CN102612737A - 通过使用离子注入引入压缩金属栅极应力而在三栅极mosfet中实现驱动电流增强 - Google Patents

通过使用离子注入引入压缩金属栅极应力而在三栅极mosfet中实现驱动电流增强 Download PDF

Info

Publication number
CN102612737A
CN102612737A CN201080051659XA CN201080051659A CN102612737A CN 102612737 A CN102612737 A CN 102612737A CN 201080051659X A CN201080051659X A CN 201080051659XA CN 201080051659 A CN201080051659 A CN 201080051659A CN 102612737 A CN102612737 A CN 102612737A
Authority
CN
China
Prior art keywords
ion
semiconductor device
film
fin
metal film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201080051659XA
Other languages
English (en)
Other versions
CN102612737B (zh
Inventor
R·米恩德鲁
C·E·韦伯
A·阿苏托什
J·黄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Intel Corp
Original Assignee
Intel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intel Corp filed Critical Intel Corp
Priority to CN201510756141.0A priority Critical patent/CN105428232A/zh
Publication of CN102612737A publication Critical patent/CN102612737A/zh
Application granted granted Critical
Publication of CN102612737B publication Critical patent/CN102612737B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3215Doping the layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02694Controlling the interface between substrate and epitaxial layer, e.g. by ion implantation followed by annealing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66787Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel
    • H01L29/66795Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7842Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate
    • H01L29/7845Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate the means being a conductive material, e.g. silicided S/D or Gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/785Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

一种半导体器件,包括鳍和金属栅极膜。鳍形成在半导体材料的表面上。金属栅极膜形成在鳍上并且包括在该金属栅极膜中注入的离子以形成该金属栅极内的压缩应力。在一个示例性实施例中,半导体材料的表面包括(100)晶格取向,并且鳍的取向沿相对于半导体的晶格的<100>方向。在另一个示例性实施例中,半导体材料的表面包括(100)晶格取向,并且鳍的取向沿相对于半导体的晶格的<110>方向。鳍包括由金属栅极膜内的压缩应力生成的非平面压缩。

Description

通过使用离子注入引入压缩金属栅极应力而在三栅极MOSFET中实现驱动电流增强
背景技术
将碳掺杂硅外延层沉积在三栅极晶体管的源区和漏区,以在晶体管的沟道中生成拉伸应力,从而增强沟道的载流子迁移率和驱动电流。但是该技术仅提供了相对较低的载流子迁移率,并且因此具有相对较低的饱和漏电流Idsat和线性漏电流Idlin。
附图说明
在说明书附图的图示中,通过示例的方式而非通过限制的方式来说明在这里公开的实施例,在附图中相似的附图标记指代类似的元件,并且其中:
图1描绘了根据在这里公开的主题,使用离子注入来在三栅极NMOS晶体管中形成压缩金属栅极应力以在晶体管的沟道中生成非平面(out-of-plane)压缩的处理的一个示例性实施例的流程图;
图2A和2B描绘了根据在这里公开的主题的处理期间的三栅极晶体管的示例性实施例的部分的截面图;
图3描绘了NMOS三栅极晶体管的部分的透视图,例示性地提供了由离子注入到晶体管的栅极中而在晶体管的沟道上生成的模拟的非平面压缩力应力水平;
图4示出了曲线图,例示性地描绘了作为以MPa测量的应力的函数的长沟道(LC)迁移率增益;以及
图5和6分别例示性地示出了对具有<110>沟道取向和(100)上表面取向而不具有金属栅极应力的器件的Idsat和Idlin的模拟结果。
将理解的是,为了说明的简化和/或清楚,在图中例示的元件不必要按比例绘制。例如,为了清楚,可以相对于其它元件夸大某些元件的尺寸。此外,如果适当地考虑,在附图中重复附图标记以表示对应的和/或类似的元件。
具体实施方式
在这里描述了用于通过使用离子注入产生压缩金属栅极应力来增强三栅极MOSFET中的驱动电流的实施例。在以下的说明中,陈述了若干特定细节以提供在这里公开的实施例的全面理解。但是,本领域技术人员将认识到能够在没有一个或多个特定细节,或用其它方法、部件、材料等等的情况下实践在这里公开的实施例。在其它示例中,没有详细地示出或描述公知的结构、材料或操作,以避免使说明书的方面难以理解。
贯穿本说明书提到的“一个实施例”或“实施例”表示结合实施例描述的具体特征、结构或特性包括在至少一个实施例中。因此,在整个本说明书不同位置处出现的词组“在一个实施例中”或“在实施例中”未必全部指代相同的实施例。此外,在一个或多个实施例中可以以任何适合的方式组合具体的特征、结构或特性。在这里使用的词语“示例性”表示“用作范例、实例或示例”。在这里描述为“示例性的”任何实施例不应理解为一定比其它实施例优选或有利。
在这里公开的主题提供了一种技术,该技术用于通过将离子注入到金属栅极中而在晶体管的沟道中生成非平面的压缩来形成压缩金属栅极应力,从而进一步增强载流子迁移率和驱动电流。
随着每种新一代的晶体管的发展,晶体管的临界尺寸变得越来越小,为了避免在栅极金属中形成空隙,相比于溅射,栅极金属沉积的处理趋向于是化学气相沉积(CVD)处理,诸如原子层沉积(ALD)处理。已知这种ALD沉积的金属具有本征拉伸应变,而非通常在溅射材料中所看到的压缩应变。在这里公开的主题通过在金属栅极中注入离子来在ALD沉积的栅极金属层中形成压缩应力,所述离子诸如但不限于氮、氙、氩、氖、氪、氡、碳、铝或钛或其组合。
在这里公开的主题涉及使用离子注入来在三栅极NMOS晶体管或finFET NMOS晶体管中形成压缩金属栅极应力,并且由此在晶体管的沟道中生成非平面的压缩,这增强了沟道的载流子迁移率和驱动电流。由离子注入形成的压缩栅极应变转移到沟道,作为三栅极晶体管的支配侧壁(dominate sidewall)晶体管的压缩应变行的端部(compressive strain end ofline)。根据一个示例性实施例,通过在具有上表面(110)晶格的晶片上形成的<110>方向上取向的沟道上施加非平面压缩,显著地增强了载流子迁移率和驱动电流,其中沟道的侧壁具有(100)晶格取向。在具有上表面(100)晶格的晶片上形成的<100>方向上取向的沟道也呈现了类似的来自非平面压缩的载流子迁移率和驱动电流增强,其中沟道的侧壁具有(100)取向。
根据在这里公开的主题,将离子注入到三栅极NMOS晶体管的金属栅极中以在以<110>方向取向并在具有(100)晶格取向的晶片的上表面上形成的沟道中生成压缩应力。或者,通过将离子注入到三栅极晶体管的金属栅极中能够在沟道中生成压缩应力,使得沟道在具有(100)晶格取向的晶片的上表面上形成的<100>方向上取向。在这里公开的主题的技术可以不比需要多个步骤形成沟道应变的常规EPI生长技术复杂。另外,由于常规技术所使用的间距与栅极比例(scale)、EPI区域收缩得比栅极(或沟道长度Lg)快得多,这使得在这里公开的技术在更窄的间距方面有吸引力。
图1描绘了根据在这里公开的主题,使用离子注入在三栅极NMOS晶体管中形成压缩金属栅极应力以在晶体管的沟道中生成非平面的压缩的处理100的一个示例性实施例的流程图。在图1中描绘的示例性实施例包括两个阶段,其中在第一阶段期间,如步骤101所示,沉积了厚度在大约2nm与大约100nm之间的薄金属共形膜。在一个示例性实施例中,薄共形膜的厚度大约为10nm。能够用于薄金属共形膜的适合的金属包括但不限于铝、钡、铬、钴、铪、铱、铁、镧和其它镧系元素、钼、铌、锇、钯、铂、铼、钌、铑、钪、锶、钽、钛、钨、钒、钇、锌、或锆、或其组合。在步骤102,使用公知的离子注入技术将诸如但不限于铝、钡、铬、钴、铪、铱、铁、镧和其它镧系元素、钼、铌、锇、钯、铂、铼、钌、铑、钪、锶、钽、钛、钨、钒、钇、锌、锆、氮、氙、氩、氖、氪、氡、或碳、或其组合等离子注入到栅极金属中。注入剂量能够在大约1×1015/cm2与大约1×1017/cm2之间,并且注入能量能够在大约0.1keV与大约500keV之间变化。
图2A描绘了三栅极晶体管200的示例性实施例的部分的截面图,其中示出了鳍201和栅极金属膜202。鳍201设置在氧化物203之间。如图2A中所示,在第一阶段,使用原子层沉积(ALD)或化学气相沉积(CVD)沉积技术来沉积栅极金属膜202,以形成薄金属共形膜(步骤101)。在图1中的步骤102期间,使用公知的离子注入技术将诸如但不限于铝、钡、铬、钴、铪、铱、铁、镧和其它镧系元素、钼、铌、锇、钯、铂、铼、钌、铑、钪、锶、钽、钛、钨、钒、钇、锌、锆、氮、氙、氩、氖、氪、氡、或碳、或其组合等离子104注入到栅极金属膜202中。应当理解,几乎能够将任何来自元素周期表的离子注入到栅极金属膜202中。此外,应当理解,重量较轻的离子可能起到污染物的作用,并且因此不如其它离子优选。
在离子注入步骤102之后的处理的第二阶段,流程继续至步骤103,在该步骤103,通过使用公知的ALD处理来完成诸如低电阻金属等栅极填充物(gate fill)205,并且紧接着进行抛光。图2B描绘了步骤103之后的晶体管200。在一个示例性实施例中,以大约45°的注入角,大约1.2×1016的氮离子注入剂量而在栅极金属中实现大约1%的压缩应变。
在另一个示例性实施例中,能够在步骤104的栅极填充(gate fill)和抛光之后进行步骤103的离子注入。
图3-6描绘了测试和/或模拟的结果,并且图3-6仅出于例示性的目的而被提供并且不应当将其理解或解释为在这里公开的主题的限制或期望。图3描绘了提供例示性的由离子注入到晶体管的栅极中而在晶体管的沟道上生成的模拟的非平面压缩力应力水平的NMOS三栅极晶体管300的部分的透视图。更具体地,图3更具体地描绘了其中注入(模拟)了氮离子的沟道301和栅极302。灰色的阴影表示以dynes/cm2测量的非平面应力的水平。在图3的右上方示出了图3中所描绘的压缩力的范围。如在图3中所示,当大约2.1×1010dynes/cm2的压缩应力形成在303处的栅极302中时,在304处的沟道301中生成大约8.4×109dynes/cm2的非平面压缩力。
图4示出了曲线图,例示性地描绘了作为以MPa测量的应力的函数的长沟道(LC)迁移率增益。如在图4中所能看到的,非平面压缩向具有<110>或<100>沟道取向的(100)晶片取向提供了载流子迁移率和驱动电流增强,但是不向具有<110>沟道取向的(110)晶片取向提供载流子迁移率和驱动电流增强。曲线401和402相互叠加,并且分别表示具有<110>沟道取向的(100)晶片取向和具有<100>沟道取向的(100)晶片取向的迁移率增益。曲线403是具有<110>沟道取向的(110)晶片取向的迁移率增益。因此,对于NMOS三栅极晶体管,具有<110>沟道取向的(110)上表面(top)晶片取向为侧壁晶体管提供了有益的(100)取向。
根据在这里公开的主题,对于在(100)上表面晶片上的<100>沟道取向也看到了对长沟道器件的类似的益处,该(100)上表面晶片在(100)侧壁上也具有<100>取向的沟道。如果使用具有<110>沟道取向的(110)上表面或具有<100>沟道取向的(100)上表面,则在模拟中观察到大约37%的Idsat增益和大约17%的Idlin增益。
图5和6分别例示性地示出了对具有<110>沟道取向和(100)上表面取向而不具有金属栅极应力的器件的Idsat和Idlin的模拟结果。在图5和6中,横坐标是以A/μm为单位的源极至漏极的泄露电流的对数值,而纵坐标是以mA/μm为单位而测量的。图5和6中的“HALO”标识指的是以离子数/cm2为单位的掺杂注入。图5和6的基线分别为曲线501和601。在添加了金属栅极应力,但没有改变表面取向时,减少了大约11%的Idsat的驱动(在502中示出)和大约7%的Idlin的驱动(在602中示出)。利用压缩金属栅极应力并且通过表面取向改变为(110)上表面,在匹配的Ioff处(在603示出)存在大约37%的Idsat增益(在503示出)和大约17%的Idlin增益。当金属栅极应力与<100>沟道取向组合时也观察到类似的增益,但是上表面保持与(100)相同。
包括说明书摘要中所描述的对例示实施例的上述说明不是旨在穷举或者限制为所公开的精确的形式。虽然在这里描述的特定实施例和示例是用于例示性的目的,但是本领域技术人员将认识到,在该描述的范围内,各种等同的修改是可能的。
根据上述详细的说明能够做出这些修改。在以下权利要求中所使用的术语不应当解释为将范围限制于说明书和权利要求中所公开的特定实施例。相反地,在这里公开的实施例的范围是由根据权利要求解释的既定原则来理解的以下权利要求确定的。

Claims (25)

1.一种用于制造半导体器件的方法,所述方法包括:
在半导体材料的表面上形成所述半导体器件的鳍;
在所述鳍上形成所述半导体器件的金属栅极膜;以及
在所述金属栅极膜中注入离子。
2.根据权利要求1所述的方法,其中所述半导体材料的所述表面包括(100)晶格取向,并且所述鳍的取向沿相对于半导体的晶格的<100>方向;或者所述半导体材料的所述表面包括(100)晶格取向,并且所述鳍的取向沿相对于所述半导体的所述晶格的<110>方向。
3.根据权利要求2所述的方法,其中在所述鳍上形成所述金属栅极膜包括在所述栅极的栅极沟槽中形成共形金属膜;并且
其中在所述金属栅极膜中注入离子包括在所述共形金属膜中注入离子,并且
所述方法还包括在所述栅极的所述栅极沟槽中的离子注入的共形金属膜上完成栅极填充物。
4.根据权利要求3所述的方法,其中在所述金属栅极膜中注入离子还包括以大约1×1015个离子/cm2与大约1×1017个离子/cm2之间的剂量,并且以大约0.1keV与大约500keV之间的注入能量来注入离子。
5.根据权利要求4所述的方法,其中所述共形金属膜包括铝、钡、铬、钴、铪、铱、铁、镧和其它镧系元素、钼、铌、锇、钯、铂、铼、钌、铑、钪、锶、钽、钛、钨、钒、钇、锌、或锆、或其组合。
6.根据权利要求5所述的方法,其中所述离子包括氮、氙、氩、氖、氪、氡、碳、铝、或钛、或其组合。
7.根据权利要求6所述的方法,其中所述半导体器件包括finFET器件。
8.根据权利要求7所述的方法,其中形成所述共形金属膜包括使用原子层沉积技术或化学气相沉积技术来形成所述共形金属膜。
9.根据权利要求3所述的方法,其中在所述离子注入的共形金属膜上完成所述栅极填充物包括使用原子层沉积技术或化学气相沉积技术来完成所述栅极填充物。
10.根据权利要求9所述的方法,其中所述离子包括氮、氙、氩、氖、氪、氡、碳、铝、或钛、或其组合。
11.根据权利要求10所述的方法,其中在所述金属栅极膜中注入离子还包括以大约1×1015个离子/cm2与大约1×1017个离子/cm2之间的剂量,并且以大约0.1keV与大约500keV之间的注入能量来注入离子。
12.根据权利要求11所述的方法,其中所述共形金属膜包括铝、钡、铬、钴、铪、铱、铁、镧和其它镧系元素、钼、铌、锇、钯、铂、铼、钌、铑、钪、锶、钽、钛、钨、钒、钇、锌、或锆、或其组合。
13.根据权利要求12所述的方法,其中所述半导体器件包括finFET器件。
14.一种半导体器件,包括:
形成在半导体材料的表面上的鳍;以及
形成在所述鳍上的金属栅极膜,所述金属栅极膜包括在所述金属栅极中注入的离子。
15.根据权利要求14所述的半导体器件,其中所述半导体材料的所述表面包括(100)晶格取向,并且所述鳍的取向沿相对于半导体的晶格的<100>方向;或者所述半导体材料的所述表面包括(100)晶格取向,并且所述鳍的取向沿相对于所述半导体的所述晶格的<110>方向,并且
其中所述鳍包括由所述金属栅极内的压缩应力生成的非平面压缩。
16.根据权利要求15所述的半导体器件,其中所述金属栅极膜包括:
共形金属膜,所述共形金属膜形成在所述栅极的栅极沟槽中,所注入的离子注入到所述共形金属膜中;以及
栅极填充物,所述栅极填充物形成在所述栅极的所述栅极沟槽中的离子注入的共形金属膜上。
17.根据权利要求16所述的半导体器件,其中以大约1×1015个离子/cm2与大约1×1017个离子/cm2之间的剂量,并且以大约0.1keV与大约500keV之间的注入能量来注入所述离子。
18.根据权利要求17所述的半导体器件,其中所述共形金属膜包括铝、钡、铬、钴、铪、铱、铁、镧和其它镧系元素、钼、铌、锇、钯、铂、铼、钌、铑、钪、锶、钽、钛、钨、钒、钇、锌、或锆、或其组合。
19.根据权利要求18所述的半导体器件,其中所述离子包括氮、氙、氩、氖、氪、氡、碳、铝、或钛、或其组合。
20.根据权利要求19所述的半导体器件,其中所述半导体器件包括finFET器件。
21.根据权利要求20所述的半导体器件,其中形成所述共形金属膜是由原子层沉积技术或化学气相沉积技术来形成的。
22.根据权利要求15所述的半导体器件,其中所述离子包括氮、氙、氩、碳、铝、或钛、或其组合。
23.根据权利要求22所述的半导体器件,其中以大约1×1015个离子/cm2与大约1×1017个离子/cm2之间的剂量,并且以大约0.1keV与大约500keV之间的注入能量来注入所述离子。
24.根据权利要求23所述的半导体器件,其中所述共形金属膜包括铝、钡、铬、钴、铪、铱、铁、镧和其它镧系元素、钼、铌、锇、钯、铂、铼、钌、铑、钪、锶、钽、钛、钨、钒、钇、锌、或锆、或其组合。
25.根据权利要求24所述的半导体器件,其中所述半导体器件包括finFET器件。
CN201080051659.XA 2009-12-23 2010-11-18 通过使用离子注入引入压缩金属栅极应力而在三栅极mosfet中实现驱动电流增强 Expired - Fee Related CN102612737B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510756141.0A CN105428232A (zh) 2009-12-23 2010-11-18 通过使用离子注入引入压缩金属栅极应力而在三栅极mosfet中实现驱动电流增强

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/646,673 US20110147804A1 (en) 2009-12-23 2009-12-23 Drive current enhancement in tri-gate MOSFETS by introduction of compressive metal gate stress using ion implantation
US12/646,673 2009-12-23
PCT/US2010/057174 WO2011087566A1 (en) 2009-12-23 2010-11-18 Drive current enhancement in tri-gate mosfets by introduction of compressive metal gate stress using ion implantation

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201510756141.0A Division CN105428232A (zh) 2009-12-23 2010-11-18 通过使用离子注入引入压缩金属栅极应力而在三栅极mosfet中实现驱动电流增强

Publications (2)

Publication Number Publication Date
CN102612737A true CN102612737A (zh) 2012-07-25
CN102612737B CN102612737B (zh) 2015-12-09

Family

ID=44149841

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201510756141.0A Pending CN105428232A (zh) 2009-12-23 2010-11-18 通过使用离子注入引入压缩金属栅极应力而在三栅极mosfet中实现驱动电流增强
CN201080051659.XA Expired - Fee Related CN102612737B (zh) 2009-12-23 2010-11-18 通过使用离子注入引入压缩金属栅极应力而在三栅极mosfet中实现驱动电流增强

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201510756141.0A Pending CN105428232A (zh) 2009-12-23 2010-11-18 通过使用离子注入引入压缩金属栅极应力而在三栅极mosfet中实现驱动电流增强

Country Status (7)

Country Link
US (1) US20110147804A1 (zh)
EP (1) EP2517230A4 (zh)
JP (1) JP5507701B2 (zh)
KR (1) KR20120084812A (zh)
CN (2) CN105428232A (zh)
HK (1) HK1176163A1 (zh)
WO (1) WO2011087566A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105633171A (zh) * 2016-03-22 2016-06-01 京东方科技集团股份有限公司 一种薄膜晶体管及其制作方法、显示装置
US11776582B1 (en) 2021-06-21 2023-10-03 Inspur Suzhou Intelligent Technology Co., Ltd. Hard disk fixing device and server

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8969197B2 (en) * 2012-05-18 2015-03-03 International Business Machines Corporation Copper interconnect structure and its formation
CN103779413B (zh) 2012-10-19 2016-09-07 中芯国际集成电路制造(上海)有限公司 半导体器件及其制造方法
US20160035891A1 (en) * 2014-07-31 2016-02-04 Qualcomm Incorporated Stress in n-channel field effect transistors
CN106328501B (zh) * 2015-06-23 2019-01-01 中国科学院微电子研究所 半导体器件的制造方法
US10529717B2 (en) 2015-09-25 2020-01-07 International Business Machines Corporation Orientation engineering in complementary metal oxide semiconductor fin field effect transistor integration for increased mobility and sharper junction

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040099903A1 (en) * 2002-11-26 2004-05-27 Taiwan Semiconductor Manufacturing Co., Ltd. Strained-channel multiple-gate transistor
US20040108559A1 (en) * 2002-10-02 2004-06-10 Renesas Technology Corp. Insulated-gate field-effect transistor, method of fabricating same, and semiconductor device employing same
CN101060085A (zh) * 2006-04-21 2007-10-24 国际商业机器公司 形成场效应晶体管的方法
US20090090938A1 (en) * 2007-10-04 2009-04-09 International Business Machines Corporation Channel stress engineering using localized ion implantation induced gate electrode volumetric change

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6281532B1 (en) * 1999-06-28 2001-08-28 Intel Corporation Technique to obtain increased channel mobilities in NMOS transistors by gate electrode engineering
US6821834B2 (en) * 2002-12-04 2004-11-23 Yoshiyuki Ando Ion implantation methods and transistor cell layout for fin type transistors
KR100728173B1 (ko) * 2003-03-07 2007-06-13 앰버웨이브 시스템즈 코포레이션 쉘로우 트렌치 분리법
US7186599B2 (en) * 2004-01-12 2007-03-06 Advanced Micro Devices, Inc. Narrow-body damascene tri-gate FinFET
US7176092B2 (en) * 2004-04-16 2007-02-13 Taiwan Semiconductor Manufacturing Company Gate electrode for a semiconductor fin device
JP2006120718A (ja) * 2004-10-19 2006-05-11 Toshiba Corp 半導体装置およびその製造方法
US7393733B2 (en) * 2004-12-01 2008-07-01 Amberwave Systems Corporation Methods of forming hybrid fin field-effect transistor structures
KR100585178B1 (ko) * 2005-02-05 2006-05-30 삼성전자주식회사 금속 게이트 전극을 가지는 FinFET을 포함하는반도체 소자 및 그 제조방법
US8188551B2 (en) * 2005-09-30 2012-05-29 Infineon Technologies Ag Semiconductor devices and methods of manufacture thereof
US7462538B2 (en) * 2005-11-15 2008-12-09 Infineon Technologies Ag Methods of manufacturing multiple gate CMOS transistors having different gate dielectric materials
JP4575471B2 (ja) * 2008-03-28 2010-11-04 株式会社東芝 半導体装置および半導体装置の製造方法
US8753936B2 (en) * 2008-08-12 2014-06-17 International Business Machines Corporation Changing effective work function using ion implantation during dual work function metal gate integration

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040108559A1 (en) * 2002-10-02 2004-06-10 Renesas Technology Corp. Insulated-gate field-effect transistor, method of fabricating same, and semiconductor device employing same
US20040099903A1 (en) * 2002-11-26 2004-05-27 Taiwan Semiconductor Manufacturing Co., Ltd. Strained-channel multiple-gate transistor
CN101060085A (zh) * 2006-04-21 2007-10-24 国际商业机器公司 形成场效应晶体管的方法
US20090090938A1 (en) * 2007-10-04 2009-04-09 International Business Machines Corporation Channel stress engineering using localized ion implantation induced gate electrode volumetric change

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105633171A (zh) * 2016-03-22 2016-06-01 京东方科技集团股份有限公司 一种薄膜晶体管及其制作方法、显示装置
WO2017161645A1 (zh) * 2016-03-22 2017-09-28 京东方科技集团股份有限公司 薄膜晶体管及其制作方法、以及显示装置
US10205026B2 (en) 2016-03-22 2019-02-12 Boe Technology Group Co., Ltd. Thin film transistor having a composite metal gate layer
US11776582B1 (en) 2021-06-21 2023-10-03 Inspur Suzhou Intelligent Technology Co., Ltd. Hard disk fixing device and server

Also Published As

Publication number Publication date
CN105428232A (zh) 2016-03-23
EP2517230A1 (en) 2012-10-31
JP2013511158A (ja) 2013-03-28
WO2011087566A1 (en) 2011-07-21
CN102612737B (zh) 2015-12-09
HK1176163A1 (zh) 2013-07-19
KR20120084812A (ko) 2012-07-30
EP2517230A4 (en) 2013-10-23
US20110147804A1 (en) 2011-06-23
JP5507701B2 (ja) 2014-05-28

Similar Documents

Publication Publication Date Title
CN102612737B (zh) 通过使用离子注入引入压缩金属栅极应力而在三栅极mosfet中实现驱动电流增强
US7482211B2 (en) Junction leakage reduction in SiGe process by implantation
JP6218384B2 (ja) タングステンゲート電極を備えた半導体装置の製造方法
CN105070716B (zh) 具有穿通抑制的先进晶体管
US8247285B2 (en) N-FET with a highly doped source/drain and strain booster
DE112008000638B4 (de) Verfahren zur Herstellung einer Halbleitereinheit mit selbstausgerichteten epitaxialen Verlängerungen von Quellen und Senken
CN103930998B (zh) 薄体mosfet的阈值电压调节
CN103053025B (zh) 具有阈值电压设定掺杂剂结构的先进晶体管
DE102010037736B4 (de) Tunnel-Feldeffekttransistoren
US7750381B2 (en) Semiconductor device and method of manufacturing semiconductor device
CN101447512B (zh) 具有抬高的源/漏区的mos器件
US20070298557A1 (en) Junction leakage reduction in SiGe process by tilt implantation
US8039375B2 (en) Shallow junction formation and high dopant activation rate of MOS devices
US8120120B2 (en) Embedded silicon germanium source drain structure with reduced silicide encroachment and contact resistance and enhanced channel mobility
CN102656672A (zh) 具有自对准外延源和漏的多栅半导体器件
DE112011102840T5 (de) Halbleiter, der durch elastische Kantenrelaxation eines Stressors in Kombination mit einer vergrabenen Isolierschicht verspannt wird
CN103426769B (zh) 半导体器件制造方法
CN102906880A (zh) 用于嵌入的源极/漏极硅化物的δ单层掺杂剂外延
US8450171B2 (en) Strained semiconductor device and method of making same
CN103094207A (zh) 采用应力记忆技术制造半导体器件的方法
CN105448727B (zh) 半导体器件及其形成方法
US20120181634A1 (en) Method of Introducing Strain Into Channel and Device Manufactured by Using the Method
CN103000523A (zh) Pmos晶体管结构及其制造方法
CN103000525A (zh) Pmos晶体管结构及其制造方法
CN101814456B (zh) 集成电路装置及其形成方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1176163

Country of ref document: HK

C14 Grant of patent or utility model
GR01 Patent grant
REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1176163

Country of ref document: HK

CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20151209

Termination date: 20191118

CF01 Termination of patent right due to non-payment of annual fee