CN102350319B - 一种粉煤灰微珠磁性复合材料表面印迹吸附剂的制备方法 - Google Patents

一种粉煤灰微珠磁性复合材料表面印迹吸附剂的制备方法 Download PDF

Info

Publication number
CN102350319B
CN102350319B CN 201110197609 CN201110197609A CN102350319B CN 102350319 B CN102350319 B CN 102350319B CN 201110197609 CN201110197609 CN 201110197609 CN 201110197609 A CN201110197609 A CN 201110197609A CN 102350319 B CN102350319 B CN 102350319B
Authority
CN
China
Prior art keywords
fly ash
ratio
magnetic composite
bisphenol
sphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN 201110197609
Other languages
English (en)
Other versions
CN102350319A (zh
Inventor
潘建明
胡玮
徐龙城
戴江栋
李秀秀
李春香
闫永胜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University
Original Assignee
Jiangsu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University filed Critical Jiangsu University
Priority to CN 201110197609 priority Critical patent/CN102350319B/zh
Publication of CN102350319A publication Critical patent/CN102350319A/zh
Application granted granted Critical
Publication of CN102350319B publication Critical patent/CN102350319B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明涉及一种粉煤灰微珠磁性复合材料表面印迹吸附剂的制备方法,属环境材料制备技术领域。通过微乳液法,利用交联的壳聚糖包覆纳米γ-Fe2O3和微米的球型粉煤灰微珠,获得粉煤灰微珠磁性复合材料;再以粉煤灰微珠磁性复合材料为基质材料,利用悬浮聚合法在其表面进行分子印迹聚合物改性,洗脱模板分子双酚A后,即得到粉煤灰微珠磁性复合材料表面印迹吸附剂。球形的印迹吸附剂有显著的热和磁稳定性。1H-NMR表明分子间氢键是印迹吸附剂的识别机制。静态吸附实验结果表明利用本发明获得的粉煤灰微珠磁性复合材料表面印迹吸附剂具有较高的吸附容量,快速的吸附动力学性质和明显的BPA分子识别性能。

Description

一种粉煤灰微珠磁性复合材料表面印迹吸附剂的制备方法
技术领域
本发明涉及一种壳聚糖/γ-Fe2O3/粉煤灰微珠磁性复合物表面分子印迹聚合吸附剂的制备方法,属环境材料制备技术领域。
背景技术
分子印迹技术是以目标分子为模板分子,将具有结构上互补的功能单体通过共价或非共价键与模板分子结合,并加入交联剂进行聚合反应,反应完成后将模板分子洗脱出来,形成具有特殊结构、对模板分子有特异吸附性分子印迹聚合物(MIPs)的技术。表面分子印迹技术通过把分子识别位点建立在基质材料的表面,较好的解决了传统分子印迹技术整体还存在的一些严重缺陷,如活性位点包埋过深,传质和电荷传递的动力学速率慢,吸附-脱附的动力学性能不佳等。常用的基质材料有SiO2和TiO2等硅钛基微/纳米材料。
为了便于吸附剂的分离,超顺磁性金属氧化物MO(M=Fe、Co和Ni)纳米粒子是理想的印迹基质材料。磁性金属氧化物纳米粒子表面印迹吸附剂(MMIPs)利用基质的超顺磁性和包覆层印迹聚合物的特异性吸附作用,可实现在外磁场辅助下选择性的将目标污染物与母液迅速分离。但单纯磁性金属氧化物纳米粒子在使用中易团聚、耐酸性差,多次使用后易漏磁。2010年王志林、陈郎星等课题组采用溶胶-凝胶法先将磁性金属氧化物纳米粒子表面包覆SiO2层,再在SiO2/MO核壳材料表面印迹改性。近期,我们将磁性四氧化三铁固载在羧基功能化的埃洛石纳米管表面,随后在其复合材料表面实施印迹聚合过程,较好的解决了磁性印迹聚合物磁泄露的问题。将MO固定在无机材料表面或用高分子材料包覆在无机材料外围制备磁性复合材料,再在磁性复合材料表面印迹改性获得磁性印迹聚合吸附剂的研究尚未有报道。
双酚A(BPA)即4,4'-(1-甲基亚乙基)双酚是制造环氧树脂和聚碳酸树脂的原料之一,也是一种典型的烷基酚类内分泌干扰物。其通过食物链在人体内的富集易导致乙肝酶偏高、糖尿病和心血管疾病。及时检测和处理环境水体中双酚A很有必要,但环境水体中成分复杂,选择性识别与分离目标污染物(双酚A)显得尤为重要。粉煤灰空心(FACs)微珠是热电厂煤燃烧的副产物,表面的水羟基和未燃烧尽的碳使其具有吸附和表面修饰的可能。鉴于来源易得、球状形貌规整、机械性能好等优点,粉煤灰微珠是理想的表面印迹支架材料。壳聚糖(CTS)是具有亲水性、无毒性、生物相容性和易形成溶胶性的多糖,含有氨基和羟基配位基团,是制备交联高分子的重要单体。
发明内容
本发明通过微乳液过程,利用交联的壳聚糖将纳米γ-Fe2O3粒子包覆在粉煤灰微珠表面,获得磁性粉煤灰微珠复合材料。随后以制得的复合材料为基质材料,双酚A(BPA)为模板分子,甲基丙稀酸(MAA)为功能单体,乙二醇二(甲基丙烯酸)酯(EGDMA)为交联剂,2,2'-偶氮二已丁腈(AIBN)为引发剂,通过悬浮聚合过程制备粉煤灰微珠磁性复合材料表面印迹吸附剂,并将吸附剂用于水溶液中BPA的选择性识别和分离。
本发明采用的技术方案是:一种粉煤灰微珠磁性复合材料表面印迹吸附剂的制备方法,按照下述步骤进行:
(1)粉煤灰的氨基和醛基化改性:
按粉煤灰与甲苯3.0-5.0/100 (g/ml)的比例,将活化的粉煤灰分散的分散甲苯中,按粉煤灰与3-氨丙基三乙氧基硅烷1:1.0-1.2(g/ml)的比例加入3-氨丙基三乙氧基硅烷,在65-70℃下搅拌反应10-12h,随后产物用无水乙醇和去离子水洗净,在50-60℃下真空干燥;按氨基化粉煤灰;磷酸盐缓冲溶液:戊二醛1:(8.0-10):(1.5-2.0) (g/ml/ml)的比例,将干燥的氨基化粉煤灰浸泡在以上混合溶液中,反应4.0-6.0h后,产物用去离子水洗净,在50-60℃下真空干燥;
(2)磁性粉煤灰微珠复合材料(MCs)的制备:
按2.0-4/100(g/ml)的比例称取壳聚糖分散于0.1mol/L醋酸中,常温下机械搅拌30min;按壳聚糖:γ-Fe2O3:醛基化粉煤灰微珠质量比为1:(0.2-0.5): (0.5-0.8),称取γ-Fe2O3和醛基化粉煤灰微珠加入到上述壳聚糖的胶状液中;机械搅拌1.5h后,按壳聚糖:聚氧乙烯辛烷基酚醚:山梨糖醇酐油酸酯为1.0:(50-80):(10-15)(g/ml/ml)的比例加入乳化剂聚氧乙烯辛烷基酚醚和山梨糖醇酐油酸酯;乳化20-40min后,按戊二醛/壳聚糖的比例为 (2.0-2.5) /1.0(ml/g), 加入交联剂戊二醛;交联反应在40-50℃的温度下进行90-120min,滴加1.0 mol/LNH3∙H2O, 调节反应体系的pH值在9.0-10之间,继续在70-75℃反应1.0-1.5h;棕色产物磁性粉煤灰微珠复合材料用Nd-Fe-B永久磁铁收集,并用正己烷和蒸馏水洗涤5次,在50℃下真空干燥;
(3)粉煤灰微珠磁性复合材料表面印迹吸附剂(MMIPs)的制备
将双酚A和α-甲基丙烯酸按摩尔比1:3-4加入到二甲亚砜溶液中,控制双酚A的浓度为(0.08-0.1) mmol/L,将混合液通氮气排空氧气后在黑暗阴凉的条件下静置12h,形成预组装体系;按(1.0-1.5)/1.5 (g /ml)的比例,分别称取步骤(1)中制得的粉煤灰微珠磁性复合材料加入到油酸中搅拌10min,按摩尔比双酚A:乙二醇二(甲基丙烯酸)酯为1:(15-20)的比例在上述磁性复合材料中加入乙二醇二(甲基丙烯酸)酯,然后加入预组装溶液,在300-400rpm下搅拌30min,形成预聚合溶液。随后按照双酚A与二甲亚砜与水的混合液的比例为1:(80-120) (mmol/ml)的比例双酚A加入体积比为9:1的二甲亚砜与水的混合液,按照双酚A与聚乙烯吡咯烷酮的比例为1:(0.2-0.4 )(mmol/g)的量加入聚乙烯吡咯烷酮;在300-400rpm下搅拌30min后,通氮气排空氧气,按照双酚A与2,2'-偶氮二异丁腈1:(0.2-0.4 )(mmol/g)的比例在反应体系中加入引发剂2,2'-偶氮二异丁腈;反应在氮气保护下,65-70℃反应18-24h。产物粉煤灰微珠磁性复合材料表面印迹吸附剂用Nd-Fe-B永久磁铁收集,用无水乙醇和蒸馏水洗涤3次。最后产物用甲醇和醋酸的混合液(95:5, V/V)为提取液索式提取48h,脱除模板分子双酚A,在50℃下真空干燥得粉煤灰微珠磁性复合材料表面印迹吸附剂。
本发明的技术优点:该产品由于印迹发生在磁性粉煤灰微珠复合材料表面,避免了部分模板分子因包埋过深而无法洗脱的问题,获得的印迹吸附剂机械强度高,识别点不易破坏,大大地降低了非特异性吸附;利用本发明获得的粉煤灰微珠磁性复合材料表面印迹吸附剂具有磁和热稳定性好,较高的吸附容量,快速的吸附动力学性质,明显的BPA分子识别性能。
附图说明
图1 MCs(a)和MMIPs(b)的红外谱图。从图中可知γ-Fe2O3和粉煤灰微珠参与了的交联壳聚糖和印迹聚合过程亦在MCs的表面成功进行了。
图2 MCs (a)和MMIPs (b)的X射线衍射(XRD)图,插图为MMIPs的拉曼光谱图。MCs和MMIPs 在25°< 2θ < 75° 区间的六个XRD特征峰与γ-Fe2O3标准谱图中(220), (311), (400), (422), (511), (440) and (533)处的峰一致,可知交联壳聚糖和印迹聚合过程没有改变γ-Fe2O3的晶型。MMIPs的拉曼光谱图进一步证实了γ-Fe2O3在经历交联壳聚糖和印迹聚合过程后的晶型没有改变。
图3 FACs(a),MCs(b)和MMIPs(c)的扫描电镜图。从图中可以看出FACs表面包覆着交联的壳聚糖且包覆层厚度约为5.5um。MCs和MMIPs均为球形,MCs表面光滑,MMIPs表面粗糙且有许多小孔。
图4 MCs和MMIPs的热差和热重谱图。从图中可以看出MCs和MMIPs在200℃以下有较好的热稳定性。
图5 MCs(a)和MMIPs(b)的磁滞回线,磁分离前(c)和后(d)的图示。从图中可以看出,MCs和MMIPs的饱和磁性分别为6.561emu/g和2.221emu/g,MMIPs在外加磁场下的分离效果显著。
图6 MMIPs在不同pH值条件的磁稳定性图示。从图中可以看出,在pH=6.0–12范围内,MMIPs的磁稳定性好,在强酸条件pH=2.0时,50mgMMIPs中仅有0.0658mg的三价铁离子漏出。
图7 BPA (a),20mmol/LBPA和40mmol/LMAA (b)混合液的1H-NMR图,MAA不同加入量对BPA 羟基氢质子化学位移的影响(c)。BPA和MAA混合后,两者羟基质子的化学位移明显变化,可以看出BPA和MAA是以氢键结合的。从图(c)可以看出,BPA和MAA按1:4摩尔比混合氢键最强。
图8 不同pH值对MMIPs和MNIPs吸附BPA的影响,以及吸附BPA前后介质pH值的变化图示。 从图中可以看出,在pH =3.0–6.0区间,MMIPs和MNIPs对BPA的吸附容量缓缓增加,在pH=6.0时吸附容量最大,且吸附前后介质pH值没有变化。
具体实施方式
本发明对应的非印迹吸附剂(MNIPs)制备方法与实施例方法类似,但不加双酚A。
本发明中具体实施方式中识别性能评价按照下述方法进行:利用静态吸附实验完成。将10ml一定浓度的BPA溶液加入到比色管中,放在恒温水域中静置,考察吸附剂用量、溶液pH值、静置时间、温度和结构类似物干扰对印迹吸附剂识别BPA分子的影响。吸附后,测试液中上层清液用Nd-Fe-B永久磁铁分离收集,未吸附的BPA分子浓度用高效液相色谱测定,并根据结果计算出吸附容量(Q e,mg/g)。
Figure 387158DEST_PATH_IMAGE001
其中C 0 (mg/L) 和C e (mg/L)分别是吸附前后BPA的浓度,W (g)为吸附剂用量,V (mL)为测试液体积。
下面结合具体实施实例对本发明做进一步说明。
实施例1:
(1)粉煤灰的氨基和醛基化改性
将粉煤灰微珠通过酸化、焙烧等处理得到活化的漂珠;按每100ml甲苯分散3.0g粉煤灰的比例,将活化的粉煤灰分散甲苯中,按每克粉煤灰1.0ml的比例加入3-氨丙基三乙氧基硅烷,在70℃下搅拌反应12h,随后产物用无水乙醇和去离子水洗净,在60℃下真空干燥。按每克氨基化粉煤灰加入10ml磷酸盐缓冲溶液(pH=7.0)和2.0ml戊二醛(25%,v/v)的比例,将干燥的氨基化粉煤灰浸泡在以上混合溶液中,反应6.0h后,产物用去离子水洗净,在60℃下真空干燥。
(2) 磁性粉煤灰微珠复合材料的制备
按2.0/100(g/ml)的比例称取壳聚糖分散于0.1mol/L醋酸中,常温下机械搅拌30min;按壳聚糖:γ-Fe2O3:醛基化粉煤灰微珠质量比为1:0.5: 0.8,称取γ-Fe2O3和醛基化粉煤灰微珠加入到上述壳聚糖的胶状液中;机械搅拌1.5h后,按壳聚糖:聚氧乙烯辛烷基酚醚:山梨糖醇酐油酸酯为1.0g:50:10的比例加入乳化剂聚氧乙烯辛烷基酚醚和山梨糖醇酐油酸酯;乳化40min后,按戊二醛/壳聚糖的比例为 2.5/1.0(ml/g), 加入交联剂戊二醛(25%,v/v);交联反应在50℃的温度下进行120min,滴加1.0 mol/LNH3∙H2O, 调节反应体系的pH值在9.0-10之间,继续在70℃反应1.0h;棕色产物磁性粉煤灰微珠复合材料用Nd-Fe-B永久磁铁收集,并用正己烷和蒸馏水洗涤5次,在50℃下真空干燥。
(3) 粉煤灰微珠磁性复合材料表面印迹吸附剂
将双酚A和α-甲基丙烯酸按摩尔比1:4加入到二甲亚砜溶液中,控制双酚A的浓度为0.08mmol/L,将混合液通氮气排空氧气后在黑暗阴凉的条件下静置12h,形成预组装体系;按1.0/1.5 (g/ml)的比例,分别称取步骤(2)中制得的粉煤灰微珠磁性复合材料加入到油酸中搅拌10min,按摩尔比双酚A:乙二醇二(甲基丙烯酸)酯为1:20的比例在上述磁性复合材料中加入乙二醇二(甲基丙烯酸)酯,接着加入预组装溶液,在300下搅拌30min,形成预聚合溶液。随后按照每毫摩尔双酚A加入100ml的比例加入二甲亚砜与水的混合液(9:1,v/v),按照每毫摩尔双酚A 加入0.4g的比例加入聚乙烯吡咯烷酮。在300-400rpm下搅拌30min后,通氮气排空氧气,按照每毫摩尔双酚A加入0.3g2,2'-偶氮二异丁腈的比例,在反应体系中加入引发剂。反应在氮气保护下,70℃反应24h。产物粉煤灰微珠磁性复合材料表面印迹吸附剂用Nd-Fe-B永久磁铁收集,用无水乙醇和蒸馏水洗涤3次。最后产物用甲醇和醋酸的混合液(95:5, V/V)为提取液索式提取48h,脱除模板分子双酚A,在50℃下真空干燥。对应的非印迹吸附剂制备方法类似,但不加BPA。
试验例1:取10ml初始浓度分别为20、40、60、80、100、150、200、250、300、400和500mg/l的BPA溶液加入到比色管中,用稀盐酸或稀氨水调节pH值为6.0,分别加入10mg印迹和非印迹吸附剂,把测试液放在25℃的水浴中静置12h后,上层清液用Nd-Fe-B永久磁铁分离收集,未吸附的BPA分子浓度用高效液相色谱测定,并根据结果计算出吸附容量。结果表明,粉煤灰微珠磁性复合材料表面印迹吸附剂的饱和吸附容量为140.3mg/g,远高于非印迹吸附剂的84.66mg/g。
试验例2:取10ml初始浓度为100mg/lBPA溶液加入到比色管中,用稀盐酸或稀氨水调节pH值为6.0,分别加入10mg印迹和非印迹吸附剂,把测试液放在25℃的水浴中分别静置5、10、20、30、40、50、60、120、180、240和360min。静置时间完成后,上层清液用Nd-Fe-B永久磁铁分离收集,未吸附的BPA分子浓度用高效液相色谱测定,并根据结果计算出吸附容量。结果表明,与非印迹吸附剂相比,粉煤灰微珠磁性复合材料表面印迹吸附剂对BPA分子具有更高的吸附容量和更快的吸附动力学性能。
试验例3:选择2,4-二氯酚(DCP)、苯酚(phenol)、4-硝基酚(NP)、四溴双酚A(TBBPA)为竞争吸附的酚类化合物,分别配置以上四种酚类化合物的水溶液,每种酚的浓度都为50mg/l。取10ml配置好的溶液加入到比色管中,用稀盐酸或稀氨水调节pH值为6.0,分别加入10mg印迹和非印迹吸附剂,把测试液放在25℃的水浴中分别静置4.0h。静置时间完成后,上层清液用Nd-Fe-B永久磁铁分离收集,未吸附的各种竞争吸附酚类化合物浓度用Uv-vis测定。结果表明,MMIPs对双酚A和四种竞争吸附酚类化合物的识别能力遵循BPA> NP > phenol > DCP > TBBPA的规律,MMIPs对双酚A的选择性识别作用明显。
试验例4:选择2,4-二氯酚(DCP)、苯酚、4-硝基酚(NP)、四溴双酚A(TBBPA)为竞争吸附的酚类化合物,分别配置双酚A与四种竞争酚类化合物的二元混合溶液,每种酚的浓度都为50mg/l。取10ml配置好的混合溶液加入到比色管中,用稀盐酸或稀氨水调节pH值为6.0,分别加入10mg印迹和非印迹吸附剂,把测试液放在25℃的水浴中分别静置4.0h。静置时间完成后,上层清液用Nd-Fe-B永久磁铁分离收集,未吸附的双酚A浓度用高效液相色谱测定。结果表明,MMIPs对双酚A的识别性显著,仍有较好的去除效果。

Claims (1)

1.一种粉煤灰微珠磁性复合材料表面印迹吸附剂的制备方法,其特征在于按照下述步骤进行:(1)粉煤灰的氨基和醛基化改性:
按粉煤灰与甲苯3.0-5.0/100(g/ml)的比例,将活化的粉煤灰分散到甲苯中,按粉煤灰与3-氨丙基三乙氧基硅烷1:1.0-1.2(g/ml)的比例加入3-氨丙基三乙氧基硅烷,在65-70℃下搅拌反应10-12h,随后产物用无水乙醇和去离子水洗净,在50-60℃下真空干燥;按氨基化粉煤灰:磷酸盐缓冲溶液:戊二醛1:(8.0-10):(1.5-2.0) (g/ml/ml)的比例,将干燥的氨基化粉煤灰浸泡在以上混合溶液中,反应4.0-6.0h后,产物用去离子水洗净,在50-60℃下真空干燥;
(2)磁性粉煤灰微珠复合材料的制备:
按2.0-4/100 (g/ml)的比例称取壳聚糖分散于0.1mol/L醋酸中,常温下机械搅拌30min;按壳聚糖:γ-Fe2O3:醛基化粉煤灰微珠质量比为1:(0.2-0.5): (0.5-0.8),称取γ-Fe2O3和醛基化粉煤灰微珠加入到上述壳聚糖的胶状液中;机械搅拌1.5h后,按壳聚糖:聚氧乙烯辛烷基酚醚:山梨糖醇酐油酸酯为1.0:(50-80):(10-15)(g/ml/ml)的比例加入乳化剂聚氧乙烯辛烷基酚醚和山梨糖醇酐油酸酯;乳化20-40min后,按戊二醛/壳聚糖的比例为 (2.0-2.5) /1.0(ml/g), 加入交联剂戊二醛;交联反应在40-50℃的温度下进行90-120min,滴加1.0 mol/LNH3·H2O, 调节反应体系的pH值在9.0-10之间,继续在70-75℃反应1.0-1.5h;棕色产物磁性粉煤灰微珠复合材料用Nd-Fe-B永久磁铁收集,并用正己烷和蒸馏水洗涤5次,在50℃下真空干燥;
(3)粉煤灰微珠磁性复合材料表面印迹吸附剂的制备:
将双酚A和α-甲基丙烯酸按摩尔比1:3-4加入到二甲亚砜溶液中,控制双酚A的浓度为0.08-0.1 mmol/L,将混合液通氮气排空氧气后在黑暗阴凉的条件下静置12h,形成预组装体系;按(1.0-1.5)/1.5(g /ml)的比例,分别称取步骤(1)中制得的粉煤灰微珠磁性复合材料加入到油酸中搅拌10min,按摩尔比双酚A:乙二醇二(甲基丙烯酸)酯为1:(15-20)的比例在上述磁性复合材料中加入乙二醇二(甲基丙烯酸)酯,然后加入预组装溶液,在300-400rpm下搅拌30min,形成预聚合溶液;随后按照双酚A与二甲亚砜与水的混合液的比例为1:(80-120) (mmol/ml)的比例双酚A加入体积比为9:1的二甲亚砜与水的混合液,按照双酚A与聚乙烯吡咯烷酮的比例为1:(0.2-0.4 ) (mmol/g)的量加入聚乙烯吡咯烷酮;在300-400rpm下搅拌30min后,通氮气排空氧气,按照双酚A与2,2'-偶氮二异丁腈1:(0.2-0.4 ) (mmol/g)的比例在反应体系中加入引发剂2,2'-偶氮二异丁腈;反应在氮气保护下,65-70℃反应18-24h;产物粉煤灰微珠磁性复合材料表面印迹吸附剂用Nd-Fe-B永久磁铁收集,用无水乙醇和蒸馏水洗涤3次;最后产物用体积比为95:5的甲醇和醋酸的混合液为提取液索式提取48h,脱除模板分子双酚A,在50℃下真空干燥得粉煤灰微珠磁性复合材料表面印迹吸附剂。
CN 201110197609 2011-07-15 2011-07-15 一种粉煤灰微珠磁性复合材料表面印迹吸附剂的制备方法 Expired - Fee Related CN102350319B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201110197609 CN102350319B (zh) 2011-07-15 2011-07-15 一种粉煤灰微珠磁性复合材料表面印迹吸附剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201110197609 CN102350319B (zh) 2011-07-15 2011-07-15 一种粉煤灰微珠磁性复合材料表面印迹吸附剂的制备方法

Publications (2)

Publication Number Publication Date
CN102350319A CN102350319A (zh) 2012-02-15
CN102350319B true CN102350319B (zh) 2013-05-08

Family

ID=45574027

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201110197609 Expired - Fee Related CN102350319B (zh) 2011-07-15 2011-07-15 一种粉煤灰微珠磁性复合材料表面印迹吸附剂的制备方法

Country Status (1)

Country Link
CN (1) CN102350319B (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102784626A (zh) * 2012-08-08 2012-11-21 江苏大学 一种温敏型磁性磺胺二甲嘧啶分子印迹吸附剂及其制备方法和应用
CN102895956A (zh) * 2012-10-22 2013-01-30 山西大学 高磁响应粉煤灰微团及其制备方法和应用
CN103801269B (zh) * 2012-11-14 2015-12-09 江南大学 一种表面印迹石墨烯复合材料的制备
CN103071537B (zh) * 2012-11-30 2014-10-29 江苏大学 光降解盐酸恩诺沙星漂浮型磁性导电表面分子印迹复合光催化剂的制备方法及其应用
CN103028377B (zh) * 2012-12-31 2014-04-30 西安科技大学 一种煤基复合螯合剂的制备方法
CN103351449B (zh) * 2013-04-11 2015-08-26 江苏大学 乳液聚合制备多孔磁性印迹吸附剂的方法
CN103406108B (zh) * 2013-07-10 2015-04-22 江苏大学 一种碳基磁性温敏型表面印迹吸附剂的制备方法
CN104558409A (zh) * 2013-10-22 2015-04-29 北京林业大学 纳米花材料表面分子印迹聚合物及其制备和应用
CN106496641B (zh) * 2016-10-09 2019-02-05 江苏大学 一种聚酰胺-胺/稀土荧光印迹膜的制备方法及其用途
CN106902779A (zh) * 2017-05-04 2017-06-30 四川理工学院 一种粉煤灰/壳聚糖复合吸附材料制备方法
CN107913682A (zh) * 2017-11-08 2018-04-17 常州大学 一种制备多孔温敏分子印迹吸附剂的方法
CN108031453A (zh) * 2017-12-13 2018-05-15 太原理工大学 微波辅助磁性粉煤灰负载对硝基苯酚分子印迹固相萃取材料
CN108404873B (zh) * 2018-01-15 2020-08-14 大连理工大学 一种纳米氧化铁/壳聚糖磷结合剂制备方法及应用
KR102451333B1 (ko) * 2018-10-22 2022-10-06 주식회사 엘지화학 마이크로비드 및 그 제조방법
CN110102267B (zh) * 2019-05-27 2021-10-01 华南理工大学 一种铝基MOFs/壳聚糖复合微球及其制备方法和应用
CN110918073A (zh) * 2019-11-22 2020-03-27 山东农业大学 一种磁性mof基双酚a分子印迹高选择性纳米复合材料的制备方法及应用
CN113185008A (zh) * 2021-05-19 2021-07-30 上绍同烯达(绍兴)新材料科技有限公司 一种缓蚀阻垢剂组合物及其应用

Also Published As

Publication number Publication date
CN102350319A (zh) 2012-02-15

Similar Documents

Publication Publication Date Title
CN102350319B (zh) 一种粉煤灰微珠磁性复合材料表面印迹吸附剂的制备方法
Gao et al. Recent advances and future trends in the detection of contaminants by molecularly imprinted polymers in food samples
Gao An overview of surface‐functionalized magnetic nanoparticles: preparation and application for wastewater treatment
CN102527349B (zh) 磁性复合材料表面印迹温敏吸附剂及其制备方法和应用
CN102977288B (zh) 分子印迹磁性微球及其制备方法和应用
Pan et al. Selective recognition of 2, 4, 5-trichlorophenol by temperature responsive and magnetic molecularly imprinted polymers based on halloysite nanotubes
Pan et al. Controlled synthesis of pentachlorophenol-imprinted polymers on the surface of magnetic graphene oxide for highly selective adsorption
CN102580696A (zh) 一种埃洛石磁性复合材料表面印迹温敏吸附剂的制备方法
CN101101282B (zh) 微波辅助分子印迹磁性微球的制备方法和应用
CN106883411B (zh) 超顺磁性核壳结构介孔分子印迹聚合物的制备及作为固相萃取剂的应用
Li et al. Deep eutectic solvents skeleton typed molecularly imprinted chitosan microsphere coated magnetic graphene oxide for solid‐phase microextraction of chlorophenols from environmental water
CN112791714B (zh) 吸附酚类污染物的磁性核壳纳米微球、制备方法及应用
Pan et al. Study on the nonylphenol removal from aqueous solution using magnetic molecularly imprinted polymers based on fly-ash-cenospheres
CN102784626A (zh) 一种温敏型磁性磺胺二甲嘧啶分子印迹吸附剂及其制备方法和应用
CN106442436A (zh) 用于检测水中痕量4‑硝基苯酚的磁性量子点印迹材料、制备方法及用途
Musarurwa et al. Thermo-responsive polymers and advances in their applications in separation science
CN104587970A (zh) 一种磁性壳聚糖复合微球表面印迹吸附剂及其制备方法
Dramou et al. Current review about design's impact on analytical achievements of magnetic graphene oxide nanocomposites
Xu et al. Preparation of biocompatible molecularly imprinted film on biowaste-derived magnetic pomegranate rind carbon for protein recognition in biological sample
CN109453752A (zh) 一种阳离子型磁性纳米颗粒及其制备方法和应用
CN103406108A (zh) 一种碳基磁性温敏型表面印迹吸附剂的制备方法
CN104130441A (zh) 海水中痕量氯酚类污染物分子印迹磁性富集材料的磁场诱导制备方法
Qiu et al. Green and sustainable imprinting technology for removal of heavy metal ions from water via selective adsorption
CN112979893B (zh) 磁性荧光材料@分子印迹颗粒的制备及利用其制备复合膜的方法
Wang et al. Preparation of magnetic molecularly imprinted polymer beads and their recognition for baicalein

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130508

Termination date: 20140715

EXPY Termination of patent right or utility model