CN102580696A - 一种埃洛石磁性复合材料表面印迹温敏吸附剂的制备方法 - Google Patents

一种埃洛石磁性复合材料表面印迹温敏吸附剂的制备方法 Download PDF

Info

Publication number
CN102580696A
CN102580696A CN2012100374725A CN201210037472A CN102580696A CN 102580696 A CN102580696 A CN 102580696A CN 2012100374725 A CN2012100374725 A CN 2012100374725A CN 201210037472 A CN201210037472 A CN 201210037472A CN 102580696 A CN102580696 A CN 102580696A
Authority
CN
China
Prior art keywords
magnetic
halloysite nanotubes
ratio
temperature sensitive
tcp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2012100374725A
Other languages
English (en)
Inventor
潘建明
刘燕
王柄
戴江栋
徐龙城
李秀秀
杭辉
闫永胜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University
Original Assignee
Jiangsu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University filed Critical Jiangsu University
Priority to CN2012100374725A priority Critical patent/CN102580696A/zh
Publication of CN102580696A publication Critical patent/CN102580696A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明一种埃洛石磁性复合材料表面印迹温敏吸附剂的制备方法,属环境功能材料制备技术领域。通过简单有效的溶剂热合成法制备了四氧化三铁/埃洛石纳米管(Fe3O4/HNTs)磁性复合材料。接着对磁性复合材料进行了乙烯基改性。随后通过自由基聚合过程制备埃洛石纳米管磁性复合材料表面印迹温敏型吸附剂,并将吸附剂用于水溶液中2,4,5-三氯苯酚的选择性识别和分离。制备的温敏型印迹吸附剂有显著的热和磁稳定性,敏感的磁和热感应效果,有较高的吸附容量,显著地随温度可逆吸附/释放功能,明显的TCP分子识别性能。

Description

一种埃洛石磁性复合材料表面印迹温敏吸附剂的制备方法
技术领域
本发明涉及一种埃洛石纳米管磁性复合材料表面印迹温敏型吸附剂的制备方法,属环境功能材料制备技术领域。
背景技术
分子印迹是制备具有预定识别功能结合位点三维交联高分子的技术,制备的分子印迹聚合物(MIPs)能对模板分子产生特异性吸附。表面分子印迹技术通过把分子识别位点建立在基质材料的表面,较好的解决了传统分子印迹技术整体还存在的一些严重缺陷,如活性位点包埋过深,传质和电荷传递的动力学速率慢,吸附-脱附的动力学性能不佳等,与常用的基质材料SiO2和TiO2等相比较,纳米材料特有的表面积与体积大比例的特性,使其成为理想的表面印迹基质材料,埃洛石纳米管(HNTs)是一种粘土质硅酸盐矿物,在我国四川和河南省有较大的储量,由于其特有的两端开口纳米管结构、较大的比表面积、廉价的成本、优良的耐酸碱性能,埃洛石纳米管可以作为碳纳米管的替代品,广泛用于表面印迹过程的基质材料。
近年来,智能印迹体系制备出能对磁场、光源、温度和pH值产生响应作用的印迹聚合物成为了研究的热点。其中四氧化三铁(Fe3O4)纳米粒子由于较强的超顺磁性,已被用于制备核壳结构的磁性表面印迹聚合物(MMIPs)。磁性表面印迹聚合物利用四氧化三铁纳米粒子基质的超顺磁性和包覆层印迹聚合物的特异性吸附作用,可实现在外磁场辅助下选择性的将目标污染物与母液迅速分离。但单纯四氧化三铁纳米粒子在使用中易团聚、耐酸性差,多次使用后易漏磁。近期,我们将四氧化三铁纳米粒子固载在羧基功能化的埃洛石纳米管表面,随后在其复合材料表面实施印迹聚合过程,较好的解决了磁性印迹聚合物磁泄露和四氧化三铁纳米粒子团聚的问题。利用简单的溶剂热反应先将四氧化三铁纳米粒子固定在埃洛石纳米管表面制备磁性复合材料,再在磁性复合材料表面印迹改性获得磁性印迹聚合吸附剂的研究尚未有报道。
此外,基于聚N-异丙基丙烯酰胺(PNIPAM)的温敏型印迹聚合物也是一种典型的智能印迹体系。PNIPAM由于其大分子侧链上同时具有亲水性的酞胺基一CONH一和疏水性的异丙基一 CH(CH3)2,使线型PNIPAM的水溶液及交联后的PN护AM微凝胶在32℃附近发生相转变而产生体
积收缩,由亲水性转变为疏水性,分子链由扩展构象变为收缩。一般而言,在外界温度低于32℃时,亲水基团与水分子之间存在较强的氢键作用,使高分子链具有良好的亲水性,体积膨胀;温度上升时,这种氢键作用逐渐减弱,而高分子链中疏水基团间的相互作用得以加强。当温度高于32℃时,高分子链通过疏水作用互相聚集,体积收缩,发生相转变。目前温敏型的分子印迹凝胶已有报道,但其刚性茶和吸附容量低限制了其广泛应用。将温敏型印迹高分子建立在支架材料表面尤其是建立在磁性复合材料表面的研究尚未有报道。
2,4,5-三氯苯酚(TCP)常被用于除草剂的前驱体和造纸厂纸浆的杀菌剂。由于其持久性的生物毒性,目前2,4,5-三氯苯酚已被美国环境保护组织列为“持久性的、生物累积的、有毒的”化学品清单。为此,及时检测和处理环境水体中2,4,5-三氯苯酚很有必要,但环境水体中成分复杂,选择性识别与分离目标污染物(2,4,5-三氯苯酚)显得尤为重要。
    
发明内容
本发明通过简单有效的溶剂热合成法制备了四氧化三铁/埃洛石纳米管(Fe3O4/HNTs)磁性复合材料。接着利用3-(甲基丙烯酰氧)丙基三甲氧基硅烷(MPS)对磁性复合材料进行了乙烯基改性。随后以制得的乙烯基改性磁性复合材料为基质材料,2,4,5-三氯苯酚(TCP)为模板分子,甲基丙稀酸(MAA)为功能单体,N-异丙基丙烯酰胺(NIPAM)为温敏型功能单体,乙二醇二(甲基丙烯酸)酯(EGDMA)为交联剂,2,2'-偶氮二已丁腈(AIBN)为引发剂,通过自由基聚合过程制备埃洛石纳米管磁性复合材料表面印迹温敏型吸附剂,并将吸附剂用于水溶液中2,4,5-三氯苯酚的选择性识别和分离。
本发明采用的技术方案是:
(1)埃洛石纳米管(HNTs)活化:
块状埃洛石纳米管经研磨粉碎过100筛,在100-120 oC高温下煅烧18-24h,随后埃洛石纳米管在体积比为1:(3-4)的浓硫酸和浓硝酸中70-80oC回流6.0-10h,最后产物用二次蒸馏水洗至中性,在50-60oC下烘干备用;
(2)磁性埃洛石纳米管复合材料(MHNTs)的制备:
    将活化的埃洛石纳米管、六水合氯化铁(FeCl3·6H2O)与醋酸钠(NaAc)按照质量比(0.6-1.0):(0.25-0.4):(1.5-2.5)的比例超声溶解分散在乙二醇中,乙二醇的加入量遵循按照埃洛石纳米管:乙二醇=1.0:80-100(g/ml)的比例,超声时间为2.0-5.0h;随后按照质量比为埃洛石纳米管:聚乙二醇(PEG-1000)=1.0:1.2-1.8的比例,在上述分散液中加入聚乙二醇(PEG-1000),继续磁力搅拌30-50min,搅拌结束后将反应液转入水热反应釜(聚四氟乙烯内胆),在185-205oC高温下反应6.0-10h,产物用Nd-Fe-B永久磁铁收集,用无水乙醇和蒸馏水洗涤3次,在60oC下真空干燥;
(3)埃洛石纳米管磁性复合材料表面印迹温敏型吸附剂(t-MMIPs)的制备,按照下述步骤进行:
1)将磁性埃洛石纳米管复合材料表面用乙烯基改性:磁性埃洛石纳米管复合材料、3-(甲基丙烯酰氧)丙基三甲氧基硅烷(MPS)和无水乙醇按照(0.05-0.1):(2.5-5.0):(25-50)(g/ml/ml)的比例,将磁性埃洛石纳米管复合材料分散在3-(甲基丙烯酰氧)丙基三甲氧基硅烷MPS和无水乙醇的混合液中,在40-50oC下搅拌反应10-12h,产物(MHNTs-MPS)用Nd-Fe-B永久磁铁收集,用无水乙醇和蒸馏水洗涤3次,在50oC下真空干燥;
2)将温敏型印迹高分子包覆在乙烯基改性的磁性埃洛石纳米管复合材料表面:将2,4,5-三氯酚(TCP)和a-甲基丙烯酸(MAA)按摩尔比1.0:(3.0-4.0 )(mmol:mmol)加入到二甲亚砜溶液中,控制2,4,5-三氯酚的浓度为(0.08-0.1mmol)/L,将混合液通氮气排空氧气后在黑暗阴凉的条件下静置12h,形成预组装体系;
3)接着按照摩尔比2,4,5-三氯酚:N-异丙基丙烯酰胺(NIPAM)为1:(9.0-10) 的比例,在预组装体系中加入N-异丙基丙烯酰胺,搅拌10min,直至完全溶解得到混合溶液1;
4)在混合溶液1中加入乙烯基改性磁性复合材料MHNTs-MPS,控制浓度为(0.1-0.5g)/100ml,按TCP和乙二醇二(甲基丙烯酸)酯(EGDMA)摩尔比1:15-20的比例加入EGDMA,在300-400rpm下搅拌30min,形成预聚合溶液,接着每毫摩尔TCP加入0.2-0.4g聚乙烯吡咯烷酮和(80-120ml)二甲亚砜与水的混合液(9:1,V/V);在300-400rpm下搅拌30min后,通氮气排空氧气,按每毫摩尔TCP加入0.2-0.4gAIBN的比例,在反应体系中加入引发剂,反应在氮气保护下,在50oC先聚合6.0h,再在70oC下聚合18h;
5)产物埃洛石纳米管磁性复合材料表面印迹温敏型吸附剂(t-MMIPs)用Nd-Fe-B永久磁铁收集,用无水乙醇和蒸馏水洗涤3次;最后产物用甲醇和醋酸的混合液(95:5, V/V)为提取液索式提取48h,脱除模板分子TCP,在50oC下真空干燥。
制备非印迹温敏吸附剂(t-MNIPs)的方法和印迹温敏聚合物(t-MMIPs)类似,所用试剂的用量参照制备对应的t-MMIPs时的用量加,只是不加TCP。
本发明的技术优点:该产品由于印迹高分子发生在磁性埃洛石复合材料表面,避免了部分模板分子因包埋过深而无法洗脱的问题,获得的印迹吸附剂机械强度高,识别点不易破坏,大大地降低了非特异性吸附;利用本发明获得的温敏型磁性印迹吸附剂具有较好的磁和热响应性质,能实现快速分离和随温度识别、释放的功能;埃洛石纳米管磁性复合材料表面印迹温敏型吸附剂具有磁和热稳定性好,较高的吸附容量,显著的TCP分子识别性能。
附图说明
图1 为实施例1中纳米基质材料(a)和磁性温敏印迹吸附剂得红外谱图(b)。从图中可知埃洛石的磁性修饰和磁性埃洛石的乙烯基改性成功进行了,温敏型单体和功能单体也成功参与了印迹聚合;
图2 为实施例1中t-MNIPs的温敏效果图。从图中可知t-MMIPs有优良的温敏效果,临界转换温度为32.77oC;
图3 为实施例1中t-MNIPs的X射线衍射谱图(a)和拉曼光谱图(b)。t-MMIPs在20°<2θ<70°区间的六个XRD特征峰(2θ = 30.21°、35.67°、43.28°、53.68°、57.36°和62.82°),t-MMIPs的拉曼光谱图在304、552和672cm-1有三个特征峰,表明t-MMIP中存在四氧化三铁纳米粒子;
图4为实施例1中 MHNTs、MHNTs-MPs、t-MMIPs和t-MNIPs的热重谱图。从图中可以看出MHNTs和MHNTs-MPs在400oC下有较好的热稳定性,在800oC下t-MMIPs比t-MNIPs有较好的稳定性,失重率分别为73.67%和74.21%;
图5 为实施例1中HNTs(a)、MHNTs(b)和t-MMIPs(c)的投射电镜图。从图中可知埃洛石纳米管内径为25nm,管壁厚25–40nm,MHNTs表面沉积的四氧化三铁纳米粒子平均粒径为75nm,t-MMIPs中温敏的印迹层厚度为10–15nm; 
图6 为实施例1中MHNTs和t-MMIPs的磁滞回线(a),磁分离效果的图示和漏磁曲线图。从图中可以看出,MHNTs和t-MMIPs的饱和磁性分别为36.99emu/g和2.026emu/g,MMIPs在外加磁场下的分离效果显著,在强酸条件pH=2.0时,50mgt-MMIPs中仅有8.022ug的铁漏出;
图7为实施例1中氘代二甲亚砜中MAA(a),TCP(b),20mmol/LTCP和80mmol/LMAA (c)混合液的1H-NMR图, TCP和MAA混合后,两者羟基质子的化学位移明显变化,表明TCP和MAA以氢键紧密结合;
图8 为实施例1中不同pH值对t-MMIPs和t-MNIPs吸附TCP的影响,以及吸附TCP前后介质pH值的变化图示。从图中可以看出,在pH =2.0–6.0区间,t-MMIPs和t-MNIPs对TCP的吸附容量基本是常数,当pH值大于6.0后吸附容量减小,pH=6.0被选为最佳pH值,pH=6.0时吸附前后介质pH值没有变化。
具体实施方式
本发明具体实施方式中识别性能评价按照下述方法进行:利用静态吸附实验完成。将10ml一定浓度的TCP溶液加入到比色管中,调节pH=6.0,加入一定量的温敏型吸附剂,放在60oC恒温水域中静置若干小时,吸附后TCP含量用紫外可见分光光度计测定,并根据结果计算出吸附容量;饱和吸附后,温敏型吸附剂用Nd-Fe-B永久磁铁收集,用2.0ml乙腈洗涤,再加入10ml二次蒸馏水,在20oC恒温水域中静置若干小时,释放出的TCP含量用紫外可见分光光度计测定,并根据结果计算出TCP的释放量;选择几种结构和性质类似的酚类化合物,作为竞争吸附物,参与研究t-MMIPs的识别性能。
下面结合具体实施实例对本发明做进一步说明。
实施例1:
(1)埃洛石纳米管(HNTs)活化方法
块状埃洛石纳米管经研磨粉碎过100筛,在100oC高温下煅烧18h,随后埃洛石纳米管在体积比为1:3的浓硫酸和浓硝酸中70oC回流6.0h。最后产物用二次蒸馏水洗至中性,在60oC下烘干备用。
(2)磁性埃洛石纳米管复合材料(MHNTs)的制备
将活化的埃洛石纳米管与六水合氯化铁(FeCl3·6H2O)、醋酸钠(NaAc)按照质量比0.6: 0.25:1.5的比例超声溶解分散在乙二醇中,乙二醇的加入量遵循每1.0g埃洛石纳米管使用80ml的比例,超声时间为2.0h;随后,按照每1.0g埃洛石纳米管添加1.2g聚乙二醇(PEG-1000)的比例,在上述分散液中加入聚乙二醇,继续磁力搅拌30min。搅拌结束后将反应液转入水热反应釜(聚四氟乙烯内胆),在185oC高温下反应6.0h,产物用Nd-Fe-B永久磁铁收集,用无水乙醇和蒸馏水洗涤3次,在60oC下真空干燥。
(3)埃洛石纳米管磁性复合材料表面印迹温敏型吸附剂(t-MMIPs)的制备
首先,磁性埃洛石纳米管复合材料、3-(甲基丙烯酰氧)丙基三甲氧基硅烷(MPS)和无水乙醇按照0.05:2.5:25 (g/ml/ml)的比例,将磁性埃洛石纳米管复合材料分散在3-(甲基丙烯酰氧)丙基三甲氧基硅烷MPS和无水乙醇的混合液中,在40oC下搅拌反应10h,产物(MHNTs-MPS)用Nd-Fe-B永久磁铁收集,用无水乙醇和蒸馏水洗涤3次,在50oC下真空干燥。
其次,将2,4,5-三氯酚(TCP)和a-甲基丙烯酸(MAA)按摩尔比1.0:3.0(mmol:mmol)加入到二甲亚砜溶液中,控制2,4,5-三氯酚的浓度为0.08mmol/L,将混合液通氮气排空氧气后在黑暗阴凉的条件下静置12h,形成预组装体系;接着按照摩尔比2,4,5-三氯酚:N-异丙基丙烯酰胺(NIPAM)为1:9.0的比例,在预组装体系中加入N-异丙基丙烯酰胺,搅拌10min,直至完全溶解得到混合溶液1;接着在混合溶液1中加入乙烯基改性磁性复合材料MHNTs-MPS,控制浓度为0.1g/100ml,按TCP和乙二醇二(甲基丙烯酸)酯(EGDMA)摩尔比1:15的比例加入EGDMA,在300rpm下搅拌30min,形成预聚合溶液,接着每毫摩尔TCP加入0.2g聚乙烯吡咯烷酮和80ml二甲亚砜与水的混合液(9:1,V/V);在300rpm下搅拌30min后,通氮气排空氧气,按每毫摩尔TCP加入0.2gAIBN的比例,在反应体系中加入引发剂。反应在氮气保护下,在50oC先聚合6.0h,再在70oC下聚合18h,产物埃洛石纳米管磁性复合材料表面印迹温敏型吸附剂(t-MMIPs)用Nd-Fe-B永久磁铁收集,用无水乙醇和蒸馏水洗涤3次;最后产物用甲醇和醋酸的混合液(95:5, V/V)为提取液索式提取48h,脱除模板分子TCP,在50oC下真空干燥,本发明对应的非印迹温敏吸附剂(t-MNIPs)制备方法类似,但不加TCP。
其中图1 为实施例1中纳米基质材料(a)和磁性温敏印迹吸附剂得红外谱图(b)。从图中可知埃洛石的磁性修饰和磁性埃洛石的乙烯基改性成功进行了,温敏型单体和功能单体也成功参与了印迹聚合;图2 为实施例1中t-MNIPs的温敏效果图。从图中可知t-MMIPs有优良的温敏效果,临界转换温度为32.77oC;图3 为实施例1中t-MNIPs的X射线衍射谱图(a)和拉曼光谱图(b)。t-MMIPs在20°<2θ<70°区间的六个XRD特征峰(2θ = 30.21°、35.67°、43.28°、53.68°、57.36°和62.82°),t-MMIPs的拉曼光谱图在304、552和672cm-1有三个特征峰,表明t-MMIP中存在四氧化三铁纳米粒子;图4为实施例1中 MHNTs、MHNTs-MPs、t-MMIPs和t-MNIPs的热重谱图。从图中可以看出MHNTs和MHNTs-MPs在400oC下有较好的热稳定性,在800oC下t-MMIPs比t-MNIPs有较好的稳定性,失重率分别为73.67%和74.21%;
图5 为实施例1中HNTs(a)、MHNTs(b)和t-MMIPs(c)的投射电镜图。从图中可知埃洛石纳米管内径为25nm,管壁厚25–40nm,MHNTs表面沉积的四氧化三铁纳米粒子平均粒径为75nm,t-MMIPs中温敏的印迹层厚度为10–15nm; 图6 为实施例1中MHNTs和t-MMIPs的磁滞回线(a),磁分离效果的图示和漏磁曲线图。从图中可以看出,MHNTs和t-MMIPs的饱和磁性分别为36.99emu/g和2.026emu/g,MMIPs在外加磁场下的分离效果显著,在强酸条件pH=2.0时,50mgt-MMIPs中仅有8.022ug的铁漏出;图7为实施例1中氘代二甲亚砜中MAA(a),TCP(b),20mmol/LTCP和80mmol/LMAA (c)混合液的1H-NMR图, TCP和MAA混合后,两者羟基质子的化学位移明显变化,表明TCP和MAA以氢键紧密结合。
实施例2:
(1)埃洛石纳米管(HNTs)活化:
块状埃洛石纳米管经研磨粉碎过100筛,在120 oC高温下煅烧24h,随后埃洛石纳米管在体积比为1: 4的浓硫酸和浓硝酸中80oC回流10h,最后产物用二次蒸馏水洗至中性,在60oC下烘干备用;
(2)磁性埃洛石纳米管复合材料(MHNTs)的制备:
将活化的埃洛石纳米管与六水合氯化铁(FeCl3·6H2O)、醋酸钠(NaAc)按照质量比1.0: 0.4:2.5的比例超声溶解分散在乙二醇中,乙二醇的加入量遵循按照每1.0g埃洛石纳米管使用100ml的比例,超声时间为5.0h;随后,按照每1.0g埃洛石纳米管添加1.8g聚乙二醇(PEG-1000)的比例,在上述分散液中加入聚乙二醇(PEG-1000),继续磁力搅拌50min。搅拌结束后将反应液转入水热反应釜(聚四氟乙烯内胆),在205oC高温下反应10h,产物用Nd-Fe-B永久磁铁收集,用无水乙醇和蒸馏水洗涤3次,在60oC下真空干燥。
(3)埃洛石纳米管磁性复合材料表面印迹温敏型吸附剂(t-MMIPs)的制备
首先,将磁性埃洛石纳米管复合材料表面用乙烯基改性:磁性埃洛石纳米管复合材料、3-(甲基丙烯酰氧)丙基三甲氧基硅烷(MPS)和无水乙醇按照0.1:5.0: 50(g/ml/ml)的比例,将磁性埃洛石纳米管复合材料分散在3-(甲基丙烯酰氧)丙基三甲氧基硅烷MPS和无水乙醇的混合液中,在50oC下搅拌反应12h,产物(MHNTs-MPS)用Nd-Fe-B永久磁铁收集,用无水乙醇和蒸馏水洗涤3次,在50oC下真空干燥;
其次,将2,4,5-三氯酚(TCP)和a-甲基丙烯酸(MAA)按摩尔比1.0:4.0(mmol:mmol)加入到二甲亚砜溶液中,控制2,4,5-三氯酚的浓度为0.1mmol/L,将混合液通氮气排空氧气后在黑暗阴凉的条件下静置12h,形成预组装体系;接着按照摩尔比2,4,5-三氯酚:N-异丙基丙烯酰胺(NIPAM)为1:10 的比例,在预组装体系中加入N-异丙基丙烯酰胺,搅拌10min,直至完全溶解得到混合溶液1;在混合溶液1中加入乙烯基改性磁性复合材料MHNTs-MPS,控制浓度为0.5g/100ml,按TCP和乙二醇二(甲基丙烯酸)酯(EGDMA)摩尔比1:20的比例加入EGDMA,在400rpm下搅拌30min,形成预聚合溶液,接着每毫摩尔TCP加入0.4g聚乙烯吡咯烷酮和120ml二甲亚砜与水的混合液(9:1,V/V);在400rpm下搅拌30min后,通氮气排空氧气,按每毫摩尔TCP加入0.4gAIBN的比例,在反应体系中加入引发剂,反应在氮气保护下,在50oC先聚合6.0h,再在70oC下聚合18h,接着产物埃洛石纳米管磁性复合材料表面印迹温敏型吸附剂(t-MMIPs)用Nd-Fe-B永久磁铁收集,用无水乙醇和蒸馏水洗涤3次;最后产物用甲醇和醋酸的混合液(95:5, V/V)为提取液索式提取48h,脱除模板分子TCP,在50oC下真空干燥,对应的非印迹温敏吸附剂(t-MNIPs)制备方法类似,但不加TCP。
试验例1:取10ml初始浓度分别为10 mg/l、30 mg/l、50 mg/l、80 mg/l、100 mg/l、150 mg/l、200 mg/l、250mg/L的TCP溶液加入到比色管中,用稀盐酸或稀氨水调节pH值为6.0,分别加入10mg实施例1中的温敏型磁性印迹和非印迹吸附剂,把测试液放在60℃的水浴中静置6h后,上层清液用Nd-Fe-B永久磁铁分离收集,未吸附的TCP分子浓度用紫外可见分光光度计测定,并根据结果计算出吸附容量,结果表明,当初始浓度为200mg/L时,埃洛石纳米管磁性复合材料表面印迹温敏型吸附剂(t-MMIPs)的吸附趋于平衡,当初始浓度为150mg/L时,非印迹温敏吸附剂(t-MNIPs)的吸附趋于平衡,达到吸附平衡时t-MMIPs的饱和吸附容量为197.9mg/g,远高于t-MNIPs的122.6mg/g。图8 为实施例1中不同pH值对t-MMIPs和t-MNIPs吸附TCP的影响,以及吸附TCP前后介质pH值的变化图示。从图中可以看出,在pH =2.0–6.0区间,t-MMIPs和t-MNIPs对TCP的吸附容量基本是常数,当pH值大于6.0后吸附容量减小,pH=6.0被选为最佳pH值,pH=6.0时吸附前后介质pH值没有变化。
试验例2:饱和吸附后,实施例1中的温敏型吸附剂用Nd-Fe-B永久磁铁收集,用2.0ml乙腈洗涤,再加入10ml二次蒸馏水,在20oC恒温水域中静置48小时,释放出的TCP含量用紫外可见分光光度计测定,并根据结果计算出TCP的释放量。结果表明,32.3%-42.7%吸附的TCP能被t-MMIPs 释放,而t-MNIPs仅能释放25.3%-39.9%。
试验例3:选择2,4-二氯酚(DCP)、芝麻酚(MDP)、麝香草酚(Thymol)、双酚A(BPA)为竞争吸附的酚类化合物,分别配置以上四种酚类化合物的水溶液,每种酚的浓度都为200mg/l,取10ml配置好的溶液加入到比色管中,用稀盐酸或稀氨水调节pH值为6.0,分别加入10mg实施例1中的t-MMIPs和t-MNIPs吸附剂,把测试液放在60℃的水浴中分别静置6.0h,静置时间完成后,上层清液用Nd-Fe-B永久磁铁分离收集,未吸附的各种竞争吸附酚类化合物浓度用Uv-vis测定,结果表明,t-MMIPs对TCP、MDP、Thymol、BPA和DCP的吸附容量分别为155.02mg/g、89. 15mg/g、107.83mg/g、97.05mg/g和87.38mg/g,而t-MNIPs对TCP、MDP、Thymol、BPA和DCP的吸附容量分别为131.28mg/g、90.87mg/g、102.12mg/g、93.97mg/g和85.47mg/g,表明t-MMIPs对TCP有显著的专一识别性,吸附容量高于其它酚类化合物。
试验例4:选择2,4-二氯酚(DCP)、芝麻酚(MDP)、麝香草酚(Thymol)、双酚A(BPA)为竞争吸附的酚类化合物。分别配置TCP与四种竞争酚类化合物的二元混合溶液,每种酚的浓度都为200mg/l,取10ml配置好的混合溶液加入到比色管中,用稀盐酸或稀氨水调节pH值为6.0,分别加入10mg实施例1中的t-MMIPs和t-MNIPs吸附剂,把测试液放在60℃的水浴中分别静置6.0h,静置时间完成后,上层清液用Nd-Fe-B永久磁铁分离收集,未吸附的TCP浓度用高效液相色谱测定,流动相为30%的超纯水(pH=3.0),70%的高效液相纯甲醇。结果表明,其它干扰物BPA、DCP、MDP 和Thymol的存在时t-MMIPs对TCP的吸附容量分别为140.47mg/g、151.94mg/g、153.18mg/g和139.59mg/g,而t-MNIPs对TCP的吸附容量分别为48.65mg/g、101.90mg/g、129.89mg/g和118.92mg/g,t-MMIPs对TCP的识别性能反而明显增加了。

Claims (1)

1.一种埃洛石磁性复合材料表面印迹温敏吸附剂的制备方法,按照下述步骤进行:
(1)埃洛石纳米管活化:
块状埃洛石纳米管经研磨粉碎过100筛,在100-120 oC高温下煅烧18-24h,随后埃洛石纳米管在体积比为1:(3-4)的浓硫酸和浓硝酸中70-80oC回流6.0-10h,最后产物用二次蒸馏水洗至中性,在50-60oC下烘干备用;
(2)磁性埃洛石纳米管复合材料的制备:
    将活化的埃洛石纳米管与六水合氯化铁、醋酸钠按照质量比(0.6-1.0):(0.25-0.4):(1.5-2.5)的比例超声溶解分散在乙二醇中,乙二醇的加入量按照埃洛石纳米管:乙二醇=1.0:80-100(g/ml)的比例,超声时间为2.0-5.0h;随后按照质量比为埃洛石纳米管:聚乙二醇(PEG-1000)=1.0:1.2-1.8的比例,在上述分散液中加入聚乙二醇,继续磁力搅拌30-50min;
搅拌结束后将反应液转入水热反应釜,在185-205oC高温下反应6.0-10h,产物用Nd-Fe-B永久磁铁收集,用无水乙醇和蒸馏水洗涤3次,在60oC下真空干燥;
(3)埃洛石纳米管磁性复合材料表面印迹温敏型吸附剂的制备,按照下述步骤进行:
1)将磁性埃洛石纳米管复合材料表面用乙烯基改性:磁性埃洛石纳米管复合材料、3-(甲基丙烯酰氧)丙基三甲氧基硅烷和无水乙醇按照(0.05-0.1):(2.5-5.0):(25-50)(g/ml/ml)的比例,将磁性埃洛石纳米管复合材料分散在3-(甲基丙烯酰氧)丙基三甲氧基硅烷MPS和无水乙醇的混合液中,在40-50oC下搅拌反应10-12h,产物用Nd-Fe-B永久磁铁收集,用无水乙醇和蒸馏水洗涤3次,在50oC下真空干燥;
2) 将温敏型印迹高分子包覆在乙烯基改性的磁性埃洛石纳米管复合材料表面:将2,4,5-三氯酚和α-甲基丙烯酸按摩尔比1.0:(3.0-4.0 )(mmol:mmol)加入到二甲亚砜溶液中,控制2,4,5-三氯酚的浓度为(0.08-0.1) (mmol /L),将混合液通氮气排空氧气后在黑暗阴凉的条件下静置12h,形成预组装体系;
3) 接着按照摩尔比2,4,5-三氯酚:N-异丙基丙烯酰胺为1:(9.0-10) 的比例,在预组装体系中加入N-异丙基丙烯酰胺,搅拌10min,直至完全溶解;
4)在以上溶液中加入乙烯基改性磁性复合材料,控制浓度为(0.1-0.5)/100 (g/ml),按TCP和乙二醇二(甲基丙烯酸)酯摩尔比1:15-20的比例加入EGDMA,在300-400rpm下搅拌30min,形成预聚合溶液;接着每毫摩尔TCP加入0.2-0.4g聚乙烯吡咯烷酮和80-120ml体积比为9:1的二甲亚砜与水的混合液;在300-400rpm下搅拌30min后,通氮气排空氧气,按每毫摩尔TCP加入0.2-0.4gAIBN的比例,在反应体系中加入引发剂;
反应在氮气保护下,在50oC先聚合6.0h,再在70oC下聚合18h;
5)产物埃洛石纳米管磁性复合材料表面印迹温敏型吸附剂用Nd-Fe-B永久磁铁收集,用无水乙醇和蒸馏水洗涤3次;最后产物用甲醇和醋酸的体积比为95:5的混合液为提取液索式提取48h,脱除模板分子TCP,在50oC下真空干燥。
CN2012100374725A 2012-02-20 2012-02-20 一种埃洛石磁性复合材料表面印迹温敏吸附剂的制备方法 Pending CN102580696A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2012100374725A CN102580696A (zh) 2012-02-20 2012-02-20 一种埃洛石磁性复合材料表面印迹温敏吸附剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2012100374725A CN102580696A (zh) 2012-02-20 2012-02-20 一种埃洛石磁性复合材料表面印迹温敏吸附剂的制备方法

Publications (1)

Publication Number Publication Date
CN102580696A true CN102580696A (zh) 2012-07-18

Family

ID=46470249

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2012100374725A Pending CN102580696A (zh) 2012-02-20 2012-02-20 一种埃洛石磁性复合材料表面印迹温敏吸附剂的制备方法

Country Status (1)

Country Link
CN (1) CN102580696A (zh)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103087252A (zh) * 2013-01-16 2013-05-08 珠海得米新材料有限公司 一种高吸水性复合材料的制备方法
CN103601847A (zh) * 2013-10-24 2014-02-26 江苏大学 一种核壳式磁性表面印迹纳米复合材料的制备方法
CN103613722A (zh) * 2013-11-28 2014-03-05 中南大学 制备对2,4-二氯苯氧乙酸具有特异性吸附的磁性埃洛石分子印迹聚合物的方法
CN103638944A (zh) * 2013-11-22 2014-03-19 江苏大学 一种磁性复合催化剂Ag/HNTs/Fe3O4的制备方法
CN103724539A (zh) * 2012-10-12 2014-04-16 中国药科大学 一种磁性碳纳米管表面分子印迹材料的制备方法
CN103756004A (zh) * 2013-12-27 2014-04-30 江苏大学 一种量子点磷光印迹聚合物的制备方法
CN103910836A (zh) * 2013-01-07 2014-07-09 中国药科大学 一种可应用于生物样品前处理的磁性碳纳米管表面分子印迹聚合物的制备方法
CN103936943A (zh) * 2014-04-04 2014-07-23 江苏大学 一种改性高岭土表面印迹聚合物的制备方法及其应用
CN104892867A (zh) * 2015-03-16 2015-09-09 河南城建学院 一种伊利石磁性复合材料表面印迹温敏吸附剂的制备方法
CN105016860A (zh) * 2015-06-26 2015-11-04 刘志勇 有机无机复合磁载悬浮剂的生产方法
CN105170112A (zh) * 2015-07-27 2015-12-23 河南城建学院 一种磁性碳微球表面头孢氨苄分子印迹吸附材料的制备方法
CN107088398A (zh) * 2017-07-04 2017-08-25 扬州大学 埃洛石负载针形四氧化三铁纳米复合材料的制备方法
CN108993378A (zh) * 2017-06-07 2018-12-14 桂林市庆通有色金属工艺材料开发有限公司 一种硅烷偶联剂改性埃洛石/Fe3O4复合材料及其制备方法
CN114272909A (zh) * 2020-09-28 2022-04-05 中科院广州化学所韶关技术创新与育成中心 一种聚乙二醇改性氧化石墨烯及其制备方法与应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070004857A1 (en) * 2002-06-19 2007-01-04 Barraza Harry J Carbon nanotube-filled composites prepared by in-situ polymerization
CN101234329A (zh) * 2008-01-09 2008-08-06 华中科技大学 一种SiO2颗粒表面分子印迹吸附剂及其制备方法
CN101423612A (zh) * 2008-12-04 2009-05-06 中北大学 一种硅胶表面酚类分子印迹聚合物的制备方法
CN102212162A (zh) * 2011-03-25 2011-10-12 浙江大学宁波理工学院 巯基化纳米四氧化三铁磁性高分子复合材料的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070004857A1 (en) * 2002-06-19 2007-01-04 Barraza Harry J Carbon nanotube-filled composites prepared by in-situ polymerization
CN101234329A (zh) * 2008-01-09 2008-08-06 华中科技大学 一种SiO2颗粒表面分子印迹吸附剂及其制备方法
CN101423612A (zh) * 2008-12-04 2009-05-06 中北大学 一种硅胶表面酚类分子印迹聚合物的制备方法
CN102212162A (zh) * 2011-03-25 2011-10-12 浙江大学宁波理工学院 巯基化纳米四氧化三铁磁性高分子复合材料的制备方法

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103724539B (zh) * 2012-10-12 2016-11-23 中国药科大学 一种磁性碳纳米管表面分子印迹材料的制备方法
CN103724539A (zh) * 2012-10-12 2014-04-16 中国药科大学 一种磁性碳纳米管表面分子印迹材料的制备方法
CN103910836A (zh) * 2013-01-07 2014-07-09 中国药科大学 一种可应用于生物样品前处理的磁性碳纳米管表面分子印迹聚合物的制备方法
CN103087252B (zh) * 2013-01-16 2014-12-31 珠海得米新材料有限公司 一种高吸水性复合材料的制备方法
CN103087252A (zh) * 2013-01-16 2013-05-08 珠海得米新材料有限公司 一种高吸水性复合材料的制备方法
CN103601847A (zh) * 2013-10-24 2014-02-26 江苏大学 一种核壳式磁性表面印迹纳米复合材料的制备方法
CN103601847B (zh) * 2013-10-24 2016-04-06 江苏大学 一种核壳式磁性表面印迹纳米复合材料的制备方法
CN103638944A (zh) * 2013-11-22 2014-03-19 江苏大学 一种磁性复合催化剂Ag/HNTs/Fe3O4的制备方法
CN103613722A (zh) * 2013-11-28 2014-03-05 中南大学 制备对2,4-二氯苯氧乙酸具有特异性吸附的磁性埃洛石分子印迹聚合物的方法
CN103756004A (zh) * 2013-12-27 2014-04-30 江苏大学 一种量子点磷光印迹聚合物的制备方法
CN103936943A (zh) * 2014-04-04 2014-07-23 江苏大学 一种改性高岭土表面印迹聚合物的制备方法及其应用
CN103936943B (zh) * 2014-04-04 2016-05-25 江苏大学 一种改性高岭土表面印迹聚合物的制备方法及其应用
CN104892867A (zh) * 2015-03-16 2015-09-09 河南城建学院 一种伊利石磁性复合材料表面印迹温敏吸附剂的制备方法
CN104892867B (zh) * 2015-03-16 2019-01-29 河南城建学院 一种伊利石磁性复合材料表面印迹温敏吸附剂的制备方法
CN105016860A (zh) * 2015-06-26 2015-11-04 刘志勇 有机无机复合磁载悬浮剂的生产方法
CN105170112B (zh) * 2015-07-27 2018-09-25 河南城建学院 一种磁性碳微球表面头孢氨苄分子印迹吸附材料的制备方法
CN105170112A (zh) * 2015-07-27 2015-12-23 河南城建学院 一种磁性碳微球表面头孢氨苄分子印迹吸附材料的制备方法
CN108993378A (zh) * 2017-06-07 2018-12-14 桂林市庆通有色金属工艺材料开发有限公司 一种硅烷偶联剂改性埃洛石/Fe3O4复合材料及其制备方法
CN107088398A (zh) * 2017-07-04 2017-08-25 扬州大学 埃洛石负载针形四氧化三铁纳米复合材料的制备方法
CN107088398B (zh) * 2017-07-04 2020-03-27 扬州大学 埃洛石负载针形四氧化三铁纳米复合材料的制备方法
CN114272909A (zh) * 2020-09-28 2022-04-05 中科院广州化学所韶关技术创新与育成中心 一种聚乙二醇改性氧化石墨烯及其制备方法与应用
CN114272909B (zh) * 2020-09-28 2024-01-09 国科广化韶关新材料研究院 一种聚乙二醇改性氧化石墨烯及其制备方法与应用

Similar Documents

Publication Publication Date Title
CN102527349B (zh) 磁性复合材料表面印迹温敏吸附剂及其制备方法和应用
CN102580696A (zh) 一种埃洛石磁性复合材料表面印迹温敏吸附剂的制备方法
CN102626611B (zh) 水中具有选择识别性能金属离子印迹吸附剂的制备方法
Jiang et al. Adsorption performance of a polysaccharide composite hydrogel based on crosslinked glucan/chitosan for heavy metal ions
CN102350319B (zh) 一种粉煤灰微珠磁性复合材料表面印迹吸附剂的制备方法
Ren et al. Adsorption of phosphate from aqueous solution using an iron–zirconium binary oxide sorbent
Pan et al. Selective recognition of 2, 4, 5-trichlorophenol by temperature responsive and magnetic molecularly imprinted polymers based on halloysite nanotubes
CN107376870B (zh) 一种磁性聚合物染料吸附剂的制备方法
CN102580701B (zh) 一种除砷树脂的制备方法
Li et al. Preparation of a novel molecularly imprinted polymer by the sol–gel process for sensing creatinine
CN102784626A (zh) 一种温敏型磁性磺胺二甲嘧啶分子印迹吸附剂及其制备方法和应用
Pyrzynska Nanomaterials in speciation analysis of metals and metalloids
Wong et al. Effect of temperature, particle size and percentage deacetylation on the adsorption of acid dyes on chitosan
CN105237677A (zh) 一种Mn掺杂ZnS量子点表面印迹荧光探针的制备方法和应用
CN107552007B (zh) 离子液体改性镁铝层状双氢氧化物吸附剂及其制备和应用
Jiang et al. Effect of solvent/monomer feed ratio on the structure and adsorption properties of Cu2+-imprinted microporous polymer particles
CN101423612A (zh) 一种硅胶表面酚类分子印迹聚合物的制备方法
CN104258816B (zh) 一种用于废水处理的磁性剥离型蒙脱土纳米复合材料的制备方法
CN103406108B (zh) 一种碳基磁性温敏型表面印迹吸附剂的制备方法
CN103241776B (zh) 四氧化三铁纳米复合颗粒及其制备方法和用途
Musarurwa et al. Stimuli-responsive molecularly imprinted polymers as adsorbents of analytes in complex matrices
CN108927101A (zh) 一种针状纳米羟基氧化铁吸附剂及其制备方法
CN103599757B (zh) 一种磁性温敏型表面锶离子印迹吸附剂的制备方法
Zhu et al. Dual-responsive copolymer hydrogel as broad-spectrum adsorbents for metal ions
CN105037630A (zh) 一种亲水性聚合物微球及其简易制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20120718