CN116003539A - 杀昆虫蛋白及其使用方法 - Google Patents

杀昆虫蛋白及其使用方法 Download PDF

Info

Publication number
CN116003539A
CN116003539A CN202310010225.4A CN202310010225A CN116003539A CN 116003539 A CN116003539 A CN 116003539A CN 202310010225 A CN202310010225 A CN 202310010225A CN 116003539 A CN116003539 A CN 116003539A
Authority
CN
China
Prior art keywords
seq
accession
polypeptide
plant
amino acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310010225.4A
Other languages
English (en)
Inventor
D.J.阿尔捷
J.K.巴里
R.M.格伯
S.D.格鲁弗
刘璐
U.谢伦伯格
卫俊智
谢卫平
N.亚尔帕尼
朱根海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pioneer Hi Bred International Inc
Original Assignee
Pioneer Hi Bred International Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Hi Bred International Inc filed Critical Pioneer Hi Bred International Inc
Publication of CN116003539A publication Critical patent/CN116003539A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8279Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
    • C12N15/8286Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for insect resistance
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N37/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids
    • A01N37/44Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids containing at least one carboxylic group or a thio analogue, or a derivative thereof, and a nitrogen atom attached to the same carbon skeleton by a single or double bond, this nitrogen atom not being a member of a derivative or of a thio analogue of a carboxylic group, e.g. amino-carboxylic acids
    • A01N37/46N-acyl derivatives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/21Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Pseudomonadaceae (F)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/24Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Enterobacteriaceae (F), e.g. Citrobacter, Serratia, Proteus, Providencia, Morganella, Yersinia
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/24Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Enterobacteriaceae (F), e.g. Citrobacter, Serratia, Proteus, Providencia, Morganella, Yersinia
    • C07K14/265Enterobacter (G)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/32Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Bacillus (G)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/33Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Clostridium (G)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/146Genetically Modified [GMO] plants, e.g. transgenic plants

Abstract

本发明涉及杀昆虫蛋白及其使用方法。具体地,提供了用于控制有害生物的组合物和方法。这些方法涉及用编码杀昆虫蛋白的核酸序列来转化生物体。具体地,这些核酸序列可用于制备具有杀昆虫活性的植物和微生物。因此,提供了经转化的细菌、植物、植物细胞、植物组织以及种子。组合物是细菌物种的杀昆虫核酸和蛋白。这些序列可用于构建随后转化到包括植物在内的目的生物体中的表达载体,作为用于分离其他同源(或部分同源的)基因的探针。这些杀有害生物蛋白可用于控制鳞翅目、鞘翅目、双翅目、真菌、半翅目和线虫有害生物群体,抑制其生长或将其杀灭,并且可用于生产具有杀昆虫活性的组合物。

Description

杀昆虫蛋白及其使用方法
本申请是申请日为2017年9月14目的中国专利申请201780065864.3“杀昆虫蛋白及其使用方法”的分案申请。
以电子方式提交的序列表的引用
与本说明书一起以计算机可读形式提交的序列表,其文件名为“6000WOPCT_SequenceList.txt”,创建于2017年9月1日,并且大小为199千字节。该序列表是本说明书的一部分并且以其全文通过引用并入本文。
技术领域
本公开涉及分子生物学领域。提供了编码杀有害生物蛋白的新颖基因。这些杀有害生物蛋白和编码它们的核酸序列可用于制备杀有害生物制剂和生产有害生物抗性转基因植物。
背景技术
使用微生物剂(如真菌、细菌或其他昆虫物种)对具有农业意义的昆虫有害生物进行生物防治,为合成型化学杀有害生物剂提供了环境友好且有商业吸引力的替代方案。一般来说,使用生物杀有害生物剂造成污染和环境危害的风险较低,并且生物杀有害生物剂提供比传统广谱化学杀昆虫剂所特有的靶特异性更强的靶特异性。另外,生物杀有害生物剂往往生产成本较低,并且因此能提高各种作物的经济产量。
已知芽孢杆菌属(Bacillus)微生物的某些物种对于一系列昆虫有害生物具有杀有害生物活性,这些昆虫有害生物包括鳞翅目(Lepidoptera)、双翅目(Diptera)、鞘翅目(Coleoptera)、半翅目(Hemiptera)等。苏云金芽孢杆菌(Bacillus thuringiensis,Bt)和日本金龟子芽孢杆菌(Bacillus popilliae)是迄今为止发现的最成功的生物防治剂。昆虫致病性还归因于幼虫芽孢杆菌(B.larvae)、缓病芽孢杆菌(B.lentimorbus)、球形芽孢杆菌(B.sphaericus)和蜡状芽孢杆菌(B.cereus)的菌株。微生物杀昆虫剂,特别是从芽孢杆菌属菌株获得的那些微生物杀昆虫剂,作为有害生物化学防治的替代品在农业上起着重要作用。
通过将作物植物进行遗传工程改造以生产来自芽孢杆菌属的杀有害生物蛋白,已经开发出昆虫抗性增强的作物植物。例如,已经对玉米和棉花植物进行遗传工程改造以产生从Bt株分离的杀有害生物蛋白。现在,这些遗传工程化作物广泛应用于农业中,并且为农民提供了取代传统昆虫防治方法的环境友好型替代方案。虽然它们已被证明在商业上非常成功,但是这些遗传工程化抗昆虫作物植物仅针对窄范围的经济上重要的昆虫有害生物提供抗性。在某些情况下,昆虫可以对不同杀昆虫化合物产生抗性,这就导致需要鉴定用于有害生物防治的替代性生物防治剂。
因此,仍然需要对昆虫有害生物具有不同范围的杀昆虫活性的新颖杀有害生物蛋白,例如针对鳞翅目和鞘翅目中的各种昆虫具有活性的杀昆虫蛋白,这些昆虫包括但不限于已对现存杀昆虫剂产生抗性的昆虫有害生物。
发明内容
提供了用于对细菌、植物、植物细胞、组织以及种子赋予杀有害生物活性的组合物和方法。组合物包含杀有害生物和杀昆虫多肽的核酸分子编码序列、包含那些核酸分子的载体、以及包含这些载体的宿主细胞。组合物还包括这些杀有害生物多肽序列以及针对那些多肽的抗体。这些核酸序列可以在DNA构建体或表达盒中使用,以用于在多种生物体(包括微生物和植物)中进行转化和表达。这些核苷酸或氨基酸序列可以是合成序列,这些合成序列已经被设计用于在生物体中表达,该生物体包括但不限于:微生物或植物。组合物还包含经转化的细菌、植物、植物细胞、组织以及种子。
具体地,提供了编码杀昆虫蛋白IPD078-1、IPD078-2、IPD084、IPD086-1、IPD086-2、IPD087、和IPD089多肽的分离的或重组的核酸分子,这些多肽包括氨基酸取代、缺失、插入,及其片段,以及其组合。因此,涵盖了对应于IPD078-1、IPD078-2、IPD084、IPD086-1、IPD086-2、IPD087、和IPD089多肽的氨基酸序列。提供了分离或重组的核酸分子,这些分离或重组的核酸分子能够编码具有SEQ ID NO:43-82的IPD078-1、IPD078-2、IPD084、IPD086-1、IPD086-2、IPD087、和IPD089多肽,连同其氨基酸取代、缺失、插入、片段及其组合。还涵盖了与实施例的核酸序列互补或与实施例的序列杂交的核酸序列。还提供了具有SEQ ID NO:43-82的分离或重组的IPD078-1、IPD078-2、IPD084、IPD086-1、IPD086-2、IPD087、和IPD089多肽,以及其氨基酸取代、缺失、插入、片段及其组合。
提供了用于产生杀昆虫多肽,以及使用这些多肽来控制或杀灭鳞翅目、鞘翅目、线虫、真菌、和/或双翅目有害生物的方法。实施例的转基因植物表达本文公开的杀有害生物序列中的一种或多种。在不同的实施例中,该转基因植物进一步包含一种或多种另外的杀有害生物蛋白,例如,用于控制鞘翅目、鳞翅目、半翅目或线虫有害生物的一种或多种另外的基因。本领域技术人员将理解,转基因植物可以包含给予目的农艺性状的任何基因。
还包括用于在样品中检测实施例的核酸和多肽的方法。提供了用于在样品中检测本公开的杀昆虫多肽的存在或检测编码本公开的杀昆虫多肽的核苷酸序列的存在的试剂盒。该试剂盒可以与实施预期试剂检测的方法所需的所有试剂和对照样品,以及使用说明书一起提供。
实施例的这些组合物和方法可用于产生具有增强的有害生物抗性或耐受性的生物体。这些生物体以及包含这些生物体的组合物对于农业目的是所希望的。实施例的组合物还可用于产生改变或改进的具有杀有害生物活性的蛋白质,或可用于在产物或生物体中检测本公开的杀昆虫多肽或编码其的核酸的存在。
附图说明
图1A-1D.(图1A)IPD085、(图1B)IPD086-1、(图1C)IPD086-2、和(图1D)IPD089蛋白质种类的成员的蛋白质序列比对。
图2.用编码IPD078-1(SEQ ID NO:43)和IPD078-2(SEQ ID NO:44)的多核苷酸的两种构建体组合瞬时共转化的加利福尼亚小白(California small white)叶圆盘的摄食抑制。1-At-UBQ10:BAA:IPD078-1(ModB)(SEQ ID NO:3)+At-UBQ10:IPD078-2(SEQ ID NO:4);2-At-UBQ10:BAA:IPD078-1(ModB)(SEQ ID NO:3)+GMUBQ:IPD078-2(SEQ ID NO:4);对照-未浸润的叶圆盘。
具体实施方式
应理解,本公开不局限于所描述的特定方法、方案、细胞系、属、以及试剂,因此可以变化。还应当理解的是本文所使用的术语是仅为了描述具体实施例的目的,并且不旨在限制本公开的范围。
如本文使用的,单数形式“一个/种(a/an)”以及“所述/该(the)”包括复数个指示物,除非上下文中另有明确指明。因此,例如,提及“细胞”包括多个这样的细胞,并且提及“蛋白质”包括本领域技术人员已知的一种或多种蛋白质及其等同物,等等。本文所使用的所有技术和科学术语具有与本公开所属领域的普通技术人员通常所理解相同的含义,除非另有明确说明。
本公开涉及用于控制有害生物的组合物和方法。这些方法涉及用编码本公开的杀昆虫多肽的核酸序列转化生物体。具体地,实施例的核酸序列可用于制备具有杀有害生物活性的植物和微生物。因此,提供了经转化的细菌、植物、植物细胞、植物组织以及种子。组合物是细菌物种的杀有害生物核酸和蛋白。这些核酸序列可用于构建随后转化到目的生物体中的表达载体,作为用于分离其他同源(或部分同源)基因的探针,并且用于通过本领域已知的方法(如定位诱变、结构域交换或DNA改组)生产改变的杀昆虫多肽。本公开的杀昆虫多肽可用于控制或杀灭鳞翅目、鞘翅目、双翅目、真菌、半翅目和线虫有害生物群体并且可用于生产具有杀有害生物活性的组合物。目的昆虫有害生物包括但不限于鳞翅目物种和鞘翅目物种,这些鳞翅目物种包括但不限于小菜蛾(diamond-back moth),例如玉米穗虫(Helicoverpa zea Boddie);大豆夜蛾(soybean looper),例如大豆尺夜蛾(Pseudoplusiaincludens Walker);和黎豆夜蛾(velvet bean caterpillar),例如梨豆夜蛾(Anticarsiagemmatalis Hübner);这些鞘翅目物种包括但不限于西方玉米根虫(玉米根萤叶甲(Diabrotica virgifera))-WCRW、南方玉米根虫(斑点黄瓜甲虫(Diabroticaundecimpunctata howardi))-SCRW和北方玉米根虫(北方玉米根虫(Diabroticabarberi))-NCRW。
在本文中使用“杀有害生物毒素”或“杀有害生物蛋白”来指毒素或与这种蛋白质具有同源性的蛋白质,该毒素具有针对以下一种或多种有害生物的毒性活性,这些有害生物包括但不局限于:鳞翅目、双翅目、半翅目以及鞘翅目或线虫门的成员。已经从生物体中分离出杀有害生物蛋白,这些生物体包括例如芽孢杆菌属(Bacillus)物种、假单胞菌属(Pseudomonas)物种、发光杆菌属(Photorhabdus)物种、致病杆菌属(Xenorhabdus)物种、双酶梭菌(Clostridium bifermentans)、伯克霍尔氏菌属(Burkholderia)物种、阴沟肠杆菌(Enterobacter cloacae)以及鲍比氏类芽孢杆菌(Paenibacillus popilliae)。
在一些实施例中,本公开的杀昆虫多肽包括从在此公开的全长核酸序列推导出的氨基酸序列和短于全长序列的氨基酸序列,这是由于使用替代的下游起始位点或由于产生具有杀有害生物活性的较短蛋白质的加工。加工可以在表达该蛋白的生物体内或在摄取蛋白后的有害生物中发生。
因此,本文提供了赋予杀有害生物活性的新颖的分离的或重组的核酸序列。还提供了本公开的杀有害生物多肽的氨基酸序列。由这些杀昆虫多肽基因的翻译而产生的蛋白质允许细胞控制或杀灭摄取了该蛋白质的有害生物。
核酸分子及其变体和片段
本公开的一方面涉及分离的或重组的核酸分子,这些核酸分子包含编码本公开的杀昆虫多肽或其生物活性部分的核酸序列;并且涉及以下核酸分子,这些核酸分子足以用作杂交探针来鉴定编码具有序列同源性的区域的蛋白质的核酸分子。如本文使用的,术语“核酸分子”是指DNA分子(例如,重组DNA、cDNA、基因组DNA、质粒DNA、线粒体DNA)和RNA分子(例如,mRNA)以及使用核苷酸类似物而产生的DNA或RNA的类似物。该核酸分子可以是单链的或双链的,但优选地是双链的DNA。
在本文中使用“分离的”核酸分子(或DNA)来指不再处于其天然环境中,例如处于体外的核酸序列(或DNA)。在本文中使用“重组”核酸分子(或DNA)来指在重组细菌或植物宿主细胞中的核酸序列(或DNA)。在一些实施例中,“分离的”或“重组的”核酸不含有在衍生出该核酸的生物体的基因组DNA中天然地位于该核酸侧翼的序列(即,位于该核酸的5′和3′端的序列)(优选编码蛋白质的序列)。出于本公开的目的,“分离的”或“重组的”当用于指核酸分子时排除分离的染色体。例如,在各种实施例中,编码杀昆虫多肽的重组核酸分子可以包含小于约5kb、4kb、3kb、2kb、1kb、0.5kb或0.1kb的核酸序列,这些核酸序天然地位于衍生出该核酸的细胞的基因组DNA中的核酸分子的侧翼。
在一些实施例中,编码本公开的杀昆虫多肽的分离核酸分子与天然或基因组核酸序列相比具有核酸序列的一个或多个变化。在一些实施例中,天然或基因组核酸序列的变化包括但不限于:由于遗传密码的简并性造成的核酸序列的变化;与天然或基因组序列相比,由于氨基酸取代、插入、缺失和/或添加造成的核酸序列的变化;一个或多个内含子的去除;一个或多个上游或下游调节区域的缺失;和与基因组核酸序列相关的5′和/或3′非翻译区域的缺失。在一些实施例中,编码杀昆虫多肽的核酸分子是非基因组序列。
本公开涵盖编码IPD078-1、IPD078-2、IPD084、IPD086-1、IPD086-2、IPD087、和IPD089多肽的多核苷酸。考虑了编码IPD078-1、IPD078-2、IPD084、IPD086-1、IPD086-2、IPD087、和IPD089多肽的多种多核苷酸。编码IPD078-1、IPD078-2、IPD084、IPD086-1、IPD086-2、IPD087、和IPD089多肽或相关蛋白的多核苷酸的来源是含有SEQ ID NO:1-42的多核苷酸之一的细菌菌株。编码IPD078-1、IPD078-2、IPD084、IPD086-1、IPD086-2、IPD087、或IPD089多肽或相关蛋白的多核苷酸的来源可以来自假单胞菌属、伯克霍尔德菌属、肠杆菌属、脱硫弧菌属(Desulfovibrio)、果胶杆菌属(Pectobacterium)、克雷伯菌属(Klebsiella)、盐弧菌属(Salinivibrio)、中华根瘤菌属(Sinorhizobium)、海水菌属(Aquimarina)、或诺卡氏菌属(Nocardia)菌株。编码IPD078-1、IPD078-2、IPD084、IPD086-1、IPD086-2、IPD087、或IPD089多肽或相关蛋白的多核苷酸的一个来源来自假单胞菌属菌株(该假单胞菌属菌株选自但不限于绿针假单胞菌(Pseudomonas chlororaphis)、虫媒假单胞菌(Pseudomonas entomophila)、铜绿假单胞菌(Pseudomonas aueruginosa)、假单胞菌噬菌体(Pseudomonas phage)、丁香假单胞菌(Pseudomonas syringae)、亚麻假单胞菌(Pseudomonas lini)),Aquimarina muelleri,Nocardia gamkensis,阴沟肠杆菌,大叶藻脱硫弧菌(Desulfovibrio zosterae),苜蓿中华根瘤菌(Sinorhizobium medicae),胡萝卜软腐果胶杆菌(Pectobacterium carotovorum),山葵果胶杆菌(Pectobacteriumwasabiae),拟肺炎克雷伯菌(Klebsiella quasipneumoniae),Burkholderia ambifaria,新洋葱伯克霍尔德菌(Burkholderia cenocepacia),吡咯伯克霍尔德菌(Burkholderiapyrrocinia),荚壳伯克霍尔德菌(Burkholderia glumae),Burkholderia anthina,多噬伯克霍尔德菌(Burkholderia multivorans),和洋葱伯克霍尔德菌(Burkholderiacepacia)。
在一些实施例中,多核苷酸编码与SEQ ID NO:1-42的一个或多个的氨基酸序列充分同源并且具有杀昆虫活性的IPD078-1、IPD078-2、IPD084、IPD086-1、IPD086-2、IPD087、或IPD089多肽。在本文中使用“充分同源的”来指使用本文所述的比对程序之一,使用标准参数,与参比序列相比,具有至少约50%、55%、60%、65%、70%、71%、72%、73%、74%、75%、76%、77%、78%、79%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更大序列同源性的氨基酸序列。本领域技术人员将认识到,考虑到氨基酸相似性等,可以适当地调整这些值以确定蛋白质的相应同源性。如本文使用的,术语“约”,当与序列同一性一起使用时,意指±0.5%。在一些实施例中,序列同源性针对IPD078-1、IPD078-2、IPD084、IPD086-1、IPD086-2、IPD087、或IPD089多肽的全长序列。
在一些实施例中,该多核苷酸编码与SEQ ID NO:43-82的一个或多个相比具有至少约50%、55%、60%、65%、70%、71%、72%、73%、74%、75%、76%、77%、78%、79%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高序列同一性的IPD078-1、IPD078-2、IPD084、IPD086-1、IPD086-2、IPD087、或IPD089多肽。
这些多核苷酸序列从假单孢菌属、伯克霍尔德菌属、肠杆菌属、脱硫弧菌属、果胶杆菌属、克雷伯菌属、盐弧菌属、中华根瘤菌属、海水菌属、或诺卡氏菌属或其他细菌宿主中分离出来,并且因此适用于在其他细菌宿主中表达编码的杀昆虫多肽,这些其他细菌宿主包括但不限于农杆菌属(Agrobacterium)、芽孢杆菌属、埃希氏杆菌属(Escherichia)、沙门氏菌属(Salmonella)、假单胞菌属和根瘤菌属(Rhizobium)细菌宿主细胞。多核苷酸还可用作用于分离编码本公开的杀昆虫多肽或相关蛋白的同源或基本上同源的多核苷酸的探针。这样的探针可用于鉴定源自假单胞菌属或其他相关细菌的同源或基本上同源的多核苷酸。
编码杀昆虫多肽的多核苷酸也可以从多肽序列中重新合成。多核苷酸基因的序列可以通过使用遗传密码从多肽序列推导出来。计算机程序如“BackTranslate”(GCGTM包,阿克莱瑞公司(Acclerys,Inc.),加利福尼亚州圣迭戈市)可用于将肽序列转换成编码该肽的相应核苷酸序列。此外,可以使用本领域已知的技术设计本公开的合成的多核苷酸序列使得它们在植物中表达。
在本文中使用“互补序列”来指与给定核酸序列充分互补的核酸序列,使得其可以与该给定核酸序列杂交从而形成稳定的双链体。在本文中使用“多核苷酸序列变体”来指除遗传密码的简并性之外编码相同多肽的核酸序列。
在一些实施例中,编码本公开的杀昆虫多肽的核酸分子是非基因组核酸序列。如本文使用的,“非基因组核酸序列”或“非基因组核酸分子”是指与天然或基因组核酸序列相比,在该核酸序列上具有一个或多个改变的核酸分子。在一些实施例中,天然或基因组核酸分子的变化包括但不限于:由于遗传密码的简并性造成的核酸序列的变化;用于在植物中表达的核酸序列的密码子优化;与天然或基因组序列相比,引入至少一个氨基酸取代、插入、缺失和/或添加的核酸序列的变化;去除与该基因组核酸序列相关的一个或多个内含子;插入一个或多个异源内含子;缺失与该基因组核酸序列相关的一个或多个上游或下游调节区;插入一个或多个异源上游或下游调节区;缺失与该基因组核酸序列相关的5′和/或3′非翻译区;插入异源5′和/或3′非翻译区;和聚腺苷酸化位点的修饰。在一些实施例中,非基因组核酸分子是cDNA。
还提供了编码随后被剪接以最终产生功能性杀昆虫多肽的转录和/或翻译产物的核酸分子。剪接可以在体外或体内完成,并且可以涉及顺式或反式剪接。用于剪接的底物可以是多核苷酸(例如,RNA转录物)或多肽。多核苷酸的顺式剪接的实例是其中插入到编码序列中的内含子被去除并且两个侧翼的外显子区域被剪接以产生本公开的杀昆虫多肽编码序列。反式剪接的实例是通过将该编码序列分离成两个或更多个片段来对多核苷酸进行加密,这些片段可以单独转录并且然后被剪接以形成全长杀有害生物编码序列。使用可以引入到构建体中的剪接增强子序列可以促进多肽的顺式或反式剪接。因此,在一些实施例中,多核苷酸不直接编码本公开的全长杀昆虫多肽,而是编码本公开的杀昆虫多肽的一个或多个片段。这些多核苷酸可用于通过涉及剪接的机制来表达本公开的功能性杀昆虫多肽,其中剪接可以在多核苷酸(例如,内含子/外显子)和/或多肽(例如,内含肽/外显肽)的水平上发生。这可以用于,例如,控制杀有害生物活性的表达,因为如果在允许剪接过程以产生功能性产物的环境中表达所有必需的片段,则仅表达功能性杀有害生物多肽。在另一个实例中,将一个或多个插入序列引入多核苷酸中可促进与低同源性多核苷酸的重组;使用针对该插入序列的内含子或内含肽便于去除该间插序列,从而恢复经编码的变体的功能。
这些实施例还涵盖了作为编码杀昆虫多肽的这些核酸序列的片段的核酸分子。如本文使用的“片段”是指编码本公开的杀昆虫多肽的核酸序列的部分。核酸序列的片段可以编码本公开的杀昆虫多肽的生物活性部分,或者它可以是可以用作使用以下公开的方法的杂交探针或PCR引物的片段。作为编码本公开的杀昆虫多肽的核酸序列的片段的核酸分子包含至少约130、140、150、160、170、180、190、200、210、220、230、240、250或260个连续核苷酸或高达编码在此所公开的本公开的杀昆虫多肽的全长核酸序列中存在的数量的核苷酸,这取决于所预期的用途。在本文中使用“连续核苷酸”来指彼此紧邻的核苷酸残基。实施例的核酸序列的片段将编码保留本公开的杀昆虫多肽的生物活性并因此保留杀昆虫活性的蛋白片段。在本文中使用“保留杀昆虫活性”来指具有全长天然多肽的至少约10%、至少约30%、至少约50%、至少约70%、80%、90%、95%或更高的杀昆虫活性的多肽。在一个实施例中,该杀昆虫活性是鳞翅目活性。在一个实施例中,该杀昆虫活性针对鞘翅目物种。在一个实施例中,该杀昆虫活性针对根萤叶甲属(Diabrotica)物种。在一个实施例中,该杀昆虫活性针对玉米根虫复合体的一种或多种昆虫有害生物:西方玉米根虫,玉米根萤叶甲(Diabrotica virgifera virgifera);北方玉米根虫(northern corn rootworm,D.barberi),南方玉米根虫或斑点黄瓜甲虫(spotted cucumber beetle);斑点黄瓜甲虫(Diabrotica undecimpunctata howardi),和墨西哥玉米根虫(Mexican corn rootworm,D.virgiferazeae)。在一个实施例中,杀昆虫活性针对西方玉米根虫,玉米根萤叶甲。
在一些实施例中,编码本公开的杀昆虫多肽或编码蛋白的生物学活性部分的核酸序列的片段将编码至少约15、20、30、40、50、60、70、75、76、77、78、79、80、81、82、83、84或85个连续氨基酸或高达这些实施例的全长杀昆虫多肽中存在的总数量的氨基酸。在一些实施例中,该片段是通过以下各项进行的来自N-末端和/或C-末端的至少约1、2、3、4、5、6、7、8、9、10、11、12、13、14或更多氨基酸的N-末端和/或C-末端截短:蛋白水解、起始密码子的插入、编码缺失的氨基酸的密码子的缺失并伴随终止密码子插入,或在编码序列中插入终止密码子。
本公开提供编码本文公开的任何杀昆虫多肽的分离或重组多核苷酸。在某些实施例中,SEQ ID NO:1-42中所示的重组多核苷酸编码本文公开的杀昆虫多肽。在另外的实施例中,表2中所示的多核苷酸编码如表2中所示的多肽。本领域普通技术人员将容易理解,由于遗传密码的简并性,存在编码本公开的杀昆虫多肽的许多核苷酸序列。
技术人员将进一步了解,可以通过核酸序列的突变引入变化,从而导致编码的杀昆虫多肽的氨基酸序列的变化,而不改变蛋白质的生物活性。因此,变体核酸分子可以通过以下方式产生:将一个或多个核苷酸取代、添加和/或缺失引入本文所公开的相应的核苷酸序列中,这样使得将一个或多个氨基酸取代、添加或缺失引入所编码的蛋白质中。通过标准技术可以引入突变,例如定点诱变和PCR介导的诱变。此类变体核酸序列也被本公开所涵盖。
可替代地,可以通过沿编码序列的全部或部分随机引入突变(例如通过饱和诱变)来制备变体核酸序列,并且可以筛选所得突变体赋予杀有害生物活性以鉴定保留活性的突变体的能力。在诱变之后,所编码的蛋白质可以进行重组表达,并且该蛋白质的活性可以使用标准的测定技术来确定。
本公开的多核苷酸及其片段任选用作各种重组和递归(recursive)重组反应的底物,除了例如Ausubel、Berger和Sambrook所述的标准克隆方法之外,即,以产生具有所需特性的另外的杀有害生物多肽同源物及其片段。用于生产本文列出的任何核酸的变体的方法(这些方法包括将此多核苷酸与第二(或更多)多核苷酸递归重组,从而形成变体多核苷酸文库)也是本公开的实施例,所产生的文库、包括这些文库的细胞和通过这些方法产生的任何重组多核苷酸也是如此。另外,这样的方法任选地包括基于杀有害生物活性从这些文库中选择变体多核苷酸,正如其中这样的递归重组在体外或体内进行。
各种多样性产生方案(包括核酸递归重组方案)是可获得的并且在本领域中被充分描述。这些方法可以单独和/或组合使用以产生核酸或核酸集合的一种或多种变体,以及所编码蛋白质的变体。单独地或整体地,这些方法提供了产生多样化核酸和核酸集合(包括例如核酸文库)的稳健且广泛适用的方式,这些方式可用于,例如,具有新的和/或改进的特征的核酸、蛋白质、途径、细胞和/或生物体的工程化或快速进化。
虽然为清除起见,在随后的讨论过程中作出了区分和分类,但是应当理解,这些技术通常不是相互排斥的。实际上,各种方法可以单独使用或组合、平行或串联使用,以便取得不同的序列变体。
本文所述的任何多样性产生程序的结果可以是一种或多种核酸的产生,其可以选择或筛选具有或赋予所需特性的核酸或编码具有或者赋予所需特性的蛋白的核酸。通过本文公开的或技术人员以其他方式可用的一种或多种方法进行多样化之后,可以针对所需活性或特性(例如,杀有害生物活性)或在所需pH下的这种活性等选择所产生的任何核酸。这可以包括通过本领域任何测定来鉴定可以例如以自动化或可自动化形式检测的任何活性,参见例如以下的杀昆虫活性筛选的讨论。各种相关(或甚至不相关)的特性可以由执业者酌情串联或平行评估。
用于产生经修饰的核酸序列(例如编码具有杀有害生物活性的多肽或其片段的那些)的各种多样性产生程序的描述可以在以下出版物和其中引用的参考文献中找到:Soong等人,(2000)Nat Genet[自然遗传学]25(4):436-439;Stemmer等人,(1999)TumorTargeting[肿瘤靶向]4:1-4;Ness等人,(1999)Nat Biotechnol[自然生物技术]17:893-896;Chang等人,(1999)Nat Biotechnol[自然生物技术]17:793-797;Minshull和Stemmer,(1999)Curr Opin Chem Biol[生物化学当代观点]3:284-290;Christians等人,(1999)NatBiotechnol[自然生物技术]17:259-264;Crameri等人,(1998)Nature[自然]391:288-291;Crameri等人,(1997)Nat Biotechnol[自然生物技术],15:436-438;Zhang等人,(1997)PNAS USA[美国科学院院报]94:4504-4509;Paten等人,(1997)Curr Opin Biotechnol[生物技术当代观点]8:724-733;Crameri等人,(1996)Nat Med[自然医学]2:100-103;Crameri等人,(1996)Nat Biotechnol[自然生物技术],14:315-319;Gates等人,(1996)J Mol Biol[分子生物学杂志]255:373-386;Stemmer,(1996)“Sexual PCR and Assembly PCR[有性PCR和组装PCR]”在:The Encyclopedia of Molecular Biology.[分子生物学百科全书]VCH出版商,纽约,第447-457页;Crameri和Stemmer,(1995)Bio Techniques[生物技术]18:194-195;Stemmer等人,(1995)Gene[基因],164:49-53;Stemmer,(1995)Science[科学]270:1510;Stemmer,(1995)Bio/Technology[生物/技术]13:549-553;Stemmer,(1994)Nature[自然]370:389-391和,(1994)PNAS USA[美国科学院院报]91:10747-10751。
产生多样性的突变方法包括例如定点诱变(Ling等人,(1997)Anal Biochem[分析生物化学]254(2):157-178;Dale等人,(1996)Methods Mol Biol[分子生物学方法]57:369-374;Smith,(1985)Ann Rev Genet[遗传学年评]19:423-462;Botstein和Shortle,(1985)Science[科学]229:1193-1201;Carter,(1986)Biochem J[生物化学杂志]237:1-7和Kunkel,(1987)“The efficiency of oligonucleotide directed mutagenesis[寡核苷酸定向诱变的效率]”,在:Nucleic Acids&Molecular Biology[核酸与分子生物学](Eckstein和Lilley编辑,Springer Verlag[施普林格出版公司],柏林));使用含尿嘧啶的模板的诱变(Kunkel,(1985)PNAS USA[美国科学院院报]82:488-492;Kunkel等人,(1987)Methods Enzymol[酶学方法]154:367-382以及Bass等人,(1988)Science[科学]242:240-245);寡核苷酸定向诱变(Zoller和Smith,(1983)Methods Enzymol[酶学方法]100:468-500;Zoller和Smith,(1987)Methods Enzymol[酶学方法]154:329-350(1987);Zoller和Smith,(1982)Nucleic Acids Res[核酸研究]10:6487-6500);经硫代磷酸修饰的DNA诱变(Taylor等人,(1985)Nucl Acids Res[核酸研究]13:8749-8764;Taylor等人,(1985)NuclAcids Res[核酸研究]13:8765-8787(1985);Nakamaye和Eckstein,(1986)Nucl Acids Res[核酸研究]14:9679-9698;Sayers等人,(1988)Nucl Acids Res[核酸研究]16:791-802以及Sayers等人,(1988)Nucl Acids Res[核酸研究]16:803-814);使用有缺口的双链体DNA的诱变(Kramer等人,(1984)Nucl Acids Res[核酸研究]12:9441-9456;Kramer和Fritz,(1987)Methods Enzymol[酶学方法]154:350-367;Kramer等人,(1988)Nucl Acids Res[核酸研究]16:7207以及Fritz等人,(1988)Nucl Acids Res[核酸研究]16:6987-6999)。
其他合适的方法包括点错配修复(Kramer等人,(1984)Cell[细胞]38:879-887)、使用有修复缺陷的宿主菌株的诱变(Carter等人,(1985)Nucl Acids Res[核酸研究]13:4431-4443以及Carter,(1987)Methods in Enzymol[酶学方法]154:382-403)、缺失诱变(Eghtedarzadeh和Henikoff,(1986)Nucl Acids Res[核酸研究]14:5115)、限制性-选择和限制性-纯化(Wells等人,(1986)Phil TransRSoc Lond A[伦敦皇家学会哲学会刊系列A]317:415-423)、通过全基因合成的诱变(Nambiar等人,(1984)Science[科学]223:1299-1301;Sakamar和Khorana,(1988)Nucl Acids Res[核酸研究]14:6361-6372;Wells等人,(1985)Gene[基因]34:315-323以及等人,(1985)Nucl Acids Res[核酸研究]13:3305-3316)、双链断裂修复(Mandecki,(1986)PNAS USA[美国科学院院报],83:7177-7181以及Arnold,(1993)Curr Opin Biotech[生物技术当代观点]4∶450-455)。许多上述方法的另外的细节可以在Methods Enzymol[酶学方法]第154卷中找到,其还描述了用各种诱变方法进行故障问题解决的有用对照。
关于各种多样性产生方法的另外的细节可以在以下美国专利、PCT公开物和申请和EPO公开物中找到:美国专利号5,723,323、美国专利号5,763,192、美国专利号5,814,476、美国专利号5,817,483、美国专利号5,824,514、美国专利号5,976,862、美国专利号5,605,793、美国专利号5,811,238、美国专利号5,830,721、美国专利号5,834,252、美国专利号5,837,458、WO 1995/22625、WO 1996/33207、WO 1997/20078、WO 1997/35966、WO 1999/41402、WO 1999/41383、WO 1999/41369、WO 1999/41368、EP 752008、EP 0932670、WO 1999/23107、WO 1999/21979、WO 1998/31837、WO 1998/27230、WO 1998/27230、WO 2000/00632、WO 2000/09679、WO 1998/42832、WO 1999/29902、WO 1998/41653、WO 1998/41622、WO1998/42727、WO 2000/18906、WO 2000/04190、WO 2000/42561、WO 2000/42559、WO 2000/42560、WO 2001/23401和PCT/US01/06775。
实施例的核苷酸序列还可以用于从其他生物体(特别是其他细菌,特别是假单胞菌属、伯克霍尔德菌属、肠杆菌属、脱硫弧菌属、果胶杆菌属、克雷伯菌属、盐弧菌属、中华根瘤菌属、海水菌属、或诺卡氏菌属物种,并且更特别地是绿针假单胞菌、虫媒假单胞菌、铜绿假单胞菌、假单胞菌噬菌体、丁香假单胞菌、亚麻假单胞菌、Aquimarina muelleri、Nocardia gamkensis、阴沟肠杆菌、大叶藻脱硫弧菌、苜蓿中华根瘤菌、胡萝卜软腐果胶杆菌、山葵果胶杆菌、拟肺炎克雷伯菌、Burkholderia ambifaria、新洋葱伯克霍尔德菌、吡咯伯克霍尔德菌、荚壳伯克霍尔德菌、Burkholderia anthina、多噬伯克霍尔德菌、或洋葱伯克霍尔德菌菌株)中分离相应的序列。以这种方式,可以使用如PCR、杂交等方法来鉴定这样的序列(基于其与本文阐明的序列的序列同源性)。实施例涵盖基于与本文阐明的全部序列或其片段的序列同一性选择的序列。这些序列包含作为公开序列的直向同源物的序列。术语“直向同源物”是指衍生自共同祖先基因并且由于物种形成而在不同物种中发现的基因。当其核苷酸序列和/或其编码的蛋白质序列共有如本文其他地方所定义的实质同一性时,在不同物种中发现的基因被认为是直向同源物。直向同源物的功能通常在物种间是高度保守的。
使用以下术语来描述在两个或更多个多核苷酸或多肽之间的序列关系:(a)“参比序列”,(b)“比较窗口”,(c)“序列同一性”,和(d)“序列同一性百分比”。
(a)如本文使用的,“参比序列”是用作序列比较的基础的确定序列。参比序列可以是指定序列的子集或整体;例如,作为全长cDNA或基因序列的区段、或完整的cDNA或基因序列。
(b)如本文使用的,“比较窗口”参照了多核苷酸序列的连续并指定的区段,其中与用于两种多核苷酸的最佳比对的参比序列(其不包括添加或缺失)相比,比较窗口中的多核苷酸序列可能包括添加或缺失(即空位)。通常,比较窗口的长度为至少20个连续核苷酸,并且任选地可以是30、40、50、100个或更长。本领域技术人员应当理解,由于多核苷酸序列中含有空位,为了避免与参比序列的高相似性,典型地引入空位罚分,并且将其从匹配数中减去。
除非另有说明,本文中提供的序列同一性/相似性值是指使用GAP版本10使用以下参数获得的值:对于核苷酸序列的%同一性和%相似性,使用GAP权重50和长度权重3以及nwsgapdna.cmp评分矩阵;对于氨基酸序列的%同一性和%相似性,使用GAP权重8和长度权重2以及BLOSUM62评分矩阵;或其任何等效程序。“等效程序”是指任何序列比较程序,该程序对于任何两个所讨论的序列产生一个比对,当与GAP版本10所产生的对应的比对相比较时,该比对具有相同的核苷酸或氨基酸残基配对以及相同的序列同一性百分比。
(c)如本文使用的,在两个多核苷酸或多肽序列的背景下的“序列同一性”或“同一性”是指,当在指定比较窗口上比对最大对应性时,两个序列中的相同残基。当使用关于蛋白质的序列同一性百分比时,认识到不相同的残基位置通常相差保守氨基酸取代,其中氨基酸残基被具有相似化学性质(例如电荷或疏水性)的其他氨基酸残基取代,并且因此不改变分子的功能性质。当序列在保守取代方面不同时,可以向上调节序列同一性百分比,以校正该取代的保守性质。相差这些保守取代的序列被称为具有“序列相似性”或“相似性”。用于进行此调节的方法是本领域技术人员所熟知的。典型地,这涉及作为部分而不是完全错配对保守取代打分,从而提高百分比序列同一性。因此,例如,当相同的氨基酸得分为1,并且非保守取代的得分为零时,保守取代的得分在零和1之间。计算保守取代的评分,例如,如在程序PC/GENE(易达利遗传学公司(Intelligenetics),山景城,加利福尼亚州)中实现的。
(d)如本文使用的,“序列同一性百分比”意指通过在比较窗口上比较两个最佳比对序列所确定的值,其中与参比序列(其不包含添加或缺失)相比,该比较窗中的多核苷酸序列部分可以包含添加或缺失(即空位),以进行这两个序列的最佳比对。通过以下方式计算该百分比:确定在两个序列中出现相同核酸碱基或氨基酸残基的位置的数目以产生匹配位置的数目,将匹配位置的数目除以比较窗口中的位置的总数目,然后将该结果乘以100以产生序列同一性百分比。
在PCR方法中,可以设计寡核苷酸引物用于PCR反应,以从由任何目的生物体提取的cDNA或基因组DNA扩增相应的DNA序列。用于设计PCR引物以及PCR克隆的方法通常是本领域已知的并且公开于Sambrook等人,(1989)Molecular Cloning:A Laboratory Manual[分子克隆:实验室手册](第2版,Cold Spring Harbor Laboratory Press[冷泉港实验室出版社],普莱恩维尤(Plainview),纽约),以下为“Sambrook”中。还参见,Innis等人编辑,(1990)PCR Protocols:A Guide to Methods and Applications[PCR方案:方法和应用指南](Academic Press[学术出版社],纽约);Innis和Gelfand编辑,(1995)PCR Strategies[PCR策略](Academic Press[学术出版社],纽约);和Innis和Gelfand编辑,(1999)PCRMethods Manual[PCR方法手册](Academic Press[学术出版社],纽约)。已知的PCR方法包括但不限于:使用成对引物、巢式引物、单特异性引物、简并引物、基因特异性引物、载体特异性引物、部分错配引物等的方法。
为了从细菌集合中鉴定潜在的杀昆虫多肽,可以使用蛋白质印迹和/或ELISA方法用针对本公开的杀昆虫多肽产生的抗体筛选细菌细胞裂解物。这种类型的测定能以高通量方式进行。可以通过各种技术(例如基于抗体的蛋白质纯化和鉴定)进一步分析阳性样品。产生抗体的方法是本领域公知的,如下文所述。
可替代地,基于质谱的蛋白质鉴定方法可以使用文献中的方案用于鉴定杀昆虫多肽的同源物(Scott Patterson,(1998),10.22,1-24,由约翰威利父子公司(John Wiley&Son Inc)出版的Current Protocol in Molecular Biology[当前分子生物学方案])。具体来说,使用基于LC-MS/MS的蛋白质鉴定方法将给定细胞裂解物或所需分子量富集样品(从相关分子量带的SDS-PAGE凝胶切除的)的MS数据与本公开的杀昆虫多肽的序列信息结合。肽序列中的任何匹配表明在样品中具有同源物的可能性。可以使用另外技术(蛋白质纯化和分子生物学)来分离蛋白质并鉴定同源物的序列。
在杂交方法中,全部或部分杀有害生物核酸序列可用于筛选cDNA或基因组文库。用于构建此类cDNA和基因组文库的方法是本领域通常已知的,并且公开于Sambrook和Russell,(2001),同上。所谓的杂交探针可以是基因组DNA片段、cDNA片段、RNA片段或其他寡核苷酸,并且可以用一个可检测基团(如32P或任何其他可检测的标记,如其他放射性同位素、荧光化合物、酶或酶辅因子)进行标记。用于杂交的探针可以通过标记基于在此公开的编码杀昆虫多肽的核酸序列的合成的寡核苷酸来制备。可以另外使用简并引物,这些简并引物是基于在该核酸序列或所编码的氨基酸序列中的保守性核苷酸或氨基酸残基而设计的。这种探针典型地包含以下核酸序列的区域,该核酸序列区域在严格条件下与编码本公开的杀昆虫多肽的核酸序列或其片段或变体的至少约12个、至少约25个、至少约50、75、100、125、150、175或200个连续核酸进行杂交。用于制备用于杂交的探针的方法是本领域通常已知的,并且公开于Sambrook和Russell,(2001),同上。
例如,编码本公开的杀昆虫多肽的在此公开的完整的核酸序列或其一个或多个部分可以用作能够与编码杀昆虫多肽样序列的相应的核酸序列和信使RNA特异性杂交的探针。为了实现在不同的条件下的特异性杂交,这样的探针包括以下序列,这些序列是独特的并且长度优选为至少约10个核苷酸、或长度为至少约20个核苷酸。此类探针可以用于通过PCR对来自所选生物体的相应杀有害生物序列进行扩增。可以使用这种技术从所希望的生物体中分离另外的编码序列,或作为用于确定生物体中存在编码序列的诊断试验。杂交技术包括铺板的DNA文库的杂交筛选(斑块或集落;参见,例如,Sambrook等人,(1989)Molecular Cloning:A Laboratory Manual[分子克隆:实验室手册](第2版,Cold SpringHarbor Laboratory Press[冷泉港实验室出版社]),Cold Spring Harbor[冷泉港],N.Y.[纽约])。
这样的序列的杂交可以在严格条件下进行。在本文中使用“严格条件”或“严格杂交条件”来指探针与其靶序列杂交的程度将比它与其他序列杂交的程度可检测地更高(例如,比背景高至少2倍)的条件。严格条件是序列依赖性的,并且在不同情况下将有所不同。通过控制杂交和/或洗涤条件的严格性,可以鉴定与该探针100%互补的靶序列(同源探测)。可替代地,也能够调节严格条件以允许序列中的某些错配,以便检测到更低程度的相似性(异源探测)。通常,探针的长度为小于约1000个核苷酸,优选地长度小于500个核苷酸。
典型地,严格条件是以下条件,在这些条件下该盐浓度在pH 7.0至8.3时是小于约1.5M钠离子、典型为约0.01至1.0M钠离子浓度(或其他盐),并且对于短探针(例如,10至50个核苷酸)的温度为至少约30℃,而对于长探针(例如,超过50个核苷酸)的温度为至少约60℃。添加去稳定剂例如甲酰胺也可以实现严格条件。示例性低严格性条件包括在37℃下使用30%至35%甲酰胺、1M NaCl、1%SDS(十二烷基硫酸钠)的缓冲溶液进行杂交,并且在50℃至55℃下在1×至2×SSC(20×SSC=3.0M NaCl/0.3M柠檬酸三钠)中洗涤。示例性中严格条件包括在37℃下在40%至45%甲酰胺、1.0M NaCl、1%SDS中进行杂交,并且在55℃至60℃下在0.5×至1×SSC中洗涤。示例性高严格条件包括在37℃下在50%甲酰胺、1M NaCl、1%SDS中杂交,并且在60℃至65℃下在0.1×SSC中洗涤。任选地,洗涤缓冲液可以包含约0.1%至约1%SDS。杂交持续时间通常小于约24小时,通常为约4至约12小时。
特异性典型地取决于杂交后洗涤的功能,关键因素是最终洗涤溶液的离子强度以及温度。对于DNA-DNA杂交物,Tm可以从Meinkoth和Wahl,(1984)Anal.Biochem.[分析生物化学]138:267-284的等式中进行估计:Tm=81.5℃.+16.6(log M)+0.41(%GC)-0.61(%形式)-500/L;其中M为单价阳离子的摩尔浓度,%GC为DNA中鸟苷和胞嘧啶核苷酸的百分比,%form为杂交溶液中甲酰胺的百分比,并且L为杂合体的碱基对长度。Tm是温度(在定义的离子强度以及pH下),在该温度下50%的互补靶序列杂交到完全配对的探针上。对于每1%的错配,Tm降低约1℃;因此,可调整Tm、杂交和/或洗涤条件以与所期需同一性的序列杂交。例如,如果查找具有≥90%同一性的序列,该Tm可以降低10℃。通常选择严格条件为在限定离子强度和pH下低于特定序列及其互补序列的热熔点Tm约5℃。然而,极严格条件能够在比热熔点(Tm)低1℃、2℃、3℃或4℃下杂交和/或洗涤;中严格条件能够在比热熔点(Tm)低6℃、7℃、8℃、9℃或10℃下杂交和/或洗涤;低严格条件能够在比热熔点(Tm)低11℃、12℃、13℃、14℃、15℃或20℃下杂交和/或洗涤。使用方程式、杂交和洗涤组合物以及所需的Tm,本领域普通技术人员将理解,本质上描述了杂交和/或洗涤溶液的严格性的变化。如果所希望的错配程度导致Tm小于45℃(水溶液)或32℃(甲酰胺溶液),则优选增加SSC浓度以使得可使用较高温度。对核酸杂交的全面指导见于以下文献:Tijssen,(1993)LaboratoryTechniques in Biochemistry and Molecular Biology-Hybridization with NucleicAcid Probes[生物化学与分子生物学中的实验室技术,与核酸探针的杂交],第2章第1部分(Elsevier,纽约州);以及Ausubel等人编辑(1995)Current Protocols in MolecularBiology[当前分子生物学方案],第2章(格林出版和韦利科学公司(Greene Publishingand Wiley-Interscience),纽约)。参见Sambrook等人,(1989)Molecular Cloning:ALaboratory Manual[分子克隆:实验室手册](第2版,冷泉港实验室出版社(Cold SpringHarbor Laboratory Press),冷泉港,纽约)。
蛋白质及其变体和片段
本公开的一方面是分离的杀昆虫多肽。本公开涵盖IPD078-1、IPD078-2、IPD084、IPD086-1、IPD086-2、IPD087、和IPD089多肽。IPD078-1、IPD078-2、IPD084、IPD086-1、IPD086-2、IPD087、或IPD089多肽或相关的蛋白的来源是细菌菌株,该菌株含有SEQ ID NO:1-42的多核苷酸,这些多核苷酸编码SEQ ID NO:43-82的IPD078-1、IPD078-2、IPD084、IPD086-1、IPD086-2、IPD087、或IPD089多肽(参见表2)。在一些实施例中,IPD078-1、IPD078-2、IPD084、IPD086-1、IPD086-2、IPD087、或IPD089多肽与SEQ ID NO:43-82的一个或多个氨基酸序列充分同源。本领域技术人员将认识到,考虑到氨基酸相似性等,可以适当地调整这些值以确定蛋白质的相应同源性。
在一些实施例中,IPD078-1、IPD078-2、IPD084、IPD086-1、IPD086-2、IPD087、或IPD089多肽与SEQ ID NO:43-82的一个或多个相比具有至少约50%、55%、60%、65%、70%、71%、72%、73%、74%、75%、76%、77%、78%、79%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高序列同一性。
如本文使用的,术语“蛋白质”、“肽分子”、或“多肽”包括包含五个或更多个氨基酸的任何分子。本领域熟知蛋白质、肽或多肽分子可以进行修饰,该修饰包括翻译后修饰,如但不限于二硫键形成、糖基化、磷酸化或寡聚化。因此,如本文使用的,术语“蛋白质”、“肽分子”或“多肽”包括通过任何生物或非生物过程改性的任何蛋白质。术语“氨基酸”是指所有天然存在的L-氨基酸。
在一些实施例中,IPD078-1、IPD078-2、IPD084、IPD086-1、IPD086-2、IPD087、和/或IPD089多肽具有在约20kDa与约100kDa之间、在约20kDa与约30kDa之间、在约30kDa与约40kDa之间、在约50kDa与约60kDa之间、在约60kDa与约70kDa之间、在约70kDa与约80kDa之间、和在约80kDa与约90kDa之间的计算的分子量。如在此使用的,在杀昆虫多肽的分子量的上下文中所使用的术语“约”意指±2千道尔顿。
在一些实施例中,本公开的杀昆虫多肽具有改性的物理性质。如本文使用的,术语“物理性质”是指适于描述蛋白质的物理化学特征的任何参数。如本文使用的,“目的物理性质”和“目的性质”可互换使用,以指正在研究和/或经修饰的蛋白质的物理性质。物理性质的实例包括但不限于:蛋白质表面上的净表面电荷和电荷分布、蛋白质表面上的净疏水性和疏水残基分布、表面电荷密度、表面疏水密度、表面电离基团的总计数、表面张力、蛋白质大小及其在溶液中的分布、熔融温度、热容量、和第二位力系数。物理性质的实例还包括但不限于:溶解度、折叠、稳定性、和消化性。在一些实施例中,本公开的杀昆虫多肽增加了昆虫肠中的蛋白水解片段的消化性。模拟胃液消化的模型是本领域技术人员已知的(Fuchs,R.L.和J.D.Astwood.Food Technology[食品技术]50:83-88,1996;Astwood,J.D.等人,Nature Biotechnology[生物技术]14:1269-1273,1996;Fu TJ等人,J.Agric Food Chem.[农业与食品化学杂志]50:7154-7160,2002)。
在一些实施例中,变体包括由于诱变而在氨基酸序列方面不同的多肽。本公开所涵盖的变体蛋白质具有生物学活性,即它们仍然具有天然蛋白质所需的生物学活性(即杀有害生物活性)。在一些实施例中,该变体将具有至少约10%、至少约30%、至少约50%、至少约70%、至少约80%或更高的天然蛋白质的杀昆虫活性。在一些实施例中,变体可以具有比天然蛋白质改进的活性。
细菌基因通常在可读框的起始附近具有多个甲硫氨酸起始密码子。经常,在这些起始密码子中的一个或多个处的翻译起始将导致一种功能蛋白质的产生。这些起始密码子可以包括ATG密码子。然而,细菌(如,芽孢杆菌属物种)还将该密码子GTG识别为起始密码子,并且在GTG密码子处起始翻译的蛋白质在第一个氨基酸处包含甲硫氨酸。在少数情况下,细菌系统中的翻译可以在TTG密码子处启动,尽管在此事件中TTG编码甲硫氨酸。此外,常常不首先确定这些密码子中的哪一些是细菌中天然使用的。因此,应当理解,使用这些可替代的甲硫氨酸密码子之一也可能导致杀有害生物蛋白的产生。这些杀有害生物蛋白涵盖于本公开之中,并且可以在本公开的这些方法中使用。应当理解的是当在植物中表达时将有必要将可替代的起始密码子改变为ATG以用于正确的翻译。
在另一方面,本公开的杀昆虫多肽可以表达为具有催化多步翻译后蛋白质剪接的间插序列的前体蛋白。蛋白质剪接涉及从多肽切除间插序列,并伴随连接侧翼序列以产生新的多肽(Chong等人,(1996)J.Biol.Chem.[生物化学杂志],271:22159-22168)。这种被称为内含肽的间插序列或蛋白质剪接元件,通过在N-末端和C-末端剪接点处的以下三个协调反应催化其自身的切除:N-末端半胱氨酸或丝氨酸的酰基重排;两个末端之间形成支链酯或硫酯中间体的酯交换反应,和与内含肽C-末端天冬酰胺的环化相偶联释放内含肽的肽键切割(Evans等人,(2000)J.Biol.Chem.[生物化学杂志],275:9091-9094)。阐明蛋白质剪接的机制导致了许多基于内含肽的应用(Comb等人,美国专利号5,496,714;Comb等人,美国专利号5,834,247;Camarero和Muir,(1999)J.Amer.Chem.Soc.[美国化学学会学报],121:5597-5598;Chong等人,(1997)Gene[基因]192:271-281,Chong等人,(1998)Nucleic AcidsRes.[核酸研究]26:5109-5115;Chong等人,(1998)J.Biol.Chem.[生物化学杂志]273:10567-10577;Cotton等人,(1999)J.Am.Chem.Soc.[美国化学会志]121:1100-1101;Evans等人,(1999)J.Biol.Chem.[生物化学杂志]274:18359-18363;Evans等人,(1999)J.Biol.Chem.[生物化学杂志]274:3923-3926;Evans等人,(1998)Protein Sci.[蛋白质科学],7:2256-2264;Evans等人,(2000)J.Biol.Chem.[生物化学杂志]275:9091-9094;Iwai和Pluckthun,(1999)FEBS Lett.[欧洲生化学会联盟通讯]459:166-172;Mathys等人,(1999)Gene[基因]231:1-13;Mills等人,(1998)Proc.Natl.Acad.Sci.USA[美国科学院院报]95:3543-3548;Muir等人,(1998)Proc.Natl.Acad.Sci.USA[美国科学院院报]95:6705-6710;Otomo等人,(1999)Biochemistry[生物化学]38:16040-16044;Otomo等人,(1999)J.Biolmol.NMR[生物分子核磁共振杂志]14:105-114;Scott等人,(1999)Proc.Natl.Acad.Sci.USA[美国科学院院报]96:13638-13643;Severinov和Muir,(1998)J.Biol.Chem.[生物化学杂志]273:16205-16209;Shingledecker等人,(1998)Gene[基因]207:187-195;Southworth等人,(1998)EMBO J.[欧洲分子生物学学会杂志]17:918-926;Southworth等人,(1999)Biotechniques[生物技术]27:110-120;Wood等人,(1999)Nat.Biotechnol.[自然生物技术]17:889-892;Wu等人,(1998a)Proc.Natl.Acad.Sci.USA[美国科学院院报]95:9226-9231;Wu等人,(1998b)Biochim BiophysActa[生物化学与生物物理学报]1387:422-432;Xu等人,(1999)Proc.Natl.Acad.Sci.USA[美国科学院院报]96:388-393;Yamazaki等人,(1998)J.Am.Chem.Soc.[美国化学会志],120:5591-5592)。针对在植物转基因中应用内含肽,参见,Yang等人(Transgene Res[转基因研究]15:583-593(2006))和Evans等人(Annu.Rev.Plant Biol.[植物生物学年评]56:375-392(2005))。
在另一方面,本公开的杀昆虫多肽可以由两个单独的基因编码,其中前体蛋白的内含肽来自两个称为分裂内含肽的基因,并且前体的两部分通过肽键形成连接。该肽键的形成通过内含肽介导的反式剪接实现。为此目的,包含两个单独基因的第一和第二表达盒进一步编码能够介导蛋白质反式剪接的内含肽。通过反式剪接,由第一和第二片段编码的蛋白质和多肽可以通过肽键形成连接。反式剪接内含肽可以选自包括真核生物、古细菌和真细菌在内的不同生物体的核仁和细胞器基因组。编码内含肽的核苷酸序列可以分裂成5′和3′部分,该5′和3′部分分别编码内含肽的5′和3′部分。可能使内含肽剪接不需要的序列部分(例如归巢内切核酸酶结构域)缺失。将内蛋白编码序列分裂,使得5′和3′部分能够进行反式剪接。为了选择内含肽编码序列的合适的分裂位点,可以遵循由Southworth等人,(1998)EMBO J.[欧洲分子生物学学会杂志]17:918-926公开的注意事项。在构建第一和第二表达盒中,5′内含肽编码序列连接到编码本公开的杀昆虫多肽的N-末端部分的第一片段的3′端,并且3′内含肽编码序列连接到编码本公开的杀昆虫多肽的C-末端部分的第二片段的5′端。
通常,可以使用任何断裂内含肽来设计反式剪接配偶体,包括任何天然存在或人工分裂的断裂内含肽。已知若干种天然存在的断裂内含肽,例如:集胞藻属(Synechocystis)物种PCC6803的DnaE基因的断裂内含肽(参见,Wu等人,(1998)Proc NatlAcad Sci USA.[美国科学院院报]95(16):9226-31和Evans等人,(2000)J Biol Chem.[生物化学杂志]275(13):9091-4)和来自点状念珠藻(Nostoc punctforme)的DnaE基因的断裂内含肽(参见,Iwai等人,(2006)FEBS Lett.[欧洲生化学会联盟通讯]580(7):1853-8)。非断裂内含肽在实验室中人为分裂以产生新的断裂内含肽,例如:人工分裂Ssp DnaB内含肽(参见,Wu等人,(1998)Biochim Biophys Acta.[生物化学与生物物理学报]1387:422-32)和分裂Sce VMA内含肽(参见,Brenzel等人,(2006)Biochemistry.[生物化学]45(6):1571-8)和人工分裂真菌微型内含肽(参见,Elleuche等人,(2007)Biochem Biophys ResCommun.[生物化学与生物物理学研究通讯]355(3):830-4)。还有把已知的内含肽编入目录的内含肽数据库(参见,例如,可以在bioinformatics.weizmann.ac.il/~pietro/inteins/Inteinstable.html处获得的在线数据库,其可以使用“www”前缀在万维网上访问)。
天然存在的非断裂内含肽可能具有内切核酸酶活性或其他酶活性,这些活性通常可以在设计人工分裂的断裂内含肽时被去除。这样的迷你内含肽或最小化的断裂内含肽是本领域熟知的,并且通常小于200个氨基酸残基长(参见,Wu等人,(1998)Biochim BiophysActa.[生物化学与生物物理学报]1387:422-32)。合适的断裂内含肽可以向其结构添加使其他纯化可行的多肽元件,条件是这些元件不会抑制断裂内含肽的剪接,或以允许它们在拼接之前被去除的方式添加。已经使用以下蛋白质报道了蛋白质剪接,这些蛋白质包含:细菌内含肽样(BIL)结构域(参见,Amitai等人,(2003)Mol Microbiol.[分子微生物学]47:61-73)和刺猬(Hog)自体加工结构域(当称为Hog/内含肽超家族或HINT家族时,后者与内含肽组合;参见,Dassa等人,(2004)J Biol Chem.[生物化学杂志]279:32001-7))以及如还可用于制备人工分裂的内含肽的结构域。具体地,可以通过分子生物学方法来修饰这些家族的非剪接成员,以引入或恢复在这些相关物种中的剪接活性。最近的研究表明,当允许N-末端断裂内含肽组分与自然界中未发现的作为其“配偶体”的C-末端断裂内含肽组分反应时,可以观察到剪接;例如,已经观察到使用与“自然”剪接配偶体具有少至30%至50%同源性的配偶体进行的剪接(参见,Dassa等人,(2007)Biochemistry.[生物化学],46(1):322-30)。不同断裂内含肽的其他这种混合物已被证明是与另一个不反应的混合物(参见,Brenzel等人,(2006)Biochemistry.[生物化学]45(6):1571-8)。然而,使用常规方法并且无需运用创造性技能来确定一对特定多肽是否能够彼此结合以提供功能性内含肽是在相关领域的技术人员的能力范围内。
在另一方面,本公开的杀昆虫多肽是环形排列的变体。重组DNA方法的发展使得有可能研究序列转座对蛋白质折叠、结构和功能的影响。创建新序列中使用的方法类似于通过其氨基酸序列的线性改组对天然存在的蛋白质对进行关联的方法(Cunningham等人,(1979)Proc.Natl.Acad.Sci.U.S.A.[美国科学院院报]76:3218-3222;Teather和Erfle,(1990)J.Bacteriol.[细菌学杂志]172:3837-3841;Schimming等人,(1992)Eur.J.Biochem.[欧洲生物化学杂志]204:13-19;Yamiuchi和Minamikawa,(1991)FEBSLett.[欧洲生化学会联盟通讯]260:127-130;MacGregor等人,(1996)FEBS Lett.[欧洲生化学会联盟通讯]378:263-266)。Goldenberg和Creighton描述了这种类型的蛋白质重排的第一次体外应用(J.Mol.Biol.[分子生物学杂志]165:407-413,1983)。在创建环形排列的变体中,在原始序列的内部位点(断点)处选择新的N-末端,该新序列与原始序列具有相同顺序的氨基酸,直到其达到原始C-末端或其附近的氨基酸。在这一点上,新序列直接或通过序列(接头)的另外部分连接到原始N-末端或其附近的氨基酸,并且新序列以与原始序列相同的序列继续,直到其达到原始序列的断点位点的N-末端的氨基酸处或附近的点,该残基形成链的新C-末端。接头的氨基酸序列的长度可以凭经验或以结构信息的指导或通过使用两种方法的组合来选择。当没有结构信息可用时,可以使用设计和采取必要的确认,而不会破坏杀有害生物多肽的构型的能力(构象灵活;Karplus和Schulz,(1985)Naturwissenschaften[自然科学]72:212-213)制备小系列接头用于测试,该设计的长度为了跨越从0至50□的范围而变化并且选择该设计的序列以与表面暴露一致(亲水性,Hopp和Woods,(1983)Mol.Immunol.[分子免疫学]20:483-489;Kyte和Doolittle,(1982)J.Mol.Biol.[分子生物学杂志]157:105-132;溶剂暴露表面积,Lee和Richards,(1971)J.Mol.Biol.[分子生物学杂志]55:379-400)。假设每个残基平均翻译为2.0至这意味着要测试的长度在0至30个残基之间,其中0至15个残基为优选范围。这种经验性系列的实例将是使用重复n次的盒序列如Gly-Gly-Gly-Ser构建接头,其中n为1、2、3或4。本领域技术人员将认识到,存在许多长度或组成不同的这样的序列,其可以用作接头,其中主要注意事项是它们是既不过长也不过短的(参见Sandhu,(1992)Critical Rev.Biotech.[生物技术评论]12:437-462);如果它们太长,熵效应可能会使三维折叠不稳定,并且也可能使得折叠在动力学上是不切实际的,并且如果它们太短,则它们可能由于扭转或空间应变使分子不稳定。蛋白质结构信息分析的技术人员将认识到,使用定义为c-α碳之间距离的链末端之间的距离可用于定义待使用的序列的长度,或至少限制在接头的经验选择中必须测试的可能性的数量。因此,他们还将认识到,在有时多肽链末端的位置在源自X射线衍射或核磁共振光谱数据的结构模型中是不明确的情况下,并且当确实如此的情况下,需要考虑这种情况,以便正确估计所需接头的长度。从其位置定义明确的那些残基选择两个与链末端顺序接近的残基,并且使用它们的c-α碳之间的距离来计算它们之间的接头的近似长度。使用计算出的长度作为指导,然后选择具有一定范围数量的残基(每个残基使用2至计算)的接头。这些接头可以由原始序列组成,必要时缩短或延长,并且当延长时,可以如上所述选择灵活的和亲水性的另外的残基;或任选地,原始序列可以用一系列接头取代,一个实例是以上提及的Gly-Gly-Gly-Ser盒方法;或任选地,可以使用具有适当总长度的原始序列和新序列的组合。能够折叠为生物活性状态的杀有害生物多肽的序列可以通过从原始多肽链中开始(氨基末端)和末端(羧基末端)位置的适当选择,同时使用如上所述的接头序列来制备。氨基和羧基末端使用下面所述的指南从称为断点区的序列的常见延伸中选出。因此,通过从同一断点区内选择氨基和羧基末端来产生新颖的氨基酸序列。在许多情况下,新末端的选择将使得羧基末端的原始位置紧邻氨基末端的位置。然而,本领域技术人员将认识到,区域内任何地方的末端的选择可能起作用,并且这些将有效地导致新序列的氨基或羧基部分的缺失或添加。本领域技术人员已知使用单一蛋白晶体的x射线衍射或蛋白质溶液的核磁共振光谱来获得和解释三维结构信息的方法。与断点区的鉴定相关的结构信息的实例包括蛋白质二级结构的位置和类型(α和3-10个螺旋,平行和反向平行β折叠,链逆转(chainreversal)和转角,以及环;Kabsch和Sander,(1983)Biopolymers[生物聚合物]22:2577-2637);氨基酸残基的溶剂暴露程度、残基彼此之间相互作用的程度和类型(Chothia,(1984)Ann.Rev.Biochem.[生物化学年鉴]53:537-572)以及沿多肽链的构象的静态和动态分布(Alber和Mathews,(1987)Methods Enzymol.[酶学方法]154:511-533)。在某些情况下,关于残基的溶剂暴露的其他信息是已知的;一个实例是必然位于该蛋白质表面的碳水化合物的翻译后附着位点。当实验结构信息不可获得或不可能获得时,也可以使用方法来分析初级氨基酸序列,以便预测蛋白质三级和二级结构、溶剂可及性以及转角和环的发生。当直接结构方法不可行时,生物化学方法有时也适用于经验性地确定表面暴露;例如,在有限的蛋白水解之后使用断链位点的鉴定来推断表面暴露(Gentile和Salvatore,(1993)Eur.J.Biochem.[欧洲生物化学杂志]218:603-621)。因此,使用实验衍生的结构信息或预测方法(例如,Srinivisan和Rose,(1995)Proteins:Struct.,Funct.&Genetics[蛋白质:结构,功能和遗传学]22:81-99),检查亲本氨基酸序列以根据它们是否对维持二级和三级结构是必不可少的来对区域进行分类。已知涉及周期性二级结构(α和3-10个螺旋,平行和反平行β折叠)的区域内的序列发生是应该避免的区域。相似地,观察或预测具有低溶剂暴露程度的氨基酸序列的区域更可能是蛋白质的所谓疏水核心的一部分,并且也应避免选择氨基和羧基末端。相比之下,已知或预测为表面内转角或环的那些区域,并且特别是已知生物活性所不需要的那些区域,是用于定位多肽链末端的优选位点。基于上述标准优选的氨基酸序列的连续延伸被称为断点区。可以基本上遵循Mullins等人,(1994)J.Am.Chem.Soc.[美国化学会志]116:5529-5533中所描述的方法制备编码具有新N-末端/C-末端的本公开的环形排列的杀昆虫多肽的多核苷酸,该多核苷酸包含将原C-末端与N-末端分隔开的连接区。聚合酶链式反应(PCR)扩增的多个步骤用于重排编码蛋白质的一级氨基酸序列的DNA序列。可以基于Horlick等人,(1992)Protein Eng.[蛋白质工程]5:427-431中所描述的串联重复方法制备编码具有新N-末端/C-末端的本公开的环形排列的杀昆虫多肽的多核苷酸,该多核苷酸包含将原C.末端与N-末端分隔开的连接区。使用串联重复的模板DNA进行新的N-末端/C-末端基因的聚合酶链式反应(PCR)扩增。
在另一方面,提供了融合蛋白,在这些融合蛋白的氨基酸序列中包含构成本公开的杀昆虫多肽的氨基酸序列。用于设计和构建融合蛋白、以及编码它们的多核苷酸的方法是本领域技术人员已知的。编码本公开的杀昆虫多肽的多核苷酸可以融合到信号序列,这些信号序列将指导本公开的杀昆虫多肽定位于来自原核或真核细胞的实施例的杀昆虫多肽。例如,在大肠杆菌中,人们可能希望指导蛋白质表达至周质空间。可以与本公开的杀昆虫多肽融合以便指导该多肽表达至细菌周质空间的信号序列或蛋白质(或其片段)的实例包括但不限于:pelB信号序列、麦芽糖结合蛋白(MBP)信号序列、MBP、ompA信号序列、周质性大肠杆菌不耐热肠毒素B亚基的信号序列和碱性磷酸酶的信号序列。用于构建将指导蛋白质定位的融合蛋白的若干种载体是可商购的,如可从New England(240县道,伊普斯威奇(Ipswich),马萨诸塞州(MA),01938-2723)获得的pMAL系列的载体(特别是pMAL-p系列)。在具体实施例中,本公开的杀昆虫多肽可以与pelB果胶酸裂合酶信号序列融合,以增加革兰氏阴性菌中这些多肽的表达和纯化的效率(参见,美国专利号5,576,195和5,846,818)。植物质体转运肽/多肽融合是本领域熟知的(参见,美国专利号7,193,133)。质外体转运肽如水稻或大麦α-淀粉酶分泌信号也是本领域熟知的。质体转运肽通常与待靶向的多肽(例如,融合配偶体)进行N-末端融合。在一个实施例中,融合蛋白基本上由待靶向的本公开的质体转运肽和杀昆虫多肽组成。在另一个实施例中,融合蛋白包含待靶向的质体转运肽和多肽。在这样的实施例中,质体转运肽优选位于融合蛋白的N-末端。然而,另外的氨基酸残基可以是在质体转运肽的N-末端,条件是该融合蛋白至少部分地靶向质体。在具体实施例中,质体转运肽在融合蛋白的N-末端一半处,N-末端三分之一处或N-末端四分之一处。当插入质体时,大部分或全部质体转运肽通常从融合蛋白上切割。由于特定的细胞间条件或所使用的转运肽/融合配偶体的具体组合,在不同植物发育阶段,切割位置可能在植物物种之间略有变化。在一个实施例中,质体转运肽切割是均匀的,使得切割位点在融合蛋白群体中是相同的。在另一个实施例中,质体转运肽不是均匀的,使得融合蛋白群体中切割位点相差1-10个氨基酸。质体转运肽能以若干种方式之一重组融合到第二蛋白质。例如,可以将限制性内切核酸酶识别位点引入到对应于其C-末端的位置处的转运肽的核苷酸序列中,并且可以将相同或相容的位点工程化为在其N-末端待靶向的蛋白质的核苷酸序列。必须注意设计这些位点,以确保转运肽和第二个蛋白质的编码序列保持“框内”,以允许合成所需的融合蛋白。在一些情况下,当引入新的限制性位点时,优选除去第二种蛋白质的起始子甲硫氨酸密码子。在两个亲本分子上引入限制性内切核酸酶识别位点,以及它们随后通过重组DNA技术连接可导致在转运肽和第二蛋白质之间添加一个或多个额外的氨基酸。这通常不影响靶向活性,只要转运肽切割位点保持可及,并且在其N-末端添加这些额外的氨基酸不改变第二蛋白质的功能。可替代地,本领域技术人员可以使用基因合成(Stemmer等人,(1995)Gene[基因]164:49-53)或相似的方法在转运肽和第二蛋白质(有或没有其起始子甲硫氨酸)之间产生精确的切割位点。另外,转运肽融合可以有意地包括切割位点下游的氨基酸。成熟蛋白质N-末端的氨基酸可影响转运肽将蛋白质靶向质体的能力和/或蛋白质输入后的切割效率。这可能取决于待靶向的蛋白质。参见,例如,Comai等人,(1988)J.Biol.Chem.[生物化学杂志]263(29):15104-9。
在一些实施例中,提供的融合蛋白包含本公开的杀昆虫多肽,以及通过氨基酸接头连接的杀昆虫多肽。
在一些实施例中,提供了由选自下组的化学式所示的融合蛋白,该组由以下组成:
R1-L-R2、R2-L-R1、R1-R2或R2-R1
其中R1是本公开的杀昆虫多肽。该R1多肽直接或通过接头(L)区段融合至R2多肽。术语“直接”定义在没有肽接头的情况下连接多肽的融合。因此,“L”表示框内与R1和R2融合的化学结合或多肽区段,最常见的是,L是R1和R2通过酰胺键将R1的羧基末端连接到L的氨基末端并且将L的羧基末端连接到R2的氨基末端的线性肽。“框内融合”意指R1和R2的阅读框之间没有翻译终止或中断。连接基团(L)通常是长度在1至500个氨基酸之间的多肽。连接两个分子的接头优选设计成(1)允许两个分子彼此独立地折叠并且起作用,(2)不具有发展可能干扰两种蛋白质的功能结构域的有序二级结构的倾向,(3)具有可与功能性蛋白质结构域相互作用的最小的疏水或带电特征,并且(4)提供R1和R2的空间分离,使得R1和R2可以与单个细胞上的相应受体同时相互作用。典型地,在柔性蛋白质区域中的表面氨基酸包括Gly、Asn和Ser。期望包含Gly、Asn和Ser的氨基酸序列的几乎任何排列满足上述接头序列的标准。其他中性的氨基酸,如Thr和Ala也可以用于接头序列中。由于在接头序列中添加了独特的限制性位点以便于构建融合体,另外的氨基酸也可以包括在接头中。
在一些实施例中,接头包含选自以下组的式的序列:(Gly3Ser)n、(Gly4Ser)n、(Gly5Ser)n、(GlynSer)n或(AlaGlySer)n,其中n是整数。高度柔性接头的一个实例是存在于丝状噬菌体(例如,噬菌体M13或fd)的pIII蛋白质内的富含(GlySer)的间隔子(Schaller等人,1975)。该区域在pIII表面蛋白质的两个结构域之间提供长、柔性的间隔子区域。还包括接头,在接头中包括内肽酶识别序列。这样的切割位点对于分离融合物的各个组分以确定它们在体外是否适当折叠和是否具有活性可能是有价值的。各种内肽酶的实例包括但不限于:纤溶酶、肠激酶、激肽释放酶、尿激酶、组织纤溶酶原激活剂、梭菌蛋白酶、凝乳酶、胶原酶、鲁塞尔氏蝰蛇毒蛋白酶、后脯氨酸切割酶、V8蛋白酶、凝血酶和因子Xa。在一些实施例中,接头包含来自多基因表达载体(MGEV)的氨基酸EEKKN(SEQ ID NO:83),其如美国专利申请公开号US 2007/0277263中所公开的被液泡蛋白酶切割。在其他实施例中,来自重链免疫球蛋白IgG、IgA、IgM、IgD或IgE的铰链区域的肽接头区段在附着的多肽之间提供角度关系。特别有用的是那些半胱氨酸被丝氨酸替换的铰链区域。本公开的接头包括源自鼠IgGγ2b铰链区域的序列,其中半胱氨酸已经被变为丝氨酸。融合蛋白不受所使用的接头序列的形式、大小或数目的限制,并且接头的唯一要求是功能上不会对融合的各个分子的折叠和功能产生不利的干扰。
在另一方面,提供了嵌合杀昆虫多肽,该嵌合杀昆虫多肽通过连接本公开的杀昆虫多肽基因的两个或更多个部分产生,该杀昆虫多肽基因最初编码分离的杀昆虫蛋白以产生嵌合基因。嵌合基因的翻译导致具有源自每个原始多肽的区域、基序或结构域的单个嵌合杀昆虫多肽。
应当认识到,可以通过各种方法改变DNA序列,并且这些改变可能导致编码具有与野生型(或天然)杀有害生物蛋白编码的氨基酸序列不同的氨基酸序列的蛋白质的DNA序列。在一些实施例中,本公开的杀昆虫多肽能以各种方式改变,这些方式包括与SEQ ID NO:42-82中任一项相比,一个或多个氨基酸的氨基酸取代、缺失、截短和插入,包括高达2、3、4、5、6、7、8、9、10、11、12、1 3、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45或更多个氨基酸取代、缺失和/或插入或其组合。在一些实施例中,本公开的杀昆虫多肽包含从本公开的杀昆虫多肽的N-末端和/或C-末端的1、2、3、4、5、6、7、8、9、10、11、12、13、14、15或更多个氨基酸的缺失。
这种操作的方法在本领域中是普遍已知的。例如,本公开的杀昆虫多肽的氨基酸序列变体可以通过DNA突变来制备。这还可以通过几种诱变形式之一和/或在定向进化中来完成。在一些方面,在该氨基酸序列中所编码的变化将基本上不影响该蛋白质的功能。这样的变体将具有所希望的杀有害生物活性。然而,应当理解,可以通过在本公开的组合物上使用这些技术改进本公开的杀昆虫多肽赋予杀有害生物活性的能力。
例如,可以在一个或多个、预测的、非必需氨基酸残基处做出保守性氨基酸取代。“非必需”氨基酸残基是可以从本公开的杀昆虫多肽的野生型序列改变而不改变生物活性的残基。“保守的氨基酸取代”是其中用具有相似侧链的氨基酸残基替换该氨基酸残基的取代。在本领域中已经限定了具有相似侧链的氨基酸残基的家族。这些家族包括:具有碱性侧链的氨基酸(例如,赖氨酸、精氨酸、组氨酸);具有酸性侧链的氨基酸(例如,天冬氨酸、谷氨酸);具有极性的、带负电荷的残基及其酰胺的氨基酸(例如,天冬氨酸、天冬酰胺、谷氨酸、谷氨酰胺);具有不带电极性侧链的氨基酸(例如,甘氨酸、天冬酰胺、谷氨酰胺、丝氨酸、苏氨酸、酪氨酸、半胱氨酸);具有小脂肪族、非极性或微小极性的残基的氨基酸(例如,丙氨酸、丝氨酸、苏氨酸、脯氨酸、甘氨酸);具有非极性侧链的氨基酸(例如,丙氨酸、缬氨酸、亮氨酸、异亮氨酸、脯氨酸、苯丙氨酸、甲硫氨酸、色氨酸);具有大脂肪族、非极性残基的氨基酸(例如,甲硫氨酸、亮氨酸、异亮氨酸、缬氨酸、半胱氨酸);具有β-支链侧链的氨基酸(例如,苏氨酸、缬氨酸、异亮氨酸);具有芳香族侧链的氨基酸(例如,酪氨酸、苯丙氨酸、色氨酸、组氨酸);具有大芳香族侧链的氨基酸(例如,酪氨酸、苯丙氨酸、色氨酸)。
氨基酸取代可以在保留功能的非保守性区域中进行。通常,此类取代并非针对保守氨基酸残基、或针对在一个保守基序内的氨基酸残基而进行,其中此类残基是蛋白质活性所必要的。保守的并且对于蛋白质活性可能是必需的残基的实例包括例如,在与实施例的序列相似或相关的毒素的比对中所包含的全部蛋白质之间是相同的残基(例如,在同源物比对中相同残基)。保守的但可能允许保守的氨基酸取代、并且仍保留活性的残基的实例包括例如,在与实施例的序列相似或相关的毒素的比对中所包含的全部蛋白质之间仅具有保守性取代的残基(例如,在同源物比对中所包含的全部蛋白质之间仅具有保守性取代的残基)。然而,本领域的技术人员应当理解,功能性变体在保守的残基中可以具有少量的保守的或非保守的改变。关于不影响目的蛋白质的生物活性的适当的氨基酸取代的指导可以发现于Dayhoff等人,(1978)Atlas ofProtein Sequence and Structure[蛋白质序列和结构图谱](Natl.Biomed.Res.Found.[国家生物医学研究基金会],Washington,D.C.[华盛顿特区])的模型中,其通过引用并入本文。
在进行这种变化时,可考虑氨基酸的亲水指数。亲水氨基酸指数在赋予蛋白质以交互性生物功能中的重要性在本领域中通常是被理解的(Kyte和Doolittle,(1982),J MolBiol.[分子生物学杂志],157(1):105-32)。接受的是该氨基酸的相对亲水特征有助于所得蛋白的次级结构,该次级结构进而定义该蛋白与其他分子(例如酶、底物、受体、DNA、抗体、抗原等等)的相互作用。
本领域已知某些氨基酸可以被具有相似亲水指数或评分的其他氨基酸取代,并且仍然产生具有相似生物学活性的蛋白质,即仍然获得生物功能等同的蛋白质。每个氨基酸基于其疏水性和电荷特征被指定亲水指数(Kyte和Doolittle,同上)。它们是:异亮氨酸(+4.5);缬氨酸(+4.2);亮氨酸(+3.8);苯丙氨酸(+2.8);半胱氨酸/胱氨酸(+2.5);甲硫氨酸(+1.9);丙氨酸(+1.8);甘氨酸(-0.4);苏氨酸(-0.7);丝氨酸(-0.8);色氨酸(-0.9);酪氨酸(-1.3);脯氨酸(-1.6);组氨酸(-3.2);谷氨酸(-3.5);谷氨酰胺(-3.5);天冬氨酸(-3.5);天冬酰胺(-3.5);赖氨酸(-3.9)和精氨酸(-4.5)。在进行这种变化时,优选亲水性指数在+2以内的氨基酸取代,特别优选在+1以内的氨基酸取代,并且甚至更特别优选+0.5以内的氨基酸取代。
在本领域中也可以理解,可以基于亲水性有效地进行类似氨基酸的取代。美国专利号4,554,101说明蛋白的最大局部平均亲水性(如由其相邻氨基酸的亲水性支配的)与该蛋白的生物特性相关。
如美国专利号4,554,101中所详述的,已为氨基酸残基分配以下亲水性值:精氨酸(+3.0);赖氨酸(+3.0);天冬氨酸(+3.0.+0.1);谷氨酸(+3.0.+0.1);丝氨酸(+0.3);天冬酰胺(+0.2);谷氨酰胺(+0.2);甘氨酸(0);苏氨酸(-0.4);脯氨酸(-0.5.+0.1);丙氨酸(-0.5);组氨酸(-0.5);半胱氨酸(-1.0);甲硫氨酸(-1.3);缬氨酸(-1.5);亮氨酸(-1.8);异亮氨酸(-1.8);酪氨酸(-2.3);苯丙氨酸(-2.5);色氨酸(-3.4)。
可替代地,可以在氨基或羧基的末端上对多种蛋白质的蛋白质序列进行改变,而基本上不影响活性。这可以包括由现代分子方法所引入的插入、缺失或改变,这些方法如PCR,包括PCR扩增,这些PCR扩增借助于将氨基酸编码序列包括到在PCR扩增中所使用的寡核苷酸之中而改变或延长了这种蛋白质编码序列。可替代地,所添加的蛋白质序列可以包括完整的蛋白质编码序列,如在本领域内通常用于产生蛋白质融合物的那些序列。此类融合蛋白常常用于(1)增加目的蛋白质的表达;(2)引入结合结构域、酶活性或表位以促进蛋白质纯化、蛋白检测或本领域已知的其他实验用途;(3)将蛋白质的分泌或翻译靶向亚细胞器,如革兰氏阴性菌的周质空间、植物的线粒体或叶绿体或真核细胞的内质网,其中后者常常导致蛋白质的糖基化。
本公开的变体核苷酸和氨基酸序列还涵盖了由诱变和引起重组的程序(如DNA改组)所衍生的序列。在这样的方法的情况下,可以使用本公开编码区域的一种或多种不同的杀昆虫多肽来产生具有所需性质的本公开的新的杀昆虫多肽。以此方式,由一群相关的序列多核苷酸产生重组多核苷酸文库,这些相关的序列多核苷酸包含具有实质序列同一性并且能够在体外或体内同源重组的序列区域。例如,使用这种方法,可以将编码目的结构域的序列基序在杀有害生物基因与其他已知的杀有害生物基因之间进行改组,以获得编码具有改善的目的特性(如增加的杀昆虫活性)的新基因。这种DNA改组的策略在本领域中是已知的。参见例如,Stemmer,(1994)Proc.Natl.Acad.Sci.USA[美国科学院院报]91:10747-10751;Stemmer,(1994)Nature[自然]370:389-391;Crameri等人,(1997)Nature Biotech.[自然生物技术]15:436-438;Moore等人,(1997)J Mol Biol[分子生物学杂志]272:336-347;Zhang等人,(1997)Proc.Natl.Acad.Sci.USA[美国科学院院报]94:4504-4509;Crameri等人,(1998)Nature[自然]391:288-291;以及美国专利号5,605,793和5,837,458。
结构域交换或改组是用于产生本公开的改变的杀昆虫多肽的另一种机制。可以在本公开的杀昆虫多肽之间交换结构域,导致具有改进的杀昆虫活性或靶谱的杂交或嵌合毒素。用于产生重组蛋白并测试其杀有害生物活性的方法是本领域熟知的(参见例如Naimov等人,(2001)Appl.Environ.Microbiol.[应用与环境微生物学]67:5328-5330;de Maagd等人,(1996)Appl.Environ.Microbiol.[应用与环境微生物学]62:1537-1543;Ge等人,(1991)J.Biol.Chem.[生物化学杂志]266:17954-17958;Schnepf等人,(1990)J.Biol.Chem.[生物化学杂志]265:20923-20930;Rang等人,91999)Appl.Environ.Microbiol.[应用与环境微生物学]65:2918-2925)。
杀昆虫多肽的同源物的比对(图1)允许鉴定这些家族的同源物中高度保守的残基。
组合物
也可以设想包含本公开的杀昆虫多肽的组合物。考虑了包含本公开的IPD078-1、IPD078-2、IPD084、IPD086-1、IPD086-2、IPD087、和/或IPD089多肽的组合物。在一些实施例中,这些组合物包含杀昆虫有效浓度的本公开的IPD078-1、IPD078-2、IPD084、IPD086-1、IPD086-2、IPD087、和/或IPD089多肽。在另外的实施例中,这些组合物包含本公开的IPD078-1、IPD078-2、IPD084、IPD086-1、IPD086-2、IPD087、和/或IPD089多肽的一种或多种的组合。在一个实施例中,这些组合物包含本公开的IPD078.1和IPD078-2、或IPD086-1和IPD086-2多肽。在一些实施例中,该组合物进一步包含农业上可接受的载体。
抗体
还涵盖了针对实施例的本公开的杀昆虫多肽或针对其变体或片段的抗体。本公开的抗体包括保留其结合昆虫肠道中发现的杀昆虫蛋白的能力的多克隆和单克隆抗体及其片段。据信抗体、单克隆抗体或其片段能够与分子结合,前提是该抗体、单克隆抗体或其片段能够与该分子特异性反应,从而将该分子与抗体、单克隆抗体或其片段结合。术语“抗体”(Ab)或“单克隆抗体”(Mab)意在包括能够结合半抗原的完整分子及其片段或结合区域或结构域(例如,像Fab和F(ab).sub.2片段)。此类片段通常通过蛋白水解切割(例如木瓜蛋白酶或胃蛋白酶)产生。可替代地,可以通过应用重组DNA技术或通过合成化学来产生半抗原结合片段。制备本公开的抗体的方法是本领域公知的。例如,参见Antibodies,A LaboratoryManual[抗体,实验室手册],Ed Harlow和David Lane(编辑)Cold Spring HarborLaboratory[冷泉港实验室],N.Y.[纽约](1988),以及其中引用的参考文献。阐述免疫学的一般原则的标准参考文献包括:Klein,J.Immunology:The Science of Cell-NoncellDiscrimination[免疫学杂志:细胞-非细胞鉴别科学],John Wiley&Sons[约翰&威利父子公司],纽约(1982);Dennett等人,Monoclonal Antibodies,Hybridoma:A New Dimensionin Biological Analyses[单克隆抗体,杂交瘤:生物分析的新维度],Plenum Press[普莱纽姆出版社],纽约(1980)以及Campbell,″Monoclonal Antibody Technology[单克隆抗体技术],″,在Laboratory Techniques in Biochemistry and Molecular Biology[生物化学与分子生物学实验室技术],第13卷,Burdon等人,(编),Elsevier[爱思唯尔出版社],阿姆斯特丹[Amsterdam](1984)。还参见,美国专利号4,196,265;4,609,893;4,713,325;4,714,681;4,716,111;4,716,117和4,720,459。本公开的杀昆虫多肽或其抗原结合部分的抗体可以通过多种技术产生,包括常规单克隆抗体方法,例如Kohler和Milstein,(1975)Nature[自然]256:495的标准体细胞杂交技术。还可以使用产生单克隆抗体的其他技术,如B淋巴细胞的病毒或致癌性转化。用于制备杂交瘤的动物系统是小鼠系统。分离用于融合的免疫的脾细胞的免疫方案和技术是本领域已知的。融合配偶体(例如,小鼠骨髓瘤细胞)和融合方法也是已知的。本公开的抗体和单克隆抗体可以通过使用本公开的杀昆虫多肽作为抗原来制备。
提供了用于在样品中检测本公开的杀昆虫多肽的存在或检测编码本公开的杀昆虫多肽的核苷酸序列的存在的试剂盒。在一个实施例中,试剂盒提供基于抗体的试剂,用于检测组织样品中本公开的杀昆虫多肽的存在。在另一个实施例中,试剂盒提供用于检测编码本公开的杀昆虫多肽的一种或多种多核苷酸的存在的标记的核酸探针。将试剂盒与用于进行检测方法的适当的试剂和对照物,以及试剂盒的使用说明书一起提供。
受体鉴定和分离
还涵盖了针对实施例的杀昆虫多肽或其变体或片段的受体。用于鉴定受体的方法是本领域熟知的(参见,Hofmann等人,(1988)Eur.J.Biochem.[欧洲生物化学杂志]173:85-91;Gill等人,(1995)J.Biol.Chem.[生物化学杂志]27277-27282),并且可以使用来自易感昆虫的刷状缘膜囊泡将这些方法用于鉴定和分离识别本公开的杀昆虫多肽的受体。除了所引用的文献中列出的放射性标记方法之外,可以将杀昆虫多肽用荧光染料和其他常见标记如链霉亲和素进行标记。可以根据参考文献中列出的方案制备易感昆虫(如大豆夜蛾和椿象)的刷状缘膜囊泡(BBMV),并在SDS-PAGE凝胶上分离,并在合适的膜上印迹。本公开的标记的杀昆虫多肽可以与BBMV的印迹膜一起孵育,并且标记的本公开的杀昆虫多肽可以用标记的报道基因鉴定。与本公开的杀昆虫多肽相互作用的蛋白质带的鉴定可以通过基于N-末端氨基酸气相测序或基于质谱的蛋白质鉴定方法进行检测(Patterson,(1998)10.22,1-24,由约翰威利父子公司(John Wiley&Son Inc)出版的Current Protocol in MolecularBiology[当前分子生物学方案])。一旦鉴定出蛋白质,可以从易感昆虫的基因组DNA或cDNA文库中克隆相应的基因,并且可以直接用本公开的杀昆虫多肽测量结合亲和力。通过本公开的杀昆虫多肽的杀昆虫活性的受体功能可以通过RNAi型的基因敲除法完成验证(Rajagopal等人,(2002)J.Biol.Chem.[生物化学杂志]277:46849-46851)。
核苷酸构建体、表达盒和载体
本文使用术语“核苷酸构建体”并不旨在将实施例限制为包含DNA的核苷酸构建体。本领域普通技术人员将认识到,核苷酸构建体,特别是由核糖核苷酸构成的多核苷酸和寡核苷酸以及核糖核苷酸和脱氧核糖核苷酸的组合也可用于本文公开的方法中。实施例的核苷酸构建体、核酸和核苷酸序列另外涵盖这种构建体、分子和序列的所有互补形式。此外,实施例的核苷酸构建体、核苷酸分子和核苷酸序列涵盖能用于实施例的转化植物方法的所有核苷酸构建体、分子和序列,包括但不限于由脱氧核糖核苷酸、核糖核苷酸及其组合所构成的那些。这种脱氧核糖核苷酸和核糖核苷酸既包括天然存在的分子也包括合成的类似物。实施例的核苷酸构建体、核酸和核苷酸序列还涵盖核苷酸构建体的所有形式,这些形式包括但不限于单链形式、双链形式、发夹、茎环结构等。
另外的实施例涉及经转化的生物体,如选自以下的生物体:植物和昆虫细胞、细菌、酵母、杆状病毒、原生动物、线虫和藻的生物体。经转化的生物体包含实施例的DNA分子、包含DNA分子的表达盒或包含表达盒的载体,它可以稳定地并入经转化的生物体的基因组。
在DNA构建体中提供实施例的序列,用于在目的生物体中表达。该构建体将包括可操作地连接至实施例的序列的5′和3′的调节序列。如本文使用的,术语“可操作地连接”是指启动子和第二序列之间的功能性连接,其中启动子序列启动并介导相应于第二序列的DNA序列的转录。通常,可操作地连接意味着所连接的核酸序列是连续的,并且在必要时在相同阅读框中连接两个蛋白质编码区域。该构建体可以另外含有待共转化进生物体的至少一个另外的基因。可替代地,可以在多个DNA构建体上提供一个或多个另外的基因。
这种DNA构建体具有多个用于插入杀昆虫多肽基因序列的限制性位点,该杀昆虫多肽基因序列将位于调节性区域的转录调节之下。DNA构建体可以另外包含选择性标记基因。
按5′到3′的转录方向,DNA构建体将通常包括:转录和翻译起始区域(即,启动子)、实施例的DNA序列以及在用作宿主的生物体内具有功能的转录和翻译终止区域(即,终止区域)。针对实施例的宿主生物体和/或序列,转录起始区(即,启动子)可以是天然的、类似的、外源的或异源的。此外,该启动子可以是天然序列或者,可替代地,是合成序列。如本文使用的,术语“外源”表示在引入启动子的天然生物体中没有发现启动子。在启动子对于实施例的序列而言是“外源的”或“异源的”情况下,它是指该启动子对于实施例的可操作地连接的序列而言不是天然的或天然存在的启动子。如本文使用的,嵌合基因包含与转录起始区可操作地连接的编码序列,该转录起始区对于该编码序列是异源的。当启动子是天然或自然的序列时,可操作地连接的序列的表达从野生型表达变化,这导致表型的改变。
在一些实施例中,DNA构建体还可以包括转录增强子序列。如本文使用的,术语“增强子”是指可以刺激启动子活性的DNA序列,并且可以是插入以增强启动子的水平或组织特异性的启动子的先天元件或异源元件。各种增强子是本领域已知的,包括例如,在植物中具有基因表达增强特性的内含子(泛素内含子(即,玉蜀黍泛素内含子1(参见,例如,NCBI序列S94464;Christensen和Quail(1996)Transgenic Res.[转基因研究]5:213-218;Christensen等人(1992)Plant Molecular Biology[植物分子生物学]18:675-689))、ω增强子或ω主要增强子(Gallie等人,(1989)Molecular Biology of RNA[RNA的分子生物学]编辑Cech(Liss,纽约)237-256和Gallie等人,(1987)Gene[基因]60:217-25)、CaMV 35S增强子(参见,例如,Benfey等人,(1990)EMBO J.[欧洲分子生物学学会杂志]9:1685-96)、玉蜀黍AdhI内含子(Kyozuka等人(1991)Mol.Gen.Genet.[分子遗传学和普通遗传学]228:40-48;Kyozuka等人(1990)Maydica[美迪卡杂志]35:353-357)),并且也可以使用的美国专利号7,803,992的增强子。以上转录增强子的列表并不意指是限制性的。任何适当转录增强子都可用于实施例中。
终止区对于转录起始区可以是天然的,对于可操作地连接的目的DNA序列可以是天然的,对于植物宿主可以是天然的,或者可以衍生自另一种来源(即,对于启动子、目的序列、植物宿主、或其任何组合而言是外源的或异源的)。
方便的终止区可获自根癌农杆菌(A.tumefaciens)的Ti质粒,例如章鱼碱合酶和胭脂碱合酶终止区。还参见,Guerineau等人,(1991)Mol Gen.Genet.[分子遗传学和普通遗传学]262:141-144;Proudfoot,(1991)Cell[细胞]64:671-674;Sanfacon等人,(1991)Genes Dev.[基因与发育]5:141-149;Mogen等人,(1990)Plant Cell[植物细胞]2:1261-1272;Munroe等人,(1990)Gene[基因]91:151-158;Ballas等人,(1989)Nucleic AcidsRes.[核酸研究]17:7891-7903以及Joshi等人,(1987)Nucleic Acid Res.[核酸研究]15:9627-9639。
适当时可以优化核酸以增加在宿主生物体中的表达。因此,在宿主生物体是植物的情况下,合成核酸可以使用植物偏好性密码子来合成以改进表达。有关宿主偏好性密码子使用的讨论,参见例如Campbell和Gowri,(1990)Plant Physiol.[植物生理学]92:1-11。例如,虽然在单子叶和双子叶植物物种中均可以表达实施例的核酸序列,但是可以修饰序列,以解释单子叶或双子叶植物特异的密码子偏好和GC含量偏好,这是因为这些偏好已经表现出了差异(Murray等人(1989)Nucleic Acids Res.[核酸研究]17:477-498)。因而,特定氨基酸的玉蜀黍偏好性密码子可以源自玉蜀黍的已知基因序列。来自玉蜀黍植物的28种基因的玉蜀黍密码子使用在Murray等人(同上)的表4中列出。本领域中可获得用于合成植物偏好的基因的方法。参见,例如,Murray等人,(1989)Nucleic Acids Res.[核酸研究]17:477-498,和Liu H等人MolBio Rep[分子生物学报告]37:677-684,2010。玉米(Zea maize)密码子使用表也可以在kazusa.or.jp/codon/cgi-bin/showcodon.cgi?species=4577上(其可以使用www前缀进行访问)、以及Liu H等人MolBio Rep[分子生物学报告]37:677-684,2010中找到。大豆密码子使用表也可以在kazusa.or.jp/codon/cgi-bin/showcodon.cgi?species=3847&aa=1&style=N上找到,其可以使用www前缀进行访问。
在一些实施例中,编码本公开的杀昆虫多肽的重组核酸分子具有玉蜀黍优化的密码子。
已知有另外的序列修饰能增强细胞宿主中的基因表达。这些包括消除以下序列,编码假多腺苷酸化信号、外显子-内含子剪接位点信号、转座子样重复序列和得到充分表征的、可能不利于基因表达的其他序列。可以将序列的GC含量调整至给定细胞宿主的平均水平,如通过参考在该宿主细胞中表达的已知基因而计算的。如本文使用的,术语“宿主细胞”是指包含载体并支持表达载体的复制和/或表达的细胞。宿主细胞可以是原核细胞如大肠杆菌,或真核细胞如酵母、昆虫、两栖类或哺乳动物细胞、或单子叶或双子叶植物细胞。单子叶宿主细胞的实例是玉蜀黍宿主细胞。当可能时,修饰序列以避免出现可预见的发夹二级mRNA结构。
表达盒可以另外包含5′前导序列。这些前导序列可以起到增强翻译的作用。翻译前导序列在本领域是已知的,并且包括:小核糖核酸病毒前导序列,例如,EMCV前导序列(脑心肌炎5′非编码区域)(Elroy-Stein等人(1989)Proc.Natl.Acad.Sci.USA[美国科学院院报]86:6126-6130);马铃薯Y病毒组前导序列,例如,TEV前导序列(烟草蚀纹病毒)(Gallie等人(1995)Gene[基因]165(2):233-238);MDMV前导序列(玉蜀黍矮花叶病毒)、人类免疫球蛋白重链结合蛋白(BiP)(Macejak等人(1991)Nature[自然]353:90-94);来自苜蓿花叶病病毒的外壳蛋白mRNA的非翻译前导序列(AMV RNA 4)(Jobling等人(1987)Nature[自然]325:622-625);烟草花叶病毒前导序列(TMV)(Gallie等人(1989)在Molecular Biology ofRNA[RNA的分子生物学],编辑.Cech(Liss,纽约),第237-256页);和玉蜀黍褪绿斑驳病毒前导序列(MCMV)(Lommel等人(1991)Virology[病毒学]81:382-385)。还参见,Della-Cioppa等人,(1987)Plant Physiol.[植物生理学]84:965-968。此类构建体还可以包含“信号序列”或“前导序列”,以促进该肽的共翻译成或翻译后运输至某些细胞内结构,如叶绿体(或其他质体)、内质网或高尔基体。
如本文使用的,“信号序列”是指已知或怀疑导致跨细胞膜的共翻译或翻译后肽运输的序列。在真核生物中,这典型地涉及分泌到高尔基体内,伴随某些产生的糖基化。细菌的杀昆虫毒素经常被合成为原毒素,这些原毒素在该靶标有害生物的肠中经蛋白水解激活(Chang,(1987)Methods Enzymol.[酶学方法]153:507-516)。在一些实施例中,该信号序列位于该天然的序列中,或可以源自实施例的序列。如本文使用的,术语“前导序列”是指当翻译时产生足以引发肽链与亚细胞器的共翻译转运的氨基酸序列的任何序列。因此,这包括通过进入内质网内、进入液泡、质体(包括叶绿体、线粒体)等中来对运输和/或糖基化进行靶向的前导序列。靶向叶绿体类囊体腔室的核编码蛋白具有由基质靶向信号肽和腔靶向信号肽组成的特征二分转运肽。基质靶向信息位于转运肽的氨基-近端部分。腔靶向信号肽位于转运肽的羧基近端部分,并且包含用于靶向腔的所有信息。最近对高等植物叶绿体的蛋白质组学的研究已经在许多核编码的腔蛋白质的鉴定中实现(Kieselbach等人FEBS LETT[欧洲生化学会联盟通讯]480:271-276,2000;Pehier等人,Plant Cell[植物细胞]12:319-341,2000;Bricker等人,Biochim.Biophys Acta[生物化学与生物物理学报]1503:350-356,2001),根据本公开可能使用该核编码的腔蛋白质的腔靶向信号肽。Kieselbach等人,Photosynthesis Research[光合作用研究]78:249-264,2003报道了来自拟南芥属(Arabidopsis)约80种蛋白质以及来自菠菜和豌豆的同源蛋白。具体地,此公开物的表2(其通过引用并入本说明书中)公开了通过其登录号鉴定的来自叶绿体腔的85种蛋白质(还参见美国专利申请公开2009/09044298)。此外,最近公开的水稻基因组草拟版本(Goff等人,Science[科学]296:92-100,2002)是可以根据本公开使用的用于腔靶向信号肽的合适来源。
本领域技术人员熟知的合适的叶绿体转运肽(CTP)还包含嵌合CTP,这些嵌合CTP包括但不限于:来自以下各项的CTP的N-末端结构域、中心结构域或C-末端结构域:水稻(Oryza sativa)1-脱氧-D木酮糖-5-磷酸合酶、水稻-超氧化物歧化酶、水稻-可溶性淀粉合酶、水稻-NADP-依赖性苹果酸酶、水稻-磷酸2-脱氢-3-脱氧庚酸醛缩酶2、水稻-L-抗坏血酸过氧化物酶5、水稻-磷酸葡聚糖水二激酶、玉蜀黍ssRUBISCO、玉蜀黍-β-葡糖苷酶、玉蜀黍-苹果酸脱氢酶、玉蜀黍硫氧还蛋白M-型(美国专利申请公开2012/0304336)。美国专利公开物US 20130205440 A1、US 20130205441 A1和US 20130210114 A1的叶绿体转运肽。
可以针对在叶绿体中的表达来优化待靶向该叶绿体的杀昆虫基因,以解决植物核与该细胞器之间密码子使用的差异。以此方式,目的核酸可使用叶绿体优先的密码子进行合成。
在制备表达盒时,可以操作各种DNA片段,以提供处于适当方向以及合适时,处于适当阅读框中的DNA序列。为此,可采用衔接子(adapter)或接头以连接DNA片段,或可以涉及其他操作以提供方便的限制位点、移除多余的DNA、移除限制位点等。出于这个目的,可以涉及体外诱变、引物修复、限制性酶切(restriction)、退火、再取代(例如转换和颠换)。
许多启动子可用于实施这些实施例。可基于所需结果,选择启动子。核酸可与组成性、组织偏好性、可诱导的或其他启动子组合用于在宿主生物体中的表达。用于植物宿主细胞中的合适的组成型启动子包括,例如Rsyn7启动子的核心启动子和其他在WO 1999/43838和美国专利号6,072,050中公开的组成型启动子;核心CaMV 35S启动子(Odell等人,(1985)Nature[自然]313:810-812);水稻肌动蛋白(McElroy等人,(1990)Plant Cell[植物细胞]2:163-171);泛素(Christensen等人,(1989)Plant Mol.Biol.[植物分子生物学]12:619-632和Christensen等人,(1992)Plant Mol.Biol.[植物分子生物学]18:675-689);pEMU(Last等人,(1991)Theor.Appl.Genet.[理论与应用遗传学]81:581-588);MAS(Velten等人,(1984)EMBO J.[欧洲分子生物学学会杂志]3:2723-2730);ALS启动子(美国专利号5,659,026)等。其他组成型启动子包括例如以下美国专利号中所讨论的那些:5,608,149;5,608,144;5,604,121;5,569,597;5,466,785;5,399,680;5,268,463;5,608,142和6,177,611。合适的组成型启动子还包括在几乎所有组织中具有强表达但在花粉中具有低表达的启动子,这些启动子包括但不限于:美国专利US 8,338,662中所公开的香蕉条斑病毒(Acuminata Yunnan)启动子(BSV(AY))、美国专利US 8,350,121中所公开的香蕉条斑病毒(Acuminata Viemam)启动子(BSV(AV))、和美国专利US 8,395,022中所公开的香蕉条斑病毒(Mysore)启动子(BSV(MYS))。
根据希望的结果,从诱导型启动子表达基因可能是有益的。用于调节实施例的核苷酸序列在植物中表达的特别引人关注的是伤口诱导型启动子。这种伤口诱导型启动子可以对由昆虫取食引起的损害作出反应,并且包括马铃薯蛋白酶抑制剂(pin II)基因(Ryan,(1990)Ann.Rev.Phytopath.[植物病理学年鉴]28:425-449;Duan等人,(1996)NatureBiotechnology[自然生物技术]14:494-498);wun1和wun2,美国专利号5,428,148;win1和win2(Stanford等人,(1989)Mol.Gen.Genet.[分子遗传学和普通遗传学]215:200-208);系统素(McGurl等人,(1992)Science[科学]225:1570-1573);WIP1(Rohmeier等人,(1993)Plant Mol.Biol.[植物分子生物学]22:783-792;Eckelkamp等人,(1993)FEBS Letters[欧洲生化学会联盟通讯]323:73-76);MPI基因(Corderok等人,(1994)Plant J.[植物杂志]6(2):141-150)等。
此外,可以在实施例的方法和核苷酸构建体中使用病原体诱导型启动子。这类病原体诱导型启动子包括来自病程相关蛋白(PR蛋白)(例如,PR蛋白、SAR蛋白、β-1,3-葡聚糖酶、几丁质酶等)的那些。参见,例如Redolfi等人,(1983)Neth.J.Plant Pathol.[荷兰植物病理学杂志]89:245-254;Uknes等人,(1992)Plant Cell[植物细胞]4:645-656;以及VanLoon,(1985)Plant Mol.Virol.[植物分子病毒学]4:111-116。还参见WO 1999/43819。
引人关注的是在病原体感染部位处或附近局部表达的启动子。参见例如Marineau等人,(1987)Plant Mol.Biol.[植物分子生物学]9:335-342;Matton等人,(1989)Molecular Plant-Microbe Interactions[分子植物-微生物相互作用]2:325-331;Somsisch等人,(1986)Proc.Natl.Acad.Sci.USA[美国科学院院报]83:2427-2430;Somsisch等人,(1988)Mol.Gen.Genet.[分子遗传学和普通遗传学]2:93-98以及Yang,(1996)Proc.Natl.Acad.Sci.USA[美国科学院院报]93:14972-14977。还参见Chen等人,(1996)Plant J.[植物杂志]10:955-966;Zhang等人,(1994)Proc.Natl.Acad.Sci.USA[美国科学院院报]91:2507-2511;Warner等人,(1993)Plant J.[植物杂志]3:191-201;Siebertz等人,(1989)Plant Cell[植物细胞]1:961-968;美国专利号5,750,386(线虫诱导型)及其中引用的参考文献。特别引人关注的是玉蜀黍PRms基因的诱导型启动子,其表达是由病原体串珠镰刀菌(Fusarium moniliforme)诱导的(参见例如Cordero等人,(1992)Physiol.Mol.Plant Path.[生理学与分子植物病理学]41:189-200)。
可以使用化学调节型启动子以通过应用外源化学调节剂来调节植物中的基因表达。取决于目标,启动子可以是化学诱导型启动子,其中施用化学品来诱导基因表达,或化学抑制型启动子,其中施用化学品来抑制基因表达。化学诱导型启动子是本领域已知的,并且包括但不限于由苯磺酰胺除草剂安全剂激活的玉蜀黍In2-2启动子、由用作萌前除草剂的疏水亲电子化合物激活的玉蜀黍GST启动子、以及由水杨酸激活的烟草PR-1a启动子。其他引人关注的化学品调节型启动子包括类固醇应答启动子(参见,例如,Schena等人,(1991)Proc.Natl.Acad.Sci.USA[美国科学院院报]88:10421-10425和McNellis等人,(1998)Plant J.[植物杂志]14(2):247-257中的糖皮质激素诱导型启动子)以及四环素诱导型和四环素抑制型启动子(参见,例如,Gatz等人,(1991)Mol.Gen.Genet.[分子遗传学和普通遗传学]227:229-237,以及美国专利号5,814,618和5,789,156)。
组织偏好性启动子可以用于靶向特定植物组织内的增强的杀昆虫多肽表达。组织偏好性启动子包括描述于以下文献中的那些:Yamamoto等人,(1997)Plant J.[植物杂志]12(2):255-265;Kawamata等人,(1997)Plant Cell Physiol.[植物细胞生理学]38(7):792-803;Hansen等人,(1997)Mol.Gen Genet.[分子和普通遗传学]254(3):337-343;Russell等人,(1997)Transgenic Res.[转基因研究]6(2):157-168;Rinehart等人,(1996)Plant Physiol.[植物生理学]112(3):1331-1341;Van Camp等人,(1996)Plant Physiol.[植物生理学]112(2):525-535;Canevascini等人,(1996)Plant Physiol.[植物生理学]112(2):513-524;Yamamoto等人,(1994)Plant Cell Physiol[植物细胞生理学]35(5):773-778;Lam,(1994)Results Probl.Cell Differ.[细胞分化的结果和问题]20:181-196;Orozco等人,(1993)Plant Mol Biol.[植物分子生物学]23(6):1129-1138;Matsuoka等人,(1993)Proc Natl.Acad.Sci.USA[美国科学院院报]90(20):9586-9590和Guevara-Garcia等人,(1993)Plant J.[植物杂志]4(3):495-505。必要的话,此类启动子可经修饰用于弱表达。
叶偏好性启动子是本领域已知的。参见,例如,Yamamoto等人,(1997)Plant J.[植物杂志]12(2):255-265;Kwon等人,(1994)Plant Physiol.[植物生理学]105:357-67;Yamamoto等人,(1994)Plant Cell Physiol[植物细胞生理学]35(5):773-778;Gotor等人,(1993)Plant J.[植物杂志]3:509-18;Orozco等人,(1993)Plant Mol.Biol.[植物分子生物学]23(6):1129-1138以及Matsuoka等人,(1993)Proc.Natl.Acad.Sci.USA[美国科学院院报]90(20):9586-9590。
根偏好性或根特异性的启动子是已知的,并且可以从来自文献中的许多可获得的启动子来选择,或者从不同相容物种重新分离。参见例如Hire等人,(1992)PlantMol.Biol.[植物分子生物学]20(2):207-218(大豆根特异性谷氨酰胺合成酶基因);Keller和Baumgartner,(1991)Plant Cell[植物细胞]3(10):1051-1061(法国菜豆的GRP1.8基因中的根特异性控制元件);Sanger等人,(1990)Plant Mol.Biol.[植物分子生物学]14(3):433-443(根癌农杆菌(Agrobacterium tumefaciens)的甘露聚糖合成酶(MAS)基因的根特异性启动子)以及Miao等人,(1991)Plant Cell[植物细胞]3(1):11-22(编码细胞溶质谷氨酰胺合成酶(GS)的全长cDNA克隆,其在大豆的根和根瘤中表达)。还参见,Bogusz等人,(1990)Plant Cell[植物细胞]2(7):633-641,其中描述了从来自固氮的非豆科植物榆科山黄麻(Parasponiaandersonii)以及相关的非固氮的非豆科植物山黄麻(Trema tomentosa)的血红蛋白基因分离的两个根特异性启动子。这些基因的启动子被连接至β-葡萄糖醛酸酶报道基因并且被引入非豆科植物烟草(Nicotiana tabacum)以及豆科植物百脉根(Lotuscorniculatus)两者中,并且在两个实例中根特异性启动子活性被保留。Leach和Aoyagi,(1991)描述了他们对发根农杆菌(Agrobacterium rhizogenes)的高表达的rolC和rolD根诱导基因的启动子的分析(参见,Plant Science[植物科学](Limerick)79(1):69-76)。他们得出结论,增强子和组织偏好性DNA决定簇在这些启动子中是解离的。Teeri等人,(1989)使用与lacZ的基因融合以显示编码章鱼碱合酶的农杆菌属T-DNA基因尤其是在根尖的表皮中有活性,并且TR2′基因在完整植物中具有根特异性并且被叶组织中的创伤刺激,这是与杀昆虫的或杀幼虫的基因一起使用的特别希望的特征组合(参见,EMBO J.[欧洲分子生物学学会杂志]8(2):343-350)。与nptII(新霉素磷酸转移酶II)融合的TR1′基因显示相似的特征。另外的根偏好性启动子包括VfENOD-GRP3基因启动子(Kuster等人,(1995)PlantMol.Biol.[植物分子生物学]29(4):759-772);和rolB启动子(Capana等人,(1994)PlantMol.Biol.[植物分子生物学]25(4):681-691)。还参见,美国专利号5,837,876;5,750,386;5,633,363;5,459,252;5,401,836;5,110,732和5,023,179。美国专利申请US 20130117883中公开了拟南芥(Arabidopsis thaliana)根偏好性调节序列。美国专利申请US20120210463中公开了根偏好性高梁(sorghum或Sorghum bicolor)RCc3启动子。
种子偏好性启动子包括种子特异性启动子(在种子发育期间有活性的那些启动子如种子贮藏蛋白的启动子)以及种子发芽性启动子(在种子发芽期间有活性的那些启动子)。参见Thompson等人,(1989)BioEssays[生物学论文集]10:108。这样的种子偏好性启动子包括但不限于Cim1(细胞分裂素诱导的信息);cZ19B1(玉蜀黍19kDa玉米醇溶蛋白);和milps(肌醇-1-磷酸合酶)(参见,美国专利号6,225,529)。γ-玉米蛋白和Glb-1是胚乳特异性启动子。对于双子叶植物,种子特异性启动子包括但不限于:库尼兹(Kunitz)胰蛋白酶抑制剂3(KTi3)(Jofuku和Goldberg,(1989)Plant Cell[植物细胞]1:1079-1093)、豆β-菜豆素、油菜籽蛋白、β-伴大豆球蛋白、大豆球蛋白1、大豆凝集素、十字花科蛋白等。对于单子叶植物,种子特异性启动子包括但不限于玉蜀黍15kDa玉米醇溶蛋白、22kDa玉米醇溶蛋白、27kDa玉米醇溶蛋白、g-玉米醇溶蛋白、蜡质、收缩素1、收缩素2、球蛋白1等。还参见WO2000/12733,其中公开了来自endl和end2基因的种子偏好性启动子。在双子叶植物中,种子特异性启动子包括但不限于:来自拟南芥属的种皮启动子,pBAN;和来自拟南芥属的早期种子启动子,p26、p63、和p63tr(美国专利号7,294,760和7,847,153)。在特定组织中具有“偏好性”表达的启动子在该组织中比在至少一种其他植物组织中以更高程度表达。一些组织偏好性启动子几乎专门在特定组织中表达。
当希望低水平表达时,可使用弱启动子。通常,如本文使用的术语“弱启动子”是指以低水平驱动编码序列的表达的启动子。低水平表达是指约1/1000转录物至约1/100,000转录物至约1/500,000转录物的水平。可替代地,应当认识到,术语“弱启动子”还涵盖仅在少数细胞中驱动表达但不在其他细胞中表达,从而具有低水平总表达的启动子。当启动子以不可接受的高水平驱动表达时,可以删除或修饰部分启动子序列以降低表达水平。
这样的弱组成型启动子包括例如Rsyn7启动子的核心启动子(WO 1999/43838和美国专利号6,072,050)、核心35S CaMV启动子等。其他组成型启动子包括例如以下专利文献中所公开的那些:美国专利号5,608,149;5,608,144;5,604,121;5,569,597;5,466,785;5,399,680;5,268,463;5,608,142和6,177,611。
以上启动子的列表并不意指是限制性的。任何适当的启动子都可用于实施例中。
通常,表达盒将包含选择性标记基因,用于选择经转化的细胞。利用选择性标记基因来选择经转化的细胞或组织。标记基因包括编码抗生素抗性的基因,例如编码新霉素磷酸转移酶II(NEO)和潮霉素磷酸转移酶(HPT)的基因,以及赋予除草剂化合物(如草胺磷、溴草腈、咪唑啉酮和2,4-二氯苯氧乙酸(2,4-D))抗性的基因。合适的选择性标记基因的其他实例包括但不限于编码对如下的耐受性的基因:氯霉素(Herrera Estrella等人,(1983)EMBO J.[欧洲分子生物学学会杂志]2:987-992);甲氨蝶呤(Herrera Estrella等人,(1983)Nature[自然]303:209-213和Meijer等人,(1991)Plant Mol.Biol.[植物分子生物学]16:807-820);链霉素(Jones等人,(1987)Mol.Gen.Genet.[分子遗传学和普通遗传学]210:86-91);壮观霉素(Bretagne-Sagnard等人,(1996)Transgenic Res.[转基因研究]5:131-137);博来霉素(Hille等人,(1990)Plant Mol.Biol.[植物分子生物学]7:171-176);磺酰胺类(Guerineau等人,(1990)Plant Mol.Biol.[植物分子生物学]15:127-136);溴草腈(Stalker等人,(1988)Science[科学]242:419-423);草甘膦(Shaw等人,(1986)Science[科学]233:478-481以及美国专利申请序列号10/004,357和10/427,692);草丁膦(DeBlock等人,(1987)EMBO J.[欧洲分子生物学学会杂志]6:2513-2518)。主要参见Yarranton,(1992)Curr.Opin.Biotech.[生物技术当代观点]3:506-511;Christopherson等人,(1992)Proc.Natl.Acad.Sci.USA[美国科学院院报]89:6314-6318;Yao等人,(1992)Cell[细胞]71:63-72;Reznikoff,(1992)Mol.Microbiol.[分子微生物学]6:2419-2422;Barkley等人,(1980)在The Operon[操纵子]中,第177-220页;Hu等人,(1987)Cell[细胞]48:555-566;Brown等人,(1987)Cell[细胞]49:603-612;Figge等人,(1988)Cell[细胞]52:713-722;Deuschle等人,(1989)Proc.Natl.Acad..Sci.USA[美国科学院院报]86:5400-5404;Fuerst等人,(1989)Proc.Natl.Acad..Sci.USA[美国科学院院报]86:2549-2553;Deuschle等人,(1990)Science[科学]248:480-483;Gossen,(1993)Ph.D.Thesis[博士学位论文],University of Heidelberg[德国海德堡大学];Reines等人,(1993)Proc.Natl.Acad..Sci.USA[美国科学院院报]90:1917-1921;Labow等人,(1990)Mol.Cell.Biol.[分子细胞生物学]10:3343-3356;Zambretti等人,(1992)Proc.Natl.Acad..Sci.USA[美国科学院院报]89:3952-3956;Baim等人,(1991)Proc.Natl.Acad.Sci.USA[美国科学院院报]88:5072-5076;Wyborski等人,(1991)NucleicAcids Res.[核酸研究]19:4647-4653;Hillenand-Wissman(1989)TopicsMol.Struc.Biol.[热点分子结构生物学]10:143-162;Degenkolb等人,(1991)Antimicrob.Agents Chemother.[抗微生物剂化学疗法]35:1591-1595;Kleinschnidt,等人,(1988)Biochemistry[生物化学]27:1094-1104;Bonin,(1993)Ph.D.Thesis[博士学位论文]University of Heidelberg[德国海德堡大学];Gossen等人,(1992)Proc.Natl.Acad.Sci.USA[美国科学院院报]89:5547-5551;Oliva等人,(1992)Antimicrob.Agents Chemother.[抗微生物剂化学疗法]36:913-919;Hlavka等人,(1985)Handbook of Experimental Pharmacology[实验药理学手册],78卷(Springer-Verlag,Berlin[柏林施普林格出版社])和Gill等人,(1988)Nature[自然]334:721-724。
以上选择性标记基因的列表并不意味着具有限制性。任何选择性标记基因均可用于这些实施例中。
DNA构建体
涵盖包含编码本公开的杀昆虫多肽的多核苷酸的DNA构建体。在一些实施例中,DNA构建体包含与异源调节元件可操作地连接、编码IPD078-1、IPD078-2、IPD084、IPD086-1、IPD086-2、IPD087、或IPD089多肽的多核苷酸。在一些实施例中,DNA构建体包含SEQ IDNO:1-42的一个或多个的多核苷酸,该多核苷酸编码SEQ ID NO:43-82的一种或多种IPD078-1、IPD078-2、IPD084、IPD086-1、IPD086-2、IPD087、或IPD089多肽。在一些实施例中,DNA构建体包含编码IPD078-1、IPD078-2、IPD084、IPD086-1、IPD086-2、IPD087、或IPD089多肽的非基因组核酸分子。在一些实施例中,DNA构建体包含编码与SEQ ID NO:43-82的一个或多个的氨基酸序列充分同源并且具有杀昆虫活性的IPD078-1、IPD078-2、IPD084、IPD086-1、IPD086-2、IPD087、或IPD089多肽的多核苷酸。
在一些实施例中,DNA构建体包含多核苷酸,该多核苷酸编码与SEQ ID NO:43-82的一个或多个多肽序列相比具有至少约50%、55%、60%、65%、70%、71%、72%、73%、74%、75%、76%、77%、78%、79%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高序列同一性并且具有杀昆虫活性的IPD078-1、IPD078-2、IPD084、IPD086-1、IPD086-2、IPD087、或IPD089多肽。在一些实施例中,DNA构建体包含多核苷酸,该多核苷酸编码与SEQ ID NO:43-82的一个或多个多肽序列相比具有至少约50%、55%、60%、65%、70%、71%、72%、73%、74%、75%、76%、77%、78%、79%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高序列同一性并且具有杀昆虫活性的IPD078-1、IPD078-2、IPD084、IPD086-1、IPD086-2、IPD087、或IPD089多肽。
植物转化
这些实施例的方法涉及将多肽或多核苷酸引入植物。如本文使用的,“引入”意指将该多核苷酸或多肽呈送给该植物,以这样的方式使得该序列进入该植物细胞的内部。这些实施例的方法不取决于用于将多核苷酸或多肽引入植物中的具体方法,只要该多核苷酸或多肽进入该植物的至少一个细胞的内部即可。将多核苷酸或多肽引入植物的方法是本领域已知的,该方法包括但不限于稳定转化法、瞬时转化法和病毒介导法。
如本文使用的“稳定转化”意指经引入植物中的核苷酸构建体合并到该植物的基因组中,并且能够被其子代遗传。如本文使用的“瞬时转化”意指将多核苷酸引入该植物中并且不合并到该植物的基因组中,或者将多肽引入植物中。如本文使用的“植物”是指整株植物、植物器官(例如叶、茎、根等)、种子、植物细胞、繁殖体、及其胚胎和子代。植物细胞可以是分化的或未分化的(例如愈伤组织、悬浮培养细胞、原生质体、叶子细胞、根细胞、韧皮部细胞和花粉)。
转化方案以及将核苷酸序列引入植物中的方案可以根据要靶向转化的植物或植物细胞的类型(即,单子叶植物或双子叶植物)而异。将核苷酸序列引入到植物细胞中并随后插入到植物基因组中的合适方法包括显微注射(Crossway等人,(1986)Biotechniniques[生物技术]4:320-334)、电穿孔(Riggs等人,(1986)Proc.Natl.Acad.Sci.USA[美国科学院院报]83:5602-5606)、农杆菌介导的转化(美国专利号5,563,055和5,981,840)、直接基因转移(Paszkowski等人,(1984)EMBO J[欧洲分子生物学学会杂志]3:2717-2722)以及弹道粒子加速(参见例如,美国专利号4,945,050;5,879,918;5,886,244和5,932,782;Tomes等人,(1995)Plant Cell,Tissue,and Organ Culture:FundamentalMethods[植物细胞、组织和器官培养:基本方法],Gamborg和Phillips编辑(Springer-Verlag,Berlin[德国柏林施普林格出版公司]);和McCabe等人,(1988)Biotechnology[生物技术]6:923-926);以及Lecl转化法(WO 00/28058)。对于马铃薯转化法,参见Tu等人,(1998)Plant MolecularBiology[植物分子生物学]37:829-838和Chong等人,(2000)Transgenic Research[转基因研究]9:71-78。可以在以下文献中找到另外的转化方法:Weissinger等人,(1988)Ann.Rev.Genet.[遗传学年鉴]22:421-477;Sanford等人,(1987)Particulate Scienceand Technology[微粒科学与技术]5:27-37(洋葱);Christou等人,(1988)Plant Physiol.[植物生理学]87:671-674(大豆);McCabe等人,(1988)Bio/Technology[生物/技术]6:923-926(大豆);Finer和McMullen,(1991)InV itro Cell Dev.Biol.[体外细胞生物学和发育生物学]27P:175-182(大豆);Singh等人,(1998)Theor.Appl.Genet.[理论与应用遗传学]96:319-324(大豆);Datta等人,(1990)Biotechnology[生物技术]8:736-740(水稻);Klein等人,(1988)Proc.Natl.Acad..Sci.USA[美国科学院院报]85:4305-4309(玉蜀黍);Klein等人,(1988)Biotechnology[生物技术]6∶559-563(玉蜀黍);美国专利号5,240,855;5,322,783和5,324,646;Klein等人,(1988)Plant Physiol.[植物生理学]91:440-444(玉蜀黍);Fromm等人,(1990)Biotechnology[生物技术]8:833-839(玉蜀黍);Hooykaas-VanSlogteren等人,(1984)Nature[自然](伦敦)311:763-764;美国专利号5,736,369(谷类);Bytebier等人,(1987)Proc.Natl.Acad..Sci.USA[美国科学院院报]84:5345-5349(百合科(Liliaceae));De Wet等人,(1985)The Experimental Manipulation of Ovule Tissues[胚珠组织的实验操作],Chapman等人编辑,(Longman[朗文出版社],纽约),第197-209页(花粉);Kaeppler等人,(1990)Plant Cell Reports[植物细胞报告]9:415-418和Kaeppler等人,(1992)Theor.Appl.Genet.[理论与应用遗传学]84:560-566(晶须介导的转化);D′Halluin等人,(1992)Plant Cell[植物细胞]4∶1495-1505(电穿孔);Li等人,(1993)PlantCell Reports[植物细胞报告],12:250-255以及Christou和Ford,(1995)Annals ofBotany[植物学年报]75:407-413(水稻);Osjoda等人,(1996)Nature Biotechnology[自然生物技术]14:745-750(经由根癌农杆菌的玉蜀黍)。
在特定实施例中,可以使用各种瞬时转化法向植物提供这些实施例的序列。此类瞬时转化方法包括但不限于:将本公开的杀昆虫多肽或杀昆虫活性变体或其片段直接引入植物中或者将本公开的杀昆虫多肽引入植物中。此类方法包括例如显微注射或粒子轰击。参见,例如,Crossway等人,(1986)Mol Gen.Genet.[分子遗传学和普通遗传学]202:179-185;Nomura等人,(1986)Plant Sci.[植物科学]44:53-58;Hepler等人,(1994)Proc.Natl.Acad.Sci.[美国科学院院报]91:2176-2180和Hush等人,(1994)The Journalof Cell Science[细胞科学杂志]107:775-784。可替代地,可以使用本领域已知的技术将编码本公开的一种或多种杀昆虫多肽的一种或多种多核苷酸瞬时转化到植物中。此类技术包括病毒载体系统,和以阻止DNA后续释放的方式使多核苷酸沉淀。因此,可以从微粒结合的DNA进行转录,但其被释放以整合至基因组的频率大大降低了。这种方法包括使用包被有聚乙烯亚胺(PEI;西格玛公司(Sigma)#P3143)的颗粒。
用于在植物基因组的特定位置靶向插入多核苷酸的方法是本领域已知的。在一个实施例中,利用位点特异性重组系统实现多核苷酸在所希望的基因组位置处的插入。参见,例如WO 1999/25821、WO 1999/25854、WO 1999/25840、WO 1999/25855和WO 1999/25853。简而言之,本实施例的多核苷酸可以包含在侧翼为两个不相同重组位点的转移盒内。将该转移盒引入植物中,该植物已经将靶位点稳定地掺入其基因组中,该靶位点侧翼为与转移盒的位点相对应的两个不相同的重组位点。提供适当的重组酶,并将该转移盒整合到靶位点。由此,目的多核苷酸被整合在植物基因组中的具体染色体位置处。
植物转化载体可以由实现植物转化所需的一种或多种DNA载体组成。例如,本领域常见做法是利用由多于一个连续DNA片段组成的植物转化载体。这些载体在本领域中通常被称为“双元载体”。双元载体以及具有辅助质粒的载体最常用于农杆菌介导的转化,其中实现有效转化所需的DNA片段的大小和复杂性相当大,并且将功能分离到单独的DNA分子上是有利的。双元载体通常含有包含T-DNA转移(如左边界和右边界)所需的顺式作用序列的质粒载体、被设计成能够在植物细胞中表达的可选标记、和“目的基因”(经工程改造成能够在植物细胞(理想的是转基因植物代的细胞)中表达的基因)。此质粒载体上也存在细菌复制所需的序列。将顺式作用序列以允许有效转移到植物细胞中并在其中表达的方式进行排列。例如,该选择性标记基因和杀有害生物基因位于左边界和右边界之间。通常第二质粒载体包含反式作用因子,这些反式作用因子介导从农杆菌属到植物细胞的T-DNA转化。如本领域所理解的,该质粒通常含有允许通过农杆菌感染植物细胞、以及通过在边界序列切割进行DNA的转移和vir介导的DNA转移的毒力功能(Vir基因)(Hellens和Mullineaux,(2000)Trends in Plant Science[植物科学趋势]5:446-451)。几种类型的农杆菌菌株(例如LBA4404、GV3101、EHA101、EHA105等)可用于植物转化。通过其他方法如显微投影、显微镜注射、电穿孔、聚乙二醇等来转化植物不需要第二质粒载体。
通常,植物转化方法涉及将异源DNA转移到靶植物细胞中(例如未成熟或成熟的胚、悬浮培养物、未分化的愈伤组织、原生质体等),随后施用最大阈值水平的适当选择(取决于选择性标记基因)以从一组未转化的细胞群中回收经转化的植物细胞。在将异源外源DNA整合到植物细胞中之后,然后在培养基中施用最大阈值水平的适当选择以杀死未转化的细胞,并通过定期转移到新鲜培养基中来分离并增殖从该选择处理中存活的推定经转化的细胞。通过连续传代和使用合适的选择进行攻击,识别并增殖了这些用该质粒载体转化的细胞。然后,可以使用分子和生物化学的方法来证实整合到该转基因植物的基因组中的目的异源基因的存在。
典型地将外植体转移到新鲜供应的相同培养基中并将其常规培养。随后,在被置于补充有最大阈值水平的选择剂的再生培养基上之后,这些经转化的细胞分化成芽。然后将这些芽转移到用于回收已生根的芽或小植物的选择性生根培养基上。然后转基因的小植株成长为成熟植物并产生稔性种子(例如Hiei等人,(1994)The Plant Journal 6:271-282;Ishida等人,(1996)Nature Biotechnology[自然生物技术]14:745-750)。典型地将外植体转移到新鲜供应的相同培养基中并将其常规培养。用于生产转基因植物的技术和方法的一般描述发现于以下文献中:Ayres和Park,(1994)Critical Reviews in PlantScience[植物科学评论]13:219-239以及Bommineni和Jauhar,(1997)Maydica[美迪卡杂志]42:107-120。由于经转化的材料含有许多细胞;所以在受试的靶愈伤组织或组织或细胞群的任何部分中同时存在经转化细胞和未转化细胞。杀死未转化细胞并允许经转化细胞增殖的能力产生经转化植物培养物。
可依据常规方式将已转化的细胞培育成植株。参见,例如,McCormick等人,(1986)Plant Cell Reports[植物细胞报告]5:81-84。然后可以培育这些植株,并用相同的经转化株系或者不同的株系授粉,并鉴定出具有所需表型特征的组成型或诱导型表达的所得杂交体。可以培育两代或更多代,以确保所需表型特征的表达稳定地保持并遗传,并且然后收获种子以确保已经实现了所需表型特征的表达。
可以通过使植物与病毒或者病毒核酸接触而向植物提供实施例的核苷酸构建体。通常,这类方法涉及将目的核苷酸构建体掺入病毒DNA或RNA分子内。应当认识到,实施例的重组蛋白最初可以被合成为病毒多蛋白的一部分,然后该病毒多蛋白的一部分可以通过在体内或体外蛋白水解加工,以产生所希望的杀昆虫多肽。还认识到,包含实施例的本公开的杀昆虫多肽的至少一部分氨基酸序列的这种病毒多蛋白可具有所需的杀有害生物活性。这类病毒多蛋白和编码它们的核苷酸序列涵盖在这些实施例中。为植物提供核苷酸构建体并在植物中产生编码的蛋白质的方法是本领域已知的,其涉及病毒DNA或RNA分子。参见例如美国专利号5,889,191;5,889,190;5,866,785;5,589,367和5,316,931。
用于转化叶绿体的方法是本领域已知的。参见例如,Svab等人,(1990)Proc.Natl.Acad.Sci.USA[美国科学院院报]87:8526-8530;Svab和Maliga,(1993)Proc.Natl.Acad.Sci.USA[美国科学院院报]90:913-917;Svab和Maliga,(1993)EMBO J.[欧洲分子生物学学会杂志]12:601-606。该方法依赖于粒子枪递送含有选择性标记的DNA和通过同源重组将DNA靶向质体基因组。另外,通过利用核编码的和质体导向的RNA合酶的组织偏好性表达,通过反式激活沉默的质体携带的转基因,实现质体转化。这种系统已被报道于以下文献中:McBride等人,(1994)Proc.Natl.Acad.Sci.USA[美国科学院院报]91:7301-7305。
这些实施例进一步涉及实施例的经转化植物的植物繁殖材料,包括但不限于种子、块茎、球茎、鳞茎、叶以及根和芽的插条。
这些实施例可用于转化任何植物物种,包括但不限于单子叶植物和双子叶植物。目的植物的实例包括但不限于玉米(corn,Zea mays),芸苔属(Brassica)物种(例如,甘蓝型油菜(B.napus)、芜菁(B.rapa)、芥菜(B.juncea)) (特别是可用作种子油来源的那些芸苔属物种),苜蓿(紫花苜蓿(Medicago sativa)),水稻(rice,Oryza sativa),黑麦(rye,Secale cereale),高梁(sorghum,Sorghum bicolor,Sorghum vulgare),粟(例如,珍珠粟(pearl millet,Pennisetum glaucum)、黍(proso millet,Panicum miliaceum)、谷子(foxtail millet,Setaria italica)、龙爪稷(finger millet,Eleusine coracana)),向日葵(sunflower,Helianthus annuus),红花(safflower,Carthamus tinctorius),小麦(wheat,Triticum aestivum),大豆(soybean,Glycine max),烟草(tobacco,Nicotianatabacum),马铃薯(potato,Solanum tuberosum),花生(peanut,Arachis hypogaea),棉花(海岛棉(Gossypium barbadense)、陆地棉(Gossypium hirsutum)),甘薯(番薯(Ipomoeabatatas)),木薯(cassava,Manihot esculenta),咖啡(咖啡属(Coffea)物种),椰子(coconut,Cocos nucifera),菠萝(pineapple,Ananas comosus),柑橘树(柑橘属(Citrus)物种),可可(cocoa,Theobroma cacao),茶树(tea,Camellia sinensis),香蕉(芭蕉属(Musa)物种),鳄梨(avocado,Persea americana),无花果(fig,Ficus casica),番石榴(guava,Psidium guajava),芒果(mango,Mangifera indica),橄榄(olive,Oleaeuropaea),木瓜(番木瓜(Carica papaya)),腰果(cashew,Anacardium occidentale),澳洲坚果(macadamia,Macadamia integrifolia),巴旦杏(almond,Prunus amygdalus),甜菜(sugar beets,Beta vulgaris),甘蔗(甘蔗属(Saccharum)物种),燕麦,大麦,蔬菜,观赏植物和针叶树。
蔬菜包括番茄(tomatoes,Lycopersicon esculentumm)、莴苣(例如,莴苣(Lactuca sativa))、青豆(菜豆(Phaseolus vulgaris))、利马豆(lima bean,Phaseoluslimensis)、豌豆(香豌豆属(Lathyrus)物种)和黄瓜属的成员例如黄瓜(cucumber,C.sativus)、香瓜(cantaloupe,C.cantalupensis)和甜瓜(musk melon,C.melo)。观赏植物包括杜鹃(杜鹃花属(Rhododendron)物种)、绣球花(hydrangea,Macrophylla hydrangea)、木槿(hibiscus,Hibiscus rosasanensis)、玫瑰(蔷薇属(Rosa)物种)、郁金香(郁金香属(Tulipa)物种)、水仙(水仙属(Narcissus)物种)、矮牵牛(petunias,Petunia hybrida)、康乃馨(carnation,Dianthus caryophyllus)、一品红(poinsettia,Euphorbiapulcherrima)和菊花。可以用于实践实施例的针叶树包括(例如)松树诸如火炬松(loblolly pine,Pinus taeda)、湿地松(slash pine,Pinus elliotii)、西黄松(ponderosa pine,Pinus ponderosa)、黑松(lodgepole pine,Pinus contorta)和辐射松(Monterey pine,Pinus radiata);花旗松(Douglas-fir,Pseudotsuga menziesii);西方铁杉(Western hemlock,Tsuga canadensis);北美云杉(Sitka spruce,Picea glauca);红杉(redwood,Sequoia sempervirens);枞树(truefirs),如银杉(胶冷杉(Abiesamabilis))和胶枞(香脂冷杉(Abies balsamea));以及雪松,如西方红雪松(北美乔柏(Thuja plicata))和阿拉斯加黄雪松(黄扁柏(Chamaecyparis nootkatensis))。这些实施例的植物包括作物植物(例如玉米、苜蓿、向日葵、芸苔属、大豆、棉花、红花、花生、高梁、小麦、粟、烟草等),例如玉米和大豆植物。
草皮草包括但不限于:一年生早熟禾(annual bluegrass,Poa annua);一年生黑麦草(黑麦草(Loliumm multiflorum));加拿大早熟禾(Canada bluegrass,Poacompressa);紫羊茅(Chewing’s fescue,Festucar ubra);细弱翦股颖(colonialbentgrass,Agrostis tenuis);匍匐翦股颖(creeping bentgrass,Agrostispalustris);沙生冰草(crested wheatgrass,Agropyron desertorum);扁穗冰草(fairwaywheatgrass,Agropyroncristatum);硬羊茅(长叶羊茅(Festuca longifolia));草地早熟禾(Kentucky bluegrass,Poa pratensis);鸭茅(orchardgrass,Dactylis glomerata);多年生黑麦草(perennial ryegrass,Lolium perenne);红狐茅(紫羊茅(Festuca rubra));小糠草(redtop,Agrostis alba);粗茎早熟禾(rough bluegrass,Poa trivialis);羊茅(sheep fescue,Festuca ovina);无芒雀麦(smooth bromegrass,Bromus inermis);高羊茅(tallfescue,Festuca arundinacea);梯牧草(timothy,Phleum pratense);绒毛剪股颖(velvet bentgrass,Agrostis canina);碱茅(weeping alkaligrass,Puccinelliadistans);蓝茎冰草(western wheatgrass,Agropyron smithii);狗牙根(狗牙根属(Cynodon)物种);圣奥古斯丁草(St.Augustine grass,Stenotaphrumsecundatum);结缕草(结缕属(Zoysia)物种);百喜草(Bahia grass,Paspalum notatum);地毯草(carpet grass,Axonopus affinis);假俭草(centipede grass,Eremochloaophiuroides);隐花狼尾草(kikuyu grass,Pennisetum clandesinum);海滨雀稗(seashore paspalum,Paspalumvaginatum);格兰马草(blue gramma,Boutelouagracilis);野牛草(buffalo grass,Buchloe dactyloids);垂穗草(sideoatsgramma,Boutelouacurtipendula)。
目的植物包括提供目的种子的谷物类植物、油料种子植物和豆科植物。目的种子包括谷物种子,例如玉米、小麦、大麦、水稻、高梁、黑麦、粟等。油料种子植物包括棉花、大豆、红花、向日葵、芸苔属、玉蜀黍、苜蓿、棕榈、椰子、亚麻、蓖麻、橄榄等。豆科植物包括豆类和豌豆。豆类包括瓜耳豆、槐豆、胡芦巴、大豆、四季豆、豇豆、绿豆、利马豆、蚕豆、小扁豆、鹰嘴豆等。
将基因组编辑技术引入植物的方法
在一方面,可以使用基因组编辑技术将所公开的编码一种或多种IDP IPD078-1、IPD078-2、IPD084、IPD086-1、IPD086-2、IPD087、和IPD089多肽组合物的多核苷酸引入植物基因组中,或可以使用基因组编辑技术对植物基因组中先前引入的编码一种或多种IDPIPD078-1、IPD078-2、IPD084、IPD086-1、IPD086-2、IPD087、和/或IPD089多肽的多核苷酸进行编辑。例如,可以通过使用双链断裂技术(如TALEN、大范围核酸酶、锌指核酸酶、CRISPR-Cas等)将公开的多核苷酸引入植物基因组中期望的位置上。例如,为了位点特异性插入的目的,可以使用CRISPR-Cas系统将所公开的多核苷酸引入基因组中期望的位置上。植物基因组中期望的位置可以是任何对于插入来说期望的靶位点,例如适于育种的基因组区域,或者可以是位于具有现有的目的性状的基因组窗口中的靶位点。现有的目的性状可能是内生性状或先前引入的性状。
在另一个方面,在所公开的编码一种或多种IDP IPD078-1、IPD078-2、IPD084、IPD086-1、IPD086-2、IPD087、和/或IPD089多肽的多核苷酸先前已经被引入到基因组中的情况下,可以使用基因组编辑技术来改变或修饰引入的多核苷酸序列。可以引入所公开的编码一种或多种IDP IPD078-1、IPD078-2、IPD084、IPD086-1、IPD086-2、IPD087、和IPD089多肽的多核苷酸中的位点特异性修饰包括使用用于引入位点特异性修饰的任何方法产生的修饰,该方法包括但不限于通过使用基因修复寡核苷酸(例如美国公开2013/0019349),或通过使用双链断裂技术,如TALEN、大范围核酸酶、锌指核酸酶、CRISPR-Cas等。此类技术可用于通过在引入的多核苷酸内的插入、缺失或取代核苷酸来修饰先前引入的多核苷酸。可替代地,可以使用双链断裂技术向引入的多核苷酸中添加另外的核苷酸序列。可以添加的另外的序列包括另外的表达元件(例如增强子序列和启动子序列)。在另一个实施例中,基因组编辑技术可用于将另外的杀昆虫活性蛋白质定位在植物基因组内的编码本文公开的一种或多种IDP IPD078-1、IPD078-2、IPD084、IPD086-1、IPD086-2、IPD087、和/或IPD089多肽组合物的所公开的多核苷酸附近,以产生杀昆虫活性蛋白质的分子堆叠。
“改变的靶位点”、“改变的靶序列”、“修饰的靶位点”和“修饰的靶序列”在本文中可互换地使用,并且意指如本文公开的靶序列,当与未改变的靶序列相比时,该靶序列包含至少一种改变。此类“改变”包括,例如:(i)至少一个核苷酸的替代、(ii)至少一个核苷酸的缺失、(iii)至少一个核苷酸的插入、或(iv)(i)-(iii)的任何组合。
转基因植物
本公开还涵盖了包含编码杀昆虫多肽的多核苷酸的转基因植物或植物细胞。本公开涵盖了包含编码一种或多种IPD078-1、IPD078-2、IPD084、IPD086-1、IPD086-2、IPD087、或IPD089多肽的一种或多种多核苷酸的转基因植物或植物细胞。在一些实施例中,转基因植物或植物细胞包含SEQ ID NO:1-42的一种或多种多核苷酸,这些多核苷酸编码SEQ IDNO:43-82的一种或多种IPD078-1、IPD078-2、IPD084、IPD086-1、IPD086-2、IPD087、或IPD089多肽(参见表2)。在一些实施例中,转基因植物或植物细胞包含编码一种或多种IPD078-1、IPD078-2、IPD084、IPD086-1、IPD086-2、IPD087、或IPD08多肽的非基因组核酸分子。在一些实施例中,转基因植物或植物细胞包含编码一种或多种IPD078-1、IPD078-2、IPD084、IPD086-1、IPD086-2、IPD087、或IPD08多肽的一种或多种多核苷酸,这些多肽与SEQID NO:43-82的一种或多种多肽的氨基酸序列充分同源并且具有杀昆虫活性。在一些实施例中,序列同源性针对IPD078-1、IPD078-2、IPD084、IPD086-1、IPD086-2、IPD087、或IPD08多肽的全长序列。
在一些实施例中,转基因植物或植物细胞包含编码一种或多种IPD078-1、IPD078-2、IPD084、IPD086-1、IPD086-2、IPD087、或IPD08多肽的一种或多种多核苷酸,这些多肽与SEQ ID NO:43-82的一种或多种多肽相比具有至少约50%、55%、60%、65%、70%、71%、72%、73%、74%、75%、76%、77%、78%、79%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高序列同一性并且具有杀昆虫活性。
转基因植物中性状的堆叠
转基因植物可以包含编码本文公开的杀昆虫多肽的一种或多种多核苷酸、与编码杀昆虫多肽的一种或多种另外的多核苷酸、和/或导致产生或抑制多个多肽序列的多核苷酸的堆叠。包含多核苷酸序列堆叠的转基因植物可以通过传统育种方法或通过遗传工程方法中的一种或两种获得。这些方法包含但不限于:育种各自包含目的多核苷酸的单个系,用随后的基因转化包含本文公开的基因的转基因植物,并将基因共转化为单个植物细胞。如本文使用的,术语“堆叠”包括使多个性状在同一植物中存在(即,将两个性状并入核基因组中,将一个性状并入核基因组中,并且将一个性状并入质体的基因组中,或者这两种性状都被并入质体的基因组中)。在一个非限制性实例中,“堆叠性状”包括其中序列在物理上彼此相邻的分子堆叠物。如本文使用的性状是指源自特定序列或序列组群的表型。可以使用包含多个基因的单一转化载体或在多个载体上分别携带的基因进行基因的共转化。如果通过遗传转化植物来堆叠序列,则目的多核苷酸序列可以在任意时间并以任意顺序组合。可以用共转化方案将这些性状与转化盒的任何组合所提供的目的多核苷酸一起引入。例如,若引入两个序列,则这两个序列可包含在分开的转化盒(反式)或包含在同一个转化盒(顺式)中。这些序列的表达可以通过相同的启动子或通过不同的启动子驱动。在某些情况下,可能所希望的是引入将抑制目的多核苷酸的表达的转化盒。这可以与其他抑制盒或过度表达盒的任何组合进行组合以在该植物中产生所需性状组合。进一步应当认识到,可以使用位点特异重组系统在所希望的基因组位置堆叠多核苷酸序列。参见,例如WO1999/25821、WO1999/25854、WO 1999/25840、WO 1999/25855和WO 1999/25853。
在一些实施例中,单独或与一种或多种另外的昆虫抗性性状堆叠的编码本文公开的杀昆虫多肽的多核苷酸可以与一种或多种另外的输入性状(例如,除草剂抗性、真菌抗性、病毒抗性、胁迫耐受性、抗病性、雄性不育性、茎强度等)或输出性状(例如,增加的产量、改性淀粉、改善的油特性、平衡的氨基酸、高赖氨酸或甲硫氨酸、增加的消化性、改善的纤维品质、抗旱性等)堆叠。因此,多核苷酸实施例可用于提供具有灵活地且成本有效地控制任何数量的农艺有害生物的能力的经改善的作物品质的完整农艺学方案。
可用于堆叠的转基因包括但不限于:
1.转基因,其赋予昆虫抗性或抗病性并编码:
(A)植物抗病性基因。通常通过植物中抗病性基因(R)的产物与病原体中相应的无毒性(Avr)基因的产物之间的特异性相互作用来激活植物防御。可以用经克隆的抗性基因来转化植物变种,以工程化对特定病原菌株具有抗性的植物。参见,例如Jones等人,(1994)Science[科学]266:789(cloning of the tomato Cf-9gene for resistance toCladosporium fulvum[克隆番茄Cf-9基因以抵抗番茄叶霉病菌]);Martin等人,(1993)Science[科学]262:1432(tomato Pto gene for resistance to Pseudomonas syringaepv.tomato encodes a protein kinase[用于抵抗丁香假单胞菌番茄致病变体的番茄Pto基因编码蛋白激酶]);Mindrinos等人,(1994)Cell[细胞]78:1089(Arabidopsis RSP2genefor resistance to Pseudomonas syringae[拟南芥RSP2基因用于对抗丁香假单胞菌]),McDowell和Woffenden,(2003)Trends Biotechnol.[生物科技趋势]21(4):178-83以及Toyoda等人,(2002)Transgenic Res.[转基因研究]11(6):567-82。与野生型植物相比,对疾病具有抗性的植物对病原体更具抗性。
(B)编码苏云金芽孢杆菌(Bacillus thuringiensis)蛋白质、其衍生物或其上建模的合成多肽的基因。参见,例如,Geiser等人,(1986)Gene[基因]48:109,其公开了Bt δ-内毒素基因的克隆和核苷酸序列。此外,编码δ-内毒素基因的DNA分子可购自美国典型培养物保藏中心(American Type Culture Collection)(美国马里兰州罗克韦尔市(Rockville,Md.)),例如登录号40098、67136、31995和31998下。经遗传工程化的苏云金芽孢杆菌转基因的其他非限制性实例在以下专利和专利申请中给出,并且特此通过引用并入本文中:美国专利号5,188,960;5,689,052;5,880,275;5,986,177;6,023,013、6,060,594、6,063,597、6,077,824、6,620,988、6,642,030、6,713,259、6,893,826、7,105,332;7,179,965、7,208,474;7,227,056、7,288,643、7,323,556、7,329,736、7,449,552、7,468,278、7,510,878、7,521,235、7,544,862、7,605,304、7,696,412、7,629,504、7,705,216、7,772,465、7,790,846、7,858,849和WO 1991/14778;WO 1999/31248;WO 2001/12731;WO 1999/24581和WO 1997/40162。
也可以堆叠编码杀有害生物蛋白的基因,所述蛋白包括但不限于:来自假单胞菌属物种例如PSEEN3174(Monalysin,(2011)PLoS Pathogens[PLoS病原体],7:1-13)、来自假单胞菌蛋白菌(Pseudomonasprotegens)菌株CHA0和Pf-5(之前为荧光假单胞菌(fluorescens))(Pechy-Tarr,(2008)Environmental Microbiology[环境微生物学]10:2368-2386:基因库登录号EU400157)的杀昆虫蛋白;来自中国台湾假单胞菌(Pseudomonastaiwanensis)(Liu等人,(2010)J.Agric.Food Chem.[农业食品化学杂志]58:12343-12349)和来自假产碱假单胞菌(Pseudomonas pseudoalcaligenes)(Zhang等人,(2009)Annals of Microbiology[微生物学年报]59:45-50和Li等人,(2007)Plant CellTiss.Organ Cult.[植物细胞组织和器官培养]89:159-168)的杀昆虫蛋白;来自发光杆菌属(Photorhabdus)物种和致病杆菌属(Xenorhabdus)物种的杀昆虫蛋白(Hinchliffe等人,(2010)The Open Toxinology Journal[开放性毒理学杂志]3:101-118和Morgan等人,(2001)Appliedand Envir.Micro.[应用与环境微生物学]67:2062-2069,美国专利号6,048,838和美国专利号6,379,946);美国专利号US 2014-0007297-A1的PIP-1多肽;美国专利公开号US 2014-0033361的AnP-1A和/或AfIP-1B多肽;美国序列号13/839702的PHI-4多肽;PCT序列号PCT/US 14/51063的PIP-47多肽;美国专利公开US20140274885或PCT专利公开WO2014/150914的PHI-4多肽;PCT序列号PCT/US 14/55128的PIP-72多肽;PCT序列号PCT/US14/49923的杀昆虫蛋白;以及δ-内毒素,包括但不限于:Cry1、Cry2、Cry3、Cry4、Cry5、Cry6、Cry7、Cry8、Cry9、Cry10、Cry11、Cry12、Cry13、Cry14、Cry15、Cry16、Cry17、Cry18、Cry19、Cry20、Cry21、Cry22、Cry23、Cry24、Cry25、Cry26、Cry27、Cry28、Cry29、Cry30、Cry31、Cry32、Cry33、Cry34、Cry35、Cry36、Cry37、Cry38、Cry39、Cry40、Cry41、Cry42、Cry43、Cry44、Cry45、Cry46、Cry47、Cry49、Cry51、Cry52、Cry53、Cry54、Cry55、Cry56、Cry57、Cry58、Cry59、Cry60、Cry61、Cry62、Cry63、Cry64、Cry65、Cry66、Cry67、Cry68、Cry69、Cry70、Cry71和Cry72类的δ-内毒素基因和苏云金芽孢杆菌细胞溶解性Cyt1和Cyt2基因。苏云金芽孢杆菌杀昆虫蛋白的这些类别的成员包括但不限于Cry1Aa1(登录号AAA22353);Cry1Aa2(登录号AAA22552);Cry1Aa3(登录号BAA00257);Cry1Aa4(登录号CAA31886);Cry1Aa5(登录号BAA04468);Cry1Aa6(登录号AAA86265);Cry1Aa7(登录号AAD46139);Cry1Aa8(登录号I26149);Cry1Aa9(登录号BAA77213);Cry1Aa10(登录号AAD55382);Cry1Aa11(登录号CAA70856);Cry1Aal2(登录号AAP80146);Crt1Aa13(登录号AAM44305);Cry1Aa14(登录号AAP40639);Cry1Aa15(登录号AAY66993);Cry1Aa16(登录号HQ439776);Cry1Aa17(登录号HQ439788);Cry1Aa18(登录号HQ439790);Cry1Aa19(登录号HQ685121);CrylAa20(登录号JF340156);CrylAa21(登录号JN651496);Cry1Aa22(登录号KC158223);Cry1Ab1(登录号AAA22330);Cry1Ab2(登录号AAA22613);Cry1Ab3(登录号AAA22561);Cry1Ab4(登录号BAA00071);Cry1Ab5(登录号CAA28405);Cry1Ab6(登录号AAA22420);Cry1Ab7(登录号CAA31620);Cry1Ab8(登录号AAA22551);Cry1Ab9(登录号CAA38701);Cry1Ab10(登录号A29125);Cry1Ab11(登录号I12419);Cry1Ab12(登录号AAC64003);Cry1Ab13(登录号AAN76494);Cry1Ab14(登录号AAG16877);Cry1Ab15(登录号AAO13302);Cry1Ab16(登录号AAK55546);Cry1Ab17(登录号AAT46415);Cry1Ab18(登录号AAQ88259);Cry1Ab19(登录号AAW31761);Cry1Ab20(登录号ABB72460);Cry1Ab21(登录号ABS18384);Cry1Ab22(登录号ABW87320);Cry1Ab23(登录号HQ439777);Cry1Ab24(登录号HQ439778);Cry1Ab25(登录号HQ685122);CrylAb26(登录号HQ847729);Cry1Ab27(登录号JN135249);CrylAb28(登录号JN135250);Crt1Ab29(登录号JN135251);Cry1Ab30(登录号JN135252);Cry1Ab3 1(登录号JN135253);Cry1Ab32(登录号JN135254);Cry1Ab33(登录号AAS93798);CrylAb34(登录号KC156668);Cry1Ab样(登录号AAK14336);Cry1Ab样(登录号AAK14337);Cry1Ab样(登录号AAK14338);Cry1Ab样(登录号ABG88858);Cry1Ac1(登录号AAA22331);Cry1Ac2(登录号AAA22338);Cry1Ac3(登录号CAA38098);Cry1Ac4(登录号AAA73077);Cry1Ac5(登录号AAA22339);Cry1Ac6(登录号AAA86266);Cry1Ac7(登录号AAB46989);Cry1Ac8(登录号AAC44841);Cry1Ac9(登录号AAB49768);Cry1Ac10(登录号CAA05505);Cry1Ac11(登录号CAA10270);Cry1Ac12(登录号I12418);CrylAc13(登录号AAD38701);Cry1Ac14(登录号AAQ06607);Cry1Ac15(登录号AAN07788);Cry1Ac16(登录号AAU87037);Cry1Ac17(登录号AAX18704);Cry1Ac18(登录号AAY88347);Cry1Ac19(登录号ABD37053);Cry1Ac20(登录号ABB89046);Cry1Ac21(登录号AAY66992);Cry1Ac22(登录号ABZ01836);Cry1Ac23(登录号CAQ30431);Cry1Ac24(登录号ABL01535);Cry1Ac25(登录号FJ513324);Cry1Ac26(登录号FJ617446);Cry1Ac27(登录号FJ617447);Cry1Ac28(登录号ACM90319);CrylAc29(登录号DQ438941);Cry1Ac30(登录号GQ227507);Cry1Ac31(登录号GU446674);CrylAc32(登录号HM061081);Cry1Ac33(登录号GQ866913);CrylAc34(登录号HQ230364);Cry1Ac35(登录号JF340157);Cry1Ac36(登录号JN387137);Cry1Ac37(登录号JQ317685);Cry1Ad1(登录号AAA22340);Cry1Ad2(登录号CAA01880);Cry1Ae1(登录号AAA22410);Crt1Af1(登录号AAB82749);Cry1Ag1(登录号AAD46137);Cry1Ahl(登录号AAQ14326);Cry1Ah2(登录号ABB76664);CrylAh3(登录号HQ439779);Cry1Ai1(登录号AAO39719);Cry1 Ai2(登录号HQ439780);Cry1A样(登录号AAK14339);Cry1Ba1(登录号CAA29898);Cry1Ba2(登录号CAA65003);Cry1Ba3(登录号AAK63251);Cry1Ba4(登录号AAK51084);Cry1Ba5(登录号ABO20894);Cry1Ba6(登录号ABL60921);Cry1Ba7(登录号HQ439781);Cry1Bb1(登录号AAA22344);Cry1Bb2(登录号HQ439782);CrylBc1(登录号CAA86568);Cry1Bdl(登录号AAD10292);Cry1Bd2(登录号AAM93496);Cry1Be1(登录号AAC32850);CrylBe2(登录号AAQ52387);Cry1Be3(登录号ACV96720);Cry1Be4(登录号HM070026);Cry1Bf1(登录号CAC50778);Cry1Bf2(登录号AAQ52380);Cry1Bg1(登录号AAO39720);Cry1Bh1(登录号HQ589331);Cry1Bi1(登录号KC156700);Crt1Ca1(登录号CAA30396);Crt1Ca2(登录号CAA31951);Cry1Ca3(登录号AAA22343);Cry1Ca4(登录号CAA01886);CrylCa5(登录号CAA65457);Cry1Ca6[1](登录号AAF37224);Cry1Ca7(登录号AAG50438);Cry1Ca8(登录号AAM00264);Cry1Ca9(登录号AAL79362);Cry1Ca10(登录号AAN16462);Cry1Ca11(登录号AAX53094);Cry1Ca12(登录号HM070027);Cry1Ca13(登录号HQ412621);Cry1Ca14(登录号JN651493);Cry1Cb1(登录号M97880);Cry1Cb2(登录号AAG35409);Cry1Cb3(登录号ACD50894);Cry1Cb样(登录号AAX63901);Cry1Da1(登录号CAA38099);Cry1Da2(登录号I76415);Cry1Da3(登录号HQ439784);Cry1Db1(登录号CAA80234);Cry1Db2(登录号AAK48937);Cry1Dc1(登录号ABK35074);Cry1Ea1(登录号CAA37933);Cry1Ea2(登录号CAA39609);Cry1Ea3(登录号AAA22345);Cry1Ea4(登录号AAD04732);Cry1Ea5(登录号A15535);Cry1Ea6(登录号AAL50330);Cry1Ea7(登录号AAW72936);Crt1Ea8(登录号ABX11258);Cry1Ea9(登录号HQ439785);CrylEa10(登录号ADR00398);CrylEa11(登录号JQ652456);Cry1Eb1(登录号AAA22346);Cry1Fa1(登录号AAA22348);Crt1Fa2(登录号AAA22347);Crt1Fa3(登录号HM070028);Cry1Fa4(登录号HM439638);Cry1Fb1(登录号CAA80235);Cry1Fb2(登录号BAA25298);Cry1Fb3(登录号AAF21767);Cry1Fb4(登录号AAC10641);Cry1Fb5(登录号AAO13295);Cry1Fb6(登录号ACD50892);Cry1Fb7(登录号ACD50893);Cry1Ga1(登录号CAA80233);Cry1Ga2(登录号CAA70506);Cry1Gb1(登录号AAD10291);Cry1Gb2(登录号AAO13756);Cry1Gc1(登录号AAQ52381);Cry1Ha1(登录号CAA80236);Cry1Hb1(登录号AAA79694);Cry1Hb2(登录号HQ439786);Cry1H样(登录号AAF01213);CrylIa1(登录号CAA44633);Cry1Ia2(登录号AAA22354);Cry1Ia3(登录号AAC36999);Cry1Ia4(登录号AAB00958);Cry1Ia5(登录号CAA70124);Cry1Ia6(登录号AAC26910);Cry1Ia7(登录号AAM73516);Cry1Ia8(登录号AAK66742);CrylIa9(登录号AAQ08616);CrylIa10(登录号AAP86782);Cry1Ial1(登录号CAC85964);CrylIa12(登录号AAV53390);CrylIa13(登录号ABF83202);Cry1Ia14(登录号ACG63871);Cry1Ia15(登录号FJ617445);Crt1Ia16(登录号FJ617448);Cry1Ia17(登录号GU989199);Cry1Ia18(登录号ADK23801);Cry1Ia19(登录号HQ439787);Cry1Ia20(登录号JQ228426);Cry1Ia21(登录号JQ228424);Cry1Ia22(登录号JQ228427);Cry1Ia23(登录号JQ228428);CrylIa24(登录号JQ228429);CrylIa25(登录号JQ228430);CrylIa26(登录号JQ228431);Cry1Ia27(登录号JQ228432);Cry1Ia28(登录号JQ228433);CrylIa29(登录号JQ228434);CrylIa30(登录号JQ317686);CrylIa31(登录号JX944038);Cry1Ia32(登录号JX944039);Cry1Ia33(登录号JX944040);Cry1Ib1(登录号AAA82114);Cry1Ib2(登录号ABW88019);Cry1Ib3(登录号ACD75515);Cry1Ib4(登录号HM051227);Cry1Ib5(登录号HM070028);Cry1Ib6(登录号ADK38579);Cry1Ib7(登录号JN571740);Cry1Ib8(登录号JN675714);Cry1Ib9(登录号JN675715);Cry1Ib10(登录号JN675716);Cry1Ib11(登录号JQ228423);Cry1Ic1(登录号AAC62933);Cry1Ic2(登录号AAE71691);CrylId1(登录号AAD44366);Cry1Id2(登录号JQ228422);Cry1Ie1(登录号AAG43526);Cry1Ie2(登录号HM439636);Cry1Ie3(登录号KC156647);Cry1Ie4(登录号KC156681);Cry1If1(登录号AAQ52382);Cry1Igl(登录号KCl56701);Crt1I样(登录号AAC31094);Cry1I样(登录号ABG88859);Cry1Ja1(登录号AAA22341);Cry1Ja2(登录号HM070030);Cry1Ja3(登录号JQ228425);Cry1Jb1(登录号AAA98959);Cry1Jc1(登录号AAC31092);Cry1Jc2(登录号AAQ52372);Cry1Jd1(登录号CAC50779);Cry1Ka1(登录号AAB00376);Cry1Ka2(登录号HQ439783);Cry1La1(登录号AAS60191);Cry1La2(登录号HM070031);Cry1Ma1(登录号FJ884067);Cry1Ma2(登录号KC156659);Cry1Na1(登录号KC156648);Cry1Nb1(登录号KC156678);Cry1样(登录号AAC31091);Crt2Aa1(登录号AAA22335);Cry2Aa2(登录号AAA83516);Cry2Aa3(登录号D86064);Cry2Aa4(登录号AAC04867);Cry2Aa5(登录号CAA10671);Crt2Aa6(登录号CAA10672);Cry2Aa7(登录号CAA10670);Cry2Aa8(登录号AAO13734);Cry2Aa9(登录号AAO13750);Cry2Aa10(登录号AAQ04263);Cry2Aa11(登录号AAQ52384);Cry2Aa12(登录号ABI83671);Crt2Aa13(登录号ABL01536);Crt2Aa14(登录号ACF04939);Crt2Aa15(登录号JN426947);Cry2Ab1(登录号AAA22342);Cry2Ab2(登录号CAA39075);Crt2Ab3(登录号AAG36762);Cry2Ab4(登录号AAO13296);Cry2Ab5(登录号AAQ04609);Cry2Ab6(登录号AAP59457);Cry2Ab7(登录号AAZ66347);Crt2Ab8(登录号ABC95996);Crt2Ab9(登录号ABC74968);Crt2Ab10(登录号EF157306);Crt2Ab11(登录号CAM84575);Cry2Ab12(登录号ABM21764);Crt2Ab13(登录号ACG76120);Cry2Ab14(登录号ACG76121);Cry2Ab15(登录号HM037126);Cry2Ab16(登录号GQ866914);Cry2Ab17(登录号HQ439789);Crt2Ab18(登录号JN135255);Cry2Ab19(登录号JN135256);Cry2Ab20(登录号JN135257);Cry2Ab21(登录号JN135258);Cry2Ab22(登录号JN135259);Cry2Ab23(登录号JN135260);Cry2Ab24(登录号JN135261);Cry2Ab25(登录号JN415485);Cry2Ab26(登录号JN426946);Cry2Ab27(登录号JN415764);Cry2Ab28(登录号JN651494);Cry2Ac1(登录号CAA40536);Cry2Ac2(登录号AAG35410);Cry2Ac3(登录号AAQ52385);Cry2Ac4(登录号ABC95997);Cry2Ac5(登录号ABC74969);Cry2Ac6(登录号ABC74793);Cry2Ac7(登录号CAL18690);Cry2Ac8(登录号CAM09325);Cry2Ac9(登录号CAM09326);Cry2Ac10(登录号ABN15104);Cry2Ac11(登录号CAM83895);Cry2Ac12(登录号CAM83896);Cry2Ad1(登录号AAF09583);Cry2Ad2(登录号ABC86927);Cry2Ad3(登录号CAK29504);Cry2Ad4(登录号CAM32331);Cry2Ad5(登录号CAO78739);Cry2Ae1(登录号AAQ52362);Cry2Af1(登录号ABO30519);Cry2Af2(登录号GQ866915);Cry2Ag1(登录号ACH91610);Cry2Ah1(登录号EU939453);Cry2Ah2(登录号ACL80665);Cry2Ah3(登录号GU073380);Cry2Ah4(登录号KC156702);Cry2Ai1(登录号FJ788388);Cry2Aj(登录号);Cry2Ak1(登录号KC156660);Cry2Ba1(登录号KC156658);Cry3Aa1(登录号AAA22336);Cry3Aa2(登录号AAA22541);Cry3Aa3(登录号CAA68482);Cry3Aa4(登录号AAA22542);Cry3Aa5(登录号AAA50255);Cry3Aa6(登录号AAC43266);Cry3Aa7(登录号CAB41411);Cry3Aa8(登录号AAS79487);Cry3Aa9(登录号AAW05659);Cry3Aa10(登录号AAU29411);Cry3Aa11(登录号AAW82872);Cry3Aa12(登录号ABY49136);Crt3Ba1(登录号CAA34983);Cry3Ba2(登录号CAA00645);Cry3Ba3(登录号JQ397327);Cry3Bb1(登录号AAA22334);Cry3Bb2(登录号AAA74198);Cry3Bb3(登录号I15475);Crt3Ca1(登录号CAA42469);Crt4Aa1(登录号CAA68485);Crt4Aa2(登录号BAA00179);Cry4Aa3(登录号CAD30148);Cry4Aa4(登录号AFB18317);Crt4A样(登录号AAY96321);Crt4Ba1(登录号CAA30312);Crt4Ba2(登录号CAA30114);Crt4Ba3(登录号AAA22337);Cry4Ba4(登录号BAA00178);Crt4Ba5(登录号CAD30095);Cry4Ba样(登录号ABC47686);Cry4Ca1(登录号EU646202);Cry4Cb1(登录号FJ403208);Cry4Cb2(登录号FJ597622);Crt4Cc1(登录号FJ403207);Cry5Aa1(登录号AAA67694);Cry5Ab1(登录号AAA67693);Cry5Ac1(登录号I34543);Cry5Ad1(登录号ABQ82087);Crt5Ba1(登录号AAA68598);Cry5Ba2(登录号ABW88931);Crt5Ba3(登录号AFJ04417);Cry5Ca1(登录号HM461869);Cry5Ca2(登录号ZP 04123426);Cry5Da1(登录号HM461870);Cry5Da2(登录号ZP_04123980);Cry5Ea1(登录号HM485580);Cry5Ea2(登录号ZP_04124038);Cry6Aa1(登录号AAA22357);Cry6Aa2(登录号AAM46849);Cry6Aa3(登录号ABH03377);Cry6Ba1(登录号AAA22358);Cry7Aa1(登录号AAA22351);Cry7Ab1(登录号AAA21120);Cry7Ab2(登录号AAA21121);Cry7Ab3(登录号ABX24522);Cry7Ab4(登录号EU380678);Cry7Ab5(登录号ABX79555);Cry7Ab6(登录号ACI44005);Cry7Ab7(登录号ADB89216);Cry7Ab8(登录号GU145299);Cry7Ab9(登录号ADD92572);Cry7Ba1(登录号ABB70817);Cry7Bb1(登录号KC156653);Cry7Ca1(登录号ABR67863);Cry7Cb1(登录号KC156698);Cry7Da1(登录号ACQ99547);Cry7Da2(登录号HM572236);Cry7Da3(登录号KC156679);Cry7Ea1(登录号HM035086);Cry7Ea2(登录号HM132124);Cry7Ea3(登录号EEM19403);Cry7Fa1(登录号HM035088);Cry7Fa2(登录号EEM19090);Cry7Fb1(登录号HM572235);Cry7Fb2(登录号KC156682);Cry7Ga1(登录号HM572237);Cry7Ga2(登录号KC156669);Cry7Gb1(登录号KC156650);Cry7Gc1(登录号KC156654);Crt7Gd1(登录号KC156697);Cry7Ha1(登录号KC156651);Cry7Ia1(登录号KC156665);Cry7Ja1(登录号KC156671);Cry7Ka1(登录号KC156680);Cry7Kb1(登录号BAM99306);Cry7La1(登录号BAM99307);Cry8Aa1(登录号AAA21117);Cry8Ab1(登录号EU044830);Cry8Ac1(登录号KC156662);Crt8Ad1(登录号KC156684);Cry8Ba1(登录号AAA21118);Cry8Bb1(登录号CAD57542);Cry8Bc1(登录号CAD57543);Cry8Ca1(登录号AAA21119);Cry8Ca2(登录号AAR98783);Cry8Ca3(登录号EU625349);Cry8Ca4(登录号ADB54826);Cry8Da1(登录号BAC07226);Cry8Da2(登录号BD133574);Cry8Da3(登录号BD133575);Cry8Db1(登录号BAF93483);Cry8Ea1(登录号AAQ73470);Cry8Ea2(登录号EU047597);Cry8Ea3(登录号KC855216);Cry8Fa1(登录号AAT48690);Cry8Fa2(登录号HQ174208);Cry8Fa3(登录号AFH78109);Cry8Ga1(登录号AAT46073);Cry8Ga2(登录号ABC42043);Cry8Ga3(登录号FJ198072);Cry8Ha1(登录号AAW81032);Cry8Ia1(登录号EU381044);Cry8Ia2(登录号GU073381);Cry8Ia3(登录号HM044664);Cry8Ia4(登录号KC156674);Cry8Ib1(登录号GU325772);Cry8Ib2(登录号KC156677);Cry8Ja1(登录号EU625348);Cry8Kal(登录号FJ422558);Cry8Ka2(登录号ACN87262);Cry8Kb1(登录号HM123758);Cry8Kb2(登录号KC156675);Cry8La1(登录号GU325771);Cry8Mal(登录号HM044665);Cry8Ma2(登录号EEM86551);Cry8Ma3(登录号HM210574);Cry8Nal(登录号HM640939);Cry8Pa1(登录号HQ388415);Cry8Qa1(登录号HQ441166);Cry8Qa2(登录号KC152468);Cry8Ra1(登录号AFP87548);Cry8Sa1(登录号JQ740599);Cry8Ta1(登录号KC156673);Cry8样(登录号FJ770571);Cry8样(登录号ABS53003);Cry9Aa1(登录号CAA41122);Cry9Aa2(登录号CAA41425);Cry9Aa3(登录号GQ249293);Cry9Aa4(登录号GQ249294);Cry9Aa5(登录号JX174110);Cry9Aa样(登录号AAQ52376);Cry9Ba1(登录号CAA52927);Cry9Ba2(登录号GU299522);Cry9Bb1(登录号AAV28716);Cry9Ca1(登录号CAA85764);Cry9Ca2(登录号AAQ52375);Cry9Da1(登录号BAA19948);Cry9Da2(登录号AAB97923);Cry9Da3(登录号GQ249293);Cry9Da4(登录号GQ249297);Cry9Db1(登录号AAX78439);Cry9Dc1(登录号KC156683);Cry9Ea1(登录号BAA34908);Cry9Ea2(登录号AAO12908);Cry9Ea3(登录号ABM21765);Cry9Ea4(登录号ACE88267);Cry9Ea5(登录号ACF04743);Cry9Ea6(登录号ACG63872);Cry9Ea7(登录号FJ380927);Cry9Ea8(登录号GQ249292);Cry9Ea9(登录号JN651495);Cry9Eb1(登录号CAC50780);Cry9Eb2(登录号GQ249298);Cry9Eb3(登录号KC156646);Cry9Ec1(登录号AAC63366);Cry9Ed1(登录号AAX78440);Cry9Ee1(登录号GQ249296);Cry9Ee2(登录号KC156664);Cry9Fa1(登录号KC156692);Cry9Ga1(登录号KC156699);Cry9样(登录号AAC63366);Cry10Aal(登录号AAA22614);Cry10Aa2(登录号E00614);Cry10Aa3(登录号CAD30098);Cry10Aa4(登录号AFB18318);Cry10A样(登录号DQ167578);Cry11Aa1(登录号AAA22352);Cryl1Aa2(登录号AAA22611);Cry11Aa3(登录号CAD30081);Cry11Aa4(登录号AFB18319);Cry11Aa样(登录号DQ166531);Cry11Ba1(登录号CAA60504);Cry11Bb1(登录号AAC97162);Cryl1Bb2(登录号HM068615);Cry12Aal(登录号AAA22355);Cry13Aa1(登录号AAA22356);Cry14Aa1(登录号AAA21516);Cry14Ab1(登录号KC156652);Cry15Aa1(登录号AAA22333);Cry16Aa1(登录号CAA63860);Cry17Aa1(登录号CAA67841);Cry18Aa1(登录号CAA67506);Cry18Ba1(登录号AAF89667);Cry18Ca1(登录号AAF89668);Cry19Aa1(登录号CAA68875);Cry19Ba1(登录号BAA32397);Cry19Ca1(登录号AFM37572);Cry20Aa1(登录号AAB93476);Cry20Ba1(登录号ACS93601);Cry20Ba2(登录号KC156694);Cry20样(登录号GQ144333);Cry21Aa1(登录号I32932);Cry21Aa2(登录号I66477);Cry21Ba1(登录号BAC06484);Cry21Ca1(登录号JF521577);Cry21Ca2(登录号KC156687);Cry21Da1(登录号JF521578);Cry22Aa1(登录号I34547);Cry22Aa2(登录号CAD43579);Cry22Aa3(登录号ACD93211);Cry22Ab1(登录号AAK50456);Cry22Ab2(登录号CAD43577);Cry22Ba1(登录号CAD43578);Cry22Bb1(登录号KC156672);Cry23Aa1(登录号AAF76375);Crt24Aa1(登录号AAC61891);Cry24Ba1(登录号BAD32657);Cry24Ca1(登录号CAJ43600);Crt25Aa1(登录号AAC61892);Crt26Aa1(登录号AAD25075);Crt27Aa1(登录号BAA82796);Crt28Aa1(登录号AAD24189);Crt28Aa2(登录号AAG00235);Cry29Aa1(登录号CAC80985);Crt30Aa1(登录号CAC80986);Crt30Ba1(登录号BAD00052);Cry30Ca1(登录号BAD67157);Cry30Ca2(登录号ACU24781);Cry30Da1(登录号EF095955);Cry30Db1(登录号BAE80088);Cry30Ea1(登录号ACC95445);Cry30Ea2(登录号FJ499389);Cry30Fa1(登录号ACI22625);Cry30Ga1(登录号ACG60020);Cry30Ga2(登录号HQ638217);Cry31Aa1(登录号BAB11757);Cry31Aa2(登录号AAL87458);Cry31Aa3(登录号BAE79808);Cry31Aa4(登录号BAF32571);Cry31Aa5(登录号BAF32572);Cry31Aa6(登录号BAI44026);Cry31Ab1(登录号BAE79809);Cry31Ab2(登录号BAF32570);Cry31Ac1(登录号BAF34368);Cry31Ac2(登录号AB731600);Cry31Ad1(登录号BAI44022);Cry32Aa1(登录号AAG36711);Cry32Aa2(登录号GU063849);Cry32Ab1(登录号GU063850);Cry32Ba1(登录号BAB78601);Cry32Ca1(登录号BAB78602);Cry32Cb1(登录号KC156708);Cry32Da1(登录号BAB78603);Cry32Ea1(登录号GU324274);Cry32Ea2(登录号KC156686);Cry32Eb1(登录号KC156663);Cry32Fa1(登录号KC156656);Cry32Gal(登录号KC156657);Cry32Ha1(登录号KCl56661);Cry32Hb1(登录号KC156666);Cry32Ial(登录号KC156667);Cry32Ja1(登录号KC156685);Cry32Ka1(登录号KC156688);Cry32La1(登录号KCl56689);Cry32Ma1(登录号KC156690);Cry32Mb1(登录号KC156704);Cry32Na1(登录号KC156691);Cry32Oa1(登录号KC156703);Cry32Pa1(登录号KC156705);Cry32Qa1(登录号KC156706);Cry32Ra1(登录号KC156707);Cry32Sa1(登录号KC156709);Cry32Ta1(登录号KC156710);Cry32Ua1(登录号KC156655);Cry33Aa1(登录号AAL26871);Cry34Aa1(登录号AAG50341);Cry34Aa2(登录号AAK64560);Cry34Aa3(登录号AAT29032);Cry34Aa4(登录号AAT29030);Cry34Ab1(登录号AAG41671);Cry34Ac1(登录号AAG50118);Cry34Ac2(登录号AAK64562);Cry34Ac3(登录号AAT29029);Cry34Ba1(登录号AAK64565);Cry34Ba2(登录号AAT29033);Crt34Ba3(登录号AAT29031);Cry35Aa1(登录号AAG50342);Cry35Aa2(登录号AAK64561);Cry35Aa3(登录号AAT29028);Cry35Aa4(登录号AAT29025);Cry35Ab1(登录号AAG41672);Cry35Ab2(登录号AAK64563);Cry35Ab3(登录号AY536891);Cry35Ac1(登录号AAG50117);Crt35Ba1(登录号AAK64566);Cry35Ba2(登录号AAT29027);Cry35Ba3(登录号AAT29026);Cry36Aa1(登录号AAK64558);Cry37Aa1(登录号AAF76376);Cry38Aa1(登录号AAK64559);Cry39Aa1(登录号BAB72016);Crt40Aa1(登录号BAB72018);Cry40Ba1(登录号BAC77648);Cry40Ca1(登录号EU381045);Cry40Da1(登录号ACF15199);Cry41Aa1(登录号BAD35157);Crt41Ab1(登录号BAD35163);Cry41Ba1(登录号HM461871);Cry41Ba2(登录号ZP04099652);Cry42Aal(登录号BAD35166);Cry43Aa1(登录号BAD15301);Crt43Aa2(登录号BAD95474);Crt43Ba1(登录号BAD15303);Crt43Ca1(登录号KC156676);Crt43Cb1(登录号KC156695);Cry43Cc1(登录号KC156696);Crt43样(登录号BAD15305);Crt44Aa(登录号BAD08532);Crt45Aa(登录号BAD22577);Crt46Aa(登录号BAC79010);Cry46Aa2(登录号BAG68906);Crt46Ab(登录号BAD35170);Crt47Aa(登录号AAY24695);Cry48Aa(登录号CAJ18351);Crt48Aa2(登录号CAJ86545);Cry48Aa3(登录号CAJ86546);Crt48Ab(登录号CAJ86548);Crt48Ab2(登录号CAJ86549);Crt49Aa(登录号CAH56541);Cry49Aa2(登录号CAJ86541);Crt49Aa3(登录号CAJ86543);Crt49Aa4(登录号CAJ86544);Crt49Ab1(登录号CAJ86542);Crt50Aa1(登录号BAE86999);Cry50Ba1(登录号GU446675);Cry50Ba2(登录号GU446676);Crt51Aa1(登录号ABI14444);Cry51Aa2(登录号GU570697);Crt52Aa1(登录号EF613489);Cry52Ba1(登录号FJ361760);Cry53Aa1(登录号EF633476);Cry53Ab1(登录号FJ361759);Cry54Aa1(登录号ACA52194);Cry54Aa2(登录号GQ140349);Cry54Ba1(登录号GU446677);Cry55Aa1(登录号ABW88932);Cry54Ab1(登录号JQ916908);Cry55Aa2(登录号AAE33526);Cry56Aa1(登录号ACU57499);Cry56Aa2(登录号GQ483512);Cry56Aa3(登录号JX025567);Cry57Aa1(登录号ANC87261);Cry58Aa1(登录号ANC87260);Cry59Ba1(登录号JN790647);Cry59Aa1(登录号ACR43758);Cry60Aa1(登录号ACU24782);Cry60Aa2(登录号EAO57254);Cry60Aa3(登录号EEM99278);Cry60Ba1(登录号GU810818);Cry60Ba2(登录号EAO57253);Cry60Ba3(登录号EEM99279);Cry61Aa1(登录号HM035087);Cry61Aa2(登录号HM132125);Cry61Aa3(登录号EEM19308);Cry62Aa1(登录号HM054509);Cry63Aa1(登录号BAI44028);Cry64Aa1(登录号BAJ05397);Cry65Aa1(登录号HM461868);Cry65Aa2(登录号ZP_04123838);Cry66Aa1(登录号HM485581);Cry66Aa2(登录号ZP_04099945);Cry67Aa1(登录号HM485582);Cry67Aa2(登录号ZP_04148882);Cry68Aa1(登录号HQ113114);Cry69Aa1(登录号HQ401006);Cry69Aa2(登录号JQ821388);Cry69Ab1(登录号JN209957);Cry70Aa1(登录号JN646781);Cry70Ba1(登录号ADO51070);Cry70Bb1(登录号EEL67276);Cry71Aa1(登录号JX025568);Cry72Aa1(登录号JX025569)。
δ-内毒素的实例还包括但不限于美国专利号5,880,275和7,858,849的Cry1A蛋白;美国专利号8,304,604和8.304,605的DIG-3或DIG-11毒素(cry蛋白(如Cry1A)的α螺旋l和/或α螺旋2变体的N-末端缺失),美国专利申请序列号10/525,318的Cry1B;美国专利号6,033,874的Cry1C;美国专利号5,188,960、6,218,188的Cry1F;美国专利号7,070,982;6,962,705和6,713,063的Cry1A/F嵌合体;美国专利号7,064,249的Cry2蛋白如Cry2Ab蛋白;Cry3A蛋白,包括但不限于通过融合至少两种不同Cry蛋白的可变区和保守区的独特组合产生的工程化杂合杀昆虫蛋白(eHIP)(美国专利申请公开号2010/0017914);Cry4蛋白;Cry5蛋白;Cry6蛋白;美国专利号7,329,736、7,449,552、7,803,943、7,476,781、7,105,332、7,378,499和7,462,760的Cry8蛋白;Cry9蛋白,如Cry9A、Cry9B、Cry9C、Cry9D、Cry9E、和Cry9F家族的成员;Cry15蛋白,描述于Naimov等人,(2008)Applied andEnvironmentalMicrobiology[应用与环境微生物学]74:7145-7151中;美国专利号6,127,180、6,624,145和6,340,593的Cry22、Cry34Ab1蛋白;美国专利号6,248,535、6,326,351、6,399,330、6,949,626、7,385,107和7,504,229的CryET33和CryET34蛋白;美国专利公开号2006/0191034、2012/0278954,和PCT公开号WO 2012/139004的CryET33和CryET34同源物;美国专利号6,083,499、6,548,291和6,340,593的Cry35Ab1蛋白;Cry46蛋白、Crt 51蛋白、Crt二元毒素;TIC901或相关毒素;US 2008/0295207的TIC807;PCT US 2006/033867的ET29、ET37、TIC809、TIC810、TIC812、TIC127、TIC128;US 2040194351的TIC807,美国专利8,513,494的TIC853毒素,美国专利号8,236,757的AXMI-027、AXMI-036、和AXMI-038;US 7,923,602的AXMI-031、AXMI-039、AXMI-040、AXMI-049;WO 2006/083891的AXMI-018、AXMI-020和AXMI-021;WO 2005/038032的AXMI-010;WO 2005/021585的AXMI-003;US 2004/0250311的AXMI-008;US2004/0216186的AXMI-006;US 2004/0210965的AXMI-007;US 2004/0210964的AXMI-009;US 2004/0197917的AXMI-014;US 2004/0197916的AXMI-004;WO 2006/119457的AXMI-028和AXMI-029;WO 2004/074462的AXMI-007、AXMI-008、AXMI-0080rf2、AXMI-009、AXMI-014和AXMI-004;美国专利号8,084,416的AXMI-150;US 20110023184的AXMI-205;US 2011/0263488的AXMI-011、AXMI-012、AXMI-013、AXMI-015、AXMI-019、AXMI-044、AXMI-037、AXMI-043、AXMI-033、AXMI-034、AXMI-022、AXMI-023、AXMI-041、AXMI-063、和AXMI-064;US 2010/0197592的AXMI-R1和相关蛋白;WO 2011/103248的AXMI221Z、AXMI222z、AXMI223z、AXMI224z和AXMI225z;WO 11/103247的AXMI218、AXMI219、AXMI220、AXMI226、AXMI227、AXMI228、AXMI229、AXMI230、和AXMI231;美国专利号8,334,431的AXMI-115、AXMI-113、AXMI-005、AXMI-163和AXMI-184;US 2010/0298211的AXMI-001、AXMI-002、AXMI-030、AXMI-035、和AXMI-045;US 20090144852的AXMI-066和AXMI-076;美国专利号8,318,900的AXMI128、AXMI130、AXMI131、AXMI133、AXMI140、AXMI141、AXMI142、AXMI143、AXMI144、AXMI146、AXMI148、AXMI149、AXMI152、AXMI153、AXMI154、AXMI155、AXMI156、AXMI157、AXMI158、AXMI162、AXMI165、AXMI166、AXMI167、AXMI168、AXMI169、AXMI170、AXMI171、AXMI172、AXMI173、AXMI174、AXMI175、AXMI176、AXMI177、AXMI178、AXMI179、AXMI180、AXMI181、AXMI182、AXMI185、AXMI186、AXMI187、AXMI188、AXMI189;US 2010/0005543的AXMI079、AXMI080、AXMI081、AXMI082、AXMI091、AXMI092、AXMI096、AXMI097、AXMI098、AXMI099、AXMI100、AXMI101、AXMI102、AXMI103、AXMI104、AXMI107、AXMI108、AXMI109、AXMI110、AXMI111、AXMI112、AXMI114、AXMI116、AXMI117、AXMI118、AXMI119、AXMI120、AXMI121、AXMI122、AXMI123、AXMI124、AXMI1257、AXMI1268、AXMI127、AXMI129、AXMI164、AXMI151、AXMI161、AXMI183、AXMI132、AXMI138、AXMI137;US 20140196175的AXMI221;US20140373195的AXMI345;和美国专利号8,319,019的具有修饰的蛋白水解位点的Cry蛋白如Cry1A和Cry3A;以及美国专利申请公开号2011/0064710的来自苏云金芽孢杆菌菌株VBTS2528的Cry1Ac、Crt2Aa和CrylCa毒素蛋白。其他Cry蛋白是本领域技术人员熟知的(参见,Crickmore等人,“Bacillus thuringiensis toxin nomenclature[苏云金芽孢杆菌毒素命名法]”(2011),网址为lifesci.sussex.ac.uk/home/Neil_Crickmore/Bt/intro.html,可以使用“www”前缀在万维网上访问)。Cry蛋白的杀昆虫活性是本领域技术人员所熟知的(综述参见van Frannkenhuyzen,(2009)J.Invert.Path.[无脊椎动物病理学杂志]101:1-16)。使用Cry蛋白作为转基因植物性状是本领域技术人员所熟知的,并且Cry转基因植物(包括但不限于Cry1Ac、Cry1Ac+Cry2Ab、Cry1Ab、Cry1A.105、Cry1F、Cry1Fa2、Cry1F+Cry1Ac、Cry2Ab、Cry3A、mCry3A、Cry3Bb1、Cry34Ab1、Cry35Ab1、Vip3A、mCry3A、Cry9c和CBI-Bt)已获得监管部门的批准(参见,Sanahuja,(2011)Plant Biotech Journal[植物生物技术杂志]9:283-300和CERA(2010)转基因作物数据库环境风险评估中心(CERA)(GM Crop DatabaseCenterfor Environmental Risk Assessment),ILSI研究基金会,华盛顿特区,网址为cera-gmc.org/index.php?action=gm_crop_database,可以使用“www”前缀在万维网上访问)。本领域技术人员熟知的多于一种杀有害生物蛋白也可以在植物中表达,这些杀有害生物蛋白如Vip3Ab和Cry1Fa(US 2012/0317682)、Cry1BE和Cry1F(US 2012/0311746)、Cry1CA和Cry1AB(US 2012/0311745)、Cry1F和CryCa(US 2012/0317681)、Cry1DA和Cry1BE(US2012/0331590)、Cry1DA和Cry1Fa(US 2012/0331589)、Cry1AB和Cry1BE(US 2012/0324606)、以及Cry1Fa和Cry2Aa、Cry1I或Cry1E(US 2012/0324605)。杀有害生物蛋白还包括杀昆虫脂肪酶,这些杀昆虫脂肪酶包括美国专利号7,491,869的脂质酰基水解酶,和胆固醇氧化酶,如来自链霉菌属(Streptomyces)(Purcell等人(1993)Biochem Biophys ResCommun[生物化学与生物物理学研究通讯]15:1406-1413)。杀有害生物蛋白还包括美国专利号5,877,012、6,107,279、6,137,033、7,244,820、7,615,686和8,237,020中的VIP(营养性杀昆虫蛋白)毒素等。其他VIP蛋白质是本领域技术人员熟知的(参见,lifesci.sussex.ac.uk/home/Neil_Crickmore/Bt/vip.html,其可以使用“www”前缀在万维网上访问)。杀有害生物蛋白还包括可从如下生物体获得的毒素复合物(TC)蛋白质:致病杆菌属、发光杆菌属和类芽孢杆菌属(Paenibacillus)(参见美国专利号7,491,698和8,084,418)。一些TC蛋白具有“独立”杀昆虫活性并且其他TC蛋白增强由相同给定生物体产生的独立毒素(stand-alone toxin)的活性。可以通过源自不同属的来源生物体的一种或多种TC蛋白“增效剂”来增强“独立”TC蛋白(例如来自发光杆菌属、致病杆菌属或类芽孢杆菌属)的毒性。有三种主要类型的TC蛋白。如本文所提及的,A类蛋白(“蛋白A”)是独立毒素。B类蛋白(“蛋白B”)和C类蛋白(“蛋白C”)提高了A类蛋白的毒性。A类蛋白的实例是TcbA、TcdA、XptA1和XptA2。B类蛋白的实例是TcaC、TcdB、XptB1Xb和XptC1Wi。C类蛋白的实例是TccC、XptC1Xb和XptB1Wi。杀有害生物蛋白还包括蜘蛛、蛇和蝎毒蛋白。蜘蛛肽的实例包括但不限于莱科毒素(1ycotoxin)-1肽及其突变体(美国专利号8,334,366)。
(C)编码昆虫特异性激素或信息素(如蜕化类固醇和保幼激素)、其变体、基于其的模拟物、或者其拮抗剂或激动剂的多核苷酸。参见,例如Hammock等人,(1990)Nature[自然]344:458,该文献公开了经克隆的保幼激素酯酶(保幼激素的灭活剂)的杆状病毒表达。
(D)编码昆虫特异性肽的多核苷酸,其在表达时破坏受影响有害生物的生理机能。例如,参见以下公开内容:Regan,(1994)J.Biol.Chem.[生物化学杂志]269:9(表达克隆产生编码昆虫利尿激素受体的DNA);Pratt等人,(1989)Biochem.Biophys.Res.Comm.[生物化学与生物物理研究通讯]163:1243(在Diplopterapuntata中鉴定出了阿洛斯德汀(allostatin));Chattopadhyay等人,(2004)CriticalReviews in Microbiology[微生物学评论]30(1):33-54;Zjawiony,(2004)J Nat Prod[天然产物杂志]67(2):300-310;Carlini和Grossi-de-Sa,(2002)Toxicon[毒素]40(11):1515-1539;Ussuf等人,(2001)Curr Sci.[当代科学]80(7):847-853以及Vasconcelos和Oliveira,(2004)Toxicon[毒素]44(4):385-403。还参见,Tomalski等人的美国专利号5,266,317,他们公开了编码昆虫特异性毒素的基因。
(E)编码负责单萜、倍半萜、类固醇、异羟肟酸、苯丙素衍生物或具有杀昆虫活性的另一种非蛋白质分子的超累积的酶(包括但不限于7-epizingiberene合酶)的多核苷酸(美国专利公开20140157456)。
(F)编码参与生物活性分子的修饰(包括翻译后修饰)的酶的多核苷酸;例如糖酵解酶、蛋白水解酶、脂肪分解酶、核酸酶、环化酶、转氨酶、酯酶、水解酶、磷酸酶、激酶、磷酸化酶、聚合酶、弹性蛋白酶、几丁质酶和葡聚糖酶,无论是天然还是合成的。参见,PCT申请WO1993/02197,所属人为Scott等人,该文献公开了愈创葡聚糖酶(callase)基因的核苷酸序列。含有几丁质酶编码序列的DNA分子可以例如从登录号39637和67152下的获得。还参见,Kramer等人,(1993)InsectBiochem.Molec.Biol.[昆虫生物化学与分子生物学]23:691,他们教导编码烟草钩虫几丁质酶的cDNA的核苷酸序列;和Kawalleck等人,(1993)Plant Molec.Biol.[植物分子生物学]21:673,他们提供欧芹ubi4-2多泛素基因的核苷酸序列;以及美国专利号6,563,020、7,145,060和7,087,810。
(G)编码刺激信号转导的分子的多核苷酸。例如,参见Botella等人,(1994)PlantMolec.Biol.[植物分子生物学]24:757,该文献公开了绿豆钙调素cDNA克隆的核苷酸序列,以及Griess等人,(1994)Plant Physiol.[植物生理学]104:1467,他们提供了玉蜀黍钙调素cDNA克隆的核苷酸序列。
(H)编码疏水力矩肽(hydrophobic momentpeptide)的多核苷酸。参见,PCT申请WO1995/16776和美国专利号5,580,852,其公开了速普肽(其抑制真菌植物病原体)的肽衍生物,以及PCT申请WO 1995/18855和美国专利号5,607,914(教导了赋予疾病抗性的合成抗微生物肽)。
(I)编码膜通透酶、通道形成剂(channel former)或通道阻断剂的多核苷酸。例如,参见Jaynes等人,(1993)Plant Sci.[植物科学]89:43,该文献公开了天蚕素-β裂解肽类似物的异源表达,以提供对青枯假单胞菌(Pseudomonas solanacearum)具有抗性的转基因烟草植物。
(J)编码病毒侵入性蛋白质或由其衍生的复合毒素的基因。例如,病毒外壳蛋白在转化的植物细胞中的积累赋予对由外源蛋白基因来源的病毒以及由相关病毒导致的病毒侵染和/或疾病发展的抗性。参见,Beachy等人,(1990)Ann.Rev.Phytopathol.[植物病理学年鉴]28:451。外壳蛋白介导的抗性已赋予经转化的植物抵抗苜蓿花叶病毒、黄瓜花叶病毒、烟草线条病毒、马铃薯X病毒、马铃薯Y病毒、烟草蚀纹病毒、烟草脆裂病毒和烟草花叶病毒。同上。
(K)编码昆虫特异性抗体或由其衍生的免疫毒素的基因。因此,靶向昆虫肠道中关键代谢功能的抗体将使受影响的酶失活,杀灭昆虫。Cf.Taylor等人,摘要#497,SEVENTHINT′L SYMPOSIUM ON MOLECULAR PLANT-MICROBEINTERACTIONS[关于分子植物-微生物相互作用的第七届国际研讨会](爱丁堡,苏格兰,1994)(通过生产单链抗体片段在转基因烟草中酶促失活)。
(L)编码病毒特异性抗体的基因。参见,例如Tavladoraki等人,(1993)Nature[自然]366:469,其显示,表达重组抗体基因的转基因植物不受病毒侵袭。
(M)编码由病原体或寄生虫在自然中产生的发育阻滞蛋白的多核苷酸。因此,真菌内α-1,4-D-多聚半乳糖醛酸酶通过溶解植物细胞壁均-α-1,4-D-半乳糖醛酸酶来促进真菌定植和植物营养释放。参见Lamb等人,(1992)Bio/Technology[生物技术]10:1436。Toubart等人,(1992)Plant J.[植物杂志]2:367描述了编码豆内聚半乳糖醛酸酶抑制蛋白的基因的克隆和表征。
(N)编码由植物在自然中产生的发育抑制蛋白的多核苷酸。例如,Logemann等人,(1992)Bio/Technology[生物技术]10:305表明,表达大麦核糖体失活基因的转基因植物具有增加的对真菌疾病的抗性。
(O)参与系统获得抗性(SAR)应答的基因和/或发病相关基因。Briggs,(1995)Current Biology[当代生物学]5(2),Pieterse和Van Loon,(2004)Curr.Opin.PlantBio.[植物生物学当代观点]7(4):456-64,以及Somssich,(2003)Cell[细胞]113(7):815-6。
(P)抗真菌基因(Cornelissen和Melchers,(1993)Pl.Physiol.[植物生理学]101:709-712,和Parijs等人,(1991)Planta[植物]183:258-264,以及Bushnell等人,(1998)Can.J.of Plant Path.[加拿大植物病理学杂志]20(2):137-149)。还参见,美国专利申请序列号09/950,933;11/619,645;11/657,710;11/748,994;11/774,121以及美国专利号6,891,085和7,306,946。用于感知几丁质片段的LysM受体样激酶作为对真菌病原体的植物防御应答中的第一步(US 2012/0110696)。
(Q)解毒基因,如伏马菌素、白僵菌素、念珠菌素和玉米赤霉烯酮及其结构相关的衍生物的基因。例如,参见美国专利号5,716,820;5,792,931;5,798,255;5,846,812;6,083,736;6,538,177;6,388,171和6,812,380。
(R)编码胱抑素(Cystatin)和半胱氨酸蛋白酶抑制剂的多核苷酸。参见,美国专利号7,205,453。
(S)防御素基因。参见,WO 2003/000863和美国专利号6,911,577;6,855,865;6,777,592和7,238,781。
(T)赋予对线虫抗性的基因。参见,例如PCT申请WO 1996/30517;PCT申请WO 1993/19181、WO 2003/033651,以及Urwin等人,(1998)Planta[植物]204:472-479,和Williamson,(1999)Curr Opin Plant Bio.[植物生物学当代观点]2(4):327-31;美国专利号6,284,948和7,301,069以及miR164基因(WO 2012/058266)。
(U)赋予对疫霉根腐病抗性的基因,如Rps 1、Rps 1-a、Rps 1-b、Rps 1-c、Rps 1-d、Rps 1-e、Rps 1-k、Rps 2、Rps 3-a、Rps 3-b、Rps 3-c、Rps 4、Rps 5、Rps 6、Rps 7和其他Rps基因。参见,例如Shoemaker等人,Phytophthora Root Rot Resistance Gene Mappingin Soybean[大豆中疫霉根腐病抗性基因图谱],Plant Genome IV Conference[植物基因组第四次会议],San Diego,Calif[加利福尼亚州圣迭戈市](1995)。
(V)赋予对褐茎腐病抗性的基因,如美国专利号5,689,035所述。
(W)赋予对炭疽菌(Colletotrichum)抗性的基因,如美国专利申请公开US 2009/0035765中所述。这包括可以用作单一基因座转化的Rcg基因座。
2.赋予对除草剂的抗性的转基因,例如:
(A)编码对如下除草剂的抗性的多核苷酸,该除草剂抑制生长点或分生组织,如咪唑啉酮或磺酰脲。这个类别的实例性基因编码突变体ALS和AHAS酶,分别如以下文献中所述:Lee等人,(1988)EMBO J.[欧洲分子生物学学会杂志]7:1241和Miki等人,(1990)Theor.Appl.Genet.[理论与应用遗传学]80:449。还参见,美国专利号5,605,011;5,013,659;5,141,870;5,767,361;5,731,180;5,304,732;4,761,373;5,331,107;5,928,937和5,378,824;美国专利申请序列号11/683,737和国际公开WO 1996/33270。
(B)编码对草甘膦(分别由突变体5-烯醇丙酮酰-3-磷酸合酶(EPSP)和aroA基因赋予的抗性)和其他膦酰基化合物如草铵膦(草丁膦乙酰转移酶(PAT)和吸水链霉菌草丁膦乙酰转移酶(bar)基因)和吡啶氧基或苯氧基丙酸和环己酮(ACC酶抑制剂编码基因)有抗性的蛋白质的多核苷酸。参见,例如Shah等人的美国专利号4,940,835,其公开了EPSPS形式的能赋予草甘磷抗性的核苷酸序列。Barry等人的美国专利号5,627,061也描述了编码EPSPS酶的基因。还参见,美国专利号6,566,587;6,338,961;6,248,876 B1;6,040,497;5,804,425;5,633,435;5,145,783;4,971,908;5,312,910;5,188,642;5,094,945、4,940,835;5,866,775;6,225,114 B1;6,130,366;5,310,667;4,535,060;4,769,061;5,633,448;5,510,471;Re.36,449;RE 37,287E和5,491,288以及国际公开EP 1173580;WO 2001/66704;EP1173581和EP 1173582中。还给予植物草甘磷抗性,使该植物表达编码草甘磷氧化还原酶的基因,这在美国专利号5,776,760和5,463,175中进行了更全面地描述,为此目的将这两份专利通过引用并入本文。另外,可通过过量表达编码草甘磷N-乙酰转移酶的基因,来赋予植物草甘磷抗性。参见例如美国专利号7,462,481;7,405,074以及美国专利申请公开号2008/0234130。编码突变aroA基因的DNA分子可以在登录号39256下获得,并且该突变基因的核苷酸序列公开于Comai的美国专利号4,769,061中。Kumada等人的欧洲申请号0 333033和Goodman等人的美国专利号4,975,374公开了赋予除草剂(如L-草铵膦)抗性的谷氨酰胺合成酶基因的核苷酸序列。Leemans等人的EP申请号0242246和0242236提供了草丁膦乙酰基转移酶基因的核苷酸序列;De Greef等人,(1989)Bio/Technology[生物技术],7:61描述了表达编码草丁膦乙酰转移酶活性的嵌合bar基因的转基因植物的生产。还参见,美国专利号5,969,213;5,489,520;5,550,318;5,874,265;5,919,675;5,561,236;5,648,477;5,646,024;6,177,616B1和5,879,903。赋予苯氧基丙酸和环己酮(如稀禾啶和吡氟氯禾灵)抗性的示例性基因是Acc1-S1、Acc1-S2和Acc1-S3基因,其描述于以下文献中:Marshall等人,(1992)Theor.Appl.Genet.[理论与应用遗传学]83:435。
(C)编码对抑制光合作用的除草剂(如三嗪(psbA和gs+基因)和苯甲氰(腈水解酶基因))具有抗性的蛋白质的多核苷酸。Przibilla等人,(1991)Plant Cell[植物细胞]3:169描述了用编码突变体psbA基因的质粒对衣藻进行转化。Stalker的美国专利号4,810,648中公开了腈水解酶基因的核苷酸序列,并且包含这些基因的DNA分子可在登录号53435、67441和67442下获得。编码谷胱甘肽S-转移酶的DNA的克隆和表达描述于以下文献中:Hayes等人,(1992)Biochem.J.[生物化学杂志]285:173。
(D)编码已经被引入到各种植物中对乙酰羟酸合酶具有抗性的蛋白质的多核苷酸,已经发现其使表达该酶的植物对多种类型的除草剂具有抗性(参见,例如,Hattori等人,(1995)Mol Gen Genet.[分子遗传学和普通遗传学]246:419)。赋予除草剂抗性的其他基因包括:编码大鼠细胞色素P4507A1和酵母NADPH-细胞色素P450氧化还原酶的嵌合蛋白的基因(Shiota等人,(1994)Plant Physiol[植物生理学]106:17),针对谷胱甘肽还原酶和超氧化物歧化酶的基因(Aono等人,(1995)PlantCell Physiol[植物细胞生理学]36:1687)和各种磷酸转移酶的基因(Datta等人,(1992)Plant Mol Biol[植物分子生理学]20:619)。
(E)编码对靶向原卟啉原氧化酶(protox)的除草剂的抗性的多核苷酸,该原卟啉原氧化酶是生产叶绿素所必需的。原卟啉原氧化酶用作多种除草剂化合物的靶标。这些除草剂还抑制存在的所有不同种类的植物的生长,导致其完全破坏。对这些除草剂具有抗性的、含有经改变的原卟啉原氧化酶活性的植物的开发描述于以下文献中:美国专利号6,288,306 B1;6,282,837 B1和5,767,373,以及国际公开WO 2001/12825。
(F)aad-1基因(最初来自鞘脂单胞菌(Sphingobium herbicidovorans))编码芳氧基链烷酸酯双加氧酶(AAD-1)蛋白。该性状赋予对2,4-二氯苯氧基乙酸和芳氧基苯氧基丙酸酯(通常称为“fop”除草剂,例如喹禾灵)除草剂的耐受性。用于植物中除草剂耐受性的aad-1基因本身首先在WO 2005/107437中公开(还参见US 2009/0093366)。来自食酸丛毛单胞菌(Delftia acidovorans)的aad-12基因,其编码芳氧基链烷酸酯双加氧酶(AAD-12)蛋白,该蛋白通过用芳氧基链烷酸酯部分(包括苯氧基生长素(例如2,4-D,MCPA)以及吡啶氧基生长素(例如氯氟吡氧乙酸,三氯吡氧乙酸))使几种除草剂失活来赋予对2,4-二氯苯氧基乙酸和吡啶氧基乙酸酯除草剂的耐受性。
(G)编码美国专利申请公开2003/0135879中公开的、用于赋予麦草畏耐受性的除草剂抗性麦草畏单加氧酶的多核苷酸;
(H)编码美国专利号4,810,648中所公开的、用于赋予溴苯腈耐受性的溴草腈腈水解酶(Bxn)的多核苷酸分子;
(I)编码以下文献中描述的、用于达草灭耐受性的八氢番茄红素(crtl)的多核苷酸分子:Misawa等人,(1993)Plant J.[植物杂志]4:833-840和Misawa等人,(1994)PlantJ.[植物杂志]6:481-489。
3.赋予或贡献于改变的谷物特征的转基因
如:
(A)改变的脂肪酸,例如,通过以下各项:
(1)下调硬脂酰-ACP以增加植物的硬脂酸含量。参见,Knultzon等人,(1992)Proc.Natl.Acad.Sci.USA[美国科学院院报]89:2624和WO 1999/64579(Genes to AlterLipid Profiles in Corn[改变玉米脂质谱的基因])。
(2)通过FAD-2基因修饰提高油酸和/或通过FAD-3基因修饰降低亚麻酸(参见,美国专利号6,063,947、6,323,392、6,372,965和WO 1993/11245)。
(3)改变共轭亚麻酸或亚油酸含量,如在WO 2001/12800中。
(4)改变LEC1、AGP、Dek1、Superal1、mi1 ps、各种Ipa基因(如Ipa1、Ipa3、hpt或hggt)。例如,参见WO 2002/42424、WO 1998/22604、WO 2003/011015、WO 2002/057439、WO2003/011015、美国专利号6,423,886、6,197,561、6,825,397、和美国专利申请公开号US2003/0079247、US 2003/0204870以及Rivera-Madrid等人,(1995)Proc.Natl.Acad.Sci.[美国科学院院报]92:5620-5624。
(5)基因编码用于制备长链多不饱和脂肪酸的δ-8去饱和酶(美国专利号8,058,571和8,338,152)、用于降低饱和脂肪的δ-9去饱和酶(美国专利号8,063,269)、用于改进ω-3脂肪酸谱的报春花属(Primula)Δ6-去饱和酶。
(6)与脂质和糖代谢调节相关的分离的核酸和蛋白质,特别是用于生产转基因植物和调节种子储存化合物(包括脂质、脂肪酸、淀粉或种子储存蛋白)的水平的方法中以及用于调节植物种子大小、种子数、种子重量、根长和叶子大小的方法中的脂质代谢蛋白(LMP)(EP 2404499)。
(7)改变植物中糖诱导型2(HSI2)蛋白的高水平表达,以增加或减少植物中HSI2的表达。增加HSI2的表达增加油含量,而降低HSI2的表达降低脱落酸敏感性和/或增加抗旱性(美国专利申请公开号2012/0066794)。
(8)细胞色素b5(Cb5)单独或与FAD2一起表达,以调节植物种子中的油含量,特别是增加ω-3脂肪酸的水平,并改进ω-6与ω-3脂肪酸的比例(美国专利申请公开号2011/0191904)。
(9)核酸分子编码wrinkled1样多肽,用于调节糖代谢(美国专利号8,217,223)。
(B)改变的磷含量,例如,通过
(1)引入植酸酶编码基因将增强植酸的分解,向经转化的植物添加更多的游离磷酸。例如,参见Van Hartingsveldt等人,(1993)Gene[基因]127:87,该文献公开了黑曲霉(Aspergillu sniger)植酸酶基因的核苷酸序列。
(2)调节降低植酸盐含量的基因。例如,这可以在玉蜀黍中通过以下方法来完成:克隆然后重新引入与一个或多个等位基因相关联的DNA,例如在以低水平的植酸为特征的玉蜀黍突变体中经鉴定的LPA等位基因,例如WO 2005/113778中所述;和/或改变肌醇激酶活性,如WO 2002/059324、美国专利申请公开号2003/0009011、WO 2003/027243、美国专利申请公开号2003/0079247、WO 1999/05298、美国专利号6,197,561、美国专利号6,291,224、美国专利号6,391,348、WO 2002/059324、美国专利申请公开号2003/0079247、WO 1998/45448、WO 1999/55882、WO 200I/04147中所述。
(C)改变的碳水化合物(例如,通过改变影响淀粉分支模式的酶的基因而影响其),或改变硫氧还蛋白如NTR和/或TRX(参见,美国专利号6,531,648,以此目的其通过引用结合)和/或γ玉米蛋白敲除或突变体如cs27或TUSC27或en27的基因(参见,美国专利号6,858,778和美国专利申请公开号2005/0160488、美国专利申请公开号2005/0204418,以此目的将其通过引用而结合)。参见,Shiroza等人,(1988)J.Bacteriol.[细菌学杂志]170:810(链球菌(Streptococcus)突变果糖基转移酶基因的核苷酸序列),Steinmetz等人,(1985)Mol.Gen.Genet.[分子遗传学和普通遗传学]200:220(枯草芽孢杆菌(Bacillus subtilis)果聚糖蔗糖酶基因的核苷酸序列),Pen等人,(1992)Bio/Technology[生物/技术]10:292(生产表达地衣芽孢杆菌(Bacillus licheniformis)α-淀粉酶的转基因植物),Elliot等人,(1993)Plant Molec.Biol.[植物分子生物学]21:515(番茄转化酶基因的核苷酸序列),等人,(1993)J.Biol.Chem.[生物化学杂志]268:22480(大麦α-淀粉酶基因的定点诱变)和Fisher等人,(1993)PlantPhysiol.[植物生理学]102:1045(玉蜀黍胚乳淀粉分支酶II),WO 1999/10498(通过修饰UDP-D-木糖4-差向异构酶、脆性1和2、Ref1、HCHL、C4H改进的可消化性和/或淀粉提取),美国专利号6,232,529(通过改变淀粉水平(AGP)生产高油种子的方法)。本文提及的脂肪酸修饰基因也可用于通过淀粉和油途径的相互关系影响淀粉含量和/或组成。
(D)改变的抗氧化剂含量或组成,如改变生育酚或生育三烯酚。例如,参见,涉及操作抗氧化剂水平的美国专利号6,787,683、美国专利申请公开号2004/0034886和WO 2000/68393,和通过改变尿黑酸香叶基香叶基转移酶(hggt)的WO 2003/082899。
(E)改变的种子必需氨基酸。例如,参见美国专利号6,127,600(增加种子中必需氨基酸积累的方法)、美国专利号6,080,913(增加种子中必需氨基酸积累的二元方法)、美国专利号5,990,389(高赖氨酸)、WO 1999/40209(种子中氨基酸组成的改变)、WO 1999/29882(用于改变蛋白质的氨基酸含量的方法)、美国专利号5,850,016(种子中氨基酸组成的改变)、WO 1998/20133(具有升高水平的必需氨基酸的蛋白质)、美国专利号5,885,802(高甲硫氨酸)、美国专利号5,885,801(高苏氨酸)、美国专利号6,664,445(植物氨基酸生物合成酶)、美国专利号6,459,019(赖氨酸和苏氨酸增加)、美国专利号6,441,274(植物色氨酸合酶β亚基)、美国专利号6,346,403(甲硫氨酸代谢酶)、美国专利号5,939,599(高硫)、美国专利号5,912,414(甲硫氨酸增加)、WO 1998/56935(植物氨基酸生物合成酶)、WO 1998/45458(具有较高百分比的必需氨基酸的工程化的种子蛋白)、WO 1998/42831(赖氨酸增加)、美国专利号5,633,436(增加含硫氨基酸含量)、美国专利号5,559,223(具有含可编程水平的必需氨基酸的明确结构的合成储存蛋白,用于改进植物的营养价值)、WO 1996/01905(苏氨酸增加)、WO 1995/15392(赖氨酸增加)、美国专利申请公开号2003/0163838、美国专利申请公开号2003/0150014、美国专利申请公开号2004/0068767、美国专利号6,803,498、WO 2001/79516。
4.控制雄性不育的基因:
有几种赋予遗传性雄性不育的方法,例如在基因组内单独位置处赋予雄性不育的多个突变基因,如Brar等人在美国专利号4,654,465和4,727,219中所公开的,以及染色体易位,如Patterson在美国专利号3,861,709和3,710,511中所述。除这些方法之外,Albertsen等人的美国专利号5,432,068描述了核雄性不育的系统,其包括:鉴定对雄性能育性至关重要的基因;沉默这种对雄性能育性至关重要的天然基因;从基本的雄性能育性基因中除去天然启动子并用诱导型启动子替换;将该遗传工程化基因插回入植物;并因此产生雄性不育的植物,因为诱导型启动子不是“开”的,导致雄性能育性基因不被转录。通过诱导或打“开”来恢复能育性,启动子进而允许赋予雄性能育性的基因被转录。
(A)在绒毡层特异性启动子的控制下以及应用化学品N-Ac-PPT引入脱乙酰酶基因(WO 2001/29237)。
(B)引入各种雄蕊特异性启动子(WO 1992/13956、WO 1992/13957)。
(C)引入barnase和barstar基因(Paul等人,(1992)Plant Mol.Biol.[植物分子生物学]19:611-622)。
关于细胞核雄性和雌性不育系统和基因的另外的实例,也可参见美国专利号5,859,341;6,297,426;5,478,369;5,824,524;5,850,014和6,265,640。
5.创建用于位点特异性DNA整合的位点的基因。
这包括引入可以在FLP/FRT系统中使用的FRT位点和/或可以在Cre/Loxp系统中使用的Lox位点。例如,参见Lyznik等人(2003)Plant CellRep[植物细胞报告]21:925-932和WO 1999/25821。可以使用的其他系统包括噬菌体Mu的Gin重组酶(Maeser等人,(1991)Vicki Chandler,The Maize Handbook[玉蜀黍手册],第118章(Springer-Verlag[施普林格出版社],1994))、大肠杆菌的Pin重组酶(Enomoto等人,1983)和pSRi质粒的R/RS系统(Araki等人,1992)。
6.影响非生物胁迫抗性的基因
包括但不限于开花、穗和种子发育、提高氮利用效率、改变氮反应性、抗旱性或耐旱性、抗寒性或耐寒性、抗盐性或耐盐性以及在胁迫下产量的增加。
(A)例如,参见:WO 2000/73475,其中通过改变苹果酸来改变水分利用效率;美国专利号5,892,009、5,965,705、5,929,305、5,891,859、6,417,428、6,664,446、6,706,866、6,717,034、6,801,104、WO 2000/060089、WO 2001/026459、WO 2001/035725、WO 2001/034726、WO 2001/035727、WO 2001/036444、WO 2001/036597、WO 2001/036598、WO 2002/015675、WO 2002/017430、WO 2002/077185、WO 2002/079403、WO 2003/013227、WO 2003/013228、WO 2003/014327、WO 2004/031349、WO 2004/076638、WO 199809521。
(B)WO 199938977描述了基因,这些基因包括有效减轻冷冻、高盐度和干旱对植物的负面影响以及赋予植物表型其他积极作用的CBF基因和转录因子。
(C)美国专利申请公开号2004/0148654和WO 2001/36596,其中脱落酸在植物中被改变,导致改进的植物表型,如增加的产量和/或增加的对非生物胁迫的耐受性。
(D)WO 2000/006341、WO 2004/090143、美国专利号7,531,723和6,992,237,其中细胞分裂素表达被修饰,导致具有增加的胁迫耐受性的植物,如耐旱性和/或增加的产量。还可参见,WO 2002/02776、WO 2003/052063、JP 2002/281975、美国专利号6,084,153、WO2001/64898、美国专利号6,177,275和美国专利号6,107,547(提高氮利用率和改变氮反应性)。
(E)对于乙烯改变,参见美国专利申请公开号2004/0128719、美国专利申请公开号2003/0166197和WO 2000/32761。
(F)对于植物转录因子或非生物胁迫的转录调节子,参见,例如,美国专利申请公开号2004/0098764或美国专利申请公开号2004/0078852。
(G)增加液泡焦磷酸酶如AVP1表达以提高产量的基因(美国专利号8,058,515);编码HSFA4或HSFA5(A4或A5类热休克因子)多肽(寡肽转运蛋白(OPT4样)多肽)的核酸;间隔期2样(PLA2样)多肽或Wuschel相关同源框1样(WOX1样)多肽(美国专利申请公开号US 2011/0283420)。
(H)下调编码聚(ADP-核糖)聚合酶(PARP)蛋白的多核苷酸以调节程序性细胞死亡(美国专利号8,058,510)以增加活力。
(I)编码用于赋予抗旱性的DTP21多肽的多核苷酸(美国专利申请公开号US 2011/0277181)。
(J)编码用于调节发育、调节对胁迫的应答和调节胁迫耐受性的ACC合酶3(ACS3)蛋白的核苷酸序列(美国专利申请公开号US 2010/0287669)。
(K)编码赋予耐旱性表型(DTP)以赋予抗旱性的蛋白质的多核苷酸(WO 2012/058528)。
(L)用于赋予耐旱性和耐盐性的生育酚环化酶(TC)基因(美国专利申请公开号2012/0272352)。
(M)针对胁迫耐受性的CAAX氨基末端家族蛋白质(美国专利号8,338,661)。
(N)SAL1编码基因的突变具有增加的胁迫耐受性,包括耐旱性增加(美国专利申请公开号2010/0257633)。
(O)编码选自下组的多肽的核酸序列的表达,该组由以下组成:GRF多肽、RAA1样多肽、SYR多肽、ARKL多肽、和YTP多肽,这些多肽增加产量相关性状(美国专利申请公开号2011/0061133)。
(P)调节植物中编码III类海藻糖磷酸磷酸酶(TPP)多肽的核酸的表达,用于增强植物中的产量相关性状,特别是增加种子产量(美国专利申请公开号2010/0024067)。
影响植物生长和农艺性状(如产量、开花、植物生长和/或植物结构)的其他基因和转录因子可被引入或渐渗到植物中,参见例如WO 1997/49811(LHY)、WO 1998/56918(ESD4)、WO 1997/10339和美国专利号6,573,430(TFL)、美国专利号6,713,663(FT)、WO1996/14414(CON)、WO 1996/38560、WO 2001/21822(VRN1)、WO 2000/44918(VRN2)、WO1999/49064(GI)、WO 2000/46358(FR1)、WO 1997/29123、美国专利号6,794,560、美国专利号6,307,126(GAI)、WO 1999/09174(D8和Rht)以及WO 2004/076638和WO 2004/031349(转录因子)。
7.赋予增加的产量的基因
(A)由编码核酸的1-氨基环丙烷-1-羧酸酯脱氨酶样多肽(ACCDP)转化的转基因作物植物,其中,与该植物的野生型品种相比,在该作物植物中的核酸序列的表达使该植物具有增加的根生长、和/或增加的产量、和/或增加的对环境胁迫的耐受性(美国专利号8,097,769)。
(B)已显示,使用种子偏好性启动子的玉蜀黍锌指蛋白基因(Zm-ZFP1)的过表达能促进植物生长、增加每株植物的籽粒数和总籽粒重量(美国专利申请公开号2012/0079623)。
(C)已显示,玉蜀黍侧生器官界限(LOB)结构域蛋白(Zm-LOBDPI)的组成型过表达能增加每株植物的籽粒数和总籽粒重量(美国专利申请公开号2012/0079622)。
(D)通过调节植物中编码VIM1(甲基化1中的变体)样多肽或VTC2样(GDP-L-半乳糖磷酸化酶)多肽或DUF1685多肽或ARF6样(生长素应答因子)多肽(WO 2012/038893)的核酸的表达来增强植物中产量相关的性状。
(E)调节植物中编码Ste20样多肽或其同源物的核酸的表达,得到相对于对照植物具有增加的产量的植物(EP 2431472)。
(F)编码用于修饰植物根系结构的核苷二磷酸酶激酶(NDK)多肽及其同源物的基因(美国专利申请公开号2009/0064373)。
8.赋予植物可消化性的基因。
(A)通过调节木聚糖合成酶的表达来改变存在于植物细胞壁中的木聚糖水平(美国专利号8,173,866)。
在一些实施例中,堆叠的性状可以是已经获得监管批准的性状或事件。监管部门批准的其他事件是本领域技术人员所熟知的,并且可以在环境风险评估中心(the Centerfor Environmental Risk Assessment)(cera-gmc.org/?action=gm_crop_database,可以使用www前缀进行访问)和国际农业生物工程应用技术采购管理局(the InternationalService for the Acquisition of Agri-Biotech Applications)(isaaa.org/gmapprovaldatabase/default.asp,可以使用www前缀进行访问)中找到。
基因沉默
在一些实施例中,堆叠的性状可以处于一种或多种目的多核苷酸沉默的形式,导致对一种或多种靶标有害生物多肽的抑制。在一些实施例中,通过抑制DNA构建体的使用来实现该沉默。
在一些实施例中,编码本公开的杀昆虫多肽的一种或多种多肽或其片段或变体的一种或多种多核苷酸可以与编码具有如上所述的杀昆虫活性或农艺性状的一种或多种多肽的一种或多种多核苷酸堆叠,并且任选地可以进一步包括提供如下文所述一种或多种靶多核苷酸的基因沉默的一种或多种多核苷酸。
“抑制DNA构建体”是重组DNA构建体,当被转化或稳定整合到植物的基因组中时表达沉默元件,并导致该植物中靶基因的“沉默”。该靶基因对于该植物可以是内源性的或转基因的。如本文中关于靶基因使用的“沉默”通常是指抑制由该靶基因表达的mRNA或蛋白质/酶的水平,和/或酶活性或蛋白质功能性的水平。术语“抑制”包括调低、降低、下降、减少、抑制、消除和预防。“沉默”或“基因沉默”并没有指定机制,并且包括但不限于反义、共抑制、病毒抑制、发夹抑制、茎环抑制、基于RNAi的方法和基于小RNA的方法。
抑制DNA构建体可以包含衍生自目的靶基因的区域,并且可以包含目的靶基因的正义链(或反义链)的全部或部分核酸序列。取决于将要使用的方法,该区域可以与目的基因的全部或部分正义链(或反义链)具有100%同一性或小于100%同一性(例如,至少50%或者51%和100%之间任何整数的同一性)。
沉默元件是本领域所熟知的,一旦选择了目的靶基因就很容易构建,并且包括但不限于共抑制构建体、反义构建体、病毒抑制构建体、发夹抑制构建体、茎环抑制构建体、产生双链RNA的构建体、以及(更普遍地)RNAi(RNA干扰)构建体和小RNA构建体(如siRNA(短干扰RNA)构建体和miRNA(微小RNA)构建体)。
在一些实施例中,沉默元件可以包含已经并入互补方向上的全部或部分mRNA编码序列的发夹结构,该发夹结构产生了已表达的RNA的潜在“茎-环”结构(PCT公开WO 1999/53050)。在这种情况下,该茎由对应于相对于启动子在正义或反义方向上插入的目的基因的多核苷酸形成,并且该环由目的基因的一些多核苷酸形成,这些多核苷酸在该构建体中不具有互补序列。这增加了已回收的转基因植物中共抑制或沉默的频率。对于发夹抑制的综述,参见Wesley等人,(2003)Methods in Molecular Biology,Plant FunctionalGenomics:Methods and Protocols[分子生物学中的方法,植物功能基因组:方法和方案]236:273-286。
包括用于靶向液泡ATP酶H亚基的沉默元件的核酸分子可用于防治如美国专利申请公开2012/0198586中所述的鞘翅目有害生物群体和侵袭。PCT公开WO 2012/055982描述了抑制或下调编码以下的靶基因表达的核糖核酸(RNA或双链RNA):昆虫核糖体蛋白,如核糖体蛋白L19、核糖体蛋白L40或核糖体蛋白S27A;昆虫蛋白酶体亚基,如Rpn6蛋白、Pros25、Rpn2蛋白、蛋白酶体β1亚基蛋白或Prosβ2蛋白;COPI囊泡的昆虫β-外被体、COPI囊泡的γ-外被体、COPI囊泡的β′-外被体蛋白或ζ-外被体;昆虫跨膜四蛋白(Tetraspanin)2A蛋白(推定的跨膜结构域蛋白);属于肌动蛋白家族的昆虫蛋白,例如肌动蛋白5C;昆虫泛素-5E蛋白;昆虫Sec23蛋白,其是参与细胞内蛋白质转运的GTP酶活化剂;涉及运动活性的作为非常规肌球蛋白的昆虫皱纹蛋白质;涉及核替代mRNA剪接调节的昆虫曲颈蛋白;昆虫囊泡H+-ATP酶G亚基蛋白和昆虫Tbp-1如Tat结合蛋白。PCT公开WO 2007/035650描述了抑制或下调编码Snf7的靶基因表达的核糖核酸(RNA或双链RNA)。美国专利申请公开2011/0054007描述了靶向RPS10的多核苷酸沉默元件。美国专利申请公开2014/0275208和US2015/0257389描述了靶向RyanR和PAT3的多核苷酸沉默元件。PCT公开WO 2016/060911、WO 2016/060912、WO2016/060913、和WO 2016/060914描述了靶向赋予对鞘翅目和半翅目有害生物的抗性的COPI外被体亚单位核酸分子的多核苷酸沉默元件。美国专利申请公开2012/029750、US20120297501和2012/0322660描述了干扰核糖核酸(RNA或双链RNA),所述干扰核糖核酸在被昆虫有害生物物种摄取时起作用以下调所述昆虫有害生物中靶基因的表达,其中所述RNA包含至少一个沉默元件,其中所述沉默元件是包含经退火的互补链的双链RNA区域,所述双链RNA区域的一条链包含或由如下核苷酸序列组成,所述核苷酸序列至少部分地与靶基因中的靶标核苷酸序列互补。美国专利申请公开2012/0164205描述了用于干扰双链核糖核酸(用于抑制无脊椎动物有害生物)的潜在靶标,包括:Chd3同源序列、β-微管蛋白同源序列、40kDa V-ATP酶同源序列、EF1α同源序列、26S蛋白质体亚基p28同源序列、保幼激素环氧化物酶水解酶同源序列、溶胀依赖氯通道蛋白同源序列、葡萄糖-6-磷酸1-脱氢酶蛋白同源序列、Act42A蛋白同源序列、ADP-核糖因子1同源序列、转录因子IIB蛋白同源序列、几丁质酶同源序列、泛素缀合酶同源序列、甘油醛-3-磷酸脱氢酶同源序列、泛素B同源序列、保幼激素酯酶同源物、和α微管蛋白同源序列。
在有害生物控制方面的用途
在有害生物控制或使其他生物体工程化中使用包含实施例的核酸序列或其变体的菌株作为杀有害生物剂的一般方法是本领域已知的。参见例如美国专利号5,039,523和EP 0480762A2。
可以选择已知占据一种或多种目的作物的“植物圈”(叶面、叶际、根围和/或根面)的微生物宿主。选择这些微生物是为了能够在特定的环境中与野生型微生物成功竞争,提供表达本公开的杀昆虫多肽的基因的稳定维持和表达,并且理想的是,提供改善的保护杀有害生物剂免受环境退化和失活。
此类微生物包括细菌、藻类和真菌。特别引人关注的是微生物,例如细菌,如假单胞菌属、欧文氏菌属(Erwinia)、沙雷氏菌属(Serratia)、克雷伯菌属、黄单胞菌属(Xanthomonas)、链霉菌属、根瘤菌属、红假单胞菌属(Rhodopseudomonas)、甲基菌属(Methylius)、农杆菌属、醋酸杆菌属(Acetobacter)、乳酸杆菌属(Lactobacillus)、节细菌属(Arthrobacter)、固氮菌属(Azotobacter)、明串珠菌属(Leuconostoc)和产碱杆菌属(Alcaligenes);真菌,尤其是酵母,如酵母菌属(Saccharomyces)、隐球菌属(Cryptococcus)、克鲁维酵母菌属(Kluyveromyces)、掷孢酵母属(Sporobolomyces)、红酵母属(Rhodotorula)和短梗霉属(Aureobasidium)。特别引人关注的是诸如以下的植物圈细菌物种:丁香假单胞菌、荧光假单胞菌(Pseudomonasfluorescens)、绿针假单胞菌、粘质沙雷氏菌(Serratia marcescens)、木醋杆菌(Acetobacter xylinum)、农杆菌、球形红假单胞菌(Rhodopseudomonas spheroides)、野油菜黄单胞菌(Xanthomonas campestris)、苜蓿根瘤菌(Rhizobium melioti)、富营养产碱菌(Alcaligenes entrophus)、木质棍状杆菌(Clavibacter xyli)和维涅兰德国氮菌(Azotobacter vinlandir);以及诸如以下的植物圈酵母物种:深红酵母(Rhodotorula rubra)、粘红酵母(R.glutinis)、海滨红酵母(R.marina)、橙黄红酵母(R.aurantiaca)、浅白色隐球酵母(Cryptococcusalbidus)、流散隐球酵母(C.diffluens)、罗伦隐球酵母(C.laurentii)、罗斯酵母(Saccharomycesrosei)、普地酵母(S.pretoriensis)、酿酒酵母(S.cerevisiae)、粉红掷孢酵母(Sporobolomycesrosues)、香气掷孢酵母(S.odorus)、佛地克鲁维酵母(Kluyveromycesveronae)和出芽短梗霉(Aureobasidiumpollulans)。特别引人关注的是有颜色的微生物。特别引人关注的宿主微生物包括酵母,例如红酵母属物种、短梗霉属物种、酵母属物种(例如酿酒酵母(S.cerevisiae))、掷孢酵母属物种;叶面生物体,例如假单胞菌属物种(如铜绿假单胞菌(P.aeruginosa)、荧光假单胞菌(P.fluorescens)、绿针假单胞菌(P.chlororaphis))、欧文氏菌属物种和黄杆菌属物种;以及其他此类生物体,包括根癌农杆菌、大肠杆菌、枯草芽孢杆菌、蜡状芽孢杆菌(Bacillus cereus)等。
可以将编码实施例的杀昆虫多肽的基因引入到在植物(体表寄生菌)上繁殖的微生物中,以将杀昆虫多肽递送至潜在的靶标有害生物。体表寄生菌,例如可以是革兰氏阳性或革兰氏阴性细菌。
例如根定殖性细菌(root-colonizing bacteria)可以通过本领域已知的方法从目的植物中分离出来。具体地,可以从植物的根中分离定殖根部的蜡状芽孢杆菌菌株(参见,例如Handelsman等人(1991)Appl.Environ.Microbiol.[应用与环境微生物学]56:713-718)。可以通过本领域已知的标准方法将编码实施例的杀昆虫多肽的基因引入根定殖性蜡样芽孢杆菌。
可以通过电转化将编码本公开的杀昆虫多肽的基因引入,例如,到根定殖性芽孢杆菌中。具体地,可以将编码本公开的杀昆虫多肽的基因克隆到穿梭载体中,例如pHT3101(Lerecius等人,(1989)FEMS Microbiol.Letts.[FEMS微生物学快报]60:211-218)。可以通过电穿孔将包含本公开的具体杀昆虫多肽基因的编码序列的穿梭载体pHT3101转化到根定殖性芽孢杆菌(Lerecius等人,(1989)FEMS Microbiol.Letts.[FEMS微生物学快报]60:211-218)。
可以设计表达系统,使得本公开的杀昆虫多肽例如在革兰氏阴性细菌如大肠杆菌的细胞质外分泌。具有所分泌的本公开的杀昆虫多肽的优点是:(1)避免所表达的本公开的杀昆虫多肽的潜在细胞毒性作用;和(2)本公开的杀昆虫多肽的纯化效率的改善,包括但不限于:每体积细胞培养液增加的蛋白质的回收和纯化效率和/或每单位蛋白回收和纯化的成本。
本公开的杀昆虫多肽可以在大肠杆菌中分泌,例如,通过将适当的大肠杆菌信号肽融合到本公开的杀昆虫多肽的氨基末端。由大肠杆菌识别的信号肽可以在已知将在大肠杆菌中分泌的蛋白质(例如OmpA蛋白质)中发现(Ghrayeb等人(1984)EMBO J[欧洲分子生物学学会杂志]3:2437-2442)。OmpA是大肠杆菌外膜的主要蛋白质,并且因此其信号肽被认为在易位过程中是有效的。此外,OmpA信号肽在处理之前不需要被修饰,如针对其他信号肽的情况,例如脂蛋白信号肽(Duffaud等人(1987)Meth.Enzymol.[酶学方法]153:492)。
实施例的杀昆虫多肽可以在细菌宿主中发酵,并且将所得细菌以与Bt菌株用作杀昆虫喷雾剂相同的方式加工并用作微生物喷雾剂。在由芽孢杆菌属分泌的本公开的杀昆虫多肽的情况下,使用本领域已知的程序除去或突变分泌信号。这种突变和/或缺失在发酵过程中防止杀昆虫多肽分泌到生长培养基中。本公开的杀昆虫多肽保留在细胞内,并且然后处理细胞以产生包封的杀昆虫多肽。任何合适的微生物都可以用于此目的。已经使用假单胞菌属来表达作为包封的蛋白质的Bt毒素,并且处理所得细胞并将其作为杀昆虫剂进行喷洒(Gaertner等人,(1993),Advanced Engineered Pesticides[高级工程化杀有害生物剂],编辑Kim)。
可替代地,本公开的杀昆虫多肽通过将异源基因导入细胞宿主而产生。异源基因的表达直接或间接地导致杀有害生物剂在细胞内产生和维持。然后,当将细胞应用于一种或多种靶标有害生物的环境中时,在延长该细胞中所产生的毒素的活性的条件下处理这些细胞。所得产物保留该毒素的毒性。然后可以根据常规技术配制这些天然包封的杀昆虫多肽,以施用于靶标有害生物所寄宿的环境(例如,土壤、水和植物的叶子)中。参见,例如EPA0192319及其中引用的参考文献。
杀有害生物组合物
在一些实施例中,活性成分能以组合物的形式施用并且可以与其他化合物同时或相继施用于需要处理的作物区域或植物。这些化合物可以是在单次施用该制剂后允许长期对靶区域进行给予的肥料、除草剂、冷冻保护剂、表面活性剂、洗涤剂、杀有害生物肥皂、休眠油、聚合物和/或延时释放的或可生物降解的载体制剂。它们还可以是选择性除草剂、化学杀昆虫剂、杀病毒剂、杀微生物剂、杀变形虫剂、杀有害生物剂、杀真菌剂、杀细菌剂、杀线虫剂、杀软体动物剂或这些制品中的若干种的混合物,如果希望的话,与在制剂领域内通常使用的另外的农业上可接受的载体、表面活性剂或促进施用的佐剂一起。合适的载体和佐剂可以是固体或液体,并且对应于在制剂技术中常常采用的物质,例如天然的或再生的矿物质、溶剂、分散剂、润湿剂、增粘剂、粘合剂或肥料。类似地,制剂可以制备成可食用的“诱饵”或者塑成有害生物“陷阱”以允许靶标有害生物进食或摄取该有害生物制剂。
施用包含由细菌菌株产生的本公开的杀昆虫多肽中的至少一种的活性成分或农药组合物的方法包括叶施用、种子包衣和土壤施用。施用次数和施用速度取决于相应有害生物侵袭的强度。
可以将组合物配制成粉末、尘剂、丸剂、颗粒、喷雾、乳液、胶体、溶液等,并且可以通过干燥、冻干、匀浆、萃取、过滤、离心、沉降或浓缩包含该多肽的细胞培养物等常规方法进行制备。在所有这类含有至少一种这样的杀有害生物多肽的组合物中,该多肽能以按重量计从约1%至约99%的浓度存在。
可以通过本公开的方法在给定区域中杀灭鳞翅目、双翅目、异翅目、线虫、半翅目或鞘翅目有害生物或减少其数量,或者可以预防性地将其施用于环境区域以防止易感有害生物的侵染。优选地,该有害生物摄入杀有害生物有效量的多肽或与其接触。如本文使用的“杀有害生物有效量”是指能够对至少一种有害生物造成死亡或显著减少有害生物生长、取食或正常生理发育的杀有害生物剂的量。该量将根据例如待防治的具体靶标有害生物,待处理的特定环境、地点、植物、作物或农业场所,环境条件以及杀有害生物有效的多肽组合物施用的方法、速率、浓度、稳定性和数量等因素而变化。制剂也可以根据气候条件、环境因素和/或施用频率和/或有害生物侵染的严重程度而变化。
可以通过用所需的农业上可接受的载体配制细菌细胞、晶体和/或孢子悬浮液或分离的蛋白组分来制备所需的杀有害生物剂组合物。可以在施用之前以适当方式(如冻干、冷冻干燥、干燥)或者在水性载体、培养基或合适的稀释剂(例如盐水或其他缓冲液)中配制这些组合物。配制的组合物可以是尘剂或颗粒状物质的形式或者在油(植物或矿物)或水或油/水乳液中的悬浮液或者作为可湿性粉剂或者与适用于农业应用的任何其他载体材料组合的形式。合适的农业载体可以是固体或液体,并且是本领域公知的。术语“农业上可接受的载体”涵盖通常用于杀有害生物剂制剂技术的所有佐剂、惰性组分、分散剂、表面活性剂、增粘剂、粘合剂等;这些是杀有害生物剂制剂技术人员所熟知的。制剂可以与一种或多种固体或液体佐剂混合,并通过各种方法(例如通过使用常规制剂技术将杀有害生物组合物与合适的佐剂均匀混合、共混和/或研磨)制备。美国专利号6,468,523中描述了合适的制剂和施用方法。还可以用一种或多种化学组合物处理植物,该化学组合物包括一种或多种除草剂、杀昆虫剂或杀真菌剂。示例性化学组合物包括:果实/蔬菜除草剂:莠去津、除草定、敌草隆、草甘膦、利谷隆、嗪草酮、西玛津、氟乐灵、吡氟禾草灵、草铵膦、氯吡嘧磺隆Gowan、百草枯、戊炔草胺、烯禾啶、氟丙嘧草酯、氯吡嘧磺隆、茚嗪氟草胺(Indaziflam);果实/蔬菜杀昆 剂:涕灭威、苏云金芽孢杆菌(Bacillus thuriengiensis)、甲萘威、克百威、毒死蜱、氯氰菊酯、溴氰菊酯、二嗪磷、马拉硫磷、阿维菌素、氟氯氰菊酯/β-氟氯氰菊酯、高氰戊菊酯、λ-氯氟氰菊酯、灭螨醌、联苯肼酯、甲氧虫酰肼、双苯氟脲、环虫酰肼、噻虫啉、呋虫胺、嘧螨酯、唑虫酰胺、噻虫胺、螺螨酯、γ-氯氟氰菊酯、螺甲螨酯、多杀菌素、氯虫酰胺、氰虫酰胺、Spinoteram、杀虫脲、螺虫乙酯、吡虫啉、氯虫双酰胺、硫双威、氰氟虫腙、氟啶虫胺腈、丁氟螨酯、Cyanopyrafen、吡虫啉、噻虫胺、噻虫嗪、Spinotoram、硫双威、氟啶虫酰胺、甲硫威、因灭汀-苯甲酸盐、茚虫威、噻唑磷、苯线磷、硫线磷、蚊蝇醚、苯丁锡、噻螨酮、灭多威、4-[[(6-氯吡啶-3-基)甲基](2,2-二氟乙基)氨基]呋喃-2(5H)-酮;果实/蔬菜杀真菌剂:多菌灵、百菌清、EBDC、硫、甲基硫菌灵、嘧菌酯、霜脲氰、氟啶胺、乙膦酸、异菌脲、醚菌酯、甲霜灵/精甲霜灵、肟菌酯、噻唑菌胺、丙森锌、肟菌酯、环酰菌胺、富马酸噁咪唑、氰霜唑、咪唑菌酮、苯酰菌胺、啶氧菌酯、吡唑醚菌酯、环氟菌胺、啶酰菌胺;谷物除草剂:异丙隆、溴苯腈、碘苯腈、苯氧基类、氯磺隆、炔草酸、禾草灵、吡氟草胺、噁唑禾草灵、双氟磺草胺、氟草烟、甲磺隆、醚苯磺隆、氟酮磺隆、碘磺隆、丙苯磺隆、氟吡酰草胺、甲磺胺磺隆、氟丁酰草胺、唑啉草酯、酰嘧磺隆、噻吩磺隆甲基、苯磺隆、氟啶嘧磺隆、磺酰磺隆、磺酰草吡唑、甲氧磺草胺、氟噻草胺、肟草酮、吡咯磺隆;谷物杀真菌剂:多菌灵、百菌清、嘧菌酯、环唑醇、嘧菌环胺、丁苯吗啉、氟环唑、醚菌酯、喹氧灵、戊唑醇、肟菌酯、硅氟唑、啶氧菌酯、吡唑醚菌酯、醚菌胺、丙硫菌唑、氟嘧菌酯;谷物杀昆虫剂:乐果、λ-氯氟氰菊酯、溴氰菊酯、α-氯氰菊酯、β-氟氯氰菊酯、联苯菊酯、吡虫啉、噻虫胺、噻虫嗪、噻虫啉、啶虫脒、呋虫胺、Clorphyriphos、甲胺磷、乙酰甲胺磷、抗蚜威、甲硫威;玉蜀黍除草剂:莠去津、甲草胺、溴苯腈、乙草胺、麦草畏、二氯吡啶酸、(S-)二甲酚草胺、草铵膦、草甘膦、异噁唑草酮、(S-)异丙甲草胺、甲基磺草酮、烟嘧磺隆、氟嘧磺隆、砜嘧磺隆、磺草酮、甲酰胺磺隆、苯吡唑草酮、环磺酮(Tembotrione)、嘧啶肟草醚、酮脲磺草吩酯、氟噻草胺、吡咯磺隆;玉蜀黍杀昆虫剂:克百威、毒死蜱、联苯菊酯、氟虫腈、吡虫啉、λ-氯氟氰菊酯、七氟菊酯、特丁硫磷、噻虫嗪、噻虫胺、螺甲螨酯、氯虫双酰胺、杀虫脲、氯虫酰胺、溴氰菊酯、硫双威、β-氟氯氰菊酯、氯氰菊酯、联苯菊酯、虱螨脲、杀虫隆、七氟菊酯、嘧丙磷、乙虫腈、氰虫酰胺、噻虫啉、啶虫脒、呋虫胺、阿维菌素、甲硫威、螺螨酯、螺虫乙酯;玉蜀黍杀真菌剂:种衣酯、福美双、丙硫菌唑、戊唑醇、肟菌酯;水稻除草剂:丁草胺、敌稗、四唑嘧磺隆、苄嘧磺隆、氰氟草酯、杀草隆、四唑酰草胺、唑吡嘧磺隆、苯噻草胺、去稗安、吡嘧磺隆、稗草畏、二氯喹啉酸、禾草丹、茚草酮、氟噻草胺、四唑酰草胺、氯吡嘧磺隆、去稗安、苯并双环酮、环酯草醚、五氟磺草胺、双草醚、丙炔噁草酮、乙氧嘧磺隆、丙草胺、甲基磺草酮、特呋三酮、噁草酮、噁唑禾草灵、吡丙醚;水稻杀昆虫剂:二嗪磷、杀螟硫磷、仲丁威、久效磷、丙硫克百威、噻嗪酮、呋虫胺、氟虫腈、吡虫啉、异丙威、噻虫啉、环虫酰肼、噻虫啉、呋虫胺、噻虫胺、乙虫腈、氯虫双酰胺、氯虫酰胺、溴氰菊酯、啶虫脒、噻虫嗪、氰虫酰胺、多杀菌素、Spinotoram、因灭汀-苯甲酸盐、氯氰菊酯、毒死蜱、杀螟丹、甲胺磷、醚菊酯、三唑磷、4-[[(6-氯吡啶-3-基)甲基](2,2-二氟乙基)氨基]呋喃-2(5H)-酮、克百威、丙硫克百威;水稻 杀真菌剂:甲基硫菌灵、嘧菌酯、环丙酰菌胺、敌瘟磷、嘧菌腙、异稻瘟净、稻瘟灵、戊菌隆、噻菌灵、咯喹酮、三环唑、肟菌酯、双氯氰菌胺、氰菌胺、硅氟唑、噻酰菌胺;棉花除草剂:敌草隆、伏草隆、MSMA、乙氧氟草醚、扑草净、氟乐灵、唑草酮、烯草酮、吡氟禾草灵-丁基、草甘膦、达草灭、二甲戊乐灵、嘧硫草醚钠、三氟啶磺隆、得杀草、草铵膦、丙炔氟草胺、塞苯隆;棉花 杀昆虫剂:乙酰甲胺磷、涕灭威、毒死蜱、氯氰菊酯、溴氰菊酯、马拉硫磷、久效磷、阿维菌素、啶虫脒、因灭汀-苯甲酸盐、吡虫啉、茚虫威、λ-氯氟氰菊酯、多杀菌素、硫双威、γ-氯氟氰菊酯、螺甲螨酯、啶虫丙醚、氟啶虫酰胺、氯虫双酰胺、杀虫脲、氯虫酰胺、β-氟氯氰菊酯、螺虫乙酯、噻虫胺、噻虫嗪、噻虫啉、呋虫胺、氯虫双酰胺、氰虫酰胺、多杀菌素、Spinotoram、γ-氯氟氰菊酯、4-[[(6-氯吡啶-3-基)甲基](2,2-二氟乙基)氨基]呋喃-2(5H)-酮、硫双威、阿维菌素、氟啶虫酰胺、啶虫丙醚、螺甲螨酯、氟啶虫胺腈、丙溴磷、三唑磷、硫丹;棉花杀真菌 :土菌灵、甲霜灵、喹硫磷;大豆除草剂:甲草胺、灭草松、氟乐灵、氯嘧磺隆-乙基、氯酯磺草胺、噁唑禾草灵、氟磺胺草醚、吡氟禾草灵、草甘膦、甲氧咪草烟、灭草喹、咪草烟、(S-)异丙甲草胺、嗪草酮、二甲戊乐灵、得杀草、草铵膦;大豆杀昆虫剂:λ-氯氟氰菊酯、灭多威、对硫磷、硫威(Thiocarb)、吡虫啉、噻虫胺、噻虫嗪、噻虫啉、啶虫脒、呋虫胺、氯虫双酰胺、氯虫酰胺、氰虫酰胺、多杀菌素、Spinotoram、因灭汀-苯甲酸盐、氟虫腈、乙虫腈、溴氰菊酯、β-氟氯氰菊酯、γ和λ氯氟氰菊酯、4-[[(6-氯吡啶-3-基)甲基](2,2-二氟乙基)氨基]呋喃-2(5H)-酮、螺虫乙酯、螺螨酯、杀虫脲、氟啶虫酰胺、硫双威、β-氟氯氰菊酯;大豆杀真菌剂:嘧菌酯、环唑醇、氟环唑、粉唑醇、吡唑醚菌酯、戊唑醇、肟菌酯、丙硫菌唑、四氟醚唑;甜菜除草 :杀草敏、甜菜安、乙氧氟草黄、甜菜宁、野麦畏、二氯吡啶酸、吡氟禾草灵、环草定、苯嗪草酮、喹草酸、噻草酮、氟胺磺隆、得杀草、喹禾灵;甜菜杀昆虫剂:吡虫啉、噻虫胺、噻虫嗪、噻虫啉、啶虫脒、呋虫胺、溴氰菊酯、β-氟氯氰菊酯、γ/λ氯氟氰菊酯、4-[[(6-氯吡啶-3-基)甲基](2,2-二氟乙基)氨基]呋喃-2(5H)-酮、七氟菊酯、氯虫酰胺、氰虫酰胺、氟虫腈、克百威;低芥酸菜籽除草剂:二氯吡啶酸、禾草灵、吡氟禾草灵、草铵膦、草甘膦、吡草胺、氟乐灵、胺苯磺隆、喹草酸、喹禾灵、烯草酮、得杀草;低芥酸菜籽杀真菌剂:嘧菌酯、多菌灵、咯菌腈、异菌脲、丙氯灵、烯菌酮;低芥酸菜籽杀昆虫剂:克百威、有机磷酸盐类、拟除虫菊酯、噻虫啉、溴氰菊酯、吡虫啉、噻虫胺、噻虫嗪、啶虫脒、呋虫胺、β-氟氯氰菊酯、γ以及λ氯氟氰菊酯、τ-氟氰胺菊酯、乙虫腈、多杀菌素、Spinotoram、氯虫双酰胺、氯虫酰胺、氰虫酰胺、4-[[(6-氯吡啶-3-基)甲基](2,2-二氟乙基)氨基]呋喃-2(5H)-酮。
在一些实施例中,除草剂是莠去津、除草定、敌草隆、氯磺隆、甲磺隆、噻吩磺隆甲基、苯磺隆、乙草胺、麦草畏、异噁唑草酮、烟嘧磺隆、砜嘧磺隆、嘧硫草醚钠、丙炔氟草胺、氯嘧磺隆-乙基、嗪草酮、喹禾灵、精-异丙甲草胺(S-metolachlor)、环己通(Hexazinne)或其组合。
在一些实施例中,杀昆虫剂是高氰戊菊酯、氯虫苯甲酰胺、灭多威、茚虫威、草氨酰或其组合。
杀有害生物和杀昆虫活性
“有害生物”包括但不限于:昆虫、真菌、细菌、线虫、螨、蜱等。昆虫有害生物包括选自以下各目的昆虫:鞘翅目、双翅目、膜翅目(Hymenoptera)、鳞翅目、食毛目(Mallophaga)、同翅目(Homoptera)、半翅目、直翅目(Orthroptera)、缨翅目(Thysanoptera)、革翅目(Dermaptera)、等翅目(Isoptera)、虱目(Anoplura)、蚤目(Siphonaptera)、毛翅目(Trichoptera)等,特别是鳞翅目和鞘翅目。
本领域的技术人员会知道,不是所有的化合物均对所有有害生物同样有效。实施例的化合物显示针对昆虫有害生物的活性,其可以包括经济上重要的农艺学、森林、温室、苗圃观赏植物、食物和纤维,公共和动物健康,国内和商业结构,家庭和储存产品有害生物。
鳞翅目幼虫包括但不限于:夜蛾科(Noctuidae)中的夜蛾、地老虎、尺蠖和实夜蛾亚科,草地贪夜蛾(Spodoptera frugiperda JE Smith)(秋夜蛾(fall armyworm));甜菜夜蛾(S.exigua Hübner)(甜菜夜蛾(beet armyworm));斜纹夜蛾(S.litura Fabricius)(斜纹夜蛾(tobacco cutworm),茶蚕(cluster caterpillar));蓓带夜蛾(Mamestraconfigurata Walker)(披肩粘虫(bertha armyworm));甘蓝夜蛾(M.brassicae Linnaeus)(菜夜蛾(cabbage moth));小地老虎(Agrotis ipsilon Hufnagel)(黑切根虫(blackcutworm));西方灰地老虎(A.orthogonia Morrison)(西部切根虫(western cutworm));粒肤地老虎(A.subterranea Fabricius)(粒肤切根虫(granulate cutworm));棉叶波纹夜蛾(Alabama argillacea Hübner)(棉叶虫(cotton leaf worm));粉纹夜蛾(Trichoplusiani Hübner)(甘蓝银纹夜蛾(cabbage looper));大豆尺夜蛾(PseudoplusiaincludensWalker)(大豆夜蛾(soybean looper));黎豆夜蛾(Anticarsia gemmatalis Hübner,velvetbean caterpillar);粗长须夜蛾(Hypena scabra Fabricius)(苜猜绿夜蛾(green cloverworm));烟芽夜蛾(Heliothis virescens Fabricius)(烟青虫(tobaccobudworm));一星黏虫(Pseudaletia unipuncta Haworth)(夜蛾);粗皮委夜蛾(Athetismindara Barnes and Mcdunnough)(粗皮切根虫(rough skinned cutworm));二点委夜蛾(Athetis lepigone);暗缘地老虎(Euxoa messoria Harris)(暗黑切根虫(darksidedcutworm));棉斑实蛾(Earias insulana Boisduval)(多刺螟蛉(spiny bollworm));翠纹钻夜蛾(E.vittella Fabricius)(斑点螟蛉(spotted bollworm));棉铃虫(Helicoverpaarmigera Hübner)(美洲螟蛉(American bollworm));玉米穗虫(玉米穗蛾(corn earworm)或棉螟蛉(cotton bollworm));斑马纹夜蛾(Melanchra picta Harris)(斑马纹夜蛾(zebra caterpillar));柑橘夜蛾(Egira(Xylomyges)currialiGrote)(柑橘地老虎(citrus cutworm));钻蛀虫、鞘蛾、结网毛虫、球果蛾;大螟(Sesamia inferens)(亚洲粉红梗螟(Asiatic pink stem borer))、和来自螟蛾科玉米螟(欧洲玉米螟)的雕叶虫;脐橙螟蛾(Amyelois transitella Walker)(脐橙螟(naval orangeworm));地中海粉螟(Anagastakuehniella Zeller)(地中海粉斑螟(Mediterranean flour moth));干果斑螟(Cadracautella Walker)(粉斑螟(almond moth));二化螟(Chilo suppressalis Walker)(水稻螟虫(rice stem borer));斑禾草螟(C.partellus),(高梁螟(sorghum borer));米螟(Corcyra cephalonica Stainton)(米蛾(rice moth));玉米根草螟(Crambuscaliginosellus Clemens)(玉米根结网虫(corn root webworm));早熟禾草螟(C.teterrellus Zincken)(早熟禾草螟(bluegrass webworm));稻纵卷叶螟(Cnaphalocrrocis medinalis Guenée)(稻纵卷叶螟(rice leaf roller))葡萄里予螟(Desmia funeralis Hübner)(葡萄野螟(grape leaffolder));甜瓜绢野螟(Diaphaniahyalinata Linnaeus)(甜瓜野螟(melon worm));黄瓜绢野螟(D.nitidalis Stoll)(泡菜虫(pickleworm));巨座玉米螟(Diatraea grandiosella Dyar)(西南玉米秆草螟(southwestern corn borer))、蔗螟(D.saccharalis Fabricius)(甘蔗螟虫(surgarcaneborer));墨西哥稻螟(Eoreuma loftini Dyar)(墨西哥稻螟(Mexican rice borer));烟草粉斑螟(Ephestia elutella Hübner)(烟草飞蛾(tobacco(cacao)moth));大蜡螟(Galleria mellonella Linnaeus)(大蜡蛾(greater wax moth));水稻切叶野螟(Herpetogramma licarsisalis Walker)(草地螟(sod webworm));向日葵同斑螟(Homoeosoma electellum Hulst)(向日葵螟(sunflower moth));南美玉米苗斑螟(Elasmopalpus lignosellus Zeller)(小玉米茎蛀虫(lesser cornstalk borer));小蜡螟(Achroia grisella Fabricius)(小蜡蛾(lesser wax moth));草地螟(Loxostegesticticalis Linnaeus)(草地螟(beet webworm));茶树螟(Orthaga thyrisalis Walker)(茶树蛾(tea tree web moth));豆荚野螟(Maruca testulalis Geyer)(豆荚蛀螟(beanpod borer));印度谷螟(Plodia interpunctella Hübner)(印度谷螟(Indian mealmoth));三化螟(Scirpophaga incertulas Walker)(三化螟(yellow stem borer));温室螟(Udea rubigalis Guenée)(芹菜卷叶螟(celery leaftier));和卷蛾科(Tortricidae)中的卷叶虫、蚜虫、种实虫以及果实虫,西部黑头长翅卷蛾(Acleris gloveranaWalsingham)(西部黑头蚜虫(Western blackheaded budworm));东部黑头长翅卷蛾(A.variana Fernald)(东部黑头蚜虫(Eastern blackheaded budworm));果树黄卷蛾(Archips argyrospila Walker)(果树卷叶蛾(fruit tree leafroller));罗萨娜黄卷蛾(A.rosana Linnaeus)(欧洲卷叶蛾(European leaf roller));和其他黄卷蛾属物种,苹小卷叶蛾(Adoxophyes orana Fischer von)(苹果小卷蛾(summer fruittortrix moth));条纹向日葵螟(Cochylis hospes Walsingham)(带状向日葵斑蛾(bandedsunflower moth));榛小卷蛾(Cydia latiferreana Walsingham)(filbertworm);苹果蠹蛾(C.pomonella Linnaeus)(苹果蚕蛾(codling moth));杂色卷叶蛾(Platynotaflavedana Clemens)(色稻纵卷叶螟(variegated leafroller));荷兰石竹小卷蛾(P.stultana Walsingham)(杂食卷叶蛾(omnivorous leafroller));鲜食葡萄小卷蛾(Lobesia botrana Denis&Schiffermüller)(欧洲葡萄蛾(European grape vine moth));苹白小卷蛾(Spilonota ocellana Denis&Schiffermüller)(苹果芽小卷叶蛾(eyespottedbud moth));萄果实虫主虫(Endopiza viteana Clemens)(葡萄小卷叶蛾(grape berrymoth));女贞细卷蛾(Eupoecilia ambiguella Hübner)(葡萄果蠹蛾(vine moth));巴西苹果卷叶虫(Bonagota salubricola Meyrick)(巴西苹果小卷叶蛾(Brazilian appleleafroller));东方果实蛾(Grapholita molesta Busck)(梨小食心虫(oriental fruitmoth));向日葵芽蛾(Suleima helianthana Riley)(向日葵芽蛾(sunflower bud moth));带卷蛾属物种(Argyrotaenia spp.);卷叶蛾属物种(Choristoneura spp.)。
鳞翅目中选择的其他农艺学有害生物包括但不限于秋星尺蠖(Alsophilapometaria Harris)(秋星尺蠖(fall cankerworm));桃条麦蛾(Anarsia lineatellaZeller)(桃条麦蛾(peach twig borer));栎橙纹犀额蛾(Anisota senatoria J.E.Smith)(橙色斑纹橡木虫(orange striped oakworm));柞蚕(Antheraea pernyi Guérin-Méneville)(中橡木柞蚕虫(Chinese Oak Tussah Moth));家蚕(Bombyx mori Linnaeus)(桑蚕(Silkworm));棉潜蛾(Bucculatrix thurberiella Busck)(棉叶潜蛾(cotton leafperforator));纹黄豆粉蝶(Colias eurytheme Boisduval)(苜蓿粉蝶(alfalfacaterpillar));桃蛀螟(Conogethes punctiferalis)(桃蛀野螟(Yellow Peach Moth));核桃舟蛾(Datana integerrima Grote&Robinson)(核桃天社蛾(walnut caterpillar));落叶松毛虫(Dendrolimus sibiricus Tschetwerikov)(西伯利亚蚕蛾(Siberian silkmoth)),白尺蠖蛾(Ennomos subsignaria Hübner)(榆角尺蠖(elm spanworm));菩提尺蠖(Erannis tiliaria Harris)(椴尺蠖(linden looper));黄毒蛾(Euproctischrysorrhoea Linnaeus)(棕尾毒蛾(browntail moth));黑拟蛉蛾(Harrisina americanaGuérin-Méneville)(野棉花夜蛾(grapeleaf skeletonizer));牧草天蚕蛾(Hemileucaoliviae Cockrell)(牧草天蚕蛾(range caterpillar));美国白蛾(Hyphantria cuneaDrury)(美国白蛾(fall webworm));番茄茎麦蛾(Keiferia lycopersicella Walsingham)(番茄蛲虫(tomato pinworm));东部铁杉尺蠖(Lambdina fiscellaria fiscellariaHulst)(东部铁杉尺蠖(Eastern hemlock looper));西部铁杉尺蠖(L.fiscellarialugubrosa Hulst)(西部铁杉尺蠖(Western hemlock looper));柳毒蛾(Leucoma salicis Linnaeus)(雪毒蛾(satin moth));舞毒蛾(Lymantria disparLinnaeus)(舞毒蛾(gypsy moth));番茄天蛾(Manduca quinquemaculata Haworth)(五点天蛾(five spotted hawk moth),番茄天蛾(tomato hornworm));烟草天蛾(M.sextaHaworth)(番茄天蛾(tomato homworm)、烟草天蛾(tobacco hornworm));冬尺蠖蛾(Operophtera brumata Linnaeus)(冬尺蠖蛾(winter moth));春尺蠖(Paleacritavernata Peck)(春尺蠖(spring cankerworm));美洲大芷凤蝶(Papilio cresphontesCramer)(大黄带凤蝶(giant swallowtail),柑桔凤蝶(orange dog));加州木角斗蛾(Phryganidia californica Packard)(加州槲蛾(California oakworm));柑桔潜蛾(PhyllOcnistis citrella Stainton)(柑桔潜叶蛾(citrus leafminer));斑幕潜叶蛾(Phyllonorycter blancardella Fabricius)(斑幕潜叶虫(spotted tentiformleafminer));欧洲粉蝶(Pierisbrassicae Linnaeus)(大白粉蝶(large whitebutterfly));菜青虫(P.rapae Linnaeus)(小白粉蝶(small white butterfly));暗脉菜粉蝶(P.napi Linnaeus)(绿脉菜粉蝶(green veined white butterfly));洋蓟葱羽蛾(Platyptilia carduidactyla Riley)(洋蓟羽蛾(artichoke plume moth));小菜蛾(Plutellaxylostella Linnaeus)(小菜蛾(diamondback moth));棉红铃虫(Pectinophoragossypiella Saunders)(粉螟蛉(pink bollworm));多形云粉蝶(Pontia protodiceBoisduval and Leconte)(南方菜青虫(Southem cabbageworm));杂食尺蠖(Sabulodesaegrotata Guenée)(杂食尺蠖(omnivorous looper));红抚天社蛾(Schizura concinnaJ.E.Smith)(红疣天社蛾(red humped caterpillar));麦蛾(Sitotroga cerealellaOlivier)(麦蛾(Angoumois grain moth));松异带蛾(Thaumetopoea pityocampaSchiffermuller)(松树列队毛虫(pine processionary caterpillar));幕谷蛾(Tineolabisselliella Hummel)(负袋夜蛾(webbing clothesmoth));番茄斑潜蝇(TutaabsolutaMeyrick)(番茄斑潜蝇(tomato leafminer));苹果巢蛾(Yponomeuta padella Linnaeus)(巢蛾(ermine moth));Heliothissubflexa Guenée;天幕毛虫属(Malacosoma)物种和古毒蛾属(Orgyia)物种。
引人关注的是鞘翅目的幼虫和成虫,包括来自长角象虫科(Anthribidae)、豆象科(Bruchidae)和象甲科(Curculionidae)的象鼻虫,包括但不限于:墨西哥棉铃象(Anthonomus grandis Boheman)(棉铃象甲(boll weevil));稻水象甲(Lissorhoptrusoryzophilus Kuschel)(稻水象虫(rice water weevil));谷象(Sitophilus granariusLinnaeus)(谷象(granary weevil));米象(S.oryzae Linnaeus)(米象(rice weevil));三叶草叶象(Hypera punctata Fabricius)(车轴草叶象虫(clover leaf weevil));密点细枝象(Cylindrocopturus adspersus LeConte)(向日葵茎象鼻虫(sunflower stemweevil));黄褐小爪象(Smicronyx fulvus LeConte)(红葵花籽象甲(red sunflower seedweevil));灰色小爪象(S.sordidus LeConte)(灰葵花籽象甲(gray sunflower seedweevil));玉米隐啄象(Sphenophorus maidis Chittenden)(玉米象虫(maizebillbug)));叶甲科(Chrysomelidae)的跳甲、黄瓜叶甲、根虫、叶甲、马铃薯叶甲以及潜叶虫,包括但不限于:马铃薯叶甲(Leptinotarsa decemlineata Say)(科罗拉多马铃薯甲虫);玉米根萤叶甲(Diabrotica virgiferavirgifera LeConte)(西方玉米根虫);北方玉米根虫(D.barberi Smith and Lawrence)(北方玉米根虫(northern corn rootworm));黄瓜十一星叶甲食根亚种(D.undecimpunctatahowardi Barber)(南方玉米根虫(southerncorn rootworm));玉米铜色跳甲(Chaetocnema pulicaria Melsheimer)(玉米跳甲(cornflea beetle));十字花科跳甲(Phyllotreta cruciferae Goeze)(十字花科蔬菜跳甲(Crucifer flea beetle));黄曲条跳甲(Phyllotreta striolata)(黄曲条跳甲(strippedflea beetle));肖叶甲褐斑(Colaspis brunnea Fabricius)(葡萄肖叶甲(grape colaspis));橙足负泥虫(Oulema melanopus Linnaeus)(谷叶甲虫(cereal leafbeetle));向日葵叶甲(Zygogramma exclamationis Fabricius)(向日葵叶甲(sunflowerbeetle)));来自瓢虫科(Coccinellidae)的甲虫(包括但不限于:墨西哥豆瓢虫(Epilachnavarivestis Mulsant)(墨西哥豆瓢虫(Mexican bean beetle)));金龟子和来自金龟子科(Scarabaeidae)的其他甲虫,包括但不限于:日本丽金龟(Popillia japonica Newman)(日本甲虫);北方圆头犀金龟(Cyclocephala borealis Arrow)(北方独角仙(northernmasked chafer),白蛴螬(white grub));南方圆头犀金龟(C.immaculata Olivier)(南方独角仙(southern masked chafer),白蛴螬(white grub));欧洲切根鳃金龟(Rhizotrogusmajalis Razpimowsky)(欧洲金龟子(European chafer));长毛食叶然金龟(Phyllophagacrinita Burmeister)(白蛴螬(white grub)):胡萝卜金龟(Ligyrusgibbosus De Geer)(胡萝卜金龟(carrot beetle)));来自皮蠹科(Dermestidae)的红缘皮蠹(carpetbeetle);来自叩甲科(Elateridae)、伪金针虫属物种(Eleodes spp.)、梳爪叩头虫属物种(Melanotus spp.)的金针虫;宽胸金针虫属物种(Conoderus spp.);叩甲属物种(Limoniusspp.);缺隆叩甲属物种(Agriotes spp.);特尼塞拉属物种(Ctenicera spp.);埃俄罗斯属物种(Aeolus spp.);来自小蠹科(Scolytidae)的树皮甲虫和来自拟步甲科(Tenebrionidae)的甲虫。
引人关注的是双翅目的成虫和未成熟的虫,包括潜叶虫玉米斑潜蝇(Agromyzaparvicornis Loew)(玉米斑潜蝇(corn blotch leafminer));摇蚊科(包括但不限于:高梁瘿蚊(Contarinia sorghicola Coquillett)(高梁瘿蚊(sorghum midge));黑森瘿蚊(Mayetiola destructor Say)(黑森蝇(Hessian fly));麦红吸浆虫(Sitodiplosismosellana Géhin)(小麦吸浆虫(wheat midge));葵花籽蚊(Neolasiopteramurtfeldtiana Feh)(向日葵籽瘿蚊(sunflower seed midge));果蝇(实蝇科(Tephritidae))、瑞典麦秆蝇(Oscinella frit Linnaeus)(果蝇(frit flies));蛆虫(包括但不限于:灰地种蝇(Delia platura Meigen)(种蝇(seedcorn maggot));麦地种蝇(D.coarctata Fallen)(麦种蝇(wheat bulb fly))和其他地种蝇属,美洲麦秆蝇(Meromyza americana Fitch)(美洲麦秆蝇(wheat stem maggot));家蝇(Muscadomestica Linnaeus)(家蝇(house flies));夏厕蝇(Fannia canicularis Linnaeus)、小舍蝇(F.femoralis Stein)(小家蝇(lesser houseflies));厩螫蝇(Stomoxys calcitransLinnaeus)(螫蝇(stable flies));秋家蝇,角蝇,绿头苍蝇,金蝇属物种(Chrysomyaspp.);蝇属物种(Phormia spp.);和其他麝香蝇(muscoid fly)有害生物、马蝇虻属物种(horse flies Tabanus spp.);肤蝇胃蝇属物种(bot flies Gastrophilus spp.);狂蝇属物种(Oestrus spp.);纹皮蝇皮蝇属物种(cattle grubs Hypoderma spp.);鹿蝇斑虻属物种(deer flies Chrysops spp.);绵羊虱蝇(Melophagusovinus Linnaeus)(绵羊蜱)和其他短角亚目(Brachycera),蚊子伊蚊属物种(mosquitoes Aedes spp.);疟蚊属物种(Anopheles spp.);家蚊属物种(Culex spp.);黑蝇原蚋属物种(black fliesProsimulium spp.);蚋属物种(Simulium spp.);吸血蠓、沙蝇、眼菌蚊(sciarid)和其他长角亚目(Nematocera)。
作为目的昆虫包括了半翅目和同翅目的成体和若虫,例如但不限于:来自球蚜科(Adelgidae)的球蚜、来自盲蝽科(Miridae)的盲蝽、来自蝉科(Cicadidae)的蝉、叶蝉、小绿叶蝉属物种(Empoasca spp.);来自叶蝉科(Cicadellidae)的,来自菱蜡蝉科(Cixiidae)、青翅飞虱科(Flatidae)、蜡蝉总科(Fulgoroidea)、瓢蜡蝉科(Issidae)和(Delphacidae)的飞虱,来自角蝉科(Membracidae)的角蝉,来自木虱科(Psyllidae)的木虱,来自粉虱科(Aleyrodidae)的粉虱,来自蚜科(Aphididae)的蚜虫,来自根瘤蚜科(Phylloxeridae)的葡萄根瘤蚜,来自粉蚧科(Pseudococcidae)的粉蚧,来自链介壳虫科(Asterolecanidae)、蚧科(Coccidae)、粉蚧科(Dactylopiidae)、盾蚧科(Diaspididae)、绒蚧科(Eriococcidae)、旌介壳虫科(Ortheziidae)、刺葵介壳虫科(Phoenicococcidae)和绵蚧科(Margarodidae)的介壳虫,来自网蝽科的网蝽,来自蝽科(Pentatomidae)的椿象,长蝽(cinch bug),土长蝽属物种(Blissus spp.);和来自长蝽科(Lygaeidae)的其他籽长蝽、来自沫蝉科(Cercopidae)的沫蝉、来自缘蝽科(Coreidae)的南瓜缘蝽和来自红蝽科(Pyrrhocoridae)的秋恙螨和棉蝽。
来自半翅目的农业上的重要成员进一步包括但不限于:豌豆蚜(Acyrthisiphonpisum Harris)(豌豆蚜虫(pea aphid));黑豆蚜(Aphis craccivora Koch)(蚕豆蚜(cowpea aphid));黑豆蚜(A.fabae Scopoli)(蚕豆蚜(black bean aphid));棉蚜(A.gossypii Glover)(棉蚜(cotton aphid),瓜叶菊蚜虫(melon aphid));玉米根蚜(A.maidiradicis Forbes)(玉米根蚜(corn root aphid));苹果黄蚜(A.pomi De Geer)(苹蚜(apple aphid));绣线菊蚜(A.spiraecola Patch)(绣线菊蚜(spirea aphid));茄粗额蚜(Aulacorthum solani Kaltenbach)(指顶花无网长管蚜(foxglove aphid));草莓钉蚜(Chaetosiphon fragaefolii Cockerell)(草莓毛管蚜(strawberry aphid));麦双尾蚜(Diuraphis noxia Kurdjumov/Mordvilko)(俄罗斯小麦蚜虫(Russian wheat aphid));车前圆尾蚜(Dysaphis plantaginea Paaserini)(苹粉红劣蚜(rosy apple aphid));苹果绵蚜(Eriosoma lanigerum Hausmann)(苹果绵蚜(woolly apple aphid));甘蓝蚜(Brevicoryne brassicae Linnaeus)(菜蚜(cabbage aphid));桃粉大尾蚜(Hyalopteruspruni Geoffroy)(桃大尾蚜(mealy plum aphid)):萝卜蚜(Lipaphiserysimi Kaltenbach)(萝卜蚜(turnip aphid));麦无网长管蚜(Metopolophiumdirrhodum Walker)(麦蚜虫(cereal aphid));马铃薯长管蚜(Macrosiphum euphorbiaeThomas)(马铃薯蚜(potato aphid));桃蚜(Myzus persicae Sulzer)(桃蚜(peach-potatoaphid,green peach aphid));莴苣衲长管蚜(Nasonovia ribisnigri Mosley)(莴苣蚜(lettuce aphid));癭绵对属物种(Graptostethus spp.)(根蚜虫(root aphids)和倍蚜(gall aphids));玉米蚜(Rhopalosiphum maidis Fitch)(玉米蚜(corn leafaphid));禾谷缢管蚜(R.padi Linnaeus)(禾谷缢管蚜(bird cherry-oat aphid));麦二叉蚜(Schizaphis graminum Rondani)(麦二叉蚜(greenbug));牛鞭草蚜(Sipha flavaForbes)(甘蔗黄蚜(yellow sugarcane aphid));麦长管蚜(Sitobion avenae Fabricius)(麦长管蚜(English grain aphid));苜蓿斑蚜(Therioaphis maculata Buckton)(苜蓿斑蚜(spotted alfalfa aphid));茶二叉蚜(Toxoptera aurantii Boyer de Fonscolombe)(黑色柑橘蚜(black citrus aphid)和褐色橘蚜(T.citricida Kirkaldy)(桔二叉蚜(brown citrus aphid));球属物种(Aders spp.)(球蚜(adelgids));长山核桃根瘤蚜(Phylloxera devastatrix Pergande)(山胡桃根瘤蚜(pecan phylloxera));烟粉虱(Bemisia tabaci Gennadius)(烟粉虱(tobacco whitefly),甘薯粉虱(sweetpotatowhitefly));银叶粉虱(B.argentifoliiBellows&Perring)(银叶粉虱(silverleafwhitefly));柑橘粉虱(Dialeurodes citri Ashmead)(柑桔粉虱(citrus whitefly));结翅白粉虱(Trialeurodes abutiloneus)(带状翅白粉虱(bandedwinged whitefly)和温室粉虱(T.vaporariorum Westwood)(温室粉虱(greenhouse whitefly));马铃薯小绿叶蝉(Empoasca fabae Harris)(马铃薯叶蝉(potato leafhopper));灰飞虱(Laodelphaxstriatellus Fallen)(灰飞虱(smaller brown planthopper));二点叶蝉(Macrolestesquadrilineatus Forbes)(紫菀叶蝉(aster leafhopper));黑尾叶蝉(Nephotettixcinticeps Uhler)(绿叶蝉(green leafhopper));二条斑黑尾叶蝉(N.nigropictus)(稻叶蝉(rice leafhopper));褐飞虱(Nilaparvata lugens)(褐飞虱(brownplanthopper));玉米蜡蝉(Peregrinus maidis Ashmead)(玉米飞虱(cornplanthopper));白背飞虱(Sogatella furciferaHorvath)(白背飞虱(white-backedplanthopper));稻条背飞虱(Sogatodes orizicola Muir)(稻飞虱(rice delphacid));苹果白叶蝉(Typhlocybapomaria McAtee)(苹白小叶蝉(white apple leafhopper));葡萄斑叶蝉属物种(Erythroneoura spp.)(葡萄叶蝉(grape leafhoppers));十七年蝉(Magicicada septendecim Linnaeus)(周期蝉(periodical cicada));吹绵蚧(Iceryapurchasi Maskell)(吹绵蚧(cottony cushion scale));梨圆蚧(Quadraspidiotus perniciosus Comstock)(梨圆蚧(San Jose scale));臀纹粉蚧(Planococcus citri Risso)(桔粉蚧(citrus mealybug));粉蚧属物种(Pseudococcusspp.)(其他粉蚧系群);梨木虱(Cacopsylla pyricola Foerster)(梨木虱(pearpsylla));柿木虱(Trioza diospyri Ashmead)(柿木虱(persimmon psylla))。
来自半翅目的引人关注的农艺重要物种包括但不限于:拟绿蝽(Acrosternumhilare Say)(稻绿蝽(green stink bug));南瓜缘蝽(Anasa tristis De Geer)(南瓜虫(squash bug));美洲谷长蝽(Blissus leucopterus leucopterus Say)(麦长蝽(chinchbug));方翅网蝽(Corythuca gossypii Fabricius)(棉网蝽(cotton lacebug));番茄蝽(Cyrtopeltis modesta Distant)(番茄蝽(tomato bug));棉蝽(Dysdercus suturellusHerrich-)(棉红蝽(cotton stainer));褐臭蝽(Euschistus servus Say)(褐臭蝽(brown stink bug));一斑臭蝽(E.variolarius Palisot de Beauvois)(一斑臭蝽(one-spotted stink bug));长蝽属物种(Graptostethus spp.)(果实蝽系群(complex ofseed bugs));松叶根蝽(Leptoglossus corculus Say)(松叶根蝽(1eaf-footed pineseed bug));美洲牧草盲蝽(Lygus lineolaris Palisot de Beauvois)(牧草盲蝽(tarnished plant bug));牧草盲蝽(L.Hesperus Knight)(西部牧草盲蝽(Westerntarnished plant bug));牧草盲蝽(L.pratensis Linnaeus)(牧草盲蝽(common meadowbug));长毛草盲蝽(L.rugulipennis Poppius)(长毛草盲蝽(European tamished plantbug));长绿盲蝽(Lygocoris pabulinus Linnaeus)(苹绿盲蝽(common green capsid));稻绿蝽(Nezara viridula Linnaeus)(南方绿椿象(southern green stink bug));美洲稻蝽(Oebaluspugnax Fabricius)(稻褐蝽(rice stink bug));马利筋长蝽(Oncopeltusfasciatus Dallas)(大马利筋长蝽(large milkweed bug));棉跳盲蝽(Pseudatomoscelis seriatus Reuter)(棉跳盲蝽(cotton fleahopper))。
此外,实施例可以对半翅目有效,如草莓蝽(Calocoris norvegicus Gmelin)(草莓长蝽(strawberry bug));荒野奥盲蝽(Orthops campestris Linnaeus);苹果盲蝽(Plesiocoris rugicollis Fallen)(苹盲蝽(apple capsid));番茄蝽(Cyrtopeltismodestus Distant)(番茄蝽(tomato bug));黑斑烟盲蝽(Cyrtopeltis notatus Distant)(吸蝇(suckfly));白斑盲蝽(Spanagonicus albofasciatus Reuter)(白斑盲蝽(whitemarked fleahopper)):皂荚蝽(Diaphnocoris chlorionis Say)(皂角蝽(honeylocust plant bug));洋葱蝽(Labopidicola allii Knight)(葱盲蝽(onion plantbug));棉盲蝽(Pseudatomoscelis seriatus Reuter)(棉盲蝽(cotton fleahopper));苜蓿褐盲蝽(Adelphocoris rapidus Say)(苜蓿褐盲蝽(rapid plant bug));四线盲蝽(Poecilocapsuslineatus Fabricius)(四线叶虫(four-lined plant bug));小长蝽(Nysius ericae Schilling)(多彩长蝽(false chinch bug));假麦长蝽(Nysiusraphanus Howard)(假麦长蝽(false chinch bug));稻绿蝽(Nezara viridula Linnaeus)(南方绿椿象(Southern green stink bug));扁盾蝽属物种(Eurygaster spp.);缘蝽科物种(Coreidae spp.);红蝽科物种(Pyrrhocoridae spp.);谷蛾科物种(Tinidae spp.);负子蝽科物种(Blostomatidae spp.);猎蝽科(Reduviidae)物种和臭虫科(Cimicidae)物种。
另外,包括蜱螨目(Acari)(螨类)的成体和幼虫,如小麦瘤瘿螨(Aceriatosichella Keifer)(小麦卷叶螨(wheat curl mite));麦岩螨(Petrobialatens Müller)(褐色小麦螨(brown wheat mite));在叶螨科(Tetranychidae)中蜘蛛螨和红螨,苹果全爪螨(Panonychus ulmi Koch)(欧洲红螨(European red mite));二斑叶螨(Tetranychusurticae Koch)(二点叶螨(two spotted spider mite));迈叶螨(T.mcdanieli McGregor)(迈叶螨(McDaniel mite));朱砂叶螨(T.cinnabarinus Boisduval)(朱砂叶螨(carminespider mite));土耳其斯坦叶螨(T.turkestaniUgarov&Nikolski)(土耳其斯坦叶螨(strawberry spider mite));细须螨科中的葡萄短须螨,桔短须螨(Brevipalpus lewisiMcGregor)桔短须螨(citrus flat mite));瘿螨科(Eriophyidae)中的锈螨和芽瘿螨以及其他叶取食螨和对人类和动物健康重要的螨,即表皮螨科(Epidermoptidae)的尘螨、蠕形螨科(Demodicidae)的毛囊螨、食甜螨科(Glycyphagidae)的谷螨,硬蜱科(Ixodidae)的蜱。黑脚硬蜱(Ixodes scapularis Say)(鹿蜱(deertick));全环硬蜱(I.holocyclusNeumann)(澳大利亚致瘫痪埤(Australian paralysis tick));变异矩头蜱(Dermacentorvariabilis Say)(美洲犬蜱(American dog tick));美洲钝眼蜱(Amblyomma americanumLinnaeus)(孤星蜱(1one star tick))以及在痒螨科、蒲螨科和疥螨科中的痒螨和疥螨。
引人关注的是缨尾目(Thysanura)的昆虫有害生物,如衣鱼(Lepisma saccharinaLinnaeus)(蠹虫(silverfish));斑衣鱼(Thermobia domestica Packard)(小灶衣鱼(firebrat))。
所覆盖的另外节肢动物有害生物包括:蜘蛛目中的蜘蛛如褐隐毒蛛(Loxoscelesreclusa Gertsch and Mulaik)(褐皮花蛛(brown recluse spider))和黑寡妇蜘蛛(Latrodectus mactans Fabricius)(黑寡妇毒蛛(black widow spider)),以及蚰蜒目(Scutigeromorpha)中的蜈蚣如蚰蜒(Scutigera coleoptrata Linnaeus)(蚰蜒(housecentipede))。
引人关注的昆虫包括椿象和其他相关昆虫的超家族,包括但不限于属于以下各科的物种:蝽科(稻绿蝽、茶翅蝽(Halyomorpha halys)、Piezodorus guildini、褐臭蝽、拟绿蝽、英雄美洲蝽(Euschistus heros)、美洲蝽(Euschistus tristigmus)、拟绿蝽、褐蝽(Dichelops melacanthus)、和蓓蝽(Bagrada hilaris)(蓓蝽(Bagrada Bug))),龟蝽科(Plataspidae)(筛豆龟蝽(Megacopta cribraria)-豆平腹蝽蟓(Bean plataspid))和土蝽科(Scaptocoris castanea-Root stink bug),以及鳞翅目物种包括但不限于:小菜蛾,例如,谷实夜蛾;大豆夜蛾,例如大豆尺夜蛾,以及黎豆夜蛾,例如梨豆夜蛾。
用于测量杀有害生物活性的方法是本领域中所熟知的。参见,例如,Czapla和Lang,(1990)J.Econ.Entomol.[经济昆虫学杂志]83:2480-2485;Andrews等人,(1988)Biochem.J.[生物化学杂志]252:199-206;Marrone等人,(1985)J.of EconomicEntomology[经济昆虫学杂志]78:290-293以及美国专利号5,743,477。通常,在取食测定中混合并使用了这种蛋白质。参见,例如,Marrone等人,(1985),J.of Economic Entomology[经济昆虫学杂志]78:290-293。此类测定可以包括将植物与一种或多种有害生物接触,并且确定该植物存活和/或造成这些有害生物死亡的能力。
线虫包括寄生线虫如根结线虫、胞囊线虫、和腐线虫,包括异皮线虫属物种(Heterodera spp.)、根结线虫属物种(Meloidogyne spp.)、和球异皮线虫属物种(Globodera spp.);特别是胞囊线虫的成员,包括但不限于:大豆异皮线虫(Heteroderaglycines)(大豆胞囊线虫(soybean cyst nematode));甜菜异皮线虫(Heteroderaschachtii)(甜菜胞囊线虫(beet cyst nematode));燕麦异皮线虫(Heterodera avenae)(谷物胞囊线虫(cereal cyst nematode))和马铃薯金线虫(Globodera rostochiensis)和马铃薯白线虫(Globodera pailida)(马铃薯胞囊线虫(potato cyst nematodes))。腐线虫包括短体线虫属物种(Pratylenchus spp)。
种子处理
为了保护并提高产量生产和性状技术,种子处理方案可以为昆虫、杂草和疾病提供另外的作物计划灵活性和成本有效的控制。种子材料可以用包含化学或生物除草剂、除草剂安全剂、杀昆虫剂、杀真菌剂、发芽抑制剂和增强剂、营养素、植物生长调节剂和活化剂、杀细菌剂、杀线虫剂、杀鸟剂和/或杀软体动物剂的组合的组合物进行处理,通常进行表面处理。这些化合物通常与制剂领域中通常使用的其他载体、表面活性剂或促进施用的佐剂一起配制。这些涂层可通过用液体制剂浸渍增殖材料或通过用组合的湿或干制剂进行涂覆来施加。在以下提供了可用作种子处理的各种类型的化合物的实例:The PesticideManual:A World Compendium,C.D.S.Tomlin Ed.,Published by the British CropProduction Counci1[农药手册:世界纲要,C.D.S.汤姆林编辑,由英国作物生产委员会出版],其通过引用结合在此。
可用于作物种子的一些种子处理包括但不限于下列一种或多种:脱落酸,阿拉酸式苯-S-甲基,阿维菌素,杀草强,阿扎康唑,固氮螺菌属(azospirillum),印楝素,嘧菌酯,芽孢杆菌属物种(包括蜡状芽孢杆菌、坚强芽孢杆菌(Bacillus firmus)、巨大芽孢杆菌(Bacillus megaterium)、短小芽孢杆菌(Bacillus pumilis)、球形芽孢杆菌(Bacillussphaericus)、枯草芽孢杆菌和/或苏云金芽孢杆菌物种中的一种或多种),短根瘤菌属物种(bradyrhizobium spp.)(包括甜菜慢生根瘤菌(bradyrhizobium betae)、香炉盘慢生根瘤菌(bradyrhizobium canariense)、埃氏慢生根瘤菌(bradyrhizobium elkanii)、西表岛慢生根瘤菌(bradyrhizobium iriomotense)、慢生型大豆根瘤菌(bradyrhizobiumjaponicum)、bradyrhizobium liaonigense、bradyrhizobium pachyrhizi和/或圆明慢生根瘤菌(bradyrhizobium yuanmingense)),克菌丹,萎锈灵,壳聚糖,噻虫胺,铜,溴氰虫酰胺,苯醚甲环唑,氯唑灵,氟虫腈,咯菌腈,氟嘧菌酯,氟喹唑,解草胺,氟草肟,超敏蛋白,抑霉唑,吡虫啉,种菌唑,isoflavenoids,脂质几丁寡糖,代森锰锌,锰,代森锰,精甲霜灵,甲霜灵,叶菌唑,腈菌唑,PCNB,氟唑菌苯胺,青霉菌属,吡噻菌胺,氯菊酯,啶氧菌酯,丙硫菌唑,唑菌胺酯,氯虫苯甲酰胺,精异丙甲草胺,皂苷,氟唑环菌胺,TCMTB,戊唑醇,噻苯咪唑,噻苯哒唑,硫威,福美双,甲基立枯磷,三唑醇,木霉属,肟菌酯,灭菌唑和/或锌。PCNB种皮是指包含喹硫磷和氯唑灵的EPA注册号00293500419。TCMTB是指2-(硫氰基甲基硫代)苯并噻唑。
可以测试具有特定转基因性状的种子品种和种子以确定哪些种子处理方案和施用率可以补充这些品种和转基因性状以增加产量。例如,具有良好产量潜力但丝黑穗病易感性的品种可以受益于使用提供针对丝黑穗病的保护的种子处理,具有良好产量潜力但胞囊线虫易感性的品种可以受益于使用提供针对胞囊线虫的保护的种子处理等。同样,涵盖赋予昆虫抗性的转基因性状的品种可以从种子处理赋予的第二种作用方式中获益,涵盖赋予除草剂抗性的转基因性状的品种可以从用安全剂的种子处理中获益,这种安全剂增强植物对该除草剂的抗性等。此外,当与种子处理组合时,正确使用种子处理所产生的良好根系建立和早期出苗可能导致更有效的氮利用,更好的抗干旱能力以及包含某种性状的一种或多种品种的产量潜力的总体增加。
用于杀灭昆虫有害生物和控制昆虫群体的方法
在一些实施例中,提供了用于杀灭昆虫有害生物的方法,这些方法包括使昆虫有害生物与杀昆虫有效量的本公开的杀昆虫多肽接触。在一些实施例中,提供了用于杀灭有害昆虫的方法,这些方法包括使昆虫有害生物与杀昆虫有效量的实施例的一种或多种IPD078-1、IPD078-2、IPD084、IPD086-1、IPD086-2、IPD087、和/或IPD089多肽接触。
在一些实施例中,提供了用于控制昆虫有害生物群体的方法,这些方法包括使昆虫有害生物群体与杀昆虫有效量的实施例的重组杀昆虫多肽接触。在一些实施例中,提供了用于控制昆虫有害生物群体的方法,这些方法包括使昆虫有害生物群体与杀昆虫有效量的实施例的一种或多种IPD078-1、IPD078-2、IPD084、IPD086-1、IPD086-2、IPD087、和/或IPD089多肽接触。如本文使用的“控制有害生物群体”或“控制有害生物”是指对有害生物的任何影响,导致对有害生物造成的损害的限制。控制有害生物包括但不限于以一定方式杀灭有害生物、抑制有害生物发育、改变有害生物能育性或生长,使得有害生物对植物造成较少的损害,减少所产生后代的数量,产生适应力较弱的有害生物,产生易受捕食者攻击的有害生物或阻止有害生物啃食植物。
在一些实施例中,提供了用于控制对杀有害生物蛋白有抗性的昆虫有害生物群体的方法,这些方法包括使昆虫有害生物群体与杀昆虫有效量的本公开的重组杀昆虫多肽接触。在一些实施例中,提供了用于控制对杀有害生物蛋白有抗性的昆虫有害生物群体的方法,这些方法包括使昆虫有害生物群体与杀昆虫有效量的实施例的一种或多种IPD078-1、IPD078-2、IPD084、IPD086-1、IPD086-2、IPD087、和/或IPD089多肽接触。
在一些实施例中,提供了用于保护植物免受昆虫有害生物侵害的方法,这些方法包括在植物或其细胞中表达编码本公开的杀昆虫多肽的重组多核苷酸。在一些实施例中,提供了用于保护植物免受昆虫有害生物侵害的方法,这些方法包括在植物或其细胞中表达编码实施例的一种或多种IPD078-1、IPD078-2、IPD084、IPD086-1、IPD086-2、IPD087、和/或IPD089多肽的杀有害生物蛋白的重组多核苷酸。
昆虫抗性管理(IRM)策略
苏云金芽孢杆菌δ-内毒素在转基因玉米植物中的表达已被证明是控制农业重要昆虫有害生物的有效手段(Perlak等人,1990;1993)。然而,昆虫已经进化,这些昆虫对在转基因植物中表达的苏云金芽孢杆菌δ-内毒素是具有抗性的。如果这种抗性普遍存在,它将明显限制包含编码这种苏云金芽孢杆菌δ-内毒素的基因的种质的商业价值。
增加转基因杀昆虫剂对靶标有害生物的有效性并且同时减少杀昆虫剂抗性有害生物发展的一种方法是提供非转基因(即,非杀昆虫蛋白)庇护所(一部分非杀昆虫作物/玉米),用于与生产对靶标有害生物具有活性的单一杀昆虫蛋白的转基因作物一起使用。美国环境保护局(United States Environmental Protection Agency)(epa.gov/oppbppdl/biopesticides/pips/bt_com_refuge_2006.htm,其可以使用www前缀进行访问)发布了与生产一种对靶标有害生物具有活性的单一Bt蛋白的转基因作物一起使用的要求。此外,国家玉米种植者协会(National Corn Growers Association)在他们的网站上也提供了有关庇护所要求的类似指导:(ncga.com/insect-resistance-management-fact-sheet-bt-corn,其可以使用www前缀进行访问)。由于庇护区内的昆虫所造成的损失,较大的庇护所可能会降低总产量。
增加转基因杀昆虫剂对靶标有害生物的有效性并且同时减少杀昆虫剂抗性有害生物发展的另一种方法是具有杀昆虫基因的储存库,该储存库可以有效地对抗昆虫有害生物的组,并通过不同的作用方式显现其作用。
在植物中表达对相同昆虫物种有毒的两种或更多种杀昆虫组合物,每种杀昆虫剂以有效水平表达是实现对抗性发展的控制的另一种方法。这是基于以下原则:对两种不同行动模式的抗性演变比仅一种远远更不可能。例如,Rouss概述了用于管理杀昆虫转基因作物的双毒素策略,也称为“金字塔结构”或“堆叠”。(The Royal Society.Phil.Trans.R.Soc.Lond.B.[皇家学会伦敦皇家学会哲学会刊B系列],(1998)353:1777-1786)。每种都能有效抵抗靶标有害生物并几乎没有或没有交叉抗性的两种不同蛋白质的堆叠或金字塔可以允许使用较小的庇护所。美国环境保护局要求所种植非Bt玉米的结构性庇护所(通常为5%)比单一性状产品(通常为20%)显著更少。存在提供庇护所的IRM效应的各种方法,包括在田地中的各种几何种植模式和包装好(in-bag)的种子混合物,如进一步通过Roush所讨论的。
在一些实施例中,本公开的杀昆虫多肽可用作与其他杀有害生物蛋白组合的(即金字塔的)昆虫抗性管理策略,包括但不限于Bt毒素、致病杆菌属物种或发光杆状菌属物种杀昆虫蛋白等。
提供了在促进昆虫抗性管理的转基因植物中控制鳞翅目和/或鞘翅目昆虫侵袭的方法,该方法包括在植物中表达具有不同作用模式的至少两种不同的杀昆虫蛋白。
在一些实施例中,控制转基因植物中鳞翅目和/或鞘翅目昆虫侵袭并促进昆虫抗性管理的方法,该至少一种杀昆虫蛋白包含对鳞翅目和/或鞘翅目昆虫有杀昆虫性的本公开的杀昆虫多肽。
在一些实施例中,控制转基因植物中鳞翅目和/或鞘翅目昆虫侵袭并促进昆虫抗性管理的方法包括在转基因植物中表达本公开的杀昆虫多肽和对鳞翅目和/或鞘翅目昆虫有杀昆虫性的具有不同作用模式的Cry蛋白。
在一些实施例中,控制转基因植物中鳞翅目和/或鞘翅目昆虫侵袭并促进昆虫抗性管理的方法包括在转基因植物中实施例的一种或多种IPD078-1、IPD078-2、IPD084、IPD086-1、IPD086-2、IPD087、和/或IPD089多肽和对鳞翅目和/或鞘翅目昆虫有杀昆虫性的具有不同作用模式的Cry蛋白。
还提供了减少对转基因植物的鳞翅目和/或鞘翅目昆虫抗性的出现的可能性并在植物中表达杀昆虫蛋白以控制昆虫物种的方法,该方法包括表达与对该昆虫物种具有不同作用模式的第二杀昆虫蛋白结合的对昆虫物种具有杀昆虫性的本公开的-种或多种杀昆虫多肽。
还提供了转基因植物的有效鳞翅目和/或鞘翅目昆虫抗性管理的手段,该手段包括在植物中以高水平共表达对鳞翅目和/或鞘翅目具有毒性的两种或更多种杀昆虫蛋白,但是每种都展现出不同的实行其杀灭活性的模式,其中这两种或更多种杀昆虫蛋白包含本公开的杀昆虫多肽和Cry蛋白。
此外,提供了获得用于种植或商业化表达对鳞翅目和/或鞘翅目昆虫具有杀昆虫性的蛋白的植物的法规性审批的方法,该方法包括以下步骤:参考、提交或依赖昆虫测定结合数据,这些数据显示本公开的杀昆虫多肽不与这些昆虫中的Cry蛋白的结合位点竞争。
将所有出版物和专利申请通过引用并入本文,其程度就像明确且单独指出通过引用将每个单独出版物或专利申请并入本文一样。
虽然出于清楚理解的目的,已经通过说明和实例的方式对前述实施例进行了详细描述,但是可以在所附权利要求的范围内实施某些改变和修改。
以下实例是通过说明的方式但不是通过限制的方式来提供的。
实验
实例1.昆虫摄食测定
在清除的裂解物上进行杀昆虫活性生物测定筛选,以评估杀昆虫蛋白对各种以下品种的影响:鳞翅目物种(欧洲玉米螟(玉米螟)、玉米穗蛾(玉米穗虫)、黑切根虫(小地老虎)、秋夜蛾(草地贪夜蛾)、大豆夜蛾(大豆尺夜蛾)和黎豆夜蛾(梨豆夜蛾)),鞘翅目物种(西方玉米根虫(玉米根萤叶甲)),以及两种半翅目物种(草盲蝽属(Lygus)(豆荚盲蝽(Lygus hesperus))和南方绿椿象(Southern Green Stinkbug)(稻绿蝽))。
鳞翅目测定
在96孔板装置中在包含细菌菌株的澄清裂解物的人工饵料上进行鳞翅目摄食测定。将澄清裂解物与鳞翅目特异性人工饵料以25ul澄清裂解物和35ul饵料混合物的比例掺入。在每个孔放置两至五只新生幼虫来摄食5天。结果表示为幼虫反应如生长迟缓呈阳性和/或死亡率。如果幼虫与摄食仅施用上述缓冲液的饮食的阴性对照相似,那么结果表示为阴性。在欧洲玉米螟(玉米螟)、玉米穗蛾(玉米穗虫)、黑切根虫(小地老虎)、秋夜蛾(草地贪夜蛾)、大豆夜蛾(大豆尺夜蛾)和黎豆夜蛾(梨豆夜蛾)上测定每个澄清的裂解物。测定了针对这些昆虫的一系列浓度的经纯化的蛋白样品,并计算了个体的50%死亡率的浓度(LC50)或抑制50%发育的浓度(IC50)。
鞘翅目昆虫测定
在96孔板装置中在包含细菌菌株的澄清裂解物的人工饵料上进行鞘翅目摄食测定。将澄清裂解物与鞘翅目特异性人工饵料以10ul澄清裂解物和50ul饵料混合物的比例掺入。在每个孔中放置两至五只西方玉米根虫(玉米根萤叶甲)新生幼虫来摄食5天。结果表示为幼虫反应如生长迟缓呈阳性和/或死亡率。如果幼虫与摄食仅施用上述缓冲液的饮食的阴性对照相似,那么结果表示为阴性。测定了针对这些昆虫的一系列浓度的经纯化的蛋白样品,并计算了个体的50%死亡率的浓度(LC50)或50%抑制的浓度(IC50)。
草盲蝽属(豆荚盲蝽)生物测定
在96孔生物测定板(BD Falcon 353910)的每个孔中将20ul澄清裂解物样品与75ul草盲蝽属饵料(Bio-Serv F9644B)混合,并用一片Parafilm覆盖。将不同数量的豆荚盲蝽二龄若虫(2至7只)置于96孔过滤板的每个孔中。然后将样品板翻转到过滤板上并用橡皮筋保持在一起。该测定在25℃运行四天,并且然后对昆虫死亡率和/或昆虫生长迟缓进行评分。测定了针对这些昆虫的一系列浓度的经纯化的蛋白样品,并计算了个体的50%死亡率的浓度(LC50)或50%抑制的浓度(IC50)。
南方绿椿象(稻绿蝽)生物测定
将40ul澄清的裂解物样品与包装中的360ul草盲蝽属饵料(Bio-ServF9644B)混合。将10至15只新蜕皮的第二龄若虫置于聚苯乙烯培养皿(100mm×20mm)中,该培养皿衬有湿式滤纸(直径100mm)。在该平皿中包括水源。将该生物测定在25℃在黑暗中孵育三天,并然后更换饮食/样品包。针对死亡率和生长迟缓对生物测定进行评分。为了产生ILC50或LC50数据,测定了针对昆虫的一系列浓度的经纯化的蛋白,并且将50%的若虫遭受严重生长迟缓的浓度计算为ILC50并且将50%昆虫死亡的浓度计算为LC50。
实例2.鉴定杀昆虫活性菌株
从在LB培养基(10g/L胰蛋白胨、5g/L酵母提取物、和10g/L NaCl)或TSB(大豆胰蛋白酶肉汤)培养基(17g/L胰酶解胨、3g/L大豆蛋白胨、2.5g/L右旋糖、2.5g/L K2HPO4和5g/LNaCl)中生长并且在26℃下在以250rpm的震荡下孵育过夜的细菌菌株的透明细胞裂解液中观察到针对SBL、CEW、BCW、VBC、ECB、草盲蝽属、SGSB和WCRW的杀昆虫活性。这种杀昆虫活性表现出指示蛋白质性质的热敏感性和蛋白酶敏感性。活性菌株及其杀昆虫活性列于表1中。
表1.活性菌株的杀昆虫活性。
实例3.活性菌株的物种鉴定和基因组测序
根据制造商的说明书,用细菌基因组DNA提取试剂盒(目录号NA2110-KT,西格玛-奥德里奇公司(Sigma-Aldrich),邮政信箱14508,圣路易(St.Louis),密苏里州(MO)63178)提取活性菌株的基因组DNA。使用NanoDropTM分光光度计(赛默科技公司(ThermoScientific),西尔维路3411号(3411Silverside Road),班克罗夫特大厦(BancroftBuilding),100号套房,威明顿市(Wilmington),特拉华州(DE)19810)确定DNA浓度,并将基因组DNA用无菌水稀释至40ng/ul。通过组合80ng基因组DNA、2ul(5uM)16S核糖体DNA引物TACCTTGTTACGACTT(SEQ ID NO:84)和AGAGTTTGATCMTGGCTCAG(SEQ ID NO:85)、1ul 10cmMdNTP、1xHF缓冲液、和1单位高保真DNA聚合酶(新英格兰生物实验室(New England Biolabs),目录号M0530L,240县道,伊普斯威奇(Ipswich),马萨诸塞州(MA)01938-2723)来建立25ul PCR反应。PCR反应在MJ Research PTC-200热循环仪(伯乐实验室有限公司(Bio-Rad Laboratories,Inc.),阿尔弗雷德诺贝尔道1000号(1000Alfred NobelDrive),赫拉克勒斯(Hercules),加利福尼亚州,94547,美国)中按以下程序运行:96℃ 1分钟;30个循环:96℃ 15秒,52℃ 2分钟和72℃ 2分钟;72℃ 10分钟;并且保持在4℃。将PCR产物用DNA纯化试剂盒(目录号28104,凯杰公司(QIAGEN Inc.),坦伯利巷27220号(27220Turnberry Lane),瓦伦西亚(Valencia),加利福尼亚州91355)纯化。将纯化的PCR样品进行DNA测序,并将所得的16S核糖体DNA序列针对NCBI数据库进行BLAST搜索。顶部命中表明菌株的物种(参见表1)。
还根据依诺米那公司(Illumina)(依诺米那路5200号,圣地亚哥,加利福尼亚州92122美国)开发的文库构建方案制备活性菌株的基因组DNA,并使用Illumina MiSeqTM进行测序。组装核酸重叠群序列并产生可读框。
实例4.通过LC-MS/MS鉴定杀昆虫蛋白
如所述分馏和富集所有杀昆虫蛋白。为了鉴别候选物,将蛋白条带切除,用胰蛋白酶消化并且通过纳米液相色谱/电喷雾串联质谱法(纳米-LC/ESI-MS/MS)在Thermo QExactiveTM OrbitrapTM质谱仪(赛默飞世尔科技公司(Thermo Fisher Scientific))上进行分析,该质谱仪与NanoLC Ultra 1D PlusTM nanoLC系统(爱博才思公司(ABSciex))接合。可替代地,用胰蛋白酶直接消化色谱级分中的蛋白质,然后通过纳米-LC/ESI-MS/MS进行分析。以数据依赖性采集(DDA)模式收集MS数据。
通过使用Mascot(矩阵科学公司(Matrix Science))通过数据库搜索进行蛋白质鉴定。搜索是针对内部数据库(含有细菌基因组的注释蛋白质序列)和公共数据库Swiss-Prot、以及其他内部蛋白质序列数据库同时进行的。
实例5.杀昆虫蛋白的分离和鉴定
IPD078Aa-1/2的分离和鉴定
从在大豆胰蛋白酶肉汤(胰蛋白胨-11g/L、植物蛋白胨-3g/L、氯化钠-5g/L、磷酸氢二钾-2.5g/L、葡萄糖-2.5g/L)中生长并在26℃下在以250rpm的震荡下培养的绿针假单胞菌菌株SSP344E5的透明细胞裂解液中观察到针对WCRW(玉米根萤叶甲)的杀昆虫活性。这种杀昆虫活性表现出指示蛋白质性质的热敏感性和蛋白酶敏感性。
在Tris缓冲液(pH 9.0)中重悬后,将SSP344E5的细胞沉淀在约30,000psi下匀浆。将粗裂解液通过离心澄清并加载到填充有50HQ强阴离子交换介质(生命技术公司(Life Technologies))的柱上。收集具有杀昆虫活性的未结合的蛋白质,并通过添加MES至终浓度为20mM而将pH调节至6.0。将此材料加载到在20mM MES pH 6(缓冲液A)中平衡的SP Sepharose HP柱(通用电气医疗集团(GE Healthcare))上。收集未结合的蛋白质,并将结合的蛋白质用线性氯化钠梯度洗脱并分级。在该步骤中WCRW活性丧失,但在含有结合的蛋白质的级分与未结合的蛋白质以1∶1的比例组合后恢复。具有恢复的WCRW活性的级分的SDS-PAGE分析显示出用蓝染料染色后的突出条带。LC-MS/MS用于鉴定由菌株SSP344E5编码的两个新颖基因。这些基因形成操纵子,并且这两种基因产物都是在如用重组蛋白所证实的杀昆虫活性的测试条件下所必需的。这些蛋白质被命名为IPD078Aa-1(SEQ ID NO:43)和IPD078Aa-2(SEQ ID NO:44)。
IPD084Aa的分离和鉴定
从菌株JH23996-2(肠杆菌属物种)的粗细胞裂解物中观察到针对WCRW(玉米根萤叶甲)的杀昆虫活性。使其在28℃、200rpm下在烧瓶中的2xYT培养基中生长1天。将生长物以25,000x g进行沉淀20分钟,并弃去上清液。将沉淀用1/4强度的PBS洗涤一次,然后重复离心并在80℃冷冻。将来自约1L生长物的沉淀进行解冻,并用约5x体积/1x沉淀质量的“完全无EDTA”蛋白酶抑制剂混合物(罗氏公司(Roche))重悬于20mM Tris(pH 8)中,然后在25,000psi下进行萃取。将粗裂解液以25,000x g旋转20分钟,并将得到的上清液过滤并用20mMTris(pH 8)以1∶1稀释,然后加载到两个串联连接的5mL HiTrap Q-FF阴离子交换柱(通用电气医疗集团生命科学部(GE Healthcare Life Sciences))上,该交换柱已经用20mMTris(pH 8)预平衡。用20mM Tris、0.8M NaCl(pH 8)洗脱WCRW活性蛋白。将Q-FF洗脱液浓缩并加载到两个S200 10x300尺寸排阻柱(通用电气医疗集团生命科学部)上,这两个柱以串联连接并在100mM碳酸氢铵缓冲液中平衡。将洗脱的WCRW活性级分合并并脱盐到25mM MOPS(pH 7)中,并加载到4mL Mono P色谱聚焦柱(通用电气医疗集团生命科学部)上,并用Polybuffer 74(pH 5)洗脱。在从Mono P柱洗脱的级分中注意到两个WCRW活性区域。将两个活性级分池脱盐到20mM MOPS(pH 7.4)缓冲液中,并分别加载到1mL Mono Q柱上,并用20mMMOPS、0.5M NaCl(pH 7.4)的线性梯度进行洗脱。将来自Mono P区域1池的活性级分在4.6-7.7mS/cm的电导率范围下洗脱。将来自Mono P区域2池的活性级分在7.7-9.6mS/cm的电导率范围下洗脱。具有WCRW活性的级分的SDS-PAGE分析显示出显著条带,该显著条带存在于使用Mono Q(通用电气医疗集团生命科学部)纯化的Mono P区域1和Mono P区域2两者中。在GelCode蓝染色试剂(赛默公司(Thermo))染色后切下目的蛋白质条带,并通过LC-MS/MS鉴定。数据库搜索揭示了由菌株JH23996-2编码的新颖基因候选物,其与Mono Q纯化的Mono P区域1和2的WCRW活性相关。克隆和重组表达证实了该候选物针对WCRW的杀昆虫活性。将该蛋白质命名为IPD084-Aa(SEQ ID NO:45)。
IPD085Aa的分离和鉴定
从在大豆胰蛋白酶肉汤(来自酪蛋白的蛋白胨15g/L;来自豆粕的蛋白胨5g/L;NaCl 5.0g/L)中生长并在28℃下在以200rpm的震荡下培养1天的虫媒假单胞菌菌株JH23959-1的透明细胞裂解液中观察到针对WCRW(玉米根萤叶甲)和草盲蝽(豆荚盲蝽)的杀昆虫活性。这种杀昆虫活性表现出指示蛋白质性质的热敏感性和蛋白酶敏感性。
在用“完全无EDTA”蛋白酶抑制剂混合物(罗氏公司)重悬于20mM Tris缓冲液(pH8)中以后,将菌株JH23959-1的细胞沉淀在约30,000psi下裂解。通过离心澄清粗裂解液并使用100%饱和的硫酸铵使其达到20%饱和。将该溶液澄清,并通过添加100%饱和硫酸铵使上清液达到50%饱和。将50%饱和硫酸铵溶液离心,并弃去上清液。将沉淀部分悬浮在20mM Tris(pH 8.0)中,然后通过添加在20mM Tris(pH 8.0)缓冲液中的2M硫酸铵使其达到1.5M硫酸铵。将该溶液澄清并加载到在20mM Tris(pH 8.0)、1.5M硫酸铵中平衡的TSKgel苯基-5PW柱(东曹生物科学公司(Tosoh Bioscience))上,以及杀昆虫活性,并用20mM Tris(pH 8)的梯度进行洗脱。合并活性级分,在10kDa MWCO离心浓缩器上浓缩并脱盐到20mMTris中。将脱盐的池加载到在20mM Tris(pH 8.0)中平衡的Toyopearl GigaCap Q-650S柱(东曹生物科学公司)上,并用在Tris缓冲液中的0.4M NaCl的梯度进行洗脱。合并活性级分,将缓冲液交换到20mM MES(pH 6.0)中然后加载到Toyopearl GigaCap S-650S柱(东曹生物科学公司)上,并将活性级分用在MES缓冲液中的0.4m NaCl的梯度进行洗脱。在用GelCode蓝染色试剂(赛默公司)染色后,具有WCRW活性的级分的SDS-PAGE分析显示出显著条带。切下蛋白质条带并通过LC-MS/MS鉴定。数据库搜索揭示了由菌株JH23959-1编码的新颖基因候选物。克隆和重组表达证实了该候选物针对WCRW、大豆夜蛾(属于锞纹夜蛾属(Chtysodeixis))、草盲蝽和南方绿椿象(稻绿蝽)的杀昆虫活性。克隆和重组表达证实了该候选物针对WCRW、草盲蝽和SGSB的杀昆虫活性。该蛋白质被命名为IPD085Aa(SEQ ID NO:51)。
IPD086Aa的分离和鉴定
从在2xYT(酵母提取物-10g/L、胰蛋白胨-16g/L、氯化钠-5g/L)中生长并在26℃下在以250rpm的振荡下培养2天的Burkholderia ambifaria菌株SSP283F7的透明细胞裂解液中观察到针对WCRW(玉米根萤叶甲)的杀昆虫活性。这种杀昆虫活性表现出指示蛋白质性质的热敏感性和蛋白酶敏感性。
在Tris缓冲液(pH 9.0)中重悬后,将SSP283F7的细胞沉淀在约30,000psi下匀浆。通过离心澄清粗裂解液并加载到填充有Q Sepharose HP介质(GE医疗集团)的柱上。将结合的蛋白质用线性氯化钠梯度洗脱并分级。将包含目的蛋白的级分合并,并在20mM Tris(缓冲液A)中调节至1M硫酸铵浓度。将此材料加载到填充有在缓冲液A中平衡的ButylSepharose FF介质(GE医疗集团)的柱上。用1M至0M硫酸铵的线性梯度洗脱蛋白质。在含有从0.7M至0.5M硫酸铵和从0.2M至0M硫酸铵洗脱的蛋白质的两个池的1∶1混合物中检测到杀昆虫活性。具有WCRW活性的级分的SDS-PAGE分析显示出用蓝染料染色后的突出条带。LC-MS/MS用于鉴定由菌株SSP283F7编码的两个新颖基因。这些基因形成操纵子,并且这两种基因产物都是在如用重组蛋白所证实的杀昆虫活性的测试条件下所必需的。这些蛋白质被命名为IPD086Aa-1(SEQ ID NO:56)和IPD086Aa-2(SEQ ID NO:57)。
IPD087Aa的分离和鉴定
用菌株JH34636-1(伯克霍尔德菌属物种)的粗细胞裂解液观察到针对SBL和VBC的杀昆虫活性。使菌株JH34636-1在烧瓶中的2XYT中、在32℃以200rpm生长1天。然后使生长物沉淀并将该沉淀在1/4x PBS中洗涤,然后再沉淀并在-80℃冷冻。将沉淀进行解冻,并在25,000psi下用“完全无EDTA”蛋白酶抑制剂混合物(罗氏公司)(约5x体积-沉淀质量)裂解于20mM Tris(pH 8)中。向粗提物中以1∶1添加20mM Tris、35%硫酸铵(pH 8)以给出17.5%硫酸铵的终浓度。将其摇动1小时,然后离心并收集上清液。使用15mL苯基树脂(通用电气医疗集团生命科学部)进行分批分离,其中将结合物洗涤,然后用20mM Tris(pH 8)洗脱,并收集在干净的瓶中。向洗脱液中添加固体硫酸铵至约40%的终浓度。将其轻轻搅拌过夜,然后离心(30,000x g,20分钟),并弃去上清液。将沉淀重悬于20mM Tris(pH 8)中持续45分钟,然后添加0.5M甲酸钠(pH 4)至终浓度为50mM,并添加1%甲酸使其达到约pH 4。将其再摇动30分钟,然后离心(30,000x g,20分钟)。将上清液过滤并脱盐到50mM甲酸钠(pH 4)中,并加载到在同一缓冲液中平衡的1mL Mono S(GE医疗集团)柱上。将在24.9-30.8mS/cm、30.8-40.2mS/cm和40.2-51.4mS/em下的三个区域中的、针对SBL具有活性的级分用50mM甲酸钠、0.5M NaCl(pH 4)的线性梯度进行洗脱。将它们分别浓缩并加载到两个S200 10x300 mm尺寸排阻柱(通用电气医疗集团生命科学部)上,这两个柱串联连接并在100mM碳酸氢铵中平衡。所有尺寸排阻运行显示出活性峰值接近28.5ml(相当于约74kDa)。在用GelCode蓝染色试剂(赛默公司)染色后,具有SBL和VBC活性的级分的SDS-PAGE分析显示出显著条带。切下蛋白质条带并通过LC-MS/MS鉴定。数据库搜索揭示了由菌株JH34636-1编码的新颖基因候选物。克隆和重组表达证实了该候选物针对SBL和VBC的杀昆虫活性。该蛋白质被命名为IPD087Aa(SEQ ID NO:69)。
IPD089Aa的分离和鉴定
从在胰蛋白酶大豆肉汤中在28℃、200rpm下生长1天的菌株JH33490-1(Burkholderia ambifaria)的透明细胞裂解液中观察到针对西方玉米根虫(WCRW,玉米根萤叶甲)的活性。将细胞沉淀进行冷冻,然后解冻,然后用“完全无EDTA”蛋白酶抑制剂混合物(罗氏公司)重悬于20mM MOPS(pH 7.2)中以后,在约30,000psi下裂解。将裂解液通过离心澄清并通过0.45μm过滤器。
将过滤的萃取物用20mM MOPS(pH 7)以1∶1稀释,并加载到1 mL Capto Q(GE医疗集团)柱上,并用20mM MOPS、0.5mM NaCl(pH 7)步骤梯度洗脱。将Capto Q洗脱液以10,000Da MWCO单元浓缩,并加载到两个S200 10x300 mm尺寸排阻柱(通用电气医疗集团生命科学部)上,这两个柱串联连接并在100mM碳酸氢铵中平衡。合并具有WCRW活性的级分,并将其脱盐到25mM MOPS(pH 6.6)中并加载到4mL Mono P色谱聚焦柱(通用电气医疗集团生命科学部)上,并用Polybuffer 74(pH 4)洗脱。将具有WCRW活性的级分脱盐到20mM Tris(pH8)中并加载到1ml Mono Q柱(通用电气医疗集团生命科学部)上。用20mM Tris+0.7M NaCl(pH 8)的线性梯度洗脱活性级分。在用GelCode蓝染色试剂(赛默公司)染色后,具有WCRW活性的级分的SDS-PAGE分析显示出显著条带。切下蛋白质条带并通过LC-MS/MS鉴定。数据库搜索揭示了由菌株JH33490-1编码的新颖基因候选物。克隆和重组表达证实了该候选物针对WCRW的杀昆虫活性。该蛋白质被命名为IPD089Aa(SEQ ID NO:70)。
实例6同源物的鉴定
从各种内部菌株中提取基因组DNA,鉴定出物种,并且基因组是如实例3中所述的序列。在与内部基因组和公开可用的BLAST“nr”数据库(包括所有非冗余的GenBank CDS翻译,源自3维结构布鲁克港蛋白质数据库的序列,25SWISS-PROT蛋白质序列数据库、EMBL和DDBJ数据库的最后主要版本)中包含的序列相似的默认参数下,可以通过进行BLAST(基本局部比对20搜索工具(Basic Local Alignment 20Search Tool);Altschul等人,(1993)J.Mol.Biol.[分子生物学杂志]215:403-410;还参见ncbi.nlm.nih.gov/BLAST/,其可以使用www前缀访问)搜索而确定基因同一性。分析了SEQ ID NO:43-45、51、56、57、和69-70的多核苷酸序列。表2显示了鉴定的IPD多肽和同源物、每种多核苷酸的序列识别号和由多核苷酸编码的相应多肽、从中鉴定的细菌物种和/或菌株、以及杀昆虫活性测试的结果。
表2.通过同源序列搜索而鉴定的直向同源物的列表
·n.d.表示未确定活性
实例7.基因亚克隆和大肠杆菌表达
首先通过使用其基因组DNA作为模板的PCR来扩增编码杀昆虫蛋白的靶基因。基于基因的5′端和3′端序列设计PCR引物,其中掺入了适当的限制性位点,或者添加了与线性化的大肠杆菌表达载体的5′和3′端重叠的序列。通过限制酶消化和连接或基于同源重组的克隆,将PCR产物克隆到选择的大肠杆菌表达载体中,即用于N-His、C-His标签表达和无标签表达的pCOLDTM 1、3,pET16、24、28。在一些情况下,将pMALTM载体用于MBP融合表达。在共表达二元毒素的两种蛋白质(IPD078和IPD086)的情况下,还将它们的天然操纵子序列克隆到上述大肠杆菌载体之一中。将这些蛋白质在BL21(DE3)、C41或大肠杆菌宿主细胞中表达,在16℃用1mM IPTG过夜诱导。
诱导后从大肠杆菌培养物中提取重组蛋白。如实例1中所述,在昆虫靶标上测定细胞透明裂解液或纯化的蛋白质。
用系列稀释液在每个昆虫靶标上测试纯化的重组蛋白质,并在这些测试条件下计算最小抑制浓度(表3)。
表3.IPD蛋白质及其对昆虫靶标的最小抑制浓度
*未测试
实例8.在瞬时叶组织上的瞬时表达和昆虫生物测定
为了证实植物中IPD078Aa-1(SEQ ID NO:43)和IPD078Aa-2(SEQ ID NO:44)的活性,将两者克隆到农杆菌瞬时表达系统中。变体IPD078Aa-1MOD B(SEQ ID NO:3)在At-UBQ10启动子的控制下表达(Norris S R等人(1993)Plant Mol Biol.[植物分子生物学]21(5):895-906),并使用大麦α淀粉酶信号对其进行靶向用于分泌(Rahmatullah R J等人,(1989)Plant Mol.Biol.[植物分子生物学]12:119)。将变体IPD078Aa-2MOD A(SEQ ID NO:4)分别置于At-UBQ10或GMUBQ启动子的控制下(Norris S R等人(1993)Plant Mol Biol.[植物分子生物学]21(5):895-906,Xia等人,Plant Physiol.[植物生理学](1994)104:805-806)。将IPD078 Aa-1MOD B(SEQ ID NO:3)和IPD078Aa-2MOD A(SEQ ID NO:4)以1∶1比率共浸润。
将农杆菌细胞悬浮液引入完整组织的植物细胞以使得可重复感染和随后的植物来源的转基因表达可被测量或研究的浸润法是本领域熟知的(Kapila J等人,(1997)PlantScience[植物科学]122:101-108)。简而言之,将单叶阶段的丛状菜豆(bush bean)(加利福尼亚小白,菜豆)用标准化的细菌细胞培养物进行农杆菌浸润。从每个小植株中切下叶圆盘,并且用大豆夜蛾(SBL)(大豆尺夜蛾)、玉米穗蛾(CEW)(玉米穗虫)的2只新生虫,或黎豆夜蛾(VBC)(梨豆夜蛾)的2只新生虫侵染。将来自未浸润植物的叶圆盘作为对照。在感染后两天(CEW)或三天(VBC,SBL)评估绿叶组织的消耗并给出0至9的评分。针对未接触的叶使用评分为9的最高叶损伤,针对具有小但明显针孔的圆盘使用的评分为8,当消耗少于10%的组织时使用的评分为7,当消耗少于30%的组织时使用的评分为6,5的评分表示消耗40%-50%,4的评分表示消耗50%-60%,3的评分表示消耗60%-70%,2的评分表示消耗70%-80%,并且1的评分表示超过90%的叶组织被消耗。
结果总结于图2中。IPD078Aa-1和IPD078Aa-的共表达保护叶圆片不受所测试的侵染昆虫消耗,这不依赖于载体组合。相反,观察到阴性对照叶圆盘的高水平绿色组织消耗。
实例9-农杆菌介导的玉蜀黍的稳定转化
对于杀昆虫多肽的农杆菌介导的玉蜀黍转化,采用Zhao的方法(美国专利号5,981)。简而言之,从玉蜀黍中分离未成熟的胚,并且将胚与农杆菌悬浮液接触,其中细菌能够将编码本公开的杀昆虫多肽的多核苷酸转移至至少一种未成熟胚的至少一个细胞中(步骤1:感染步骤)。在该步骤中,将未成熟胚浸泡在农杆菌悬浮液中,引发接种。使这些胚与农杆菌共培养一段时间(步骤2:共培养步骤)。将这些未成熟的胚在有抗生素但没有选择剂的固体培养基上培养用于消除农杆菌,并持续经感染的细胞的静置期。接着,在含有选择剂的培养基上培养经接种的胚,并且回收正在生长的经转化的愈伤组织(步骤4:选择步骤)。在含选择剂的固体培养基上培养这些未成熟胚,使经转化的细胞选择性生长。然后将愈伤组织再生成植物(步骤5:再生步骤),并将生长在选择培养基上的愈伤组织在固体培养基上培养以再生植物。
为了检测叶组织中的杀昆虫多肽,将4个冻干叶穿孔/样品粉碎并重悬于含有0.1%TWEENTM 20的100μL PBS(PBST)、含有1片/7mL完整迷你蛋白酶抑制剂(罗氏公司1183615301)的1%β-巯基乙醇中。将悬浮液超声处理2分钟,并且然后在4℃、20,000g下离心15分钟。向上清液等份1/3体积的3X NuPLDS样品缓冲液(InvitrogenTM,加利福尼亚州,美国)中,添加含有1片/7mL完整迷你蛋白酶抑制剂的1%B-ME。将反应物在80℃下加热10分钟,并且然后离心。将上清液样品按照制造商(InvitrogenTM)说明书装载在具有MES运行缓冲液的4%-12%Bis-Tris Midi凝胶上,并使用装置(InvitrogenTM)转移到硝酸纤维素膜上。将硝酸纤维素膜在含有5%脱脂奶粉的PBST中孵育2小时,然后在PBST中的亲和纯化的兔抗杀昆虫多肽中孵育过夜。将膜用PBST冲洗三次并且然后在PBST中孵育15分钟,并且然后在具有山羊抗兔HRP的PBST中孵育持续3小时之前5分钟进行两次,持续2小时。使用ECL蛋白质印迹试剂(GE医疗集团,目录号RPN2106)和MR膜可以观察到所检测的蛋白质。为了检测根中的杀昆虫蛋白,将根冻干,并且将2mg粉末/样品悬浮于LDS中,添加含有1片/7mL完整迷你蛋白酶抑制剂的1%β-巯基乙醇。将反应在80℃下加热10分钟,并且然后在4℃、20,000g下离心15分钟。将上清液样品按照制造商(InvitrogenTM)说明书装载在具有MES运行缓冲液的4%-12%Bis-Tris Midi凝胶上,并使用装置(InvitrogenTM)转移到硝酸纤维素膜上。将硝酸纤维素膜在含有5%脱脂奶粉的PBST中孵育2小时,然后在PBST中的亲和纯化的多克隆兔抗杀昆虫抗体中孵育过夜。将膜用PBST冲洗三次并且然后在PBST中孵育15分钟,并且然后在具有山羊抗兔HRP的PBST中孵育持续3小时之前5分钟进行两次,持续2小时。使用ECLTM蛋白质印迹试剂(GE医疗集团,目录号RPN2106)和MR膜可以检测到抗体结合的杀昆虫蛋白。
使用本领域已知的标准生物测定法测试杀昆虫蛋白表达阳性的转基因玉蜀黍植物的杀有害生物活性。这些方法包括例如根切除生物测定和全植物生物测定。参见例如,美国专利申请公开号2003/0120054。
实例10-用于在植物中表达杀昆虫多肽的表达载体构建体
可以构建植物表达载体以包括包含杀昆虫多肽编码序列的转基因盒,该昆虫多肽编码序列在与增强子元件组合的紫茉莉花叶病毒(MMV)启动子的控制下[Dey N和MaitiIB,1999,Plant Mol.Biol.[植物分子生物学]40(5):771-82]。这些构建体可用于产生转基因玉蜀黍事件,以测试通过本公开的杀昆虫多肽的表达提供的针对玉米根虫的功效。
事件的T0温室效应可以通过免受西方玉米根虫的根保护来测量。使用由Oleson等人,(2005)[J.Econ Entomol.[经济昆虫学杂志]98(1):1-8]开发的方法,根据损伤的根的节点数测量根保护(CRWNIS=玉米根虫节点损伤评分)。根损伤评分测量为从“0”到“3”,其中“0”表示无可见根损伤,“1”表示1个根损害节点,“2”表示2个根节点损害,并且“3”表示3个根节点损害的最大评分。中间评分(例如1.5)表示损害节点的额外分数(例如损伤的一个半节点)。

Claims (20)

1.一种杀昆虫多肽,所述杀昆虫多肽选自:
a)IPD078-1多肽,其包含与SEQ ID NO:43的氨基酸序列相比具有大于80%序列同一性的氨基酸序列;
b)IPD078-2多肽,其包含与SEQ ID NO:44的氨基酸序列相比具有大于80%序列同一性的氨基酸序列;
c)IPD084多肽,其包含与SEQ ID NO:45的氨基酸序列相比具有大于80%序列同一性的氨基酸序列;
d)IPD084多肽,其包含SEQ ID NO:46-50中任一项的氨基酸序列;
e)IPD085多肽,其包含与SEQ ID NO:51相比具有大于80%序列同一性的氨基酸序列;
f)IPD085多肽,其包含SEQ ID NO:52-55中任一项的氨基酸序列;
g)IPD086-1多肽,其包含与SEQ ID NO:56的氨基酸序列相比具有大于80%序列同一性的氨基酸序列;
h)IPD086-1多肽,其包含SEQ ID NO:58、SEQ ID NO:61、SEQ ID NO:64或SEQ ID NO:66的氨基酸序列;
i)IPD086-2多肽,其包含与SEQ ID NO:57相比具有大于80%序列同一性的氨基酸序列;
j)IPD086-2多肽,其包含SEQ ID NO:59、SEQ ID NO:60、SEQ ID NO:62、SEQ ID NO:63、SEQ ID NO:65、SEQ ID NO:67、或SEQ ID NO:68的氨基酸序列;
k)IPD087多肽,其包含与SEQ ID NO:69的氨基酸序列相比具有大于80%序列同一性的氨基酸序列;
1)IPD089多肽,其包含与SEQ ID NO:70的氨基酸序列相比具有大于80%序列同一性的氨基酸序列;或
m)IPD089多肽,其包含SEQ ID NO:71-82中任一项的氨基酸序列。
2.一种杀昆虫组合物,其包含如权利要求1所述的IPD078-1多肽和如权利要求1所述的IPD078-2多肽。
3.一种杀昆虫组合物,其包含如权利要求1所述的IPD084多肽。
4.一种杀昆虫组合物,其包含如权利要求1所述的IPD085多肽。
5.一种杀昆虫组合物,其包含如权利要求1所述的IPD086-1多肽和如权利要求1所述的IPD086-2多肽。
6.一种杀昆虫组合物,其包含如权利要求1所述的IPD087多肽。
7.一种杀昆虫组合物,其包含如权利要求1所述的IPD089多肽。
8.一种编码杀昆虫多肽的重组多核苷酸,所述杀昆虫多肽选自:
a)IPD078-1多肽,其包含与SEQ ID NO:43的氨基酸序列相比具有大于80%序列同一性的氨基酸序列;
b)IPD078-2多肽,其包含与SEQ ID NO:44的氨基酸序列相比具有大于80%序列同一性的氨基酸序列;
c)IPD084多肽,其包含与SEQ ID NO:45的氨基酸序列相比具有大于80%序列同一性的氨基酸序列;
d)IPD084多肽,其包含SEQ ID NO:46-50中任一项的氨基酸序列;
e)IPD085多肽,其包含与SEQ ID NO:51相比具有大于80%序列同一性的氨基酸序列;
f)IPD085多肽,其包含SEQ ID NO:52-55中任一项的氨基酸序列;
g)IPD086-1多肽,其包含与SEQ ID NO:56的氨基酸序列相比具有大于80%序列同一性的氨基酸序列;
h)IPD086-1多肽,其包含SEQ ID NO:58、SEQ ID NO:61、SEQ ID NO:64或SEQ ID NO:66的氨基酸序列;
i)IPD086-2多肽,其包含与SEQ ID NO:57相比具有大于80%序列同一性的氨基酸序列;
j)IPD086-2多肽,其包含SEQ ID NO:59、SEQ ID NO:60、SEQ ID NO:62、SEQ ID NO:63、SEQ ID NO:65、SEQ ID NO:67、或SEQ ID NO:68的氨基酸序列;
k)IPD087多肽,其包含与SEQ ID NO:69的氨基酸序列相比具有大于80%序列同一性的氨基酸序列;
1)IPD089多肽,其包含与SEQ ID NO:70的氨基酸序列相比具有大于80%序列同一性的氨基酸序列;或
m)IPD089多肽,其包含SEQ ID NO:71-82中任一项的氨基酸序列。
9.如权利要求8所述的重组多核苷酸,其中所述重组多核苷酸选自:
a)SEQ ID NO:1和3、或2和4中任一项的多核苷酸;
b)SEQ ID NO:5-10中任一项的多核苷酸;
c)SEQ ID NO:5-15中任一项的多核苷酸;
d)SEQ ID NO:16、18、21、24、和26中任一项的多核苷酸;
e)SEQ ID NO:17、19、20、22、23、25、26、和27中任一项的多核苷酸;
f)SEQ ID NO:29的多核苷酸;以及
g)SEQ ID NO:30-42中任一项的多核苷酸。
10.一种DNA构建体,其包含如权利要求8或9所述的重组多核苷酸和可操作地连接至所述重组多核苷酸的异源调节序列。
11.一种转基因植物或植物细胞,其包含如权利要求10所述的DNA构建体。
12.一种抑制农业昆虫有害生物群体生长或将其杀灭的方法,所述方法包括使所述昆虫有害生物群体与杀昆虫有效量的如权利要求1所述的IPD078-1多肽和如权利要求1所述的IPD078-2多肽接触。
13.一种抑制农业昆虫有害生物生长或将其杀灭的方法,所述方法包括使所述昆虫有害生物与杀昆虫有效量的如权利要求1所述的IPD084多肽接触。
14.一种抑制昆虫有害生物生长或将其杀灭的方法,所述方法包括使所述昆虫有害生物与杀昆虫有效量的如权利要求1所述的IPD085多肽接触。
15.一种抑制昆虫有害生物生长或将其杀灭的方法,所述方法包括使所述昆虫有害生物与杀昆虫有效量的如权利要求1所述的IPD086-1多肽和如权利要求1所述的IPD086-2多肽接触。
16.一种抑制昆虫有害生物生长或将其杀灭的方法,所述方法包括使所述昆虫有害生物与杀昆虫有效量的如权利要求1所述的IPD087多肽接触。
17.一种抑制昆虫有害生物生长或将其杀灭的方法,所述方法包括使所述昆虫有害生物与杀昆虫有效量的如权利要求1所述的IPD089多肽接触。
18.一种在转基因植物中控制鳞翅目(Lepidoptera)和/或鞘翅目(Coleoptera)昆虫侵袭并提供昆虫抗性管理的方法,所述方法包括在所述植物中表达如权利要求8或9所述的多核苷酸。
19.如权利要求12至18中任一项所述的方法,其中所述昆虫有害生物或昆虫有害生物群体对Bt毒素有抗性。
20.至少一种如权利要求1所述的杀昆虫多肽用于抑制昆虫或昆虫群体生长或将其杀灭的用途。
CN202310010225.4A 2016-11-01 2017-09-14 杀昆虫蛋白及其使用方法 Pending CN116003539A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201662415781P 2016-11-01 2016-11-01
US62/415781 2016-11-01
PCT/US2017/051460 WO2018084936A1 (en) 2016-11-01 2017-09-14 Insecticidal proteins and methods for their use
CN201780065864.3A CN109863167B (zh) 2016-11-01 2017-09-14 杀昆虫蛋白及其使用方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201780065864.3A Division CN109863167B (zh) 2016-11-01 2017-09-14 杀昆虫蛋白及其使用方法

Publications (1)

Publication Number Publication Date
CN116003539A true CN116003539A (zh) 2023-04-25

Family

ID=60020603

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201780065864.3A Active CN109863167B (zh) 2016-11-01 2017-09-14 杀昆虫蛋白及其使用方法
CN202310010225.4A Pending CN116003539A (zh) 2016-11-01 2017-09-14 杀昆虫蛋白及其使用方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201780065864.3A Active CN109863167B (zh) 2016-11-01 2017-09-14 杀昆虫蛋白及其使用方法

Country Status (7)

Country Link
US (2) US11021716B2 (zh)
EP (2) EP3535285B1 (zh)
CN (2) CN109863167B (zh)
BR (1) BR112019008800A2 (zh)
CA (1) CA3038806A1 (zh)
MX (1) MX2019005044A (zh)
WO (1) WO2018084936A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2016371636A1 (en) * 2015-12-18 2018-06-21 Dow Agrosciences Llc Ribosomal protein L40 (RPL40) nucleic acid molecules that confer resistance to coleopteran and hemipteran pests
US11021716B2 (en) 2016-11-01 2021-06-01 Pioneer Hi-Bred International, Inc. Insecticidal proteins and methods for their use
BR112020002279A2 (pt) * 2017-08-03 2020-07-28 AgBiome, Inc. genes pesticidas e métodos de uso
BR112021011548A2 (pt) * 2018-12-17 2021-10-26 Syngenta Crop Protection Ag Proteínas inseticidas
WO2021076346A1 (en) 2019-10-18 2021-04-22 Pioneer Hi-Bred International, Inc. Maize event dp-202216-6 and dp-023211-2 stack
CN111100822B (zh) * 2020-01-17 2021-03-19 江苏师范大学 一株类肺炎克雷伯菌及其在制备微生物燃料电池中的应用
TW202142114A (zh) 2020-02-04 2021-11-16 美商陶氏農業科學公司 具有殺有害生物效用之組成物及與其相關之方法
US20230235352A1 (en) 2020-07-14 2023-07-27 Pioneer Hi-Bred International, Inc. Insecticidal proteins and methods for their use
TW202345696A (zh) 2022-05-18 2023-12-01 美商科迪華農業科技有限責任公司 具有殺有害生物效用之組成物及與其相關的方法
CN117229377B (zh) * 2023-11-16 2024-02-27 中国农业大学 一种杀虫蛋白及其在防治鳃金龟中的应用

Family Cites Families (416)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5981A (en) 1848-12-26 Improvement in plows
US3710511A (en) 1971-04-21 1973-01-16 Univ Illinois Procedures for use of genic male sterility in production of commercial hybrid maize
US3861709A (en) 1973-07-12 1975-01-21 Amsted Ind Inc Shiftable fifth wheel construction
US4196265A (en) 1977-06-15 1980-04-01 The Wistar Institute Method of producing antibodies
US4554101A (en) 1981-01-09 1985-11-19 New York Blood Center, Inc. Identification and preparation of epitopes on antigens and allergens on the basis of hydrophilicity
US4714681A (en) 1981-07-01 1987-12-22 The Board Of Reagents, The University Of Texas System Cancer Center Quadroma cells and trioma cells and methods for the production of same
US4716111A (en) 1982-08-11 1987-12-29 Trustees Of Boston University Process for producing human antibodies
US5094945A (en) 1983-01-05 1992-03-10 Calgene, Inc. Inhibition resistant 5-enolpyruvyl-3-phosphoshikimate synthase, production and use
US4535060A (en) 1983-01-05 1985-08-13 Calgene, Inc. Inhibition resistant 5-enolpyruvyl-3-phosphoshikimate synthetase, production and use
US4713325A (en) 1983-06-14 1987-12-15 The Regents Of The University Of California Hybridomas producing monoclonal antibodies specific for FeLV p27
US4716117A (en) 1984-10-26 1987-12-29 Chiron Corporation Monoclonal antibodies to factor VIIIC
CA1207852A (en) 1984-02-29 1986-07-15 William D. Cornish Non-resonant microwave frequency halver
US4761373A (en) 1984-03-06 1988-08-02 Molecular Genetics, Inc. Herbicide resistance in plants
US5331107A (en) 1984-03-06 1994-07-19 Mgi Pharma, Inc. Herbicide resistance in plants
US5304732A (en) 1984-03-06 1994-04-19 Mgi Pharma, Inc. Herbicide resistance in plants
US4945050A (en) 1984-11-13 1990-07-31 Cornell Research Foundation, Inc. Method for transporting substances into living cells and tissues and apparatus therefor
ATE93542T1 (de) 1984-12-28 1993-09-15 Plant Genetic Systems Nv Rekombinante dna, die in pflanzliche zellen eingebracht werden kann.
US4720459A (en) 1985-02-14 1988-01-19 Medical College Of Wisconsin Research Foundation, Inc. Myelomas for producing human/human hybridomas
US6492107B1 (en) 1986-11-20 2002-12-10 Stuart Kauffman Process for obtaining DNA, RNA, peptides, polypeptides, or protein, by recombinant DNA technique
GB2183661B (en) 1985-03-30 1989-06-28 Marc Ballivet Method for obtaining dna, rna, peptides, polypeptides or proteins by means of a dna recombinant technique
US5569597A (en) 1985-05-13 1996-10-29 Ciba Geigy Corp. Methods of inserting viral DNA into plant material
US4654465A (en) 1985-07-18 1987-03-31 Agracetus Genic male-sterile maize
US4940835A (en) 1985-10-29 1990-07-10 Monsanto Company Glyphosate-resistant plants
NZ217113A (en) 1985-08-07 1988-06-30 Monsanto Co Production of eucaryotic plants which are glyphosate resistant, vectors (transformation and expression), chimeric gene and plant cells
US5576195A (en) 1985-11-01 1996-11-19 Xoma Corporation Vectors with pectate lyase signal sequence
US4810648A (en) 1986-01-08 1989-03-07 Rhone Poulenc Agrochimie Haloarylnitrile degrading gene, its use, and cells containing the gene
EP0242236B2 (en) 1986-03-11 1996-08-21 Plant Genetic Systems N.V. Plant cells resistant to glutamine synthetase inhibitors, made by genetic engineering
US4975374A (en) 1986-03-18 1990-12-04 The General Hospital Corporation Expression of wild type and mutant glutamine synthetase in foreign hosts
US5273894A (en) 1986-08-23 1993-12-28 Hoechst Aktiengesellschaft Phosphinothricin-resistance gene, and its use
US5013659A (en) 1987-07-27 1991-05-07 E. I. Du Pont De Nemours And Company Nucleic acid fragment encoding herbicide resistant plant acetolactate synthase
US5605011A (en) 1986-08-26 1997-02-25 E. I. Du Pont De Nemours And Company Nucleic acid fragment encoding herbicide resistant plant acetolactate synthase
US5378824A (en) 1986-08-26 1995-01-03 E. I. Du Pont De Nemours And Company Nucleic acid fragment encoding herbicide resistant plant acetolactate synthase
US5268463A (en) 1986-11-11 1993-12-07 Jefferson Richard A Plant promoter α-glucuronidase gene construct
US4727219A (en) 1986-11-28 1988-02-23 Agracetus Genic male-sterile maize using a linked marker gene
US5608142A (en) 1986-12-03 1997-03-04 Agracetus, Inc. Insecticidal cotton plants
US5145783A (en) 1987-05-26 1992-09-08 Monsanto Company Glyphosate-tolerant 5-endolpyruvyl-3-phosphoshikimate synthase
US5312910A (en) 1987-05-26 1994-05-17 Monsanto Company Glyphosate-tolerant 5-enolpyruvyl-3-phosphoshikimate synthase
US4971908A (en) 1987-05-26 1990-11-20 Monsanto Company Glyphosate-tolerant 5-enolpyruvyl-3-phosphoshikimate synthase
US5316931A (en) 1988-02-26 1994-05-31 Biosource Genetics Corp. Plant viral vectors having heterologous subgenomic promoters for systemic expression of foreign genes
EP0333033A1 (en) 1988-03-09 1989-09-20 Meiji Seika Kaisha Ltd. Glutamine synthesis gene and glutamine synthetase
US5990387A (en) 1988-06-10 1999-11-23 Pioneer Hi-Bred International, Inc. Stable transformation of plant cells
US5039523A (en) 1988-10-27 1991-08-13 Mycogen Corporation Novel Bacillus thuringiensis isolate denoted B.t. PS81F, active against lepidopteran pests, and a gene encoding a lepidopteran-active toxin
US5023179A (en) 1988-11-14 1991-06-11 Eric Lam Promoter enhancer element for gene expression in plant roots
DK0413019T3 (da) 1989-02-24 2001-11-12 Monsanto Technology Llc Syntetiske plantegener og fremgangsmåde til fremstilling af disse
US5110732A (en) 1989-03-14 1992-05-05 The Rockefeller University Selective gene expression in plants
US5240855A (en) 1989-05-12 1993-08-31 Pioneer Hi-Bred International, Inc. Particle gun
US5879918A (en) 1989-05-12 1999-03-09 Pioneer Hi-Bred International, Inc. Pretreatment of microprojectiles prior to using in a particle gun
US5188960A (en) 1989-06-27 1993-02-23 Mycogen Corporation Bacillus thuringiensis isolate active against lepidopteran pests, and genes encoding novel lepidopteran-active toxins
US5310667A (en) 1989-07-17 1994-05-10 Monsanto Company Glyphosate-tolerant 5-enolpyruvyl-3-phosphoshikimate synthases
US5550318A (en) 1990-04-17 1996-08-27 Dekalb Genetics Corporation Methods and compositions for the production of stably transformed, fertile monocot plants and cells thereof
US5322783A (en) 1989-10-17 1994-06-21 Pioneer Hi-Bred International, Inc. Soybean transformation by microparticle bombardment
US5187091A (en) 1990-03-20 1993-02-16 Ecogen Inc. Bacillus thuringiensis cryiiic gene encoding toxic to coleopteran insects
ATE225853T1 (de) 1990-04-12 2002-10-15 Syngenta Participations Ag Gewebe-spezifische promotoren
US5432068A (en) 1990-06-12 1995-07-11 Pioneer Hi-Bred International, Inc. Control of male fertility using externally inducible promoter sequences
US6297426B1 (en) 1990-06-12 2001-10-02 Pioneer Hi-Bred International, Inc. Methods of mediating female fertility in plants
US5478369A (en) 1990-06-12 1995-12-26 Pioneer Hi-Bred International, Inc. Nucleotide sequences mediating male fertility and method of using same
US5824524A (en) 1990-06-12 1998-10-20 Pioneer Hi-Bred International, Inc. Nucleotide sequences mediating fertility and method of using same
US5498830A (en) 1990-06-18 1996-03-12 Monsanto Company Decreased oil content in plant seeds
DK0536330T3 (da) 1990-06-25 2002-04-22 Monsanto Technology Llc Glyphosattolerante planter
US5633435A (en) 1990-08-31 1997-05-27 Monsanto Company Glyphosate-tolerant 5-enolpyruvylshikimate-3-phosphate synthases
US5866775A (en) 1990-09-28 1999-02-02 Monsanto Company Glyphosate-tolerant 5-enolpyruvyl-3-phosphoshikimate synthases
US5266317A (en) 1990-10-04 1993-11-30 University Of Georgia Research Foundation, Inc. Insect-specific paralytic neurotoxin genes for use in biological insect control: methods and compositions
CA2051562C (en) 1990-10-12 2003-12-02 Jewel M. Payne Bacillus thuringiensis isolates active against dipteran pests
US5932782A (en) 1990-11-14 1999-08-03 Pioneer Hi-Bred International, Inc. Plant transformation method using agrobacterium species adhered to microprojectiles
US5459252A (en) 1991-01-31 1995-10-17 North Carolina State University Root specific gene promoter
ATE381622T1 (de) 1991-02-07 2008-01-15 Bayer Bioscience Nv Staubblatt spezifische promotoren aus mais
DE69233636D1 (de) 1991-02-08 2006-08-17 Bayer Bioscience Nv Staubblatt spezifische promotoren aus reis
MX9200621A (es) 1991-02-14 1993-02-01 Du Pont Gen de una proteina con alto contenido de azufre de una semilla y metodo para aumentar el contenido de azufre en aminoacidos de las plantas.
FR2673642B1 (fr) 1991-03-05 1994-08-12 Rhone Poulenc Agrochimie Gene chimere comprenant un promoteur capable de conferer a une plante une tolerance accrue au glyphosate.
USRE36449E (en) 1991-03-05 1999-12-14 Rhone-Poulenc Agro Chimeric gene for the transformation of plants
FR2673643B1 (fr) 1991-03-05 1993-05-21 Rhone Poulenc Agrochimie Peptide de transit pour l'insertion d'un gene etranger dans un gene vegetal et plantes transformees en utilisant ce peptide.
US5399680A (en) 1991-05-22 1995-03-21 The Salk Institute For Biological Studies Rice chitinase promoter
GB9115909D0 (en) 1991-07-23 1991-09-04 Nickerson Int Seed Recombinant dna
US5731180A (en) 1991-07-31 1998-03-24 American Cyanamid Company Imidazolinone resistant AHAS mutants
WO1993003160A1 (en) 1991-08-09 1993-02-18 E.I. Du Pont De Nemours And Company Synthetic storage proteins with defined structure containing programmable levels of essential amino acids for improvement of the nutritional value of plants
AU668096B2 (en) 1991-08-27 1996-04-26 Syngenta Participations Ag Proteins with insecticidal properties against homopteran insects and their use in plant protection
JPH06511152A (ja) 1991-10-04 1994-12-15 ノースカロライナ ステイト ユニバーシティー 病原体耐性トランスジェニック植物
CA2124673C (en) 1991-12-04 2008-08-05 John Browse Fatty acid desaturase genes from plants
US5324646A (en) 1992-01-06 1994-06-28 Pioneer Hi-Bred International, Inc. Methods of regeneration of Medicago sativa and expressing foreign DNA in same
US5773691A (en) 1992-03-19 1998-06-30 E. I. Du Pont De Nemours And Company Chimeric genes and methods for increasing the lysine and threonine content of the seeds of plants
DK39692D0 (da) 1992-03-25 1992-03-25 Danisco Biologisk materiale
US5428148A (en) 1992-04-24 1995-06-27 Beckman Instruments, Inc. N4 - acylated cytidinyl compounds useful in oligonucleotide synthesis
US5401836A (en) 1992-07-16 1995-03-28 Pioneer Hi-Bre International, Inc. Brassica regulatory sequence for root-specific or root-abundant gene expression
HUT70467A (en) 1992-07-27 1995-10-30 Pioneer Hi Bred Int An improved method of agrobactenium-mediated transformation of cultvred soyhean cells
US5743477A (en) 1992-08-27 1998-04-28 Dowelanco Insecticidal proteins and method for plant protection
US6372965B1 (en) 1992-11-17 2002-04-16 E.I. Du Pont De Nemours And Company Genes for microsomal delta-12 fatty acid desaturases and hydroxylases from plants
US5496714A (en) 1992-12-09 1996-03-05 New England Biolabs, Inc. Modification of protein by use of a controllable interveining protein sequence
US5834247A (en) 1992-12-09 1998-11-10 New England Biolabs, Inc. Modified proteins comprising controllable intervening protein sequences or their elements methods of producing same and methods for purification of a target protein comprised by a modified protein
IL108241A (en) 1992-12-30 2000-08-13 Biosource Genetics Corp Plant expression system comprising a defective tobamovirus replicon integrated into the plant chromosome and a helper virus
CA2161881C (en) 1993-01-13 2001-03-27 A. Gururaj Rao High lysine derivatives of alpha-hordothionin
US5607914A (en) 1993-01-13 1997-03-04 Pioneer Hi-Bred International, Inc. Synthetic antimicrobial peptides
IL108814A0 (en) 1993-03-02 1994-06-24 Du Pont Improved feedcrops enriched in sulfur amino acids and methods for improvement
US5877012A (en) 1993-03-25 1999-03-02 Novartis Finance Corporation Class of proteins for the control of plant pests
US5789156A (en) 1993-06-14 1998-08-04 Basf Ag Tetracycline-regulated transcriptional inhibitors
US5814618A (en) 1993-06-14 1998-09-29 Basf Aktiengesellschaft Methods for regulating gene expression
US6107547A (en) 1993-10-06 2000-08-22 New York University Transgenic plants that exhibit enhanced nitrogen assimilation
JPH09511124A (ja) 1993-11-30 1997-11-11 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー キメラ遺伝子ならびにトウモロコシ、ダイズおよびナタネ植物
US5580852A (en) 1993-12-17 1996-12-03 Pioneer Hi-Bred International, Inc. Derivatives of tachyplesin having inhibitory activity towards plant pathogenic fungi
US5689052A (en) 1993-12-22 1997-11-18 Monsanto Company Synthetic DNA sequences having enhanced expression in monocotyledonous plants and method for preparation thereof
US6335160B1 (en) 1995-02-17 2002-01-01 Maxygen, Inc. Methods and compositions for polypeptide engineering
US6117679A (en) 1994-02-17 2000-09-12 Maxygen, Inc. Methods for generating polynucleotides having desired characteristics by iterative selection and recombination
US5837458A (en) 1994-02-17 1998-11-17 Maxygen, Inc. Methods and compositions for cellular and metabolic engineering
US5834252A (en) 1995-04-18 1998-11-10 Glaxo Group Limited End-complementary polymerase reaction
US5605793A (en) 1994-02-17 1997-02-25 Affymax Technologies N.V. Methods for in vitro recombination
IL113685A0 (en) 1994-05-13 1995-08-31 Du Pont Nucleic acid fragments chimeric genes and methods for increasing the methionine content of the seeds of plants
US5633363A (en) 1994-06-03 1997-05-27 Iowa State University, Research Foundation In Root preferential promoter
US5767373A (en) 1994-06-16 1998-06-16 Novartis Finance Corporation Manipulation of protoporphyrinogen oxidase enzyme activity in eukaryotic organisms
BR9510174A (pt) 1994-07-08 1997-11-04 Du Pont Gene quimérico planta sementes método para aumentar o teor de treonina das sementes de plantas
US5736369A (en) 1994-07-29 1998-04-07 Pioneer Hi-Bred International, Inc. Method for producing transgenic cereal plants
US5608144A (en) 1994-08-12 1997-03-04 Dna Plant Technology Corp. Plant group 2 promoters and uses thereof
US5792931A (en) 1994-08-12 1998-08-11 Pioneer Hi-Bred International, Inc. Fumonisin detoxification compositions and methods
GB9422083D0 (en) 1994-11-02 1994-12-21 Innes John Centre Genetic control of flowering
US5659026A (en) 1995-03-24 1997-08-19 Pioneer Hi-Bred International ALS3 promoter
US5994627A (en) 1995-03-31 1999-11-30 Common Wealth Scientific And Industrial Research Organisation Genetic sequences conferring nematode resistance in plants and uses therefor
US5853973A (en) 1995-04-20 1998-12-29 American Cyanamid Company Structure based designed herbicide resistant products
DK0821729T3 (da) 1995-04-20 2007-02-05 Basf Ag Strukturbaserede, udformede herbicidresistente produkter
HUP9900864A3 (en) 1995-05-31 2001-11-28 Pioneer Hi Bred Int Methods of increasing accumulation of essential amino acids in seeds
CA2222600A1 (en) 1995-06-02 1996-12-05 Pioneer Hi-Bred International, Inc. High methionine derivatives of .alpha.-hordothionin
GB9511196D0 (en) 1995-06-02 1995-07-26 Innes John Centre Genetic control of flowering
CN1192238A (zh) 1995-06-02 1998-09-02 派厄尼高级产品国际公司 α-hordothionin的高苏氨酸衍生物
FR2736929B1 (fr) 1995-07-19 1997-08-22 Rhone Poulenc Agrochimie Sequence adn isolee pouvant servir de zone de regulation dans un gene chimere utilisable pour la transformation des plantes
FR2736926B1 (fr) 1995-07-19 1997-08-22 Rhone Poulenc Agrochimie 5-enol pyruvylshikimate-3-phosphate synthase mutee, gene codant pour cette proteine et plantes transformees contenant ce gene
US5837876A (en) 1995-07-28 1998-11-17 North Carolina State University Root cortex specific gene promoter
GB9518731D0 (en) 1995-09-13 1995-11-15 Innes John Centre Flowering genes
US5689035A (en) 1995-09-26 1997-11-18 Pioneer Hi-Bred International, Inc. Brown stem rot resistance in soybeans
GB9602796D0 (en) 1996-02-12 1996-04-10 Innes John Centre Innov Ltd Genetic control of plant growth and development
US6084153A (en) 1996-02-14 2000-07-04 The Governors Of The University Of Alberta Plants having enhanced nitrogen assimilation/metabolism
US5850016A (en) 1996-03-20 1998-12-15 Pioneer Hi-Bred International, Inc. Alteration of amino acid compositions in seeds
US6096548A (en) 1996-03-25 2000-08-01 Maxygen, Inc. Method for directing evolution of a virus
US6083499A (en) 1996-04-19 2000-07-04 Mycogen Corporation Pesticidal toxins
US6072050A (en) 1996-06-11 2000-06-06 Pioneer Hi-Bred International, Inc. Synthetic promoters
GB9613132D0 (en) 1996-06-21 1996-08-28 Innes John Centre Innov Ltd Genetic control of flowering
US5850026A (en) 1996-07-03 1998-12-15 Cargill, Incorporated Canola oil having increased oleic acid and decreased linolenic acid content
US6177275B1 (en) 1996-07-24 2001-01-23 New York University Plant nitrogen regulatory P-PII genes
US6417428B1 (en) 1996-09-04 2002-07-09 Michael F. Thomashow Plant having altered environmental stress tolerance
US5892009A (en) 1996-09-04 1999-04-06 Michigan State University DNA and encoded protein which regulates cold and dehydration regulated genes
US6706866B1 (en) 1996-09-04 2004-03-16 Michigan State University Plant having altered environmental stress tolerance
US6063756A (en) 1996-09-24 2000-05-16 Monsanto Company Bacillus thuringiensis cryET33 and cryET34 compositions and uses therefor
US6080913A (en) 1996-09-25 2000-06-27 Pioneer Hi-Bred International, Inc. Binary methods of increasing accumulation of essential amino acids in seeds
EP0946729A2 (en) 1996-11-01 1999-10-06 Pioneer Hi-Bred International, Inc. Proteins with enhanced levels of essential amino acids
US6017534A (en) 1996-11-20 2000-01-25 Ecogen, Inc. Hybrid Bacillus thuringiensis δ-endotoxins with novel broad-spectrum insecticidal activity
US6232529B1 (en) 1996-11-20 2001-05-15 Pioneer Hi-Bred International, Inc. Methods of producing high-oil seed by modification of starch levels
US6713063B1 (en) 1996-11-20 2004-03-30 Monsanto Technology, Llc Broad-spectrum δ-endotoxins
NZ335211A (en) 1996-11-22 2000-02-28 Pioneer Hi Bred Int Micro-organism Ochrobactrum anthropi and method for degradation of moniliformin in grain
US5798255A (en) 1996-11-22 1998-08-25 Pioneer Hi-Bred International, Inc. Beauvericin detoxification compositions and methods
US5846812A (en) 1996-11-22 1998-12-08 Pioneer Hi-Bred International, Inc. Zearalenone detoxification compositions and methods
US5942664A (en) 1996-11-27 1999-08-24 Ecogen, Inc. Bacillus thuringiensis Cry1C compositions toxic to lepidopteran insects and methods for making Cry1C mutants
DE19652284A1 (de) 1996-12-16 1998-06-18 Hoechst Schering Agrevo Gmbh Neue Gene codierend für Aminosäure-Deacetylasen mit Spezifität für N-Acetyl-L-Phosphinothricin, ihre Isolierung und Verwendung
US5986177A (en) 1997-01-10 1999-11-16 Agricultural Genetic Engineering Research Institute Bacillus thuringiensis isolates with broad spectrum activity
AU743305C (en) 1997-01-17 2006-03-30 Maxygen, Inc. Evolution of whole cells and organisms by recursive sequence recombination
US6326204B1 (en) 1997-01-17 2001-12-04 Maxygen, Inc. Evolution of whole cells and organisms by recursive sequence recombination
US5981840A (en) 1997-01-24 1999-11-09 Pioneer Hi-Bred International, Inc. Methods for agrobacterium-mediated transformation
DK0973940T3 (da) 1997-03-18 2008-10-20 Novozymes As En in vitro-fremgangsmåde til konstruktion af et DNA-bibliotek
WO1998041622A1 (en) 1997-03-18 1998-09-24 Novo Nordisk A/S Method for constructing a library using dna shuffling
US5948653A (en) 1997-03-21 1999-09-07 Pati; Sushma Sequence alterations using homologous recombination
US6153410A (en) 1997-03-25 2000-11-28 California Institute Of Technology Recombination of polynucleotide sequences using random or defined primers
TR199902349T2 (xx) 1997-03-27 2000-01-21 E.I. Du Pont De Nemours And Company Kimerik genler, lizin i�eri�ini artt�rmak i�in y�ntemler
US6040497A (en) 1997-04-03 2000-03-21 Dekalb Genetics Corporation Glyphosate resistant maize lines
US7105724B2 (en) 1997-04-04 2006-09-12 Board Of Regents Of University Of Nebraska Methods and materials for making and using transgenic dicamba-degrading organisms
NZ500036A (en) 1997-04-08 2002-04-26 Nucleotide encoding polypeptide myo-inositol-1-phospahte synthase for decreasing the levels of raffinose saccharides and phytic acid
ZA981569B (en) 1997-04-08 1999-08-25 Du Pont An engineered seed protein having a higher percentage of essential amino acids.
EP0915909B1 (en) 1997-05-05 2007-06-13 Dow AgroSciences LLC Insecticidal protein toxins from xenorhabdus
US6664445B1 (en) 1997-06-06 2003-12-16 E. I. Du Pont De Nemours And Company Plant amino acid biosynthetic enzymes
WO1998056935A2 (en) 1997-06-12 1998-12-17 E.I. Du Pont De Nemours And Company Plant amino acid biosynthetic enzymes
GB9712415D0 (en) 1997-06-13 1997-08-13 Innes John Centre Innov Ltd Genetic control of flowering
US6291224B1 (en) 1998-07-17 2001-09-18 Pioneer Hi-Bred International, Inc. Genes controlling phytate metabolism in plants and uses thereof
BR9810807A (pt) 1997-07-22 2005-12-06 Pioneer Hi Bred Int Genes controlando metabolismo de filato em plantas e seus usos
US6197561B1 (en) 1997-07-22 2001-03-06 Pioneer Hi-Bred International, Inc. Genes controlling phytate metabolism in plants and uses thereof
GB9717192D0 (en) 1997-08-13 1997-10-22 Innes John Centre Innov Ltd Genetic control of plant growth and development
PL339005A1 (en) 1997-08-27 2000-12-04 Pioneer Hi Bred Int Genes encoding enzymes of lignin synthesis track and their applications
US5929305A (en) 1997-10-14 1999-07-27 Michigan State University Plant material containing non-naturally introduced binding protein for regulating cold and dehydration regulatory genes
WO1999021979A1 (en) 1997-10-28 1999-05-06 Maxygen, Inc. Human papillomavirus vectors
US6596539B1 (en) 1997-10-31 2003-07-22 Maxygen, Inc. Modification of virus tropism and host range by viral genome shuffling
US6218188B1 (en) 1997-11-12 2001-04-17 Mycogen Corporation Plant-optimized genes encoding pesticidal toxins
ATE454459T1 (de) 1997-11-18 2010-01-15 Pioneer Hi Bred Int Mobilisierung eines viralen genoms aus t-dna durch ortsspezifische rekombinationssysteme
WO1999025821A1 (en) 1997-11-18 1999-05-27 Pioneer Hi-Bred International, Inc. Compositions and methods for genetic modification of plants
EP1032692A1 (en) 1997-11-18 2000-09-06 Pioneer Hi-Bred International, Inc. Targeted manipulation of herbicide-resistance genes in plants
NZ504511A (en) 1997-11-18 2002-12-20 Pioneer Hi Bred Int Recombinant proteins comprising fused first and second distinct site specific recombinase and use in methods for the integration of foreign DNA into eukaryotic genomes
AU746786B2 (en) 1997-12-08 2002-05-02 California Institute Of Technology Method for creating polynucleotide and polypeptide sequences
AR017831A1 (es) 1997-12-10 2001-10-24 Pioneer Hi Bred Int Metodo para alterar la composicion de aminoacidos de una proteina nativa de interes, proteina elaborada, y polinucleotido
EP1040192B1 (en) 1997-12-18 2006-08-09 Monsanto Technology LLC Insect-resistant transgenic plants and methods for improving delta-endotoxin activity against insects
US6077824A (en) 1997-12-18 2000-06-20 Ecogen, Inc. Methods for improving the activity of δ-endotoxins against insect pests
US6060594A (en) 1997-12-18 2000-05-09 Ecogen, Inc. Nucleic acid segments encoding modified bacillus thuringiensis coleopteran-toxic crystal proteins
US6063597A (en) 1997-12-18 2000-05-16 Monsanto Company Polypeptide compositions toxic to coleopteran insects
US6023013A (en) 1997-12-18 2000-02-08 Monsanto Company Insect-resistant transgenic plants
US7053282B1 (en) 1998-02-09 2006-05-30 Pioneer Hi-Bred International, Inc. Alteration of amino acid compositions in seeds
EP1054973A1 (en) 1998-02-11 2000-11-29 Maxygen, Inc. Antigen library immunization
AU2674199A (en) 1998-02-11 1999-08-30 Maxygen, Inc. Optimization of immunomodulatory properties of genetic vaccines
DE69920879T2 (de) 1998-02-26 2005-10-13 Pioneer Hi-Bred International, Inc. Konstitutive maispromotoren
EP1056862A1 (en) 1998-02-26 2000-12-06 Pioneer Hi-Bred International, Inc. Family of maize pr-1 genes and promoters
US5981854A (en) 1998-03-06 1999-11-09 Pioneer Hi-Bred International, Inc. Hybrid maize plant and seed 36A43
WO1999049064A2 (en) 1998-03-20 1999-09-30 Plant Bioscience Limited Plant control genes
JP5015373B2 (ja) 1998-04-08 2012-08-29 コモンウェルス サイエンティフィック アンド インダストリアル リサーチ オーガニゼイション 改良表現型を得るための方法及び手段
US6225530B1 (en) 1998-04-15 2001-05-01 The Salk Institute For Biological Studies Flowering locus T (FT) and genetically modified plants having modulated flower development
WO1999055879A1 (en) 1998-04-24 1999-11-04 E.I. Du Pont De Nemours And Company Phytic acid biosynthetic enzymes
US6284948B1 (en) 1998-05-18 2001-09-04 Pioneer Hi-Bred International, Inc. Genes and methods for control of nematodes in plants
US7008664B1 (en) 1998-06-11 2006-03-07 E. I. Du Pont De Nemours And Company Method for improving the carcass quality of an animal
ES2381824T3 (es) 1998-06-29 2012-05-31 Bristol-Myers Squibb Company Procedimientos para generar genotecas muy diversas
US6538177B1 (en) 1998-07-15 2003-03-25 Pioneer Hi-Bred International, Inc. Compositions and methods for fumonisin detoxification
US6693185B2 (en) 1998-07-17 2004-02-17 Bayer Bioscience N.V. Methods and means to modulate programmed cell death in eukaryotic cells
GB9816681D0 (en) 1998-07-31 1998-09-30 Minnesota Mining & Mfg Cleaning pads formed from non-woven abrasive web material,especially for domestic use
FR2782323B1 (fr) 1998-08-12 2002-01-11 Proteus Procede de production in vitro de sequences polynucleotidiques recombinees, banques de sequences et sequences ainsi obtenues
AU772064B2 (en) 1998-08-17 2004-04-08 Pioneer Hi-Bred International, Inc. Maize cellulose synthases and uses thereof
US6930225B2 (en) 1998-08-17 2005-08-16 Pioneer Hi-Bred Int'l Inc. Maize cellulose synthases and uses thereof
US7179955B2 (en) 1998-08-17 2007-02-20 Pioneer Hi-Bred International, Inc. Maize cellulose synthases genes and uses thereof
US20040068767A1 (en) 1998-08-17 2004-04-08 Pioneer Hi-Bred International, Inc. Maize cellulose synthases and uses thereof
WO2000011177A1 (en) 1998-08-20 2000-03-02 Pioneer Hi-Bred International, Inc. Seed-preferred promoters
AU5788299A (en) 1998-08-28 2000-03-21 Pioneer Hi-Bred International, Inc. Seed-preferred promoters from (end) genes
US6346403B1 (en) 1998-09-08 2002-02-12 E.I. Du Pont De Nemours And Company Methionine metabolic enzymes
US6664446B2 (en) 1999-03-23 2003-12-16 Mendel Biotechnology, Inc. Transgenic plants comprising polynucleotides encoding transcription factors that confer disease tolerance
US20030041356A1 (en) 2001-03-27 2003-02-27 Lynne Reuber Methods for modifying flowering phenotypes
US20050086718A1 (en) 1999-03-23 2005-04-21 Mendel Biotechnology, Inc. Plant transcriptional regulators of abiotic stress
US6717034B2 (en) 2001-03-30 2004-04-06 Mendel Biotechnology, Inc. Method for modifying plant biomass
AU1199000A (en) 1998-09-29 2000-04-17 Maxygen, Inc. Shuffling of codon altered genes
ATE327333T1 (de) 1998-10-23 2006-06-15 Mycogen Corp Für 15kda und 45kda pestizid-proteine kodierende pflanzen-optimierte polynukleotide
US6468523B1 (en) 1998-11-02 2002-10-22 Monsanto Technology Llc Polypeptide compositions toxic to diabrotic insects, and methods of use
US6489542B1 (en) 1998-11-04 2002-12-03 Monsanto Technology Llc Methods for transforming plants to express Cry2Ab δ-endotoxins targeted to the plastids
US6825397B1 (en) 1998-11-09 2004-11-30 Pioneer Hi-Bred International, Inc. LEC1 trancriptional activator nucleic acids and methods of use thereof
WO2000028058A2 (en) 1998-11-09 2000-05-18 Pioneer Hi-Bred International, Inc. Transcriptional activator lec1 nucleic acids, polypeptides and their uses
WO2000030469A1 (en) 1998-11-20 2000-06-02 Pioneer Hi-Bred International, Inc. Method of reducing cholesterol in animals and eggs
BR9915704A (pt) 1998-11-25 2002-01-15 Univ Pennsylvania ácido nucleico isolado, preparação purificada de um polipeptìdeo, célula recombinante, vetor, anticorpo especìfico, sequência de ácido nucleico isolado, planta, célula de planta, órgão de planta, flor de planta, tecido de planta, semente de planta ou progênie de planta e processos para manipulação do ácido nucleico em uma planta e da expressão de erfi em uma célula de planta, para identificação de um composto capaz de afetar a resposta ao etileno no sistema de sinalização de etileno em uma planta e para geração de uma planta
US6531648B1 (en) 1998-12-17 2003-03-11 Syngenta Participations Ag Grain processing method and transgenic plants useful therein
US6436675B1 (en) 1999-09-28 2002-08-20 Maxygen, Inc. Use of codon-varied oligonucleotide synthesis for synthetic shuffling
EP1151409A1 (en) 1999-01-18 2001-11-07 Maxygen, Inc. Methods of populating data stuctures for use in evolutionary simulations
EP1072010B1 (en) 1999-01-19 2010-04-21 Maxygen, Inc. Oligonucleotide mediated nucleic acid recombination
GB9901927D0 (en) 1999-01-28 1999-03-17 John Innes Foundation Methods and means for modification of plant characteristics
GB9902660D0 (en) 1999-02-05 1999-03-31 Plant Bioscience Ltd Plant gene
US6323392B1 (en) 1999-03-01 2001-11-27 Pioneer Hi-Bred International, Inc. Formation of brassica napus F1 hybrid seeds which exhibit a highly elevated oleic acid content and a reduced linolenic acid content in the endogenously formed oil of the seeds
US6835540B2 (en) 2001-03-16 2004-12-28 Mendel Biotechnology, Inc. Biosynthetic pathway transcription factors
AU3733000A (en) 1999-03-24 2000-10-09 Pioneer Hi-Bred International, Inc. Maize chitinases and their use in enhancing disease resistance in crop plants
CA2367408A1 (en) 1999-04-07 2000-10-12 Mendel Biotechnology, Inc. Genetic trait breeding method
US6992237B1 (en) 1999-04-16 2006-01-31 Pioneer Hi-Bred International Inc. Regulated expression of genes in plant seeds
US7531723B2 (en) 1999-04-16 2009-05-12 Pioneer Hi-Bred International, Inc. Modulation of cytokinin activity in plants
CN1359423A (zh) 1999-04-29 2002-07-17 辛甄塔有限公司 抗除草剂植物
CZ20013859A3 (cs) 1999-04-29 2002-04-17 Syngenta Ltd. Herbicidně rezistentní rostliny
EP1173582B1 (en) 1999-04-29 2006-06-14 Syngenta Limited Herbicide resistant plants
WO2000068393A1 (en) 1999-05-07 2000-11-16 Pioneer Hi-Bred International, Inc. Phytyl/prenyltransferase nucleic acids, polypeptides and uses thereof
US6855865B2 (en) 1999-05-07 2005-02-15 E.I. Du Pont De Nemours And Company Nucleic acids encoding plant defensins and methods of use thereof
US6653535B1 (en) 1999-05-28 2003-11-25 Pioneer Hi-Bred International, Inc. Methods for modulating water-use efficiency or productivity in a plant by transforming with a DNA encoding a NAPD-malic enzyme operably linked to a guard cell or an epidermal cell promoter
US6441274B1 (en) 1999-06-16 2002-08-27 E. I. Du Pont De Nemours & Company Plant tryptophan synthase beta subunit
WO2001004147A2 (en) 1999-07-12 2001-01-18 E.I. Du Pont De Nemours And Company Plant inositol polyphosphate phosphatase homologs
US6388171B1 (en) 1999-07-12 2002-05-14 Pioneer Hi-Bred International, Inc. Compositions and methods for fumonisin detoxification
WO2001012825A1 (en) 1999-08-13 2001-02-22 Syngenta Participations Ag Herbicide-tolerant protoporphyrinogen oxidase
US6593514B1 (en) 1999-08-16 2003-07-15 E. I. Du Pont De Nemours And Company Method for the production of calendic acid, a fatty acid containing delta-8,10,12 conjugated double bonds and related fatty acids having a modification at the delta-9 position
WO2001012731A1 (en) 1999-08-19 2001-02-22 Ppg Industries Ohio, Inc. Hydrophobic particulate inorganic oxides and polymeric compositions containing same
US6423886B1 (en) 1999-09-02 2002-07-23 Pioneer Hi-Bred International, Inc. Starch synthase polynucleotides and their use in the production of new starches
GB9922071D0 (en) 1999-09-17 1999-11-17 Plant Bioscience Ltd Methods and means for modification of plant characteristics
WO2001026459A2 (en) 1999-10-12 2001-04-19 Mendel Biotechnology, Inc. Flowering time modification
US6384304B1 (en) 1999-10-15 2002-05-07 Plant Genetic Systems N.V. Conditional sterility in wheat
MXPA02003946A (es) 1999-10-21 2002-10-23 Fluor Corp Metodos y aparato para la recuperacion alta de propano.
US20020178464A1 (en) 1999-11-10 2002-11-28 Whitehead Institute For Biomedical Research Proton transporters and uses in plants
EP1230344B1 (en) 1999-11-17 2011-11-02 Mendel Biotechnology, Inc. Plant biochemistry-related genes
PT1230377E (pt) 1999-11-17 2005-05-31 Pioneer Hi Bred Int Modulacao da resposta das plantas ao acido abscisico
US6248535B1 (en) 1999-12-20 2001-06-19 University Of Southern California Method for isolation of RNA from formalin-fixed paraffin-embedded tissue specimens
US7049115B2 (en) 2000-02-29 2006-05-23 E. I. Du Pont De Nemours & Company Genes encoding denitrification enzymes
AU2001242005B2 (en) 2000-03-09 2006-04-27 Monsanto Technology Llc Methods for making plants tolerant to glyphosate and compositions thereof
US6777592B2 (en) 2000-04-14 2004-08-17 E.I. Du Pont Denemours And Company Arthropod defensins of Scolopendra canidens, Vaejovis carolinianus, and Argiope spp.
HUP0301659A3 (en) 2000-04-14 2004-11-29 Pioneer Hi Bred Int Maize cellulose synthases and uses thereof
CN1137265C (zh) 2000-07-06 2004-02-04 中国科学院微生物研究所 一种提高植物氮素同化效率的方法
WO2002017430A1 (en) 2000-08-22 2002-02-28 Paratek Microwave, Inc. Combline filters with tunable dielectric capacitors
WO2002015675A1 (en) 2000-08-22 2002-02-28 Mendel Biotechnology, Inc. Genes for modifying plant traits iv
US6713259B2 (en) 2000-09-13 2004-03-30 Monsanto Technology Llc Corn event MON810 and compositions and methods for detection thereof
WO2002057439A2 (en) 2000-10-24 2002-07-25 E. I. Du Pont De Nemours And Company Plant transcription factors
US7605304B2 (en) 2000-10-24 2009-10-20 E.I. Du Pont De Nemours And Company Genes encoding novel bacillus thuringiensis proteins with pesticidal activity against coleopterans
US7462481B2 (en) 2000-10-30 2008-12-09 Verdia, Inc. Glyphosate N-acetyltransferase (GAT) genes
US6858778B1 (en) 2000-11-07 2005-02-22 Pioneer Hi-Bred International, Inc. Plants transformed with a DNA construct comprising a nucleic acid molecule encoding an 18 kD α-globulin
US7741533B2 (en) 2000-11-07 2010-06-22 Pioneer Hi-Bred International, Inc. Grain quality through altered expression of seed proteins
US20050160488A1 (en) 2000-11-07 2005-07-21 Pioneer Hi-Bred International, Inc. Grain quality through altered expression of seed proteins
US20030024005A1 (en) 2000-11-17 2003-01-30 Hillyard Jeanna R. Cotton event PV-GHBK04 (757) and compositions and methods for detection thereof
US7122658B1 (en) 2000-11-22 2006-10-17 Pioneer Hi-Bred International, Inc. Seed-preferred regulatory elements and uses thereof
CA2434602C (en) 2001-01-12 2014-01-07 Pioneer Hi-Bred International, Inc. Novel inositol polyphosphate kinase genes and uses thereof
US6812380B2 (en) 2001-03-27 2004-11-02 Pioneer Hi-Bred International, Inc. Compositions and methods of zearalenone detoxification
JP2002281975A (ja) 2001-03-28 2002-10-02 Yamaguchi Technology Licensing Organization Ltd 大豆のナイトレートトランスポーター1遺伝子ファミリーに属する遺伝子
AR035799A1 (es) 2001-03-30 2004-07-14 Syngenta Participations Ag Toxinas insecticidas aisladas de bacillus thuringiensis y sus usos.
US6891085B2 (en) 2001-04-20 2005-05-10 Pioneer Hi-Bred International, Inc. Nucleic acid encoding the FUS6 antimicrobial polypeptide of Agrotis ipsilon and its use to enhance disease resistance in a plant
WO2002090540A1 (en) 2001-05-10 2002-11-14 The Salk Institute For Biological Studies Ethylene insensitive plants
EP2270185A3 (en) 2001-06-22 2012-04-04 Pioneer Hi-Bred International, Inc. Defensin polynucleotides and methods of use
US7294759B2 (en) 2001-06-29 2007-11-13 E. I. Du Pont De Nemours And Company Alteration of oil traits in plants
EP1421183A4 (en) 2001-08-02 2006-05-17 Pioneer Hi Bred Int PROCESS FOR IMPROVING THE PROPERTIES OF SEEDS AND CEREALS
AU2002324783A1 (en) 2001-08-09 2003-02-24 Mendel Biotechnology, Inc. Stress-related polynucleotides and polypeptides in plants
US7230167B2 (en) 2001-08-31 2007-06-12 Syngenta Participations Ag Modified Cry3A toxins and nucleic acid sequences coding therefor
EP1437936A4 (en) 2001-09-27 2005-10-12 Pioneer Hi Bred Int PHYTATE POLYNUCLEOTIDES AND METHOD FOR THEIR USE
WO2003033651A2 (en) 2001-10-16 2003-04-24 Pioneer Hi-Bred International, Inc. Compositions and methods for promoting nematode resistance in plants
US7087810B2 (en) 2001-11-07 2006-08-08 Muller Mathis L Isolated nucleic acids encoding proteins with chitinase activity and uses thereof
US7145060B2 (en) 2001-11-07 2006-12-05 Pioneer Hi-Bred International, Inc. Nucleic acid encoding a chitinase and methods of using it to make fungal resistant plants
AU2002357117A1 (en) 2001-12-14 2003-06-30 The Nitrate Elimination Company, Inc. Simplified eukaryotic nitrate reductase
US7154029B2 (en) 2002-03-22 2006-12-26 E.I. Du Pont De Nemours And Company Compositions and methods for altering tocotrienol content
US20040128719A1 (en) 2002-06-21 2004-07-01 Klee Harry J. Materials and methods for tissue-specific targeting of ethylene insensitivity in transgenic plants
US7462760B2 (en) 2002-06-26 2008-12-09 Pioneer Hi-Bred International, Inc. Genes encoding plant protease-resistant pesticidal proteins and method of their use
AU2003279760A1 (en) 2002-06-26 2004-01-19 E. I. Du Pont De Nemours And Company Genes encoding proteins with pesticidal activity
UA87808C2 (ru) 2002-07-29 2009-08-25 Монсанто Текнолоджи, Ллс Зерновые растения pv-zmir13 (mon863) и композиции и способы их обнаружения
US20040078852A1 (en) 2002-08-02 2004-04-22 Thomashow Michael F. Transcription factors to improve plant stress tolerance
EP3249046B1 (en) 2002-09-18 2020-07-08 Mendel Biotechnology, Inc. Polynucleotides and polypeptides in plants
CA2514041A1 (en) 2003-01-21 2004-08-12 Dow Agrosciences Llc Mixing and matching tc proteins for pest control
US7355099B2 (en) 2003-02-20 2008-04-08 Athenix Corporation AXMI-004, a delta-endotoxin gene and methods for its use
US20040210965A1 (en) 2003-02-20 2004-10-21 Athenix Corporation AXMI-007, a delta-endotoxin gene and methods for its use
US20040210964A1 (en) 2003-02-20 2004-10-21 Athenix Corporation AXMI-009, a delta-endotoxin gene and methods for its use
US20040197917A1 (en) 2003-02-20 2004-10-07 Athenix Corporation AXMI-014, delta-endotoxin gene and methods for its use
US20040216186A1 (en) 2003-02-20 2004-10-28 Athenix Corporation AXMI-006, a delta-endotoxin gene and methods for its use
EP1594966B1 (en) 2003-02-20 2008-10-22 Athenix Corporation Delta-endotoxin genes and methods for their use
US7351881B2 (en) 2003-02-20 2008-04-01 Athenix Corporation AXMI-008, a delta-endotoxin gene and methods for its use
CN1836045B (zh) 2003-03-28 2012-05-09 孟山都技术有限公司 用于早期种子发育的新型植物启动子
CN1798843A (zh) 2003-04-04 2006-07-05 先锋高级育种国际公司 植物中细胞分裂素活性的调节
PT1620571E (pt) 2003-05-02 2015-09-03 Du Pont Milho do evento tc1507 e métodos para deteção deste
US8796026B2 (en) 2003-07-07 2014-08-05 Monsanto Technology Llc Insecticidal proteins secreted from Bacillus thuringiensis and uses therefor
US7253343B2 (en) 2003-08-28 2007-08-07 Athenix Corporation AXMI-003, a delta-endotoxin gene and methods for its use
WO2005030967A2 (en) 2003-09-25 2005-04-07 Pioneer Hi-Bred International, Inc. Crop plant cystatin proteinase inhibitors and methods of use
US20050183161A1 (en) 2003-10-14 2005-08-18 Athenix Corporation AXMI-010, a delta-endotoxin gene and methods for its use
CA2450000A1 (en) 2003-12-18 2005-06-18 Alberta Research Council Inc. Method of creating plants with reduced level of saturated fatty acid in seed oil
US7629504B2 (en) 2003-12-22 2009-12-08 Pioneer Hi-Bred International, Inc. Bacillus thuringiensis cry9 nucleic acids
MXPA06009411A (es) 2004-02-20 2007-03-29 Pioneer Hi Bred Int Lipasas y metodos de uso.
PT2184360E (pt) 2004-02-25 2015-12-02 Pioneer Hi Bred Int Novos polipéptidos cristalinos de bacillus thuringiensis, polinucleótidos e composições destes
US7179965B2 (en) 2004-03-26 2007-02-20 Dow Agrosciences Llc Cry1F and Cry1Ac transgenic cotton lines and event-specific identification thereof
US20060021087A1 (en) 2004-04-09 2006-01-26 Baum James A Compositions and methods for control of insect infestations in plants
US7405074B2 (en) 2004-04-29 2008-07-29 Pioneer Hi-Bred International, Inc. Glyphosate-N-acetyltransferase (GAT) genes
BRPI0509460B8 (pt) 2004-04-30 2022-06-28 Dow Agrosciences Llc genes de resistência a herbicidas
EP1756286B1 (en) 2004-05-20 2010-04-28 Pioneer-Hi-Bred International, Inc. Maize multidrug resistance-associated protein polynucleotides and methods of use
WO2005123929A2 (en) 2004-06-09 2005-12-29 Pioneer Hi-Bred International, Inc. Plastid transit peptides
EP2404499A3 (en) 2004-06-16 2012-05-02 BASF Plant Science GmbH Nucleic acid molecules encoding Lipid Metabolism Protein (LMP) and methods of use in plants
US7301069B2 (en) 2004-06-30 2007-11-27 Pioneer Hi-Bred International, Inc. Methods of protecting plants from pathogenic fungi and nematodes
BR122015026849C8 (pt) 2004-07-02 2017-06-20 Du Pont cassete de expressão, microorganismo transformado, método para indução de resistência a patógeno de planta em uma planta, composição anti-patogênica e método para proteção de uma planta contra um patógeno de planta
WO2006020697A2 (en) 2004-08-10 2006-02-23 Cardinal Cg Company Lcd mirror system and method
UA97088C2 (ru) 2004-09-29 2012-01-10 Пионер Хай-Бред Интернешнл, Инк. Трансгенная кукуруза das-59122-7, стойкая к насекомым, и способы его обнаружения
NZ560935A (en) 2005-01-31 2009-06-26 Athenix Corp AXMI-018, AXMI-020, and AXMI-021, a family of delta-endotoxin genes and methods for their use as pesticides
US7601498B2 (en) 2005-03-17 2009-10-13 Biotium, Inc. Methods of using dyes in association with nucleic acid staining or detection and associated technology
CA2601857A1 (en) 2005-04-01 2006-10-12 Nadine Carozzi Axmi-027, axmi-036 and axmi-038, a family of delta-endotoxin genes and methods for their use
US20060225152A1 (en) 2005-04-04 2006-10-05 E.I. Du Pont De Nemours And Company Polynucleotides and methods for making plants resistant to fungal pathogens
WO2006119457A1 (en) 2005-05-02 2006-11-09 Athenix Corporation Axmi-028 and axmi-029, family of novel delta-endotoxin genes and methods for their use
EP2431472A1 (en) 2005-07-06 2012-03-21 CropDesign N.V. Plant yield improvement by STE20-like gene expression
CA2614333C (en) 2005-07-18 2017-01-03 Basf Plant Science Gmbh Increased root growth in plants overexpressing the accdp genes
US7622641B2 (en) 2005-08-24 2009-11-24 Pioneer Hi-Bred Int'l., Inc. Methods and compositions for providing tolerance to multiple herbicides
PL2431473T3 (pl) 2005-09-16 2017-05-31 Monsanto Technology Llc Sposoby genetycznej kontroli inwazji owadów u roślin i kompozycje do tego przeznaczone
EP1929017B1 (en) 2005-09-16 2011-12-07 Bayer CropScience AG Transplastomic plants expressing lumen-targeted protein
EP2923563A3 (en) 2006-01-12 2015-10-14 Cibus Europe B.V. EPSPS mutants
US7329736B2 (en) 2006-04-14 2008-02-12 Pioneer Hi-Bred International, Inc. Bacillus thuringiensis cry gene and protein
US7449552B2 (en) 2006-04-14 2008-11-11 Pioneer Hi-Bred International, Inc. Bacillus thuringiensis cry gene and protein
BRPI0712168A2 (pt) 2006-05-25 2012-03-13 Hexima Ltd veìculo de expressão de multigenes, vetor de expressão de veìculo de expressão de multigenes, célula de planta, planta trnsgênica, vetor de transformação de planta, métodos de expressar concorrentemente duas a oito proteìnas e de expressar concorrentemente 3 a 8 protéinas em uma célula de planta
AU2007260716B2 (en) 2006-06-14 2013-05-02 BASF Agricultural Solutions Seed US LLC Axmi-031, axmi-039, axmi-040 and axmi-049, a family of delta-endotoxin genes and methods for their use
EP2455392A3 (en) 2006-06-15 2012-08-22 Athenix Corporation A family of pesticidal proteins and methods for their use
WO2008011574A2 (en) 2006-07-21 2008-01-24 Pioneer Hi-Bred International, Inc. Bacillus thuringiensis toxin with anti-lepidopteran activity
KR20090054965A (ko) 2006-07-21 2009-06-01 파이어니어 하이-브레드 인터내셔날 인코포레이티드 신규한 유전자를 동정하는 방법
US8097771B2 (en) 2006-08-07 2012-01-17 The Curators Of The University Of Missouri LysM receptor-like kinases to improve plant defense response against fungal pathogens
CN101600801B (zh) 2006-12-08 2013-01-02 先锋高级育种国际公司 新苏云金芽孢杆菌晶体多肽、多核苷酸及其组合物
WO2008071767A1 (en) 2006-12-15 2008-06-19 Cropdesign N.V. Plants having enhanced seed yield-related traits and a method for making the same
CN103588865B (zh) 2007-03-28 2016-09-07 先正达参股股份有限公司 杀虫的蛋白质
US7790156B2 (en) 2007-04-10 2010-09-07 E. I. Du Pont De Nemours And Company Δ-8 desaturases and their use in making polyunsaturated fatty acids
US8609936B2 (en) 2007-04-27 2013-12-17 Monsanto Technology Llc Hemipteran-and coleopteran active toxin proteins from Bacillus thuringiensis
CN101802190A (zh) 2007-06-20 2010-08-11 澳大利亚国立大学 提高植物胁迫抗性的方法和材料
US7772465B2 (en) 2007-06-26 2010-08-10 Pioneer Hi-Bred International, Inc. Bacillus thuringiensis gene with lepidopteran activity
US8338661B2 (en) 2007-07-13 2012-12-25 Basf Plant Science Gmbh Transgenic plants with increased stress tolerance and yield
CN101815432A (zh) 2007-08-29 2010-08-25 纳幕尔杜邦公司 涉及编码核苷二磷酸激酶(ndk)多肽及其同源物的基因的用于修改植物根构造的方法
WO2009034188A1 (en) 2007-09-14 2009-03-19 Basf Plant Science Gmbh Plants having increased yield-related traits and a method for making the same
US20090144852A1 (en) 2007-10-16 2009-06-04 Athenix Corporation Axmi-066 and axmi-076: delta-endotoxin proteins and methods for their use
US8173866B1 (en) 2008-01-11 2012-05-08 Pioneer Hi-Bred International, Inc. Modulation of plant xylan synthases
JP2011526150A (ja) 2008-06-25 2011-10-06 アテニックス・コーポレーション 毒素遺伝子およびその使用法
CN110734919A (zh) 2008-07-02 2020-01-31 阿森尼克斯公司 Axmi-il5、axmi-113、axmi-005、axmi-163和axmi-184∶vip3a杀虫蛋白及其使用方法
US8058571B2 (en) 2008-10-08 2011-11-15 Research In Motion Limited Dual-action single-key mechanism
US8084416B2 (en) 2008-12-23 2011-12-27 Athenix Corp. AXMI-150 delta-endotoxin gene and methods for its use
CN104293804A (zh) 2009-01-23 2015-01-21 先锋国际良种公司 具有鳞翅目活性的新苏云金芽孢杆菌基因
EP2845903A3 (en) 2009-01-28 2015-06-10 BASF Plant Science Company GmbH Plants having enhanced yield-related traits and a method for making the same
EP2728007B1 (en) 2009-02-05 2017-01-25 Athenix Corporation Variant Axmi-R1 delta-endotoxin genes and methods for their use
JP5746055B2 (ja) 2009-02-27 2015-07-08 アテニックス・コーポレーションAthenix Corporaton 殺虫性タンパク質及びその使用方法
CN102421792B (zh) 2009-03-11 2015-11-25 阿森尼克斯公司 Axmi-001、axmi-002、axmi-030、axmi-035和axmi-045: 来自苏云金芽孢杆菌的杀虫蛋白及其用法
US8033349B2 (en) 2009-03-12 2011-10-11 Ford Global Technologies, Inc. Auto-seek electrical connection for a plug-in hybrid electric vehicle
EP2419510B1 (en) 2009-04-14 2015-09-16 Pioneer Hi-Bred International Inc. Modulation of acc synthase improves plant yield under low nitrogen conditions
CN102459315B (zh) 2009-04-17 2016-03-02 陶氏益农公司 Dig-3杀虫cry毒素
US8334366B1 (en) 2009-04-29 2012-12-18 The United States Of America, As Represented By The Secretary Of Agriculture Mutant lycotoxin-1 peptide sequences for insecticidal and cell membrane altering properties
CA2762204A1 (en) 2009-05-28 2010-12-02 National Research Council Of Canada Increased seed oil and abiotic stress tolerance mediated by hsi2
US8350121B2 (en) 2009-06-04 2013-01-08 Pioneer Hi Bred International Inc Viral promoter, truncations thereof, and methods of use
US8338662B2 (en) 2009-06-04 2012-12-25 Pioneer Hi Bred International Inc Viral promoter, truncations thereof, and methods of use
MX2011013675A (es) 2009-06-16 2012-01-20 Dow Agrosciences Llc Toxinas cry dig-11 insecticidas.
EP2449109B1 (en) 2009-07-02 2016-09-28 Athenix Corporation Axmi-205 pesticidal gene and methods for its use
BR122018067925B8 (pt) 2009-08-28 2022-12-06 Du Pont Polinucleotídeo isolado, cassete de expressão, método para controlar uma praga de plantas do tipo coleoptera e método para obtenção de uma planta
US8551757B2 (en) 2009-09-11 2013-10-08 Valent Biosciences Corporation Bacillus thuringiensis isolate
US8916746B2 (en) 2009-10-30 2014-12-23 Japan Tobacco, Inc. Drought tolerant plants and related constructs and methods involving genes encoding DTP21 polypeptides
US20120272352A1 (en) 2009-10-30 2012-10-25 Syngenta Participations Ag Genes Conferring Drought and Salt Tolerance and Uses Thereof
WO2011059538A1 (en) 2009-11-12 2011-05-19 Pioneer Hi-Bred International, Inc. Viral promoter, truncations thereof, and methods of use
EP2513317B1 (en) 2009-12-16 2018-01-24 Dow Agrosciences LLC Use of cry1da in combination with cry1be for management of resistant insects
AR079622A1 (es) 2009-12-16 2012-02-08 Dow Agrosciences Llc Combinaciones de proteinas insecticidas que comprenden cry1ab y cry2aa, que se unen a sitios receptores unicos en el perforador de maiz europeo, utiles para prevenir el desarrollo de resistencia a insectos.
BR122019001711B8 (pt) 2009-12-16 2022-10-11 Dow Agrosciences Llc Composição e método para o controle de pragas de lepidópteros
KR101841295B1 (ko) 2009-12-16 2018-03-22 다우 아그로사이언시즈 엘엘씨 곤충 내성 관리를 위한 CRY1Ca 및 CRY1Fa 단백질의 조합 용도
RU2596406C2 (ru) 2009-12-16 2016-09-10 ДАУ АГРОСАЙЕНСИЗ ЭлЭлСи КОМБИНИРОВАННОЕ ИСПОЛЬЗОВАНИЕ БЕЛКОВ CRY1Ca И CRY1Ab ДЛЯ КОНТРОЛЯ УСТОЙЧИВОСТИ НАСЕКОМЫХ
UA111934C2 (uk) 2009-12-16 2016-07-11 ДАУ АГРОСАЙЄНСІЗ ЕлЕлСі ТРАНСГЕННА РОСЛИНА, ЩО МІСТИТЬ ДНК, ЯКА КОДУЄ ІНСЕКТИЦИДНИЙ БІЛОК Vip3Ab, І ДНК, ЯКА КОДУЄ ІНСЕКТИЦИДНИЙ БІЛОК Cry1Fa, СТІЙКА ДО ЛУСКОКРИЛИХ ШКІДНИКІВ
US20120317682A1 (en) 2009-12-16 2012-12-13 Dow Agrosciences Llc Combined use of vip3ab and cry1fa for management of resistant insects
EP2513319A4 (en) 2009-12-17 2013-05-08 Univ Missouri PLANT GENES ASSOCIATED WITH SEED OIL CONTENT AND METHODS OF USE
BR112012020705B8 (pt) 2010-02-18 2022-07-05 Athenix Corp Molécula de ácido nucleico recombinante, vetor, célula hospedeira microbiana, polipeptídeo recombinante com atividade pesticida, composição, bem como métodos para o controle de uma população de pragas de lepidópteros, para matar uma praga de lepidóptero, para a produção de um polipeptídeo com atividade pesticida, para a proteção de uma planta de uma praga, e para aumentar o rendimento em uma planta
MX2012009634A (es) 2010-02-18 2012-09-28 Athenix Corp Genes delta-endotoxinicos axmi218, axmi219, axmi220, axmi226, axmi227, axmi228, axmi229, axmi230, y axmi231 y metodos para sus uso.
WO2011137998A1 (en) 2010-05-04 2011-11-10 Bayer Bioscience N.V. Brassica plants with altered architecture
WO2012006426A2 (en) 2010-07-09 2012-01-12 Grassroots Biotechnology, Inc. Regulatory polynucleotides and uses thereof
US20120079622A1 (en) 2010-09-24 2012-03-29 Pioneer Hi-Bred International, Inc. Yield Enhancement in Plants by Modulation of a ZM-LOBDP1 Protein
WO2012038893A1 (en) 2010-09-24 2012-03-29 Basf Plant Science Company Gmbh Plants having enhanced yield-related traits and method for making the same
US8772024B2 (en) 2010-09-27 2014-07-08 Pioneer Hi Bred International Inc Yield enhancement in plants by modulation of a ZM-ZFP1 protein
RU2662995C2 (ru) 2010-10-27 2018-07-31 Девген Нв Уменьшение экспрессии генов у насекомых-вредителей
WO2012058528A2 (en) 2010-10-28 2012-05-03 E. I. Du Pont De Nemours And Company Drought tolerant plants and related constructs and methods involving genes encoding dtp6 polypeptides
EP2633057B1 (en) 2010-10-29 2016-09-28 Syngenta Participations AG Overexpression of plant mirnas for parasite control
BRPI1107329A2 (pt) 2010-12-30 2019-11-19 Dow Agrosciences Llc moléculas de ácido nucléico que direcionadas à subunidade h de atpase vacuolar que conferem resistência a pragas de coleópteros, vetor de transformação de planta, célula transformada, bem como métodos para controlar uma população de praga de coleóptero, controlar uma infestação pela dita praga, melhorar o rendimento de uma safra e para produzir uma célula transgênica
WO2012109430A2 (en) 2011-02-11 2012-08-16 Monsanto Technology Llc Pesticidal nucleic acids and proteins and uses thereof
CN103476934B (zh) 2011-02-15 2016-05-18 先锋国际良种公司 根优选的启动子以及使用方法
CN111197051B (zh) 2011-04-07 2023-10-20 孟山都技术公司 具有对抗半翅目和/或鳞翅目昆虫的活性的昆虫抑制毒素家族
US8513494B2 (en) 2011-04-08 2013-08-20 Chunren Wu Plants and seeds of spring canola variety SCV695971
ES2668630T3 (es) 2011-04-20 2018-05-21 Devgen Nv Regulación por disminución de la expresión génica en plagas de insectos
US9150625B2 (en) 2011-05-23 2015-10-06 E I Du Pont De Nemours And Company Chloroplast transit peptides and methods of their use
BR112013030724B1 (pt) 2011-05-31 2020-10-27 Keygene N.V gene quimérico, vetor, célula hospedeira, uso de uma molécula de ácido nucleico e método para produzir uma planta transgênica possuindo resistência almentada à praga de inseto
AP2014007885A0 (en) 2012-02-01 2014-08-31 Dow Agrosciences Llc Novel class of glyphosate resistance genes
CN104302663B (zh) 2012-03-08 2018-03-27 阿森尼克斯公司 AXMI345 δ‑内毒素基因及其使用方法
US9475847B2 (en) 2012-07-26 2016-10-25 Pioneer Hi-Bred International, Inc. Insecticidal proteins and methods for their use
US9920316B2 (en) 2013-03-14 2018-03-20 Pioneer Hi-Bred International, Inc. Compositions and methods to control insect pests
US9394345B2 (en) 2013-03-15 2016-07-19 Pioneer Hi-Bred International, Inc. PHI-4 polypeptides and methods for their use
EP2971000A4 (en) 2013-03-15 2016-11-23 Pioneer Hi Bred Int PHI-4 POLYPEPTIDES AND METHOD FOR THEIR USE
US20150257389A1 (en) 2014-03-14 2015-09-17 Pioneer Hi-Bred International, Inc. Compositions and methods to control insect pests
KR20170068467A (ko) 2014-10-13 2017-06-19 다우 아그로사이언시즈 엘엘씨 딱정벌레류 및 노린재류 해충에 대한 저항성을 부여하는 copi 코토머 델타 서브유닛 핵산 분자
KR20170067756A (ko) 2014-10-13 2017-06-16 다우 아그로사이언시즈 엘엘씨 딱정벌레류 및 노린재류 해충에 대한 저항성을 부여하는 copi 코토머 감마 서브유닛 핵산 분자
JP2017538396A (ja) 2014-10-13 2017-12-28 ダウ アグロサイエンシィズ エルエルシー 鞘翅目および半翅目害虫に対する抵抗性を付与するcopiコートマーベータサブユニット核酸分子
CA2963794A1 (en) 2014-10-13 2016-04-21 Dow Agrosciences Llc Copi coatomer alpha subunit nucleic acid molecules that confer resistance to coleopteran and hemipteran pests
BR112017015341A2 (pt) * 2015-01-15 2018-01-09 Pioneer Hi Bred Int polipeptídeo inseticida e seu uso, composição inseticida, polinucleotídeo recombinante, construto de dna, planta transgênica ou célula de planta, método para inibir o crescimento, método para controlar a infestação de insetos
US11021716B2 (en) 2016-11-01 2021-06-01 Pioneer Hi-Bred International, Inc. Insecticidal proteins and methods for their use

Also Published As

Publication number Publication date
CN109863167B (zh) 2022-12-23
CA3038806A1 (en) 2018-05-11
CN109863167A (zh) 2019-06-07
US20210246465A1 (en) 2021-08-12
US11959090B2 (en) 2024-04-16
WO2018084936A1 (en) 2018-05-11
US11021716B2 (en) 2021-06-01
MX2019005044A (es) 2019-08-05
EP3535285A1 (en) 2019-09-11
US20200055906A1 (en) 2020-02-20
BR112019008800A2 (pt) 2019-07-16
EP4050021A1 (en) 2022-08-31
EP3535285B1 (en) 2022-04-06

Similar Documents

Publication Publication Date Title
US20220010330A1 (en) Insecticidal proteins and methods for their use
US10563221B2 (en) Insecticidal proteins and methods for their use
US20220056082A1 (en) Insecticidal proteins and methods for their use
US11959090B2 (en) Insecticidal proteins and methods for their use
CN109068660B (zh) 杀昆虫蛋白及其使用方法
CN116003550A (zh) 植物来源的杀昆虫蛋白及其使用方法
EP2971000A2 (en) Phi-4 polypeptides and methods for their use
CN116333064A (zh) 杀昆虫蛋白及其使用方法
CN111867377B (zh) 来自植物的杀昆虫蛋白及其使用方法
CN112020302B9 (zh) 来自植物的杀昆虫蛋白及其使用方法
WO2018005411A1 (en) Insecticidal proteins from plants and methods for their use
CN110088123B (zh) 杀昆虫蛋白及其使用方法
WO2018075350A1 (en) Insecticidal proteins from plants and methods for their use
CN110621780B (zh) 杀昆虫蛋白及其使用方法
CN110582508B (zh) 杀昆虫蛋白及其使用方法
WO2014018853A1 (en) Novel insecticidal proteins and methods for their use
CA3111086A1 (en) Insecticidal proteins and methods for their use

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination