成序列。在启动子对于植物宿主是“天然的”或者“同源的”情况下,预期在引入启动子的天然植物中发现该启动子。在对于本发明的DNA序列,启动子是“外源的”或者“异源的”情况下,预期对于本发明的有效连接的DNA序列,启动子不是天然或者天然存在的启动子。
终止区可以与转录起始区是天然的、可以与有效连接的目的DNA序列是天然的、可以与植物宿主是天然的、或者可以从其他的来源得到(即对于启动子、目的DNA序列、植物宿主或者它们的任何组合是外源的或者异源的)。方便的终止区可从根癌农杆菌的Ti-质粒如章鱼碱合酶和胭脂氨酸合酶终止区得到。也见Guerineau等人,(1991)Mol.Gen.Genet.262:141-144;Proudfoot(1991)Cell 64:671-674;Sanfacon等人,(1991)Genes Dev.5:141-149;Mogen等人,(1990)Plant Cell 2:1261-1272;Munroe等人,(1990)Gene 91:151-158;Ballas等人,(1989)Nucleic Acids Res.17:7891-7903;和Joshi等人,(1987)Nucleic Acid Res.15:9627-9639。
适当时,基因可以被优化以增加在转化的宿主细胞中的表达。就是说,可以使用宿主细胞优选的密码子合成基因来提高表达,或者以宿主优选的密码子选择频率使用密码子合成基因。通常,基因的GC含量将增加。对于宿主优选的密码子选择的讨论,见,例如Campbell和Gowri(1990)PlantPhysiol.92:1-11。合成植物优选的基因的方法在本领域是可得到的。见,例如,美国专利号5,380,831,和5,436,391,和Murray等人(1989)NucleicAcids Res.17:477-498,将其并入本文作为参考。
在一个实施方案中,将杀虫蛋白靶向叶绿体中表达。在这种方式中,其中杀虫蛋白不是直接插入到叶绿体中,表达盒将另外含有编码将杀虫蛋白导向叶绿体中的转运肽的核酸。这种转运肽在本领域是已知的。见,例如Von Heijne等人,(1991)Plant Mol.Biol.Rep.9:104-126;Clark等人,(1989)J.Biol.Chem.264:17544-17550;Della-Cioppa等人,(1987)PlantPhysiol.84:965-968;Romer等人,(1993)Biochem.Biophys.Res.Commun.196:1414-1421;和Shah等人,(1986)Science 233:478-481。
为在叶绿体中表达可以优化靶向叶绿体的杀虫基因以解决在植物细胞核和这种细胞器之间密码子选择的不同。这样,可以使用叶绿体优选的密码子合成目的核酸。见,例如,美国专利号5,380,831,其并入本文作为参考。
植物转化
本发明的方法涉及将核苷酸构建体引入到植物中。“引入”意指对植物以这样的方式呈递核苷酸构建体,使得构建体进入植物细胞的内部。本发明的方法不需要将核苷酸构建体引入植物的特定的方法,只要核苷酸构建体进入至少一个植物细胞的内部。将核苷酸构建体引入植物的方法在本领域是已知的,其包括但不限于,稳定转化方法、瞬时转化方法、和病毒介导的方法。
“植物”意指整株植物、植物器官(如,叶、茎、根等)、种子、植物细胞、繁殖体、胚及其后代。植物细胞可以是分化或者未分化的(如愈伤组织、悬浮培养细胞、原生质体、叶细胞、根细胞、韧皮部细胞、花粉)。
“转基因植物”或“转化植物”或“稳定转化的”植物或者细胞或者组织,是指已经将外源的核酸序列或DNA片段掺入或者整合到植物细胞中的植物。这些核酸序列包括外源的,或者在未转化的植物细胞中不存在的那些,以及可能是内源的,或者在未转化的植物细胞中存在的那些。“异源的”通常指的是核酸序列,其对于它们存在的细胞或者天然基因组的部分不是内源的,并且已经通过感染、转染、显微注射、电穿孔、显微投射等等被添加到细胞中。
本发明的转基因植物表达本文公开的一种或者多种杀虫序列。在多种实施方案中,转基因植物进一步包含用于昆虫抗性的一种或者多种额外的基因,例如用于控制鞘翅目,鳞翅目,异翅目或线虫害虫的一种或者多种额外的基因。本领域的技术人员将理解转基因植物可以包含赋予目的农学性状的任何基因。
植物细胞的转化可以通过本领域已知的几种技术中的一种完成。可以修饰本发明的杀虫基因来得到或者增强在植物细胞中的表达。通常表达此种蛋白质的构建体将含有驱动基因转录的启动子以及允许转录终止和多聚腺苷化作用的3’非翻译区。这种构建体的组织在本领域是众所周知的。在一些情况下,改造基因是有用的,以便得到的肽是分泌的或者被靶向至植物细胞中。例如,可以改造基因使其含有信号肽来促进肽转移到内质网中。改造植物表达盒使其含有内含子以便表达需要内含子的mRNA加工也是优选的。
通常这种“植物转化盒”将被插入到“植物表达载体”中。这种植物转化载体可以包含实现植物转化需要的一种或者多种DNA载体。例如,在本领域使用包含超过一种连续的DNA片段的植物转化载体是常规的实践。在本领域这些载体通常被称作“二元载体”。二元载体以及具有辅助质粒的载体通常被用于农杆菌介导的转化,其中实现有效转化需要的DNA区段的大小和复杂性是相当大的,并且将功能分开到不同的DNA分子上是有利的。二元载体通常含有包含T-DNA转移需要的顺式作用序列(如左边界和右边界)的质粒载体,被改造的以便能在植物细胞中表达的选择标记,和“目的基因”(被改造的能在植物细胞中表达的基因,希望从所述植物细胞产生转基因植物)。在这种质粒载体上也存在细菌复制需要的序列。顺式作用序列以允许有效地转移进植物细胞并在其中表达的方式排列。例如,选择标记基因和杀虫基因位于左边界和右边界之间。通常第二质粒载体含有介导T-DNA从农杆菌转移至植物细胞的反式作用因子。这种质粒通常含有允许农杆菌感染植物细胞的毒性功能(Vir基因)、和通过在边界序列的切割介导的DNA转移以及vir介导的DNA转移,如在本领域是理解的(Hellens和Mullineaux(2000)Trends in Plant Science 5:446-451)。几种类型的农杆菌菌株(例如LBA4404、GV3101、EHA101、EHA105,等等)可用于植物转化。第二质粒载体对于通过其他方法如显微投射、显微注射、电穿孔、聚乙二醇等转化植物不是必需的。
通常,植物转化方法涉及将异源的DNA转移至靶植物细胞中(如未成熟或成熟的胚、悬浮培养物、未分化的愈伤组织、原生质体等),随后通过应用合适选择的最大阈值水平(取决于选择标记基因)来从一组未转化的细胞团中回收转化的植物细胞。外植体通常被转移到新鲜供应的相同培养基中并且进行常规培养。随后,转化细胞在被接种到补充了最大阈值水平的选择试剂的再生培养基后分化成苗。然后,将苗转移到选择性生根培养基来回收生根的苗或者小植株。然后转基因小植株长成成熟的植物并且产生能育的种子(例如Hiei等人,(1994)The Plant Journal 6:271-282;Ishida等人,(1996)Nature Biotechnology 14:745-750)。外植体通常被转移到新鲜供应的相同培养基中并且进行常规培养。在Ayres和Park(1994)CriticalReviews in Plant Science 13:219-239和Bommineni和Jauhar(1997)Maydica 42:107-120中发现了产生转基因植物的技术和方法的一般描述。因为转化的材料含有许多细胞;转化和未转化的细胞存在于任一块受试愈伤组织或组织或细胞组中。杀死未转化细胞并且允许转化细胞增殖的能力导致转化的植物培养物。通常,除去未转化细胞的能力是对转化的植物细胞的快速回收和转基因植物的成功产生的限制。
转化方案以及将核苷酸序列引入到植物中的方案可能不同,所述方案取决于转化靶向的植物或者植物细胞的类型,即单子叶植物或双子叶植物。转基因植物的产生可以通过几种方法中的一种进行,所述方法包括但不限于显微注射、电穿孔、直接基因转移、通过农杆菌将异源DNA引入植物细胞中(农杆菌介导的转化)、用附着到颗粒上的异源外来DNA轰击植物细胞、射弹颗粒加速器、气溶胶束转化(美国公开的申请号20010026941;美国专利号4,945,050;国际公开号WO 91/00915;美国公开的申请号2002015066),Lec1转化以及用于转移DNA的多种其他的非颗粒直接介导的方法。
叶绿体的转化方法在本领域是已知的。见,例如Svab等人,(1990)Proc.Natl.Acad.Sci.USA 87:8526-8530;Svab和Maliga(1993)Proc.Natl.Acad.Sci.USA 90:913-917;Svab和Maliga(1993)EMBO J.12:601-606。该方法依赖于含有选择标记的DNA的颗粒枪递送和通过同源重组将DNA靶向质体基因组。此外,质体转化可以通过核编码的和质体定向的RNA聚合酶的组织优选的表达导致的沉默质体携带的的转基因的反式激活实现。在McBride等人,(1994)Proc.Natl.Acad.Sci.USA 91:7301-7305中已经报告了这种系统。
在异源外来DNA整合进入植物细胞后,可以在培养基中应用最大阈值水平的合适选择来杀死未转化的细胞并且通过定期转移至新鲜培养基中分离和增殖在该选择处理中存活的推定的转化细胞。通过连续的传代和用适合的选择攻击,鉴定和增殖了用质粒载体转化的细胞。然后分子和生物化学方法可以用于证实被整合的异源目的基因在转基因植物的基因组中的存在。
已经被转化的细胞可以根据常规方式长成植物。见,例如McCormick等人,(1986)Plant Cell Reports 5:81-84。然后这些植物可以生长,并且用相同转化的株系或者不同的株系对其传粉,得到的杂种具有所鉴定的期望表型特征的组成型表达。可以生长两代或者多代来确保期望表型特征的表达是稳定维持的并且是遗传的,然后收获种子来确保已经实现期望表型特征的表达。以这种方式,本发明提供转化的种子(也被称作“转基因种子”),其具有本发明的核苷酸构建体,例如被稳定掺入到它们的基因组中的本发明的表达盒。
植物转化的评估
将异源外来DNA引入到植物细胞中后,通过多种方法如核酸、与整合基因相关的蛋白质和代谢物的分析证实异源基因在植物基因组中的转化或者整合。
PCR分析是在移植到土壤之前的较早的阶段筛选转化细胞、组织或者苗中掺入基因的存在的快速方法(Sambrook和Russell(2001)MolecularCloning:A Laboratory Manual.Cold Spring Harbor Laboratory Press,Cold Spring Harbor,NY)。使用目的基因或者农杆菌载体背景等特异的寡核苷酸引物进行PCR。
通过基因组DNA的DNA印迹分析可以证实植物转化(Sambrook和Russell,2001,上文)。通常,从转化体中提取总DNA,用合适的限制性酶消化,在琼脂糖凝胶中分级分离并转移到硝酸纤维素或尼龙膜上。然后,根据标准技术(Sambrook和Russell,2001,上文)例如用放射性标记的32P靶DNA片段探测膜或者“印迹”来证实引入的基因整合到植物基因组中。
在RNA印迹分析中,根据本领域常规使用的标准方法(Sambrook和Russell,2001,上文)从转化体的特定组织中分离RNA,在甲醛琼脂糖凝胶中分级分离,并且印迹到尼龙滤膜上。然后使用本领域已知的方法(Sambrook和Russell,2001,上文),通过滤膜与来源于杀虫基因的放射性探针的杂交测试杀虫基因编码的RNA的表达。
可以使用与杀虫蛋白上存在的一个或者多个表位结合的抗体,通过标准方法(Sambrook和Russell,2001,上文)对转基因植物进行蛋白质印迹、生化测定等等来证实杀虫基因编码的蛋白质的存在。
植物中的杀虫活性
在本发明的另一方面,可以产生表达具有杀虫活性的杀虫蛋白的转基因植物。上文描述的方法例如可以用于产生转基因植物,然而其中转基因植物细胞产生的方式对于本发明不是关键的。按照实验者的自行决定可以使用本领域已知或者描述的方法,如农杆菌介导的转化、生物射弹转化和非颗粒介导的方法。通过本领域描述的常用方法,例如通过愈伤组织的转化、转化的愈伤组织的选择以及从此种转基因愈伤组织中再生可育植物可以分离表达杀虫蛋白的植物。在这种方法中,可以使用任何基因作为选择标记,只要它在植物细胞中的表达赋予鉴定或者选择转化细胞的能力。
已经开发了在植物细胞中使用的很多标记,如对氯霉素,氨基糖苷G418,潮霉素等等的抗性。编码叶绿体代谢中涉及的产物的其他基因也可以用作选择标记。例如,提供对植物除草剂如草甘膦,溴苯腈,或咪唑啉酮等抗性的基因可以发现特定的用途。已经报告了此类基因(Stalker等人,(1985)J.Biol.Chem.263:6310-6314(溴苯腈抗性腈水解酶基因);和Sathasivan等人,(1990)Nucl.Acids Res.18:2188(AHAS咪唑啉酮抗性基因)。此外,本文公开的基因了用作评估细菌或者植物细胞的转化的标记。在植物、植物器官(如叶、茎、根等)、种子、植物细胞、繁殖体、胚或其后代中检测转基因存在的方法在本领域是众所周知的。在一个实施方案中,通过测试杀虫活性检测转基因的存在。
可测试表达杀虫蛋白的可育植物的杀虫活性,并且所述植物显示为进一步育种选择的最优活性。测定杀虫活性的方法在本领域是可得到的。通常,混合蛋白质并且用于摄食测定。见,例如Marrone等人,(1985)J.ofEconomic Entomology 78:290-293。
本发明可以用于任何植物种类的转化,其包括但不限于单子叶植物和双子叶植物。目的植物的实例包括但不限于玉米、高粱、小麦、向日葵、番茄、十字花科植物、辣椒、马铃薯、棉花、稻、大豆、甜菜、甘蔗、烟草、大麦和油菜、芸苔(Brassica sp.)、紫花苜蓿、黑麦、粟、红花、花生、红薯、木薯、咖啡、椰子、菠萝、柑桔树、可可、茶、香蕉、鳄梨、无花果、番石榴、芒果、橄榄、番木瓜、腰果、澳洲坚果、杏仁、燕麦、蔬菜、观赏植物和针叶树。
蔬菜包括但不限于西红柿、莴苣、四季豆、利马豆、豌豆和Curcumis属成员,如黄瓜、哈密瓜、甜瓜。观赏植物包括但不限于杜鹃花、绣球花、木槿、玫瑰、郁金香、水仙花、牵牛花、康乃馨、一品红和菊花。优选地,本发明的植物是农作物(例如玉米、高粱、小麦、向日葵、番茄、十字花科植物、辣椒、马铃薯、棉花、稻、大豆、甜菜、甘蔗、烟草、大麦、油菜等等)。
在杀虫控制中的用途
使用包含本发明的核苷酸序列或者其变体的菌株作为杀虫剂来控制杀虫或者来改造其他的生物的一般方法在本领域是已知的。见,例如美国专利号5,039,523和EP 0480762A2。
含有本发明的核苷酸序列或者其变体的芽孢杆菌菌株,或者已经被基因改造而含有杀虫基因和蛋白质的微生物可以用于保护农作物和产品免于害虫的损害。在本发明的一个方面,当产生毒素(杀虫剂)生物的完整的,即未裂解的细胞被应用于靶害虫的环境中时,用延长所述细胞中产生的毒素的活性的试剂处理该细胞。
备选地,通过将杀虫基因引入到细胞宿主中产生杀虫剂。杀虫基因的表达直接或者间接导致杀虫剂在细胞内的产生和维持。在本发明的一个方面,当将这些细胞应用于靶害虫的环境中时,在延长所述细胞中产生的毒素活性的条件下处理该细胞。得到的产品保留毒素的毒性。然后可以根据常规技术配制这些天然的经封装的杀虫剂用于应用到容纳靶害虫的环境中,如土壤,水和植物的叶子。见,例如EPA 0192319,和其中引用的参考文献。备选地,可以配制表达本发明基因的细胞以便允许得到的物质作为杀虫剂应用。
杀虫组合物
通常以组合物的形式应用本发明的活性成分并且可以与其他的化合物一起同时或者连续地应用于农作物区域或者待处理的植物中。这些化合物可以是化肥、除草剂、抗冻剂、表面活性剂、去垢剂、杀虫肥皂、休眠喷洒油、聚合物、和/或缓释或可生物降解的载体制剂,在所述制剂的单次应用后允许靶区域的长期给药。它们也可以是选择性除草剂、化学杀虫剂、杀病毒剂、杀微生物剂、杀变形虫剂、杀虫剂、杀真菌剂、杀细菌剂、杀线虫剂、杀软体动物剂或者这些制剂的一些的混合物,如果期望,与其他的农业上可接受的载体、制剂领域通常使用的表面活性剂或应用促进佐剂一起使用。适合的载体和佐剂可以是固体或者液体并且对应于制剂技术中通常使用的物质,如天然或者可再生的矿物质、溶剂、分散剂、润湿剂、增粘剂、粘合剂或肥料。同样,可以将制剂制备成可食用的“诱饵”或者做成害虫的“陷阱”来允许被杀虫制剂的靶害虫取食或者摄食。
应用本发明的活性成分或者本发明的农用化学品组合物的方法包括叶应用,种子包衣和土壤应用,所述农用化学品组合物含有本发明的细菌菌株产生的至少一种杀虫蛋白。应用的次数和应用的速率取决于相应的害虫侵袭的强度。
可以将组合物制备成粉剂、粉尘剂、弹丸剂、粒剂、喷雾剂、乳剂、胶体剂、溶液剂剂等等,并且可以通过常规方法制备,所述方法如对包含多肽的细胞培养物的干燥、冷冻干燥、匀浆、提取、过滤、离心、沉降、或浓缩。在含有至少一种此类杀虫多肽的全部这种组合物中,多肽可以以按重量计约1%至约99%的浓度存在。
通过本发明的方法,可以在给定区域内杀死鳞翅目、双翅目、异翅目、线虫或鞘翅目害虫或者减少这些害虫的数目,或者可以预防性地应用到环境领域来防止敏感害虫的侵袭。优选地,害虫摄食或者接触杀虫有效量的多肽。“杀虫有效量”意指能引起至少一种害虫死亡或者能显著地减慢害虫的生长、摄食或正常的生理发育的杀虫剂的量。这种量将取决于这些因素而变,所述因素为例如待控制的特定的靶害虫、特定的环境、位置、植物、农作物、或待处理的农业位置、环境条件、以及杀虫有效多肽组合物应用的方法、比率、浓度、稳定性和数量。制剂可以根据气候条件,环境考虑,和/或应用的频率和/或害虫侵袭的严重性而不同。
可以通过用期望的农业上可接受的载体配制细菌细胞、晶体和/或孢子悬浮液或者分离的蛋白质组分来制备所描述的杀虫组合物。可以在施用之前以一种适合的方式配制组合物,所述方式如冻干、冷冻干燥、干燥、或在含水的载体、介质或合适的稀释剂,如生理盐水或其他缓冲液中。经配制的组合物可以是粉尘或者颗粒物质,或者油(植物油或者矿物油)中的混悬剂,或者水或者油/水乳剂,或者可湿性粉剂,或者与适合农业应用的任何其他的载体物质组合的形式。适合的农业载体可以是固体的或者液体的,并且在本领域是已知的。术语“农业上可接受的载体”覆盖在杀虫制剂技术中通常使用的全部佐剂、惰性组分、分散剂、表面活性剂、增粘剂、粘合剂等;这些对于杀虫制剂领域的技术人员是众所周知的。使用常规的制剂技术通过多种方法可以将制剂与一种或者多种固体或者液体佐剂混合并且制备,所述方法为例如通过将杀虫剂组合物和适合的佐剂均匀混合,掺和和/或研磨。在美国专利号6,468,523中描述了适合的制剂和应用方法,将所述专利并入本文作为参考。
也可以用一种或者多种化学组合物,包括一种或者多种除草剂,杀虫剂或杀真菌剂处理植物。示例性的化学组合物包括:水果/蔬菜除草剂:莠去津(Atrazine)、除草定(Bromacil)、敌草隆(Diuron)、草甘膦(Glyphosate)、利谷隆(Linuron)、嗪草酮(Metribuzin)、西玛津(Simazine)、氟乐灵(Trifluralin)、吡氟禾草灵(Fluazifop)、草铵膦(Glufosinate)、氯吡嘧磺隆(Halosulfuron Gowan)、百草枯(Paraquat)、炔草胺(Propyzamide)、稀禾定(Sethoxydim)、氟丙嘧草酯(Butafenacil)、氯吡嘧磺隆(Halosulfuron)、Indaziflam;水果/蔬菜杀虫剂:涕灭威(Aldicarb)、苏云金芽孢杆菌(Bacillusthuriengiensis)、甲萘威(Carbaryl)、克百威(Carbofuran)、毒死蜱(Chlorpyrifos)、氯氰菊酯(Cypermethrin)、溴氰菊酯(deltamethrin)、地亚农(Diazinon)、马拉硫磷(Malathion)、阿维菌素(Abamectin)、氟氯氰菊酯/β-氟氯氰菊酯(Cyfluthrin/Beta-Cyfluthrin)、顺式氰戊菊酯(Esfenvalerate)、高三氟氯氰菊酯(Lambda-cyhalothrin)、灭螨醌(Acequinocyl)、联苯肼酯(Bifenazate)、甲氧虫酰肼(Methoxyfenozide)、双苯氟脲(Novaluron)、环虫酰肼(Chromafenozide)、噻虫啉(Thiacloprid)、呋虫胺(Dinotefuran)、嘧螨酯(fluacrypyrim)、唑虫酰胺(Tolfenpyrad)、可尼丁(Clothianidin)、螺螨酯(spirodiclofen)、γ-氯氟氰菊酯(gama-cyhalothrin)、螺甲螨酯(spiromesifen)、艾克敌(spinosad)、氯虫苯甲酰胺(Rynaxypyr)、溴氰虫酰胺(Cyazypyr)、乙基多杀菌素(Spinoteram)、杀铃脲(Triflumuron)、螺虫乙酯(Spirotetramat)、吡虫啉(Imidacloprid)、氟虫双酰胺(Flubendiamide)、硫双威(Thiodicarb)、氰氟虫腙(Metaflumizone)、氟啶虫胺腈(Sulfoxaflor)、丁氟螨酯(Cyflumetofen)、Cyanopyrafen、吡虫啉(Imidacloprid)、可尼丁(Clothianidin)、噻虫嗪(Thiamethoxam)、Spinotoram、硫双威(Thiodicarb)、氟啶虫酰胺(Flonicamid)、甲硫威(Methiocarb)、氨基阿维菌素苯甲酸盐(Emamectin-benzoate)、
Figure BDA0000139763530000271
二唑虫(Indoxacarb)、Fozthiazate、苯线磷(Fenamiphos)、硫线磷(Cadusaphos)、吡丙醚(Pyriproxifen)、苯丁锡(Fenbutatin-oxid)、噻螨酮(Hexthiazox)、灭多威(Methomyl)、4-[[(6-氯吡啶-3-基)甲基](2,2-二氟乙基)氨基]呋喃-2(5H)-酮;水果/蔬菜杀真菌剂:多菌灵(Carbendazim)、百菌清(Chlorothalonil)、EBDC、硫、甲基硫菌灵(Tbiophanate-methyl)、嘧菌酯(Azoxystrobin)、霜脲氰(Cymoxanil)、氟啶胺(Fluazinam)、福賽得(Fosetyl)、异菌脲(Iprodione)、醚菌酯(Kresoxim-methyl)、甲霜灵/精甲霜灵(Metalaxyl/mefenoxam)、肟菌酯(Trifloxystrobin)、噻唑菌胺(Ethaboxam)、丙森锌(Iprovalicarb)、肟菌酯(Trifloxystrobin)、环酰菌胺(Fenhexamid)、延胡索酸
Figure BDA0000139763530000272
咪唑(Oxpoconazolefumarate)、氰霜唑(Cyazofamid)、咪唑菌酮(Fenamidone)、苯酰菌胺(Zoxamide)、啶氧菌酯(Picoxystrobin)、吡唑醚菌酯(Pyraclostrobin)、环氟菌胺(Cyflufenamid)、啶酰菌胺(Boscalid);谷类植物除草剂:异丙隆(Isoproturon)、溴苯腈(Bromoxynil)、碘苯腈(Ioxynil)、苯氧基类(Phenoxies)、氯磺隆(Chlorsulfuron)、炔草酸(Clodinafop)、禾草灵酸(Diclofop)、吡氟草胺(Diflufenican)、
Figure BDA0000139763530000273
唑禾草灵(Fenoxaprop)、双氟磺草胺(Florasulam)、氟草烟(Fluroxypyr)、甲磺隆(Metsulfuron)、醚苯磺隆(Triasulfuron)、氟酮磺隆(Flucarbazone)、碘甲磺隆(Iodosulfuron)、丙苯磺隆(Propoxycarbazone)、氟吡酰草胺(Picolinafen)、甲磺胺磺隆(Mesosulfuron)、氟丁酰草胺(Beflubutamid)、唑啉草酯(Pinoxaden)、酰嘧磺隆(Amidosulfuron)、噻磺隆(Thifensulfuron)、苯磺隆(Tribenuron)、氟啶嘧磺隆(Flupyrsulfuron)、磺酰磺隆(Sulfosulfuron)、Pyrasulfotole、甲氧磺草胺(Pyroxsulam)、氟噻草胺(Flufenacet)、肟草酮(Tralkoxydim)、Pyroxasulfon;谷类植物杀真菌剂:多菌灵(Carbendazim)、百菌清(Chlorothalonil)、嘧菌酯(Azoxystrobin)、环丙唑醇(Cyproconazole)、嘧菌环胺(Cyprodinil)、丁苯吗啉(Fenpropimorph)、氟环唑(Epoxiconazole)、醚菌酯(Kresoxim-methyl)、苯氧喹啉(Quinoxyfen)、戊唑醇(Tebuconazole)、肟菌酯(Trifloxystrobin)、硅氟唑(Simeconazole)、啶氧菌酯(Picoxystrobin)、吡唑醚菌酯(Pyraclostrobin)、醚菌胺(Dimoxystrobin)、丙硫菌唑(Prothioconazole)、氟嘧菌酯(Fluoxastrobin);谷类植物杀虫剂:乐果(Dimethoate)、三氟氯氰菊酯(Lambda-cyhalthrin)、溴氰菊酯(Deltamethrin)、α-氯氰菊酯(alpha-Cypermethrin)、β-氟氯氰菊酯(β-Cyfluthrin)、联苯菊酯(Bifenthrin)、吡虫啉(Imidacloprid)、可尼丁(Clothianidin)、噻虫嗪(Thiamethoxam)、噻虫啉(Thiacloprid)、啶虫脒(Acetamiprid)、呋虫胺(Dinetofuran)、Clorphyriphos、甲胺磷(Metamidophos)、乙酰甲胺磷(Oxidemethon-methyl)、抗蚜威(Pirimicarb)、甲硫威(Methiocarb);玉米除草剂:莠去津(Atrazine)、甲草胺(Alachlor)、溴苯腈(Bromoxynil)、乙草胺(Acetochlor)、麦草畏(Dicamba)、二氯吡啶酸(Clopyralid)、二甲吩草胺(S-)Dimethenamid)、草铵膦(Glufosinate)、草甘膦(Glyphosate)、异
Figure BDA0000139763530000281
唑草酮(Isoxaflutole)、精异丙甲草胺(S-Metolachlor)、甲基磺草酮(Mesotrione)、烟嘧磺隆(Nicosulfuron)、氟嘧磺隆(Primisulfuron)、玉嘧磺隆(Rimsulfuron)、磺草酮(Sulcotrione)、甲酰胺磺隆(Foramsulfuron)、苯吡唑草酮(Topramezone)、Tembotrione、苯嘧磺草胺(Saflufenacil)、酮脲磺草吩(Thiencarbazone)、氟噻草胺(Flufenacet)、Pyroxasulfon;玉米杀虫剂:克百威(Carbofuran)、毒死蜱(Chlorpyrifos)、联苯菊酯(Bifenthrin)、氟虫腈(Fipronil)、吡虫啉(Imidacloprid)、高三氟氯氰菊酯(Lambda-Cyhalothrin)、七氟菊酯(Tefluthrin)、特丁硫磷(Terbufos)、噻虫嗪(Thiamethoxam)、可尼丁(Clothianidin)、螺甲螨酯(spiromesifen)、氟虫双酰胺(Flubendiamide)、杀铃脲(Triflumuron)、氯虫苯甲酰胺(Rynaxypyr)、溴氰菊酯(Deltamethrin)、硫双威(Thiodicarb)、β-氟氯氰菊酯(β-Cyfluthrin)、氯氰菊酯(Cypermethrin)、联苯菊酯(Bifenthrin)、虱螨脲(Lufenuron)、杀虫隆(Triflumoron)、七氟菊酯(Tefluthrin)、丁基嘧啶磷(Tebupirimphos)、乙虫腈(Ethiprole)、溴氰虫酰胺(Cyazypyr)、噻虫啉(Thiacloprid)、啶虫脒(Acetamiprid)、呋虫胺(Dinetofuran)、阿维菌素(Avermectin)、甲硫威(Methiocarb)、螺螨酯(spirodiclofen)、螺虫乙酯(Spirotetramat);玉米杀真菌剂:种衣酯(Fenitropan)、福美双(Thiram)、丙硫菌唑(Prothioconazole)、戊唑醇(Tebuconazole)、肟菌酯(Trifloxystrobin);稻除草剂:丁草胺(Butachlor)、敌稗(Propanil)、四唑嘧磺隆(Azimsulfuron)、苄嘧磺隆(Bensulfuron)、氰氟草酯(Cyhalofop)、杀草隆(Daimuron)、四唑酰草胺(Fentrazamide)、咪唑磺隆(Imazosulfuron)、苯噻草胺(Mefenacet)、嗪草酮(Oxaziclomefone)、吡嘧磺隆(Pyrazosulfuron)、稗草畏(Pyributicarb)、二氯喹啉酸(Quinclorac)、禾草丹(Thiobencarb)、茚草酮(Indanofan)、氟噻草胺(Flufenacet)、四唑酰草胺(Fentrazamide)、氯吡嘧磺隆(Halosulfuron)、
Figure BDA0000139763530000292
嗪草酮(Oxaziclomefone)、双环磺草酮(Benzobicyclon)、环酯草醚(Pyriftalid)、五氟磺草胺(Penoxsulam)、双草醚(Bispyribac)、丙炔
Figure BDA0000139763530000293
草酮(Oxadiargyl)、乙氧磺隆(Ethoxysulfuron)、丙草胺(Pretilachlor)、甲基磺草酮(Mesotrione)、Tefuryltrione、
Figure BDA0000139763530000294
草酮(Oxadiazone)、
Figure BDA0000139763530000295
唑禾草灵(Fenoxaprop)、Pyrimisulfan;稻杀虫剂:地亚农(Diazinon)、杀螟硫磷(Fenitrothion)、仲丁威(Fenobucarb)、久效磷(Monocrotophos)、丙硫克百威(Benfuracarb)、噻嗪酮(Buprofezin)、呋虫胺(Dinotefuran)、氟虫腈(Fipronil)、吡虫啉(Imidacloprid)、异丙威(Isoprocarb)、噻虫啉(Thiacloprid)、环虫酰肼(Chromafenozide)、噻虫啉(Thiacloprid)、呋虫胺(Dinotefuran)、可尼丁(Clothianidin)、乙虫腈(Ethiprole)、氟虫双酰胺(Flubendiamide)、氯虫苯甲酰胺(Rynaxypyr)、溴氰菊酯(Deltamethrin)、啶虫脒(Acetamiprid)、噻虫嗪(Thiamethoxam)、溴氰虫酰胺(Cyazypyr)、艾克敌(spinosad)、Spinotoram、氨基阿维菌素苯甲酸盐(Emamectin-benzoate)、氯氰菊酯(Cypermethrin)、毒死蜱(Chlorpyriphos)、杀螟丹(Cartap)、对甲胺磷(Methamidophos)、醚菊酯(Etofenprox)、三唑磷(Triazophos)、4-[[(6-氯吡啶-3-基)甲基](2,2-二氟乙基)氨基]呋喃-2(5H)-酮、克百威(Carbofuran)、丙硫克百威(Benfuracarb;稻杀真菌剂:甲基硫菌灵(Thiophanate-methyl)、嘧菌酯(Azoxystrobin)、环丙酰亚胺(Carpropamid)、敌瘟磷(Edifenphos)、嘧菌腙(Ferimzone)、异稻瘟净(Iprobenfos)、稻瘟灵(Isoprothiolane)、戊菌隆(Pencycuron)、烯丙苯噻唑(probenazole)、咯喹酮(Pyroquilon)、三环唑(Tricyclazole)、肟菌酯(Trifloxystrobin)、双氯氰菌胺(Diclocymet)、稻瘟酰胺(Fenoxanil)、硅氟唑(Simeconazole)、噻酰菌胺(Tiadinil);棉花除草剂:敌草隆(Diuron)、伏草隆(Fluometuron)、MSMA、乙氧氟草醚(Oxyfluorfen)、扑草净(Prometryn)、氟乐灵(Trifluralin)、唑草酮(Carfentrazone)、烯草酮(Clethodim)、精吡氟禾草灵(Fluazifop-butyl)、草甘膦(Glyphosate)、氟草敏(Norflurazon)、二甲戊(Pendimethalin)、嘧草硫醚(Pyrithiobac-sodium)、三氟啶磺隆(Trifloxysulfuron)、吡喃草酮(Tepraloxydim)、草铵膦(Glufosinate)、丙炔氟草胺(Flumioxazin)、噻苯隆(Thidiazuron);棉花杀虫剂:乙酰甲胺磷(Acephate)、涕灭威(Aldicarb)、毒死蜱(Chlorpyrifos)、氯氰菊酯(Cypermethrin)、溴氰菊酯(Deltamethrin)、马拉硫磷(Malathion)、久效磷(Monocrotophos)、阿维菌素(Abamectin)、啶虫脒(Acetamiprid)、甲胺基阿维菌素苯甲酸盐(Emamectin Benzoate)、吡虫啉(Imidacloprid)、
Figure BDA0000139763530000301
二唑虫(Indoxacarb)、高三氟氯氰菊酯(Lambda-Cyhalothrin)、艾克敌(spinosad)、硫双威(Thiodicarb)、γ-氯氟氰菊酯、螺甲螨酯(spiromesifen)、啶虫丙醚(Pyridalyl)、氟啶虫酰胺(Flonicamid)、氟虫双酰胺(Flubendiamide)、杀铃脲(Triflumuron)、氯虫苯甲酰胺(Rynaxypyr)、Beta-Cyfluthrin、螺虫乙酯(Spirotetramat)、可尼丁(Clothianidin)、噻虫嗪(Thiamethoxam)、噻虫啉(Thiacloprid)、呋虫胺(Dinetofuran)、氟虫双酰胺(Flubendiamide)、溴氰虫酰胺(Cyazypyr)、艾克敌(spinosad)、Spinotoram、γ氯氟氰菊酯、4-[[(6-氯吡啶-3-基)甲基](2,2-二氟乙基)氨基]呋喃-2(5H)-酮、硫双威(Thiodicarb)、阿维菌素(Avermectin)、氟啶虫酰胺(Flonicamid)、啶虫丙醚(Pyridalyl)、螺甲螨酯(spiromesifen)、氟啶虫胺腈(Sulfoxaflor)、丙溴磷(Profenophos)、三唑磷(Thriazophos)、硫丹(Endosulfan);棉花杀真菌剂:土菌灵(Etridiazole)、甲霜灵(Metalaxyl)、五氯硝基苯(Quintozene);大豆除草剂:甲草胺(Alachlor)、灭草松(Bentazone)、氟乐灵(Trifluralin)、氯嘧磺隆(Chlorimuron-Ethyl)、氯酯磺草胺(Cloransulam-Methyl)、唑禾草灵(Fenoxaprop)、氟磺胺草醚(Fomesafen)、吡氟禾草灵(Fluazifop)、草甘膦(Glyphosate)、甲氧咪草烟(Imazamox)、咪唑喹啉酸(Imazaquin)、咪唑乙烟酸(Imazethapyr)、精异丙甲草胺(S-)Metolachlor)、嗪草酮(Metribuzin)、二甲戊(Pendimethalin)、吡喃草酮(Tepraloxydim)、草铵膦(Glufosinate);大豆杀虫剂:高三氟氯氰菊酯(Lambda-Cyhalothrin)、灭多威(Methomyl)、对硫磷(Parathion)、硫双威(Thiocarb)、吡虫啉(Imidacloprid)、可尼丁(Clothianidin)、噻虫嗪(Thiamethoxam)、噻虫啉(Thiacloprid)、啶虫脒(Acetamiprid)、呋虫胺(Dinetofuran)、氟虫双酰胺(Flubendiamide)、氯虫苯甲酰胺(Rynaxypyr)、溴氰虫酰胺(Cyazypyr)、艾克敌(spinosad)、Spinotoram、氨基阿维菌素苯甲酸盐(Emamectin-benzoate)、氟虫腈(Fipronil)、乙虫腈(Ethiprole)、溴氰菊酯(Deltamethrin)、β-氟氯氰菊酯(β-Cyfluthrin)、γ和λ氯氟氰菊酯、4-[[(6-氯吡啶-3-基)甲基](2,2-二氟乙基)氨基]呋喃-2(5H)-酮、螺虫乙酯(Spirotetramat)、Spinodiclofen、杀铃脲(Triflumuron)、氟啶虫酰胺(Flonicamid)、硫双威(Thiodicarb)、高效氟氯氰菊酯(Beta-Cyfluthrin);大豆杀真菌剂:嘧菌酯(Azoxystrobin)、环丙唑醇(Cyproconazole)、氟环唑(Epoxiconazole)、粉唑醇(Flutriafol)、吡唑醚菌酯(Pyraclostrobin)、戊唑醇(Tebuconazole)、肟菌酯(Trifloxystrobin)、丙硫菌唑(Prothioconazole)、四氟醚唑(Tetraconazole);甜菜除草剂:氯草敏(Chloridazon)、双苯胺灵(Desmedipham)、乙氧呋草黄(Ethofumesate)、甲双苯胺灵(Phenmedipham)、野麦畏(Triallate)、二氯吡啶酸(Clopyralid)、吡氟禾草灵(Fluazifop)、环草定(Lenacil)、苯嗪草酮(Metamitron)、氯甲喹啉酸(Quinmerac)、噻草酮(Cycloxydim)、氟胺磺隆(Triflusulfuron)、吡喃草酮(Tepraloxydim)、喹禾灵(Quizalofop);甜菜杀虫剂:吡虫啉(Imidacloprid)、可尼丁(Clothianidin)、噻虫嗪(Thiamethoxam)、噻虫啉(Thiacloprid)、啶虫脒(Acetamiprid)、呋虫胺(Dinetofuran)、溴氰菊酯(Deltamethrin)、β-氟氯氰菊酯(β-Cyfluthrin)、γ/λ氯氟氰菊酯、4-[[(6-氯吡啶-3-基)甲基](2,2-二氟乙基)氨基]呋喃-2(5H)-酮、七氟菊酯(Tefluthrin)、氯虫苯甲酰胺(Rynaxypyr)、Cyaxypyr、氟虫腈(Fipronil)、克百威(Carbofuran);卡诺拉油菜除草剂:二氯吡啶酸(Clopyralid)、禾草灵酸(Diclofop)、吡氟禾草灵(Fluazifop)、草铵膦(Glufosinate)、草甘膦(Glyphosate)、吡唑草胺(Metazachlor)、氟乐灵(Trifluralin)、胺苯磺隆(EthaMetsulfuron)、氯甲喹啉酸(Quinmerac)、喹禾灵(Quizalofop)、烯草酮(Clethodim)、吡喃草酮(Tepraloxydim);卡诺拉油菜杀真菌剂:嘧菌酯(Azoxystrobin)、多菌灵(Carbendazim)、咯菌腈(Fludioxonil)、异菌脲(Iprodione)、咪鲜胺(Prochloraz)、乙烯菌核利(Vinclozolin);卡诺拉油菜杀虫剂:克百威(Carbofuran)、有机磷农药类、拟除虫菊酯类、噻虫啉(Thiacloprid)、溴氰菊酯(Deltamethrin)、吡虫啉(Imidacloprid)、可尼丁(Clothianidin)、噻虫嗪(Thiamethoxam)、啶虫脒(Acetamiprid)、呋虫胺(Dinetofuran)、β-氟氯氰菊酯(β-Cyfluthrin)、γ和λ氯氟氰菊酯、τ-氟胺氰菊酯(Fluvaleriate)、乙虫腈(Ethiprole)、艾克敌(spinosad)、Spinotoram、氟虫双酰胺(Flubendiamide)、氯虫苯甲酰胺(Rynaxypyr)、溴氰虫酰胺(Cyazypyr)、4-[[(6-氯吡啶-3-基)甲基](2,2-二氟乙基)氨基]呋喃-2(5H)-酮。
“害虫”包括但是不限于昆虫、真菌、细菌、线虫、螨、蜱等。昆虫害虫包括选自鞘翅目(Coleoptera)、双翅目(Diptera)、膜翅目(Hymenoptera)、鳞翅目(Lepidoptera)、食毛目(Malloph aga)、同翅目(Homoptera)、半翅目(Hemiptera)、直翅目(Orthroptera)、缨翅目(Thysanoptera)、革翅目(Dermaptera)、等翅目(Isoptera)、虱目(Anoplura)、蚤目(Siphonaptera)、毛翅目(Trichoptera)等,特别地选自鞘翅目、鳞翅目和双翅目的昆虫。
鞘翅目包括肉食亚目(Adephaga)和多食亚目(Polyphaga)。肉食亚目包括步甲总科(Caraboidea)和豉甲总科(Gyrinoidea)、而多食亚目包括水龟甲总科(Hydrophiloidea)、隐翅甲总科(Staphylinoidea)、花萤总科(Cantharoidea)、郭公甲总科(Cleroidea)、叩甲总科(Elateroidea)、花甲总科(Dascilloidea)、泥甲总科(Dryopoidea)、丸甲总科(Byrrhoidea)、扁甲总科(Cucujoidea)、芫菁总科(Meloidea)、花蚤总科(Mordelloidea)、拟步甲总科(Tenebrionoidea)、长蠹总科(Bostrichoidea)、金龟总科(Scarabaeoidea)、天牛总科(Cerambycoidea)、叶甲总科(Chrysomeloidea)和象甲总科(Curculionoidea)。步甲总科包括虎甲科(Cicindelidae)、步甲科(Carabidae)和龙虱科(Dytiscidae)。豉甲总科包括豉甲科(Gyrinidae)。水龟甲总科包括水龟甲科(Hydrophilidae)。隐翅甲总科包括葬甲科(Silphidae)和隐翅甲科(Staphylinidae)。花萤总科包括花萤科(Cantharidae)和萤科(Lampyridae)。郭公甲总科包括郭公甲科(Cleridae)和皮蠹科(Dermestidae)。叩甲总科包括叩甲科(Elateridae)和吉丁甲科(Buprestidae)。扁甲总科包括瓢甲科(Coccinellidae)。芫菁总科包括芫箐科(Meloidae)。拟步甲总科包括拟步甲科(Tenebrionidae)。金龟总科包括黑蜣科(Passalidae)和金龟科(Scarabaeidae)。天牛总科包括天牛科(Cerambycidae)。叶甲总科包括叶甲科(Chrysomelidae)。象甲总科包括象甲科(Curculionidae)和小蠹科(Scolytidae)。
双翅目包括亚目长角亚目(Nematocera)、短角亚目(Brachycera)和环裂亚目(Cyclorrhapha)。长角亚目(Nematocera)包括大蚊科(Tipulidae)、毛蠓科(Psychodidae)、蚊科(Culicidae)、蠓科(Ceratopogonidae)、摇蚊科(Chironomidae)、蚋科(Simuliidae)、毛蚊科(Bibionidae)和瘿蚊科(Cecidomyiidae)。短角亚目包括水虻科(Stratiomyidae)、虻科(Tabanidae)、剑虻科((THerevidae)、食虫虻科(Asilidae)、拟蜂虻科(Mydidae)、蜂虻科(Bombyliidae)和长足虻科(Dolichopodidae)。环裂亚目(Cyclorrhapha)包括无缝组(Aschiza)和有缝组。无缝组包括科蚤蝇科(Phoridae)、食蚜蝇科(Syrphidae)和眼蝇科(Conopidae)。有缝组包括无瓣类(Acalyptratae)和有瓣类(Calyptratae)。无瓣类包括斑蝇科(Otitidae)、实蝇科(Tephritidae)、潜蝇科(Agromyzidae)和果蝇科(Drosophilidae)。有瓣类包括科虱蝇科(Hippoboscidae)、狂蝇科(Oestridae)、寄蝇科(Tachinidae)、花蝇科(Anthomyiidae)、蝇科(Muscidae)、丽蝇科(Calliphoridae)和麻蝇科(Sarcophagidae)。
鳞翅目包括凤蝶科(Papilionidae)、粉蝶科(Pieridae)、灰蝶科(Lycaenidae)、蛱蝶科(Nymphalidae)、斑蝶科(Danaidae)、眼蝶科(Satyridae)、弄蝶科(Hesperiidae)、天蛾科(Sphingidae)、大蚕蛾科(Saturniidae)、尺蛾科(Geometridae)、灯蛾科(Arctiidae)、夜蛾科(Noctuidae)、毒蛾科(Lymantriidae)、透翅蛾科(Sesiidae)和谷蛾科(Tineidaee)。
对于主要作物的本发明昆虫害虫包括:玉米:玉米螟(Ostrinianubilalis)、欧洲玉米钻心虫(European corn borer);小地老虎(Agrotisipsilon)、黑地蚕(black cutworm);谷实夜蛾(Helicoverpa zea)、美洲棉铃虫(corn earworm);草地夜蛾(Spodoptera frugiperda)、秋夜蛾(fallarmyworm);西南玉米杆草螟(Diatraea grandiosella)、西南玉米钻心虫(southwestern corn borer);南美玉米苗斑螟(Elasmopalpus lignosellus)、小玉米茎钻心虫(lesser cornstalk borer);小蔗螟(Diatraea saccharalis)、甘蔗钻心虫(surgarcane borer);玉米根叶甲(Diabrotica virgifera)、西方玉米根虫(western corn rootworm);长角叶甲barberi亚种(Diabrotica longicornisbarberi)、北方玉米根虫(northern corn rootworm);黄瓜十一星叶甲食根亚种(Diabrotica undecimpunctata howardi)、南方玉米根虫(southern cornrootworm);纹路叩甲属(Melanotus spp.)、铁线虫(wireworms);圆头犀金龟(Cyclocephala borealis)、圆头独角仙(northern masked chafer(蛴螬));圆头无斑犀金龟(Cyclocephala immaculata)、南方圆头犀金龟(southernmasked chafer(蛴螬));日本金龟(Popillia japonica)、日本甲虫(Japanesebeetle);玉米铜色跳甲(Chaetocnema pulicaria)、玉米跳甲(corn flea beetle);玉米谷喙甲(Sphenophorus maidis)、玉米谷象(maize billbug);玉米缢管蚜(Rhopalosiphum maidis)、玉米蚜(corn leaf aphid);玉米根蚜(Anuraphismaidiradicis,corn root aphid);美洲谷长蝽(Blissus leucopterusleucopterus)、麦虱(chinch bug);赤腿黑蝗(Melanoplus femurrubrum)、赤腿蚱蜢(redlegged grasshopper);血黑蝗(Melanoplus sanguinipes)、迁徙蚱蜢(migratory grasshopper);玉米种蝇(Hylemya platura)、玉米种蛆(seedcorn maggot);美洲黍潜叶蝇(Agromyza parvicornis)、玉米斑潜叶蝇(corn blot leafminer);玉米黄呆蓟马(Anaphothrips obscrurus)、草蓟马(grass thrips);窃叶蚁(Solenopsis milesta,thief ant);二斑叶螨(Tetranychusurticae)、二点叶螨(twospotted spider mite);高粱:玉米禾螟(Chilopartellus)、高粱钻心虫(sorghum borer);草地夜蛾,秋夜蛾;谷实夜蛾,美洲棉铃虫;南美玉米苗斑螟,小玉米茎钻心虫;粒肤地老虎(Feltiasubterranea,granulate cutworm);Phyllophaga crinita,蛴螬;伪金针虫属(Eleodes)、Conoderus和Aeolus属某些物种,铁线虫;黑甲负泥虫(Oulemamelanopus)、(谷类植物跳甲);玉米铜色跳甲(Chaetocnema pulicaria)、玉米跳甲(corn flea beetle);玉米谷喙甲(sphenophorus maidis)、玉米谷象(maize billbug);玉米缢管蚜(Rhopalosiphum maidis)、玉米蚜(corn leafaphid);蔗黄伪毛蚜(Sipha flava)、甘蔗黄蚜(yellow sugarcane aphid);美洲谷长蝽(Blissus leucopterus leucopterus)、麦虱(chinch bug);高粱瘿蚊(Contarinia sorghicola)、高粱蠓(sorghum midge);朱砂叶螨(Tetranychuscinnabarinus)、棉红蜘蛛(carmine spider mite);二斑叶螨(Tetranychusurticae)、二点叶螨(twospotted spider mite);小麦:美洲一星粘虫(Pseudaletia unipunctata)、行军虫(army worm);草地夜蛾(Spodopterafrugiperda)、秋夜蛾(fall armyworm);南美玉米苗斑螟(Elasmopalpuslignosellus)、小玉米茎钻心虫(lesser cornstalk borer);Agrotis orthogonia,西部切根虫(western cutworm;南美玉米苗斑螟(Elasmopalpus lignosellus)、小玉米茎钻心虫(lesser cornstalk borer);黑甲负泥虫,禾谷跳甲;三叶草叶象(Hypera punctata)、车轴草叶象甲(clover leaf weevil);黄瓜十一星叶甲食根亚种,南方玉米根虫;俄罗斯麦蚜(Russian wheat aphid);麦二叉蚜(Schizaphis graminum)、绿虫(greenbug);麦长管蚜(Macrosiphumavenae)、英国禾谷蚜(English grain aphid);赤腿黑蝗,赤腿蚱蜢;殊种黑蝗,殊种蚱蜢;血黑蝗,迁徙蚱蜢;小麦瘿蚊(Mayetiola destructor)、黑森瘿蚊(hessian fly);麦红吸浆虫(Sitodiplosis mosellana)、麦蠓(wheat midge);美洲麦杆蝇(Meromyza americana,wheat stem maggot);冬作种蝇(Hylemyacoarctata,wheat bulb fly);烟草蓟马(Frankliniella fusca)、烟蓟马(tobaccothrips);茎锯蜂(Cephus cinctus)、麦茎蜂(wheat stem sawfly);郁金香瘤瘿螨(Aceria tulipae)、麦瘿螨(wheat curl mite);向日葵:Suleima helianthana,sunflower bud moth;向日葵斑螟(Homoeosoma electellum)、美洲向日葵螟(sunflower moth);向日葵叶甲(zygogramma exclamationis,sunflowerbeetle);胡萝卜金龟(Bothyrus gibbosus,carrot beetle);向日葵籽瘿蚊(Neolasioptera murtfeldtiana,sunflower seed midge);棉属植物:烟蚜夜蛾(Heliothis virescens)、棉卷叶蛾(cotton budworm);谷实夜蛾(Helicoverpazea)、美洲棉铃虫(cotton bollworm);甜菜夜蛾(Spodoptera exigua)、甜菜粘虫(beet armyworm);红铃麦蛾(Pectinophora gossypiella)、棉红铃虫(pinkbollworm);墨西哥棉铃象(Anthonomus grandis)、棉铃象甲(boll weevil);棉蚜(Aphis gossypii,cotton aphid);棉跳盲蝽(Pseudatomoscelis seriatus,cotton fleahopper);结翅粉虱(Trialeurodes abutilonea,bandedwingedwhitefly);牧草盲蝽(Lygus lineolaris,tarnished plant bug);赤腿黑蝗,赤腿蚱蜢;殊种黑蝗,殊种蚱蜢;棉蓟马(Thrips tabaci)、洋葱蓟马(onionthrips);烟草蓟马,草蓟马;朱砂叶螨,棉红蜘蛛;二斑叶螨,二点叶螨;稻:小蔗螟,甘蔗钻心虫;草地夜蛾,秋夜蛾;谷实夜蛾,美洲棉铃虫;葡萄肖叶甲(Colaspis brunnea,grape colaspis);稻水象甲(Lissorhoptrusoryzophilus,rice water weevil);米象(Sitophilus oryzae,rice weevil);黑尾叶蝉(Nephotettix nigropictus)、稻叶蝉(rice leafhopper);美洲谷长蝽,麦虱;喜绿蝽(Acrosternum hilare,green stink bug);大豆:大豆夜蛾(Pseudoplusia includens)、大豆尺蠖(soybean looper);梨豆夜蛾(Anticarsiagemmatalis)、梨豆毛虫(velvetbean caterpillar);苜蓿绿夜蛾(Plathypenascabra,green cloverworm);玉米螟,欧洲玉米钻心虫;小地老虎,黑地蚕;甜菜夜蛾,甜菜粘虫;烟蚜夜蛾,棉卷叶蛾;谷实夜蛾,美洲棉铃虫;墨西哥豆瓢虫(Epilachna varivestis,Mexican bean beetle);桃蚜(Myzuspersicae,green peach aphid);蚕豆微叶蝉(Empoasca fabae)、马铃薯叶蝉(potato leafhopper);喜绿蝽(Acrosternum hilare)、绿臭蝽(green stink bug);赤腿黑蝗,赤腿蚱蜢;殊种黑蝗,殊种蚱蜢;玉米种蝇,玉米种蛆;Sericothripsvariabilis、大豆蓟马(soybean thrips);棉蓟马,洋葱蓟马;土耳其斯坦叶螨(Tetranychus turkestani,strawberry spider mite);二斑叶螨,二点叶螨;大麦:玉米螟,欧洲玉米钻心虫;小地老虎,黑地蚕;麦二叉蚜,绿虫;美洲谷长蝽,麦虱;喜绿蝽,绿臭蝽;褐臭椿(Euschistus servus,brown stinkbug);玉米种蝇,玉米种蛆;小麦瘿蚊,黑森瘿蚊;麦岩螨(Petrobia latens,brown wheat mite);油菜(Oil Seed Rape):甘蓝短棒蚜(Brevicorynebrassicae)、甘蓝蚜(cabbage aphid);十字花科跳甲(Phyllotreta cruciferae,Flea beetle);蓓带夜蛾(Mamestra configurata、Bertha armyworm);小菜蛾(Plutella xylostella,Diamond-back moth);地种蝇属某些物种(Delia ssp.)、根蛆(Root maggots)。
线虫包括寄生性线虫如根结线虫、胞囊线虫和根腐线虫,包括胞囊线虫属(Heterodera)某些物种、根结线虫属(Meloidogyne)某些物种和球胞囊属(Globodera)某些物种;特别地是胞囊线虫成员,包括但不限于Heteroderaglycines(大豆胞囊线虫);Heterodera schachtii(甜菜胞囊线虫);Heteroderaavenae(谷类胞囊线虫);和马铃薯金线虫(Globodera rostochiensis)和马铃薯白线虫(Globodera pailida)(马铃薯胞囊线虫)。根腐线虫包括短体属(Pratylenchus)某些物种。
用于增加植物产量的方法
提供了用于增加植物产量的方法。所述方法包括提供植物或植物细胞,其表达编码本文中所公开的杀虫多肽序列的多核苷酸,和在被害虫侵袭的田间生长该植物或其种子,其中所述多肽对所述害虫具有杀虫活性。在一些实施方案中,所述多肽具有针对鳞翅目的、鞘翅目的、双翅目的、半翅目的或线虫类的害虫的杀虫活性并且所述的田地用鳞翅目的、半翅目的、鞘翅目的、双翅目的或线虫类的害虫侵袭。
如本文中定义,植物的“产量”指由植物产生的生物量的质量和/或数量。“生物量”意指任何所度量的植物产物。生物量产生的增加是所度量植物产物的产量方面的任意改善。增加植物产量具有几项商业应用。例如,增加植物叶生物量可以增加用于人或动物消费的叶菜类的产量。另外,增加叶生物量可以用来增加植物衍生的药用或工业产物的生产。产量的增加可以包含任何统计显著的增加,包括但不限于与不表达杀虫序列的植物相比,产量增加至少1%、增加至少3%、增加至少5%、增加至少10%、增加至少20%、增加至少30%、至少50%、至少70%、至少100%或更多。
在具体的方法中,植物产量因表达本文中所公开杀虫蛋白的植物的改善的害虫抗性而增加。杀虫蛋白的表达导致害虫侵袭或采食植物的能力降低,因而,改善植物产量。
以下实施例以说明方式且不以限制方式提供。
实施例
实施例1.从菌株ATX2024中鉴定对西方玉米根虫有活性的蛋白质
通过生物化学和基因组分析的组合从菌株ATX2024中鉴定了西方玉米根虫活性蛋白AXMI-205。
在西方玉米根虫(Diabrotica virgifera或者WCRW)生物测定中,鉴定ATX2024为显示热敏感活性的活性菌株。在ATX2024培养物质上如下进行蛋白质的分级分离和纯化:
ATX2024细胞在合适的培养基中(如C2培养基或者补充有海藻糖的CYS培养基,培养基的选择对于本发明不是关键的)在37℃下生长3天。也可以在30℃下进行培育。收集细胞沉淀并且在A缓冲液((20mM乙酸钠/50mM氯化钠,pH值5)中使用“弗氏压碎器”的高压力破碎细胞。
通过离心澄清裂解物并且对pH值5.0的20mM的乙酸钠,50mM的氯化钠透析。然后将透析的样品装载到20ml SP琼脂糖TM阳离子交换柱上(GE Healthcare)。通过A缓冲液中从50mM到1M氯化钠的线性盐梯度用超过20倍柱体积洗脱蛋白质。也可以用超过10倍柱体积进行洗脱。
汇集活性级分并对缓冲液B(pH值7或者pH值8的20mMTris-HCl/50mM氯化钠)透析。然后将透析的活性级分装载到5ml琼脂糖Q阴离子交换柱上。可以使用其他的阴离子交换柱如1.7ml SOURCETM阴离子交换柱。用缓冲液A中从50mM到1M氯化钠的线性盐梯度洗脱蛋白质。收集的级分在WCRW上测试活性并且观察到对WCRW有活性的级分。鉴定约52kDa的蛋白质条带与级分的活性相关。这种蛋白质在本文被称作蛋白质条带#10。
然后汇集活性级分并且浓缩,并且进行SDS-PAGE。分离得到的相应于蛋白质条带#10的凝胶部分并且通过本领域已知的N-末端测序和基质辅助激光解析电离串联飞行时间质谱(MALDI-TOF-TOF)分析进行分析。
比较从蛋白质条带#10得到的MALDI-TOF-TOF数据,显示其与已知的蛋白质数据库不匹配。
当与已知的蛋白质序列数据库比较时,蛋白质条带#10的N末端的氨基酸测序得到的N末端肽序列显示与已知的蛋白质序列不匹配。
实施例2.ATX2024的基因组测序
从如下选择的菌株中鉴定出的完整的基因序列:
总DNA含有以下的一些或者全部的混合物:基因组DNA、不同大小的质粒、噬菌体染色体、其他未表征的染色体外分子。
机械或者酶促剪切染色体外DNA来产生大小分布的片段。
通过本领域已知的方法对片段化的DNA测序。
实施例3.将N末端和MALDI-TOF-TOF数据与基因组序列数据匹配
通过从产生自ATX2024的序列读数提取所有可能的ORFs产生ATX2024的序列数据编码的一组推断的可读框(ORFs)。使用BLAST算法比较蛋白质条带#10(上文)的N-末端测序数据和这组ATX2024ORFs。发现两种读码编码与N-末端序列数据有高同源性的推测的蛋白质片段。
相似地,使用Mascot程序(www.matrixscience.com;Perkins等人.(1999)Electrophoresis 20(18):3551-67)比较来自蛋白质条带#10的MALDI-TOF-TOF数据和这组ATX2024ORFs。发现七个读数编码与MALDI-TOF-TOF数据集中存在的峰值具有明显匹配的推测的蛋白质片段。
将从N-末端和MALDI-TOF-TOF数据分析鉴定的DNA序列读数汇编来提供初步的基因序列。
使用TAIL-PCR策略得到与初步的基因序列数据相邻的侧翼序列。将得到的PCR产物的序列与来自ATX2024的原始的基因组序列汇编来提供编码蛋白质条带#10的可读框的完成的基因序列。将这种可读框命名为Axmi205(SEQ ID NO:1),并且将可读框编码的蛋白质命名为AXMI-205(SEQ ID NO:2,3或者4)。
然后从ATX2024基因组中扩增编码AXMI-205的基因组区域,克隆并且得到这种克隆的DNA序列。在包含Axmi205的区域中这种克隆的DNA序列被提供为SEQ ID NO:12。
将AXMI-205与已知的蛋白质序列数据库比较显示AXMI-205是独特的蛋白质,与已知的蛋白质显示出非常低的同源性(20%或者更少)。
有趣地,AXMI-205与通常被称作MACPF蛋白(Rosado等人,Cellular Microbiology(2008)10(9),1765-1774)的一大类松散相关的蛋白质显示出低的但有可能显著的同源性。已经建议这些蛋白质在如免疫反应和保护免于细菌攻击的过程中起作用。AXMI-205与来自密执安棍状杆菌的蛋白质(SEQ ID NO:14;GENBANK登录号YP_001223127,Gartemann等人,J.Bacteriol.190(6),2138-2149(2008))具有20%的同一性,并且与发光光杆状菌蛋白质(SEQ ID NO:15;GENBANK登录号2QP2_A;Rosado,C.J.,等人,Science 317(5844),1548-1551(2007))具有13%的同一性。尽管这些百分比同一性低,但是可以从附图1的检查中鉴定这些蛋白质之间氨基酸的保守区域。
实施例3.AXMI-205的异源表达
将Axmi205的可读框克隆到基于(1)麦芽糖结合融合载体的大肠杆菌表达载体中来产生pAX6911,并且克隆到基于pRSF1b的(2)表达载体中来产生pAX7011。
为在大肠杆菌中表达,用pAX6911,pAX7011或者对照质粒转化BL21*DE3。将载体转化的单个菌落接种到补充有卡那霉素的LB中并且在37℃下生长过夜。第二天,将1%的过夜培养物一式两份接种到新鲜的培养基中并且在37℃下生长到对数期。随后,在37℃下用1mM IPTG诱导培养物3小时或者在20℃下过夜诱导。在补充有1mM DTT的pH 10.5的50mM碳酸钠缓冲液中悬浮每种细胞沉淀并且超声处理。通过SDS-PAGE分析检测相应于AXMI-205的推测大小的蛋白质的表达。在pMal融合载体pAX6911的情况下,通过PAGE观察与pMAL-AXMI-205融合物的预测大小一致的蛋白质。
实施例4.AXMI-205的杀虫活性
按照供应商(New England Biolabs)的推荐从大肠杆菌克隆的裂解物中纯化融合蛋白,并且用Xa因子或者胰蛋白酶切割所述融合蛋白。用SDS-PAGE分析证实纯化的融合蛋白的切割。在昆虫测定中在由20mMTris,1mM DTT,50mM NaCl组成的缓冲液中用合适的对照测试来自含有AXMI-205的pAX6911的纯化的蛋白质,和用Xa因子或胰蛋白酶切割的pAX6911,或者未被切割的蛋白质。也以这种方式测试表达AXMI-205的pAX7011的可溶提取物。两天后,含有AXMI-205的样品显示强的生长迟缓活性并且赋予西方玉米根虫致死性。表1显示本文使用的得分分配的描述,并且表2汇总了从AXMI-205样品中观察到的活性。
表1.得分系统的描述
Figure BDA0000139763530000411
表2.AXMI-205样品的杀虫活性
Figure BDA0000139763530000412
Figure BDA0000139763530000421
实施例5.杀虫活性的额外测定
可以测试本发明的核苷酸序列产生杀虫蛋白的能力。常常以众多方式评估杀虫蛋白作为杀虫剂对害虫发挥作用的能力。本领域熟知的一种方式是进行饲喂测定法。在这种饲喂测定法中,使害虫暴露于含有待测试化合物的样品或对照样品。这常常通过将待测试物质或该物质的合适稀释物放置到害虫会摄取的物质(如人工食物)上进行。待测试的物质可以由液体、固体或浆液组成。待测试的物质可以置于表面上并且随后允许干燥。备选地,待测试的物质可以与熔融的人工食物混合,随后分配至测定箱中。测定箱可以是例如杯、碟或微量滴定板的孔。
用于吸吮性害虫(例如蚜虫)的测定法可以涉及试验材料与昆虫通过隔离物(理想地是可以被吸吮昆虫的吸口部分穿透的部分)分隔以允许摄取试验材料。该试验材料常常与饲喂刺激物如蔗糖混合以促进试验化合物的摄取。
其他类型的测定法可以包括微量注射试验材料至害虫的口或肠,以及产生转基因植物,随后测试害虫以该转基因植物为食的能力。植物测试法可以涉及分离通常消费的植物部分,例如,附着在叶子上的小笼状物,或在含有昆虫的小笼状物中分离完整植株。
在本领域已知并且可以例如在Robertson和Preisler,eds.(1992)Pesticide bioassays with arthropods,CRC,Boca Raton,FL中发现测定害虫的其他方法和途径。备选地,通常在期刊Arthropod Management Tests和Journal of Economic Entomology中或者通过与美国昆虫学会(ESA)成员讨论描述测定。
实施例6.合成基因
设计了编码AXMI-205的合成基因。在SEQ ID NO:9中给出了Axmi205v01.02。在SEQ ID NO:10中给出了Axmi205v01.03。在SEQ IDNO:11中给出了Axmi205v01.04。
实施例7.AXMI-205的变体
为鉴定AXMI-205C-末端部分中功能上重要的区域和位置,在相应于SEQ ID NO:2的307-536氨基酸位置上测定了丙氨酸扫描突变体。丙氨酸突变体被合成产生(Geneart,Burlingame,CA)并且被组装到来源于pAX3577的表达载体中用于在大肠杆菌中表达((pAX3577含有pRSF1b(Invitrogen)中的Axmi250v01.03)。
从突变体S307A起始,每两个残基用丙氨酸取代。在此系列中最后的丙氨酸突变体是K535A。总共汇集了101种丙氨酸突变体。
将汇集的丙氨酸突变体以及pAX3577转化进BL21*DE3细胞并且平板接种在LB+卡那霉素(100μg/ml)上。挑取新鲜的菌落到8ml LB+卡那霉素(100μg/ml)液体培养基中并且在37℃,300rpm下在24深孔板中生长直到OD600达到0.6。加入IPTG以达到0.5mM的终浓度,并且在20℃额外培养培养物18小时。测定OD600nm并且通过离心(在4℃,4000rpm,10分钟)收集细胞。在pH7.4,20mM Tris/HCl,150mM NaCl,1mMDTT中以20 OD600/ml的密度重悬浮细胞沉淀。通过玻珠击打破碎细胞并且在4℃,4500rpm离心15分钟后得到可溶提取物。
以每种变体四次重复测定提取物对WCRW的活性。在五和六天后,通过将四次重复的得分平均确定根虫的毒性得分。在初步筛选中筛选了266种变体,提供了文库的3倍覆盖。对得分高于和低于Axmi205野生型序列得分的变体测序。
发现以下的丙氨酸突变体(相对于SEQ ID NO:2)对WCRW有活性:S307A,D315A,V317A,S349A,G351A,K353A,V355A,D395A,G399A,W407A,G419A,P355A,P435A,S443A,K465A,V467A,F483A,P487A,S495A,D497A,E499A,K509A和I513A.将丙氨酸突变体E499A命名为Axmi205(evo24)(SEQ ID NO:7)并且将丙氨酸突变体V467A命名为Axmi205(evo25)(SEQ ID NO:8)。
实施例8.axmi-205截短物的活性
构建了axmi-205的一些截短物并且测试了其对西方玉米根虫的活性。构建了从AXMI-205蛋白(SEQ ID NO:2)的C-末端除去了10,20,30,34或者71个氨基酸的C-末端截短物。
表达MBP融合物的克隆pAX7106在用Xa因子切割后,产生蛋白AXMI-205(trunc10)(SEQ ID NO:7),所述AXMI-205(trunc10)蛋白相对于AXMI-205缺少来自C-末端的10个氨基酸。表达MBP融合蛋白的克隆pAX7106在用Xa因子切割后,产生蛋白AXMI-205(trunc20)(SEQ IDNO:8),所述AXMI-205(trunc20)蛋白相对于AXMI-205缺少来自C-末端的20个氨基酸。AXMI-205(trunc10)和AXMI-205(trunc20)都显示对WCRW的活性,然而30个氨基酸的截短物不显示活性。
实施例9.用于植物表达的基因引导
为在植物中表达,将本发明的编码区与适合的启动子和终止子序列连接。这种序列在本领域是众所周知的,并且为在单子叶植物中表达,可以包括稻肌动蛋白启动子或者玉米泛素启动子,为在双子叶植物中表达,可以包括拟南芥UBQ3启动子或者CaMV 35S启动子,以及nos或者PinII终止子。产生和证实启动子-基因-终止子构建体的技术在本领域也是众所周知的。
在本发明的一个方面,设计和产生了合成的DNA序列。这些合成序列已经相对于亲本序列改变了核苷酸序列,但是编码与亲本AXMI-205蛋白基本上相同的蛋白质(例如SEQ ID NO:9-12)。
在本发明的另一个方面,设计合成基因的修饰形式以便得到的多肽被靶向植物细胞器,如内质网或者质外体。已知导致融合蛋白靶向植物细胞器的肽序列在本领域是已知的。例如,在本领域已知来自白羽扇豆(Lupinusalbus)的酸性磷酸酶基因的N-末端区域(
Figure BDA0000139763530000451
ID GI:14276838,Miller等人(2001)Plant Physiology 127:594-606)导致异源蛋白质靶向内质网。如果得到的融合蛋白在C-末端也含有包含肽N-端-赖氨酸-天冬氨酸-谷氨酸-亮氨酸(即“KDEL”基序,SEQ ID NO:13)的内质网滞留序列,那么融合蛋白将被靶向至内质网。如果融合蛋白在C-末端缺少内质网靶向序列,蛋白质将被靶向至内质网,但最终将被隔离在质外体中。
因此,这种基因编码融合蛋白,所述融合蛋白含有与本发明的氨基酸序列的N-末端融合的来自白羽扇豆的酸性磷酸酶基因的N-末端三十一个氨基酸(
Figure BDA0000139763530000452
ID GI:14276838,Miller等人,2001,上文),以及在C-末端的KDEL序列。因此,推测在植物细胞中表达得到的蛋白质被靶向至植物内质网。
上文描述的植物表达盒与合适的植物选择标记组合来帮助在转化的细胞和组织中的选择,并且连接到植物转化载体中。这些可以包括来自农杆菌介导的转化的二元载体或者用于气溶胶或者生物射弹转化的简单质粒载体。
实施例10.用于植物表达的引导基因
为在植物中表达,将本发明基因的编码区DNA与适合的启动子和终止子序列有效连接。这种序列在本领域是众所周知的,并且为在单子叶植物中表达,可以包括稻肌动蛋白启动子或者玉米泛素启动子,为在双子叶植物中表达,可以包括拟南芥UBQ3启动子或者CaMV 35S启动子,以及nos或者PinII终止子。产生和证实启动子-基因-终止子构建体的技术在本领域也是众所周知的。
上文描述的植物表达盒与合适的植物选择标记组合来帮助在转化的细胞和组织中的选择,并且连接到与植物转化载体中。这些可以包括来自农杆菌介导的转化的二元载体或者用于气溶胶或者生物射弹转化的简单质粒载体。
实施例11.用本文描述的杀虫蛋白基因转化玉米细胞
最好在授粉后8-12天后收集玉米穗。从穗中分离出胚,并且大小是0.8-1.5mm的那些胚优选用于转化。通过盾片向上将胚接种于适合的培养基如DN62A5S培养基(3.98g/L N6盐;1mL/L(1000x贮存液)N6维生素;800mg/L L-天冬酰胺;100mg/L肌醇;1.4g/L L-脯氨酸;100mg/L酪蛋白氨基酸;50g/L蔗糖;1mL/L(1mg/mL贮存液)2,4-D)中。然而,除了DN62A5S之外的培养基和盐是适合的并且在本领域已知。在25℃下在黑暗中过夜培养胚。然而,本身不必过夜培养胚。
将所得的外植体转移至筛板(mesh squares)(每个平板30-40个网孔),转移到渗透培养基上约30-45分钟,随后转移至照射平板(beamingplate)(见,例如,PCT公开号WO/0138514和美国专利号5,240,842)。
使用气溶胶束加速器,使用基本上如PCT公开号WO/0138514中所述的条件,将设计旨在植物细胞中表达本发明基因的DNA构建体加速至植物组织中。在照射后,将胚在渗透培养基上孵育约30分钟,随后置于孵育培养基上在25℃黑暗中过夜。为避免过分损伤照射过的外植体,将它们在转移至恢复培养基之前孵育至少24小时。胚随后铺展在恢复期培养基上,于25℃黑暗下约5日,随后转移至选择培养基。取决于所用具体选择的性质和特征,在选择培养基中孵育外植体持续直至8周。在选择期之后,将所得的愈伤组织转移至胚成熟培养基,直至观察到成熟体细胞胚的形成。所得的成熟体细胞胚随后置于低光照下,并且通过本领域已知的方法启动再生的过程。允许所得的苗在生根培养基上生根,并且将所得的植物转移至苗圃钵并作为转基因植物繁殖。
材料
DN62A5S培养基
Figure BDA0000139763530000461
Figure BDA0000139763530000471
用1N KOH/1N KCl将溶液的pH值调整到pH 5.8,加入脱乙酰吉兰糖胶(Sigma)以达到3g/L的浓度,然后将培养基高压灭菌。在冷却到50℃后,每升培养基中加入2ml 5mg/ml的硝酸银贮存液。
实施例12.通过农杆菌介导的转化在植物细胞中转化本发明的基因
最好在授粉后8-12天后收集穗。从穗中分离出胚,并且大小是0.8-1.5mm的那些胚优选用于转化。通过盾片向上将胚接种于适合的培养基中,并且在25℃下在黑暗中过夜培养。然而,过夜培养胚本身不是必要的。将胚与含有适合的载体的农杆菌菌株接触约5-10分钟用于Ti质粒介导的转化,然后平板接种到共培养培养基中约3天(25℃,黑暗中)。在共培养之后,将外植体转移到恢复期培养基中培养约5天(25℃下,在黑暗中)。取决于使用的特定选择的性质和特征,外植体在选择培养基中培养长达8周。在选择期之后,将得到的愈伤组织转移到胚成熟培养基,直到观察了成熟的体细胞胚的形成。然后将得到的成熟的体细胞胚放置于弱光线下,并且按照本领域已知的启动再生过程。
实施例13.在西方玉米根虫的侵袭时保护表达Axmi205的转基因植物 免于根损伤
通过农杆菌介导的转化得到了用两种版本的Axmi205(Axmi205(SEQID NO:1)或者Axmi205v01.03(SEQ ID NO:10))转化的转基因玉米植物。选择通过PCR分析显示含有适合的Axmi205构建体的植物,并且将其转移到根训练容器中。
将含有Axmi205或者Axmi205v01.03的T0植物移植到根训练容器中并且繁殖约3周。然后用约125个非滞育的西方玉米根虫的卵侵袭每种个体植物。在侵袭的24小时内,观察到多于90%的卵已经孵化了。通过蛋白质印迹分析使用抗AXMI-205抗体分析植物中AXMI-205蛋白的表达。选择表达可检测量的AXMI-205的植物用于分析。十五天后,使用爱荷华州节损伤尺度1(Oleson,J.D.,Y.Park,T.M.Nowatzki,和J.J.Tollefson.2005.J.Econ Entomol.98(1):1-8)评估每种植物中根损伤的量。表3显示与受相同方式侵袭的对照植物相比,AXMI-205的两种形式都导致较低的根损伤。在相似的实验中,与未转化的对照(未显示)相比,含有Axmi205v01.02或者Axmi-205v01.04的植物显示改进的根评级。
表3.表达Axmi-205的转基因玉米的根损伤
Figure BDA0000139763530000481
本说明书中提到的全部出版物及专利申请说明了本发明所属领域的技术人员的水平。全部出版物及专利申请通过引用的方式以相同程度并入本文,如同专门且个别地说明通过引用方式并入每份单独的出版物或专利申请。
尽管出于理解明晰性目的,已经通过说明和实例方式相当详细地描述了前述发明,不过显而易见可以在所附带权利要求书的范围内进行某些变化和修改。
Figure IDA0000139763570000011
Figure IDA0000139763570000031
Figure IDA0000139763570000041
Figure IDA0000139763570000061
Figure IDA0000139763570000091
Figure IDA0000139763570000101
Figure IDA0000139763570000111
Figure IDA0000139763570000121
Figure IDA0000139763570000141
Figure IDA0000139763570000151
Figure IDA0000139763570000171
Figure IDA0000139763570000191
Figure IDA0000139763570000221
Figure IDA0000139763570000231
Figure IDA0000139763570000241
Figure IDA0000139763570000251
Figure IDA0000139763570000261
Figure IDA0000139763570000271
Figure IDA0000139763570000281
Figure IDA0000139763570000291
Figure IDA0000139763570000301
Figure IDA0000139763570000311
Figure IDA0000139763570000321
Figure IDA0000139763570000331
Figure IDA0000139763570000341
Figure IDA0000139763570000351
Figure IDA0000139763570000381
Figure IDA0000139763570000391
Figure IDA0000139763570000401
Figure IDA0000139763570000411
Figure IDA0000139763570000421
Figure IDA0000139763570000431

Claims (26)

1.重组核酸分子,其包含选自由以下序列组成的组的核苷酸序列:
a)SEQ ID NO:1的核苷酸序列,或者其互补序列;
b)编码包含SEQ ID NO:2,3,4,5,6,7或者8中任一个的氨基酸序列的多肽的核苷酸序列;和
c)编码多肽的核苷酸序列,所述多肽包含与SEQ ID NO:2,3,4,5,6,7或者8的氨基酸序列有至少90%的序列同一性的氨基酸序列,其中所述氨基酸序列具有杀虫活性。
2.权利要求1的重组核酸分子,其中所述核苷酸序列是已经设计用于在植物中表达的合成序列。
3.权利要求2的重组核酸分子,其中所述核苷酸序列选自SEQ IDNO:9,10或者11。
4.权利要求1的重组核酸分子,其中所述核苷酸序列与能够在植物细胞中指导所述核苷酸序列表达的启动子有效连接。
5.权利要求4的重组核酸分子,其进一步地包含编码异源多肽的核苷酸序列。
6.含有权利要求4的重组核酸分子的宿主细胞。
7.权利要求6的宿主细胞,其是细菌宿主细胞。
8.权利要求6的宿主细胞,其是植物细胞。
9.包含权利要求8的宿主细胞的转基因植物。
10.权利要求9的转基因植物,其中所述植物选自玉米、高粱、小麦、卷心菜、向日葵、番茄、十字花科植物、辣椒、马铃薯、棉花、稻、大豆、甜菜、甘蔗、烟草、大麦和油菜。
11.具有杀虫活性的重组多肽,其选自:
a)包含SEQ ID NO:2,3,4,5,6,7或者8中任一个的氨基酸序列的多肽;
b)包含具有与SEQ ID NO:2,3,4,5,6,7或者8的氨基酸序列有至少90%的序列同一性的氨基酸序列的多肽,其中所述氨基酸序列具有杀虫活性;和
c)SEQ ID NO:1的核苷酸序列编码的多肽。
12.权利要求11的多肽,其进一步包含异源氨基酸序列。
13.选择性结合权利要求11的多肽的抗体。
14.包含权利要求11的多肽的组合物。
15.权利要求14的组合物,其中所述组合物选自粉剂、粉尘剂、弹丸剂、粒剂、喷雾剂、乳剂、胶体剂和溶液剂。
16.权利要求14的组合物,其中所述组合物通过苏云金芽孢杆菌细胞培养物的干燥、冷冻干燥、匀浆、提取、过滤、离心、沉降或浓缩制备。
17.权利要求14的组合物,其包含按重量计约1%至约99%的所述多肽。
18.控制鳞翅目或者鞘翅目害虫种群的方法,其包括将所述种群与杀虫有效量的权利要求11的多肽接触。
19.杀死鳞翅目或者鞘翅目害虫的方法,其包括让所述害虫接触或者进食杀虫有效量的权利要求11的多肽。
20.生产具有杀虫活性的多肽的方法,其包括在编码所述多肽的核酸分子表达的条件下培养权利要求6的宿主细胞。
21.植物,其具有稳定地掺入它的基因组的DNA构建体,所述DNA构建体包含编码具有杀虫活性的蛋白质的核苷酸序列,其中所述核苷酸序列选自以下序列:
a)SEQ ID NO:1,9,10,11或者12的核苷酸序列;
b)编码包含SEQ ID NO:2,3,4,5,6,7或者8中任一个氨基酸序列的多肽的核苷酸序列;和
c)编码多肽的核苷酸序列,所述多肽包含与SEQ ID NO:2,3,4,5,6,7或者8的氨基酸序列有至少90%的序列同一性的氨基酸序列,其中所述氨基酸序列具有杀虫活性;
其中所述核苷酸序列与驱动编码序列在植物细胞中表达的启动子有效连接。
22.权利要求21的植物,其中所述植物是植物细胞。
23.权利要求21的植物的转基因种子,其中所述种子包含选自由以下序列组成的组的核苷酸序列:
a)SEQ ID NO:1,9,10,11或者12的核苷酸序列;
b)编码包含SEQ ID NO:2,3,4,5,6,7或者8中任一个的氨基酸序列的多肽的核苷酸序列;和
c)编码多肽的核苷酸序列,所述多肽包含与SEQ ID NO:2,3,4,5,6,7或者8的氨基酸序列有至少90%的序列同一性的氨基酸序列,其中所述氨基酸序列具有杀虫活性。
24.保护植物免于昆虫害虫伤害的方法,所述方法包括在植物或者其细胞中表达编码杀虫多肽的核苷酸序列,其中所述核苷酸序列选自以下序列组成的组:
a)SEQ ID NO:1,9,10,11或者12的核苷酸序列;
b)编码包含SEQ ID NO:2,3,4,5,6,7或者8中任一个的氨基酸序列的多肽的核苷酸序列;和
c)编码多肽的核苷酸序列,所述多肽包含与SEQ ID NO:2,3,4,5,6,7或者8的氨基酸序列有至少90%的序列同一性的氨基酸序列,其中所述氨基酸序列具有杀虫活性。
25.权利要求24的方法,其中所述植物产生对鳞翅目或者鞘翅目害虫具有杀虫活性的杀虫多肽。
26.增加植物产量的方法,其包括在大田种植已经将DNA构建体稳定地掺入它的基因组的植物或者其种子,所述DNA构建体包含编码具有杀虫活性的蛋白质的核苷酸序列,其中所述核苷酸序列选自由以下序列组成的组:
a)SEQ ID NO:1,9,10,11或者12中给出的核苷酸序列;
b)编码包含SEQ ID NO:2,3,4,5,6,7或者8中任一个的氨基酸序列的多肽的核苷酸序列;和
c)编码多肽的核苷酸序列,所述多肽包含与SEQ ID NO:2,3,4,5,6,7或者8任一个的氨基酸序列有至少90%的序列同一性的氨基酸序列,
其中所述大田被害虫侵袭,所述多肽具有针对所述害虫的杀虫活性。
CN201080038789.XA 2009-07-02 2010-07-01 Axmi‑205杀虫基因和它的使用方法 Active CN102648281B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US22277809P 2009-07-02 2009-07-02
US61/222,778 2009-07-02
PCT/US2010/040778 WO2011002992A1 (en) 2009-07-02 2010-07-01 Axmi-205 pesticidal gene and methods for its use

Publications (2)

Publication Number Publication Date
CN102648281A true CN102648281A (zh) 2012-08-22
CN102648281B CN102648281B (zh) 2017-04-05

Family

ID=42537477

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201080038789.XA Active CN102648281B (zh) 2009-07-02 2010-07-01 Axmi‑205杀虫基因和它的使用方法

Country Status (13)

Country Link
US (4) US8575425B2 (zh)
EP (1) EP2449109B1 (zh)
CN (1) CN102648281B (zh)
AR (1) AR078052A1 (zh)
CA (1) CA2766800C (zh)
ES (1) ES2609332T3 (zh)
HU (1) HUE032365T2 (zh)
MX (2) MX346215B (zh)
PL (1) PL2449109T3 (zh)
RS (1) RS55550B1 (zh)
UA (1) UA105046C2 (zh)
WO (1) WO2011002992A1 (zh)
ZA (1) ZA201200161B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106133142A (zh) * 2014-03-28 2016-11-16 孟山都技术公司 具有抗鞘翅目昆虫活性的杀虫毒素蛋白
CN108064234A (zh) * 2015-04-22 2018-05-22 农业生物群落股份有限公司 杀虫基因和使用方法
CN109475096A (zh) * 2015-08-06 2019-03-15 先锋国际良种公司 植物来源的杀昆虫蛋白及其使用方法
CN111148432A (zh) * 2017-10-02 2020-05-12 先正达参股股份有限公司 工程化的杀有害生物蛋白和控制植物有害生物的方法

Families Citing this family (98)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HUE032365T2 (en) 2009-07-02 2017-09-28 Athenix Corp AXMI-205 pesticide gene and methods of application
WO2013016617A1 (en) * 2011-07-28 2013-01-31 Athenix Corp. Axmi205 variant proteins and methods for their use
MX2014001070A (es) * 2011-07-29 2014-04-14 Athenix Corp Gen plaguicida axmi279 y sus metodos de uso.
EP2782920B1 (en) 2011-11-21 2016-12-21 Bayer Intellectual Property GmbH Fungicide n-[(trisubstitutedsilyl)methyl]-carboxamide derivatives
US9725414B2 (en) 2011-11-30 2017-08-08 Bayer Intellectual Property Gmbh Fungicidal N-bicycloalkyl and N-tricycloalkyl pyrazole-4-(thio)carboxamide derivatives
US9556158B2 (en) 2011-12-29 2017-01-31 Bayer Intellectual Property Gmbh Fungicidal 3-[(pyridin-2-ylmethoxyimino)(phenyl)methyl]-2-substituted-1,2,4-oxadiazol-5(2H)-one derivatives
JP5976837B2 (ja) 2011-12-29 2016-08-24 バイエル・インテレクチュアル・プロパティ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツングBayer Intellectual Property GmbH 殺菌性3−[(1,3−チアゾール−4−イルメトキシイミノ)(フェニル)メチル]−2−置換−1,2,4−オキサジアゾール−5(2h)−オン誘導体
TWI654180B (zh) 2012-06-29 2019-03-21 美商艾佛艾姆希公司 殺真菌之雜環羧醯胺
US9783820B2 (en) 2012-10-15 2017-10-10 Pioneer Hi-Bred International, Inc. Methods and compositions to enhance activity of Cry endotoxins
CN105451556B (zh) 2012-10-19 2017-11-14 拜尔农科股份公司 使用羧酰胺或硫代羧酰胺衍生物处理植物以抵抗对杀真菌剂具有抗性的真菌的方法
MX2015004778A (es) 2012-10-19 2015-08-14 Bayer Cropscience Ag Metodo para mejorar la tolerancia al estres abiotico en plantas usando derivados de carboxamida o tiocarboxamida.
MX2015004773A (es) 2012-10-19 2015-08-14 Bayer Cropscience Ag Metodo de promocion de crecimiento de planta usando derivados de carboxamida.
AU2013333916B2 (en) 2012-10-19 2017-05-25 Bayer Cropscience Ag Active compound combinations comprising carboxamide derivatives
WO2014071182A1 (en) 2012-11-01 2014-05-08 Massachusetts Institute Of Technology Directed evolution of synthetic gene cluster
CA2902002C (en) 2013-03-14 2023-08-01 Pioneer Hi-Bred International, Inc. Compositions and methods to control insect pests
CN105473605A (zh) * 2013-03-15 2016-04-06 先锋国际良种公司 Phi-4多肽及其使用方法
US9394345B2 (en) 2013-03-15 2016-07-19 Pioneer Hi-Bred International, Inc. PHI-4 polypeptides and methods for their use
CA2909725A1 (en) 2013-04-19 2014-10-23 Bayer Cropscience Aktiengesellschaft Method for improved utilization of the production potential of transgenic plants
TW201507722A (zh) 2013-04-30 2015-03-01 Bayer Cropscience Ag 做為殺線蟲劑及殺體內寄生蟲劑的n-(2-鹵素-2-苯乙基)-羧醯胺類
WO2014177514A1 (en) 2013-04-30 2014-11-06 Bayer Cropscience Ag Nematicidal n-substituted phenethylcarboxamides
WO2015035099A1 (en) 2013-09-04 2015-03-12 Symbiota, Inc. Agricultural endophyte-plant compositions, and methods of use
MX359026B (es) 2013-08-16 2018-09-12 Pioneer Hi Bred Int Proteinas insecticidas y metodos de uso.
BR122020001770B1 (pt) 2013-09-13 2022-11-29 Pioneer Hi-Bred International, Inc Construto de dna, método de obtenção de planta transgênica, proteína de fusão, método para controlar uma população de praga de inseto, método para inibir o crescimento ou matar uma praga de inseto
RU2747978C2 (ru) 2014-02-07 2021-05-18 Пайонир Хай-Бред Интернэшнл, Инк. Инсектицидные белки и способы их применения
BR112016018103B1 (pt) 2014-02-07 2024-01-16 E.I. Du Pont De Nemours And Company Polipeptídeo e seu uso, polinucleotídeo, composição, proteína de fusão, método para controlar uma população, método para inibir o crescimento, método para controlar a infestação, método para obtenção de uma planta ou célula vegetal, construto
WO2016000237A1 (en) 2014-07-03 2016-01-07 Pioneer Overseas Corporation Plants having enhanced tolerance to insect pests and related constructs and methods involving insect tolerance genes
US20170247719A1 (en) 2014-09-17 2017-08-31 Pioneer Hi-Bred International, Inc. Compositions and methods to control insect pests
CN113372421A (zh) 2014-10-16 2021-09-10 先锋国际良种公司 杀昆虫蛋白及其使用方法
US10491537B2 (en) * 2014-10-28 2019-11-26 Salesforce.Com, Inc. Facilitating dynamic hierarchical management of queue resources in an on-demand services environment
BR112017019419B1 (pt) 2015-03-11 2022-10-11 E. I. Du Pont De Nemours And Company Construto de dna, método de obtenção de uma planta transgênica e método para controlar uma população de praga de verme da raiz do milho
CA2981053A1 (en) 2015-04-17 2016-10-20 AgBiome, Inc. Pesticidal genes and methods of use
CN108064233B (zh) 2015-05-19 2022-07-15 先锋国际良种公司 杀昆虫蛋白及其使用方法
EP3960864A3 (en) 2015-06-03 2022-06-15 Agbiome, Inc. Pesticidal genes and methods of use
MX2017016119A (es) 2015-06-16 2018-03-07 Pioneer Hi Bred Int Composiciones y metodos para controlar plagas de insectos.
CA2989169A1 (en) 2015-06-22 2016-12-29 AgBiome, Inc. Pesticidal genes and methods of use
KR102461443B1 (ko) 2015-07-13 2022-10-31 피벗 바이오, 인크. 식물 형질 개선을 위한 방법 및 조성물
CN108513584A (zh) 2015-08-28 2018-09-07 先锋国际良种公司 苍白杆菌介导的植物转化
CA3001001A1 (en) 2015-10-05 2017-04-13 Massachusetts Institute Of Technology Nitrogen fixation using refactored nif clusters
EP3390431A1 (en) 2015-12-18 2018-10-24 Pioneer Hi-Bred International, Inc. Insecticidal proteins and methods for their use
UA126850C2 (uk) 2015-12-22 2023-02-15 Аґбайомі, Інк. Поліпептид, що має пестицидну активність проти шкідників lepidopteran
WO2017180715A2 (en) 2016-04-14 2017-10-19 Pioneer Hi-Bred International, Inc. Insecticidal polypeptides having improved activity spectrum and uses thereof
US11028407B2 (en) 2016-04-19 2021-06-08 Pioneer Hi-Bred International, Inc. Insecticidal combinations of polypeptides having improved activity spectrum and uses thereof
US11008585B2 (en) 2016-05-04 2021-05-18 Pioneer Hi-Bred International, Inc. Insecticidal proteins and methods for their use
EP3472323A1 (en) 2016-06-16 2019-04-24 Pioneer Hi-Bred International, Inc. Compositions and methods to control insect pests
CN109642237B (zh) 2016-06-24 2022-09-30 先锋国际良种公司 植物调节元件及其使用方法
CA3026113A1 (en) 2016-07-01 2018-01-04 Pioneer Hi-Bred International, Inc. Insecticidal proteins from plants and methods for their use
US20210292778A1 (en) 2016-07-12 2021-09-23 Pioneer Hi-Bred International, Inc. Compositions and methods to control insect pests
KR20190045293A (ko) 2016-09-06 2019-05-02 아그바이오메, 인크. 살충 유전자 및 사용 방법
CA3038806A1 (en) 2016-11-01 2018-05-11 Pioneer Hi-Bred International, Inc. Insecticidal proteins and methods for their use
US11174295B2 (en) 2016-12-14 2021-11-16 Pioneer Hi-Bred International, Inc. Insecticidal proteins and methods for their use
US11213028B2 (en) 2016-12-22 2022-01-04 Pioneer Hi-Bred International, Inc. Insecticidal proteins and methods for their use
RU2761666C2 (ru) * 2017-01-12 2021-12-13 Зингента Партисипейшнс Аг Инсектицидные белки
AU2018207204B2 (en) 2017-01-12 2023-11-30 Pivot Bio, Inc. Methods and compositions for improving plant traits
WO2018140214A1 (en) 2017-01-24 2018-08-02 Pioneer Hi-Bred International, Inc. Nematicidal protein from pseudomonas
BR112019015582A2 (pt) 2017-01-30 2020-03-10 AgBiome, Inc. Genes pesticidas e métodos de uso
CA3052794A1 (en) 2017-02-08 2018-08-16 Pioneer Hi-Bred International, Inc. Insecticidal combinations of plant derived insecticidal proteins and methods for their use
BR112019021380A2 (pt) 2017-04-11 2020-05-05 Agbiome Inc genes pesticidas e métodos de uso
US11555203B2 (en) 2017-05-11 2023-01-17 Pioneer Hi-Bred International, Inc. Insecticidal proteins and methods for their use
EP3630982A1 (en) 2017-05-26 2020-04-08 Pioneer Hi-Bred International, Inc. Insecticidal polypeptides having improved activity spectrum and uses thereof
CN111247164A (zh) 2017-08-03 2020-06-05 农业生物群落股份有限公司 杀有害生物基因及其使用方法
US20200165626A1 (en) 2017-10-13 2020-05-28 Pioneer Hi-Bred International, Inc. Virus-induced gene silencing technology for insect control in maize
BR112020008035A2 (pt) 2017-10-25 2020-10-27 Pivot Bio, Inc. métodos e composições para aprimorar micróbios geneticamente modificados que fixam nitrogênio
EP3728606A1 (en) 2017-12-22 2020-10-28 Agbiome, Inc. Pesticidal genes and methods of use
WO2019165245A1 (en) 2018-02-22 2019-08-29 Zymergen Inc. Method for creating a genomic library enriched for bacillus and identification of novel cry toxins
CN111770995A (zh) 2018-03-02 2020-10-13 齐默尔根公司 杀昆虫蛋白发现平台和自其发现的杀昆虫蛋白
EP3759489A1 (en) 2018-03-02 2021-01-06 Pioneer Hi-Bred International, Inc. Plant health assay
BR112020021445A2 (pt) 2018-04-20 2021-01-19 AgBiome, Inc. Genes pesticidas e métodos de uso
CA3096516A1 (en) 2018-05-22 2019-11-28 Pioneer Hi-Bred International, Inc. Plant regulatory elements and methods of use thereof
JP2021525774A (ja) 2018-06-04 2021-09-27 バイエル アクチェンゲゼルシャフトBayer Aktiengesellschaft 除草活性二環式ベンゾイルピラゾール
AU2019282149A1 (en) 2018-06-05 2021-01-21 LifeEDIT Therapeutics, Inc. RNA-guided nucleases and active fragments and variants thereof and methods of use
CN112739668A (zh) 2018-06-27 2021-04-30 皮沃特生物股份有限公司 包括重构固氮微生物的农业组合物
US11878999B2 (en) 2018-08-29 2024-01-23 Pioneer Hi-Bred International, Inc. Insecticidal proteins and methods for their use
BR112021012665A2 (pt) 2018-12-27 2021-11-03 Lifeedit Therapeutics Inc Polipeptídeos úteis para edição de genes e métodos de uso
AU2020329912A1 (en) 2019-08-12 2022-03-24 LifeEDIT Therapeutics, Inc. RNA-guided nucleases and active fragments and variants thereof and methods of use
WO2021076346A1 (en) 2019-10-18 2021-04-22 Pioneer Hi-Bred International, Inc. Maize event dp-202216-6 and dp-023211-2 stack
AU2020417760A1 (en) 2019-12-30 2022-08-04 LifeEDIT Therapeutics, Inc. RNA-guided nucleases and active fragments and variants thereof and methods of use
WO2021202513A1 (en) 2020-03-31 2021-10-07 Elo Life Systems Modulation of endogenous mogroside pathway genes in watermelon and other cucurbits
TW202208626A (zh) 2020-04-24 2022-03-01 美商生命編輯公司 Rna引導核酸酶及其活性片段與變體,以及使用方法
WO2021231437A1 (en) 2020-05-11 2021-11-18 LifeEDIT Therapeutics, Inc. Rna-guided nucleic acid binding proteins and active fragments and variants thereof and methods of use
EP4182466A2 (en) 2020-07-14 2023-05-24 Pioneer Hi-Bred International, Inc. Insecticidal proteins and methods for their use
WO2022015969A1 (en) 2020-07-15 2022-01-20 LifeEDIT Therapeutics, Inc. Uracil stabilizing proteins and active fragments and variants thereof and methods of use
US20230348928A1 (en) 2020-08-10 2023-11-02 Pioneer Hi-Bred International, Inc. Plant regulatory elements and methods of use thereof
KR20230084505A (ko) 2020-09-11 2023-06-13 라이프에디트 테라퓨틱스, 인크. Dna 변형 효소 및 그의 활성 단편 및 변이체 및 사용 방법
CR20230175A (es) 2020-10-23 2023-07-26 Elo Life Systems Inc Métodos para producir plantas de vainilla con mejor sabor y producción agronómica
WO2022115524A2 (en) 2020-11-24 2022-06-02 AgBiome, Inc. Pesticidal genes and methods of use
CN117295817A (zh) 2021-03-22 2023-12-26 生命编辑制药股份有限公司 Dna修饰酶及其活性片段和变体以及使用方法
BR112023023044A2 (pt) 2021-05-06 2024-01-23 Agbiome Inc Genes pesticidas e métodos de uso
CA3173953A1 (en) 2021-06-11 2023-12-10 Tyson D. BOWEN Rna polymerase iii promoters and methods of use
CA3239251A1 (en) 2021-12-07 2023-06-15 Rebekah Deter Kelly Pesticidal genes and methods of use
WO2023141602A2 (en) 2022-01-21 2023-07-27 Renagade Therapeutics Management Inc. Engineered retrons and methods of use
WO2023139557A1 (en) 2022-01-24 2023-07-27 LifeEDIT Therapeutics, Inc. Rna-guided nucleases and active fragments and variants thereof and methods of use
WO2023154887A1 (en) 2022-02-11 2023-08-17 Northeast Agricultural University Methods and compositions for increasing protein and/or oil content and modifying oil profile in a plant
WO2024020346A2 (en) 2022-07-18 2024-01-25 Renagade Therapeutics Management Inc. Gene editing components, systems, and methods of use
WO2024033901A1 (en) 2022-08-12 2024-02-15 LifeEDIT Therapeutics, Inc. Rna-guided nucleases and active fragments and variants thereof and methods of use
WO2024044596A1 (en) 2022-08-23 2024-02-29 AgBiome, Inc. Pesticidal genes and methods of use
WO2024042489A1 (en) 2022-08-25 2024-02-29 LifeEDIT Therapeutics, Inc. Chemical modification of guide rnas with locked nucleic acid for rna guided nuclease-mediated gene editing
WO2024044723A1 (en) 2022-08-25 2024-02-29 Renagade Therapeutics Management Inc. Engineered retrons and methods of use
WO2024095245A2 (en) 2022-11-04 2024-05-10 LifeEDIT Therapeutics, Inc. Evolved adenine deaminases and rna-guided nuclease fusion proteins with internal insertion sites and methods of use

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001016305A2 (en) * 1999-09-02 2001-03-08 Agresearch Limited Nucleotide sequences encoding an insectidal protein complex from serratia
WO2005038032A1 (en) * 2003-10-14 2005-04-28 Athenix Corporation Axmi-010, a delta-endotoxin gene and methods for its use

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US15066A (en) 1856-06-10 Machine for rubbing and polishing painted cloth
US2694101A (en) 1950-09-29 1954-11-09 Bell Telephone Labor Inc Vibration damper for transmission lines
US4196265A (en) 1977-06-15 1980-04-01 The Wistar Institute Method of producing antibodies
US5380831A (en) 1986-04-04 1995-01-10 Mycogen Plant Science, Inc. Synthetic insecticidal crystal protein gene
US4945050A (en) 1984-11-13 1990-07-31 Cornell Research Foundation, Inc. Method for transporting substances into living cells and tissues and apparatus therefor
US5039523A (en) 1988-10-27 1991-08-13 Mycogen Corporation Novel Bacillus thuringiensis isolate denoted B.t. PS81F, active against lepidopteran pests, and a gene encoding a lepidopteran-active toxin
AU642889B2 (en) 1989-07-11 1993-11-04 Biotechnology Research And Development Corporation Aerosol beam microinjector
US5240842A (en) 1989-07-11 1993-08-31 Biotechnology Research And Development Corporation Aerosol beam microinjector
CA2051562C (en) 1990-10-12 2003-12-02 Jewel M. Payne Bacillus thuringiensis isolates active against dipteran pests
TW261517B (zh) 1991-11-29 1995-11-01 Mitsubishi Shozi Kk
US5743477A (en) 1992-08-27 1998-04-28 Dowelanco Insecticidal proteins and method for plant protection
US5849870A (en) * 1993-03-25 1998-12-15 Novartis Finance Corporation Pesticidal proteins and strains
US5837458A (en) 1994-02-17 1998-11-17 Maxygen, Inc. Methods and compositions for cellular and metabolic engineering
US5605793A (en) 1994-02-17 1997-02-25 Affymax Technologies N.V. Methods for in vitro recombination
US6468523B1 (en) 1998-11-02 2002-10-22 Monsanto Technology Llc Polypeptide compositions toxic to diabrotic insects, and methods of use
AU1803601A (en) 1999-11-29 2001-06-04 Midwest Oilseeds, Inc. Methods and compositions for the introduction of molecules into cells
EP2455392A3 (en) 2006-06-15 2012-08-22 Athenix Corporation A family of pesticidal proteins and methods for their use
CA2956841A1 (en) 2007-10-16 2009-04-23 Athenix Corporation Axmi-066 and axmi-076: delta-endotoxin proteins and methods for their use
AR075371A1 (es) 2009-02-05 2011-03-30 Athenix Corp Genes de delta endotoxina variante axmi-r1 y metodos de uso de los mismos
JP5746055B2 (ja) 2009-02-27 2015-07-08 アテニックス・コーポレーションAthenix Corporaton 殺虫性タンパク質及びその使用方法
BRPI1009420A2 (pt) 2009-03-11 2016-03-01 Athenix Corp axmi-001, axmi-002, axmi-030, e axmi-045; genes de toxina e métodos para seu uso
HUE032365T2 (en) * 2009-07-02 2017-09-28 Athenix Corp AXMI-205 pesticide gene and methods of application

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001016305A2 (en) * 1999-09-02 2001-03-08 Agresearch Limited Nucleotide sequences encoding an insectidal protein complex from serratia
WO2005038032A1 (en) * 2003-10-14 2005-04-28 Athenix Corporation Axmi-010, a delta-endotoxin gene and methods for its use

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DAVID BOWEN等: "Insecticidal Toxins from the Bacterium Photorhabdus luminescens", 《SCIENCE》 *
MARK R.H.HURST等: "Plasmid-Located Pathogenicity Determinants of Serratia entomophila,the Causal Agent of Amber Disease of Grass Grub, Show Similarity to the Insecticidal Toxins of Photorhabdus luminescens", 《JOURNAL OF BACTERIOLOGY》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106133142A (zh) * 2014-03-28 2016-11-16 孟山都技术公司 具有抗鞘翅目昆虫活性的杀虫毒素蛋白
CN108064234A (zh) * 2015-04-22 2018-05-22 农业生物群落股份有限公司 杀虫基因和使用方法
US11060104B2 (en) 2015-04-22 2021-07-13 AgBiome, Inc. Pesticidal genes and methods of use
CN114644689A (zh) * 2015-04-22 2022-06-21 农业生物群落股份有限公司 杀虫基因和使用方法
CN109475096A (zh) * 2015-08-06 2019-03-15 先锋国际良种公司 植物来源的杀昆虫蛋白及其使用方法
CN109475096B (zh) * 2015-08-06 2022-08-23 先锋国际良种公司 植物来源的杀昆虫蛋白及其使用方法
CN111148432A (zh) * 2017-10-02 2020-05-12 先正达参股股份有限公司 工程化的杀有害生物蛋白和控制植物有害生物的方法
CN111148432B (zh) * 2017-10-02 2021-11-23 先正达参股股份有限公司 工程化的杀有害生物蛋白和控制植物有害生物的方法

Also Published As

Publication number Publication date
ES2609332T3 (es) 2017-04-19
UA105046C2 (uk) 2014-04-10
CA2766800C (en) 2019-08-06
CN102648281B (zh) 2017-04-05
RS55550B1 (sr) 2017-05-31
WO2011002992A1 (en) 2011-01-06
EP2449109B1 (en) 2016-09-28
MX346215B (es) 2017-03-10
CA2766800A1 (en) 2011-01-06
US20140051829A1 (en) 2014-02-20
EP2449109A1 (en) 2012-05-09
US9221883B2 (en) 2015-12-29
MX2012000202A (es) 2012-02-28
BR112012000030A8 (pt) 2022-07-05
US8575425B2 (en) 2013-11-05
US20110023184A1 (en) 2011-01-27
AR078052A1 (es) 2011-10-12
US9260487B2 (en) 2016-02-16
PL2449109T3 (pl) 2017-04-28
HUE032365T2 (en) 2017-09-28
ZA201200161B (en) 2015-01-28
US20140051837A1 (en) 2014-02-20
BR112012000030A2 (pt) 2016-09-20
US20140046049A1 (en) 2014-02-13

Similar Documents

Publication Publication Date Title
CN102648281B (zh) Axmi‑205杀虫基因和它的使用方法
CN102656185B (zh) 杀虫基因的axmi-192家族和使用它们的方法
CN102421905B (zh) 杀虫蛋白和使用它们的方法
US10875897B2 (en) AXMI205 variant proteins and methods for their use
CN102369286B (zh) 变体axmi-r1δ-内毒素基因和使用它们的方法
CN103975065B (zh) Axmi279杀虫基因及其使用方法
CN103974972B (zh) Axmi270毒素基因及其使用方法
EP2361307B1 (en) Pesticidal genes from Brevibacillus and methods for their use
CN104302663B (zh) AXMI345 δ‑内毒素基因及其使用方法
CN102892886A (zh) AXMI218、AXMI219、AXMI220、AXMI226、AXMI227、AXMI228、AXMI229、AXMI230、和AXMI231δ-内毒素基因以及它们的使用方法
CN104302662B (zh) 苏云金芽孢杆菌毒素基因axmi335及其使用方法
AU2010221183A1 (en) Methods and compositions for controlling plant pests
CN103635579A (zh) Axmi115变体灭虫基因及其使用方法
CN105636432B (zh) Axmi422毒素基因及其使用方法
RU2706488C2 (ru) Токсин axmi277 против нематод и способы его применения
EA042693B1 (ru) Гены токсинов axmi477, axmi482, axmi486 и axmi525 и способы их применения

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20200323

Address after: New jersey, USA

Patentee after: BASF Agricultural Solutions Seeds US LLC

Address before: Ludwigshafen, Germany

Patentee before: BASF SE

Effective date of registration: 20200323

Address after: Ludwigshafen, Germany

Patentee after: BASF SE

Address before: North Carolina, USA

Patentee before: ATHENIX Corp.