CN112979893B - 磁性荧光材料@分子印迹颗粒的制备及利用其制备复合膜的方法 - Google Patents

磁性荧光材料@分子印迹颗粒的制备及利用其制备复合膜的方法 Download PDF

Info

Publication number
CN112979893B
CN112979893B CN202110260738.1A CN202110260738A CN112979893B CN 112979893 B CN112979893 B CN 112979893B CN 202110260738 A CN202110260738 A CN 202110260738A CN 112979893 B CN112979893 B CN 112979893B
Authority
CN
China
Prior art keywords
magnetic
particles
fluorescent material
template
molecularly imprinted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110260738.1A
Other languages
English (en)
Other versions
CN112979893A (zh
Inventor
何亚荟
刘欣雨
王亮
焦逊
王猛强
王静
孙宝国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Energy Conservation And Emission Reduction Co ltd
Beijing Technology and Business University
Original Assignee
China Energy Conservation And Emission Reduction Co ltd
Beijing Technology and Business University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Energy Conservation And Emission Reduction Co ltd, Beijing Technology and Business University filed Critical China Energy Conservation And Emission Reduction Co ltd
Priority to CN202110260738.1A priority Critical patent/CN112979893B/zh
Publication of CN112979893A publication Critical patent/CN112979893A/zh
Application granted granted Critical
Publication of CN112979893B publication Critical patent/CN112979893B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F292/00Macromolecular compounds obtained by polymerising monomers on to inorganic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/264Synthetic macromolecular compounds derived from different types of monomers, e.g. linear or branched copolymers, block copolymers, graft copolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28009Magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • B01J20/28021Hollow particles, e.g. hollow spheres, microspheres or cenospheres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/65Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing carbon
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • C09K11/881Chalcogenides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N21/643Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" non-biological material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2351/00Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • C08J2351/10Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers grafted on to inorganic materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6432Quenching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6439Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" with indicators, stains, dyes, tags, labels, marks

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

一种磁性荧光材料@分子印迹颗粒的制备及利用其制备复合膜的方法,属于食品安全检测技术领域。其将虚拟模板溶于致孔剂后与功能单体、磁性荧光材料混合,通过预聚合获得预聚合体系;随后加入交联剂和引发剂进行聚合,获得聚合物;用洗脱液洗脱,经洗脱后的标记物即为获得所对应待检测物质的磁性荧光材料@分子印迹颗粒。将印迹颗粒制备成高分子复合膜,用于快速检测食品加工及储藏中晚期中有害物质的残留。本发明提供的食品中有害物快速检测的MQDs@MIPs颗粒,能有效降低痕量物质的检出限,快速、简便、绿色,为食品中有害物的快速检测提供了新的策略。

Description

磁性荧光材料@分子印迹颗粒的制备及利用其制备复合膜的 方法
技术领域
本发明涉及一种磁性荧光材料@分子印迹颗粒的制备及利用其制备复合膜的方法,属于食品安全检测技术领域。
背景技术
生物传感器由于其高灵敏度和特异性已成为分析化学和生物化学领域中一个非常重要的课题。但由于生物分子固有的缺陷(使用环境要求较高,难以长期保存,且生物分子来源于生物活体,制备和纯化繁琐、昂贵)限制了生物传感器发展。获得廉价、稳定的识别元件,是生物传感器进一步发展的关键之一。
最近二十多年来,一种全新的合成“人工抗体” 的方法,即分子印迹技术逐渐成为研究热点。特别是表面分子印迹技术的研究,解决了传统分子印迹技术中存在的问题,如聚合物的高交联网状结构使模板分子不易洗脱和再结合、结合效率低下等问题。表面分子印迹技术是在载体表面进行分子印迹聚合物的合成,形成二维网状结构,使模板分子易于吸附和洗脱,提高聚合物的选择性和吸附性。同时,将磁性纳米材料与表面分子印迹技术相结合,制备出磁性表面分子印迹聚合物,其可在外加磁场下快速分离,具有主动识别和快速分离的优点。
目前食品中农药和吡咯素等有害物的检测技术主要是仪器分析法,通常存在仪器昂贵、分析时间长等诸多缺陷。一些快速检测方法存在检出限高的问题。因此,发明集分离、富集、识别、信号放大输出为一体的磁性荧光材料@分子印迹颗粒(MQDs@MIPs或MCDs@MIPs),能有效降低检出限、简单、快速、稳定、廉价,在食品安全领域具有重要的现实意义。
发明内容
本发明的目的是克服上述不足之处,提供一种磁性量子点@分子印迹颗粒的制备及利用其制备复合膜的方法,分子印迹位点能特异性识别目标物,同时过滤去除食品基质中其他干扰成分,提高了检测灵敏度,为食品安全快速检测提供新的策略。
本发明的技术方案,一种磁性荧光材料@分子印迹颗粒的制备方法,步骤如下:
(1)预聚合:将虚拟模板或目标物溶于致孔剂后与功能单体、磁性荧光材料混合,通过预聚合获得预聚合体系;
(2)聚合:将步骤(1)所述预聚合体系、加交联剂和引发剂混合进行聚合,获得聚合物;
(3)洗脱:用洗脱液洗脱步骤(2)所得聚合物,经洗脱后的标记物即为获得所对应待检测物质的磁性荧光材料@分子印迹颗粒。
进一步地,所述虚拟模板具体为需要检测的农药或吡咯素的结构类似物。虚拟模板与待检测物质具有类似结构,能够保证材料的吸附性能而避免了材料本底渗漏的干扰,保证最终检测结果不受材料性能影响。
进一步地,所述农药具体为三嗪类农药。
进一步地,所述磁性荧光材料具体为MQDs或MCDs。
进一步地,步骤(1)中预聚合的温度为22-28℃;预聚合的时间为25-35 min;所述预聚合的过程中伴随震摇;
进一步地,步骤(2)中聚合的温度为60-70℃,所述聚合的时间为12-24 h;所述聚合在氮气环境下进行。
本发明的一个技术目的,所述MQDs或MCDs的制备方法如下:
(1)Fe3O4颗粒的制备:将FeCl3·6H2O、FeCl2·4H2O分别超声分散在超纯水中;向反应容器中先加超纯水,再将上述两个溶液转移至反应容器中,氮气保护下高温搅拌反应;加入氨水,高温下继续搅拌;加入柠檬酸钠,搅拌反应,结束后冷却至室温,用磁铁将 Fe3O4分离;交替用超纯水和乙醇洗涤直至呈中性,真空干燥,得到纳米Fe3O4颗粒;
(2)氨基化Fe3O4@SiO2纳米颗粒的制备:将步骤(1)制备的纳米Fe3O4颗粒分散到乙醇/水混合溶液中,依次加入氨水、TEOS,室温搅拌,得到外壳包覆 SiO2的Fe3O4@SiO2;然后加入APTES,室温反应,得到氨基化的Fe3O4@SiO2纳米颗粒;
(3)磁性荧光材料的制备:选用碳点/CDTe量子点作为荧光发光材料,采用表面印迹技术将碳点接枝到步骤(2)制备所得的氨基化的Fe3O4@SiO2纳米颗粒表面,Fe3O4颗粒与CDs/CDTe通过羧基-氨基结合,形成磁性碳点颗粒MCDs或磁性量子点颗粒MQDs。
本发明的另一技术目的,三嗪类农药的磁性荧光材料@分子印迹颗粒的制备方法如下:
(1)预聚合:称取虚拟模板或目标物于反应容器中,加入致孔剂溶解虚拟模板,然后加入功能单体和合成的MQDs/MCDs颗粒,室温震摇预聚合;
(2)聚合:向步骤(1)所述溶液中加入交联剂和引发剂,充氮后立即封口,水浴中聚合反应;聚合完成后,取出聚合物,离心除去上清液,再加入甲醇充分分散后离心,以除去未反应的溶液;
(3)洗脱:用乙醇、甲醇溶液交替洗脱模板直至模板洗脱完全,即得到三嗪类农药磁性荧光材料@分子印迹颗粒。
进一步地,其具体步骤为:
(1)称取0.5-1 mmol虚拟模板或目标物于反应容器中,加入10-60 mL致孔剂溶解模板,然后加入2-8 mmol的功能单体,1-5 mL MQDs/MCDs溶液,室温震摇预聚合25~35min;
(2)随后加入4-20 mmol交联剂和10-50 mg引发剂,充氮5-20 min后立即封口,60-70℃水浴中聚合反应12-24 h;
(3)聚合完成后,取出聚合物,4000-8000 rpm离心2-4 min除去上清液,再加入甲醇充分分散后离心,以除去未反应的溶液,滤纸包裹后放入索式抽提器中,用乙醇、甲醇溶液交替洗脱模板直至模板洗脱完全,HPLC检测不到模板分子为止。
进一步地,所述虚拟模板为灭蝇胺;
致孔剂为乙腈、甲醇、乙醇、甲苯、二甲亚砜;
功能单体为MAA、4-VP;
交联剂为TRIM、EGDMA、DVB;
引发剂为AIBN。
本发明的另一技术目的,吡咯素磁性荧光材料@分子印迹颗粒的制备过程如下:
(1)预聚合:称取虚拟模板或目标物于反应容器,加入致孔剂溶解虚拟模板,然后加入功能单体和合成的MQDs/MCDs颗粒,室温震摇预聚合;
(2)聚合:向步骤(1)所述溶液中加入交联剂和引发剂,充氮后立即封口,水浴中聚合反应;聚合完成后,取出聚合物,离心除去上清液,再加入甲醇充分分散后离心,以除去未反应的溶液;
(3)洗脱:用丙酮、去离子水溶液交替洗脱模板直至模板洗脱完全,即得到吡咯素磁性荧光材料@分子印迹颗粒。
进一步地,其具体步骤为:
(1)称取0.5-1 mmol虚拟模板或目标物于反应容器中,加入10-60 mL致孔剂溶解模板,然后加入2-8 mmol的功能单体,1-5 mL MQDs/MCDs溶液,室温震摇预聚合25~35 min;
(2)随后加入4-20 mmol交联剂和10-50 mg引发剂,充氮5-20 min后立即封口,60-70℃水浴中聚合反应12-24 h;
(3)聚合完成后,取出聚合物,4000-8000 rpm离心2-4 min除去上清液,再加入甲醇充分分散后离心,以除去未反应的溶液,滤纸包裹后放入索式抽提器中,用丙酮、去离子水溶液交替洗脱模板直至模板洗脱完全,HPLC检测不到模板分子为止。
进一步地,所述虚拟模板为吡咯烷;
致孔剂为环己烷、乙腈,甲苯;
功能单体为MAA-β-环糊精、4-VP;
交联剂为TRIM、EGDMA,DVB;
引发剂为AIBN。
本发明的另一技术目的,磁性荧光材料@分子印迹颗粒的应用,将其用于快速检测食品加工及储藏中晚期中有害物质的残留。
进一步地,将上述磁性荧光材料@分子印迹颗粒制备成高分子复合膜,通过对基质的过滤及有害物的特异性吸附后,进行检测。
本发明的有益效果:本发明合成了MQDs@MIPs和MCDs@MIPs颗粒,其与特异性结合目标物后将发生荧光的猝灭,解决了信号的快速输出和读识问题;通过量子点荧光猝灭而产生的荧光变化,实现对食品中有害物的快速检测。
本发明使用方便、快速、特异性强、成本低、制作简单,可以实现大量样品中痕量物质的富集,大大降低了检出限;分子印迹位点能特异性识别目标物,同时过滤去除食品基质中其他干扰成分提高了灵敏度,为食品安全快速检测提供新的策略。
附图说明
图1是实施例2制备的三嗪类农药磁性碳点@分子印迹(MCDs@MIPs)颗粒的荧光发射光谱图。
图2是实施例2制备的吡咯素的分子印迹颗粒MIP、空白模板的印迹颗粒NIP、和磁性CDTe量子点@分子印迹MQDs@MIPs颗粒的红外光谱图。
图3是实施例2制备的吡咯素的磁性CDTe量子点@分子印迹颗粒MQDs@MIPs吸附吡咯素后的荧光值。
图4是实施例2制备的吡咯素的磁性CDTe量子点@分子印迹颗粒MCDTe@MIPs吸附吡咯素后荧光发射光谱图。
具体实施方式
实施例1 三嗪类农药磁性碳点@分子印迹(MCDs@MIPs)颗粒的制备
(1)Fe3O4颗粒的制备:将 2.35 g FeCl3·6H2O、0.86 g FeCl2·4H2O分别超声分散在 10 mL 超纯水中;向 250 mL 三颈烧瓶中先加 80 mL 超纯水,再将上述两个溶液转移至瓶中,80℃氮气保护下搅拌 10 min;加入 10 mL 25%的氨水,80℃下搅拌 30 min;加入0.1 g 的柠檬酸钠,搅拌 30 min,以增加磁性粒子的表面分散性;反应结束后冷却至室温,用磁铁将 Fe3O4分离;交替用超纯水和乙醇洗涤直至呈中性,50℃下真空干燥,制备成纳米Fe3O4颗粒。
(2)氨基化Fe3O4@SiO2纳米颗粒的制备:将制备的纳米Fe3O4颗粒分散到乙醇/水混合溶液中,依次加入氨水、TEOS,室温搅拌12 h,得到外壳包覆 SiO2的Fe3O4@SiO2;然后加入APTES,室温反应8 h,得到氨基化的Fe3O4@SiO2纳米颗粒。
(3)磁性碳点(MCDs)的制备:选用碳点作为荧光发光材料,采用表面印迹技术将碳点接枝到氨基化的Fe3O4@SiO2纳米颗粒表面,Fe3O4颗粒与CDs通过羧基-氨基结合,形成磁性碳点颗粒(MCDs)。
(4)三嗪类农药磁性碳点@分子印迹颗粒的制备(MCDs@MIPs):
a、称取0.5 mmol灭蝇胺(虚拟模板)于50 mL圆底烧瓶中,加入10 mL乙醇(致孔剂)溶解模板,然后加入2 mmol的MAA(功能单体),2 mL上述合成的磁性碳点MCDs溶液,室温震摇预聚合30 min;
b、随后加入5 mmol TRIM(交联剂)和30 mg AIBN(引发剂),充氮5 min后立即封口,60 ℃水浴中聚合反应24 h;
c、聚合完成后,取出聚合物,离心(4000 rpm,3 min)除去上清液,再加入甲醇充分分散后离心,以除去未反应的溶液,滤纸包裹后放入索式抽提器中,用乙醇、甲醇溶液交替洗脱模板直至模板洗脱完全,HPLC检测不到模板分子为止。
本实施例制备的三嗪类农药磁性碳点@分子印迹(MCDs@MIPs)颗粒的粒径≤5 μm。采用结构类似的灭蝇胺作为虚拟模板,能够保证材料的特异吸附性能同时避免本底渗漏问题;采用磁性荧光材料进行表面印迹,使材料本身具有磁性与荧光性,在外加磁场下即可实现分离,并可以根据荧光性质变化进行污染物的检测。制备的三嗪类农药磁性碳点@分子印迹(MCDs@MIPs)颗粒具有特异性强、吸附量高、应用范围广的优点,可作为一种分散固相萃取材料针对性的对样品中三嗪类除草剂及其代谢物进行分离、富集。
实施例2 吡咯素磁性量子点@分子印迹(MQDs@MIPs)颗粒的制备
(1)Fe3O4颗粒的制备:将 2.35 g FeCl3·6H2O、0.86 g FeCl2·4H2O分别超声分散在 10 mL 超纯水中;向 250 mL 三颈烧瓶中先加 80mL 超纯水,再将上述两个溶液转移至瓶中,80℃氮气保护下搅拌 10min;加入 10mL 25%的氨水,80℃下搅拌 30 min;加入 0. 1g 的柠檬酸钠,搅拌 30 min,以增加磁性粒子的表面分散性;反应结束后冷却至室温,用磁铁将 Fe3O4分离;交替用超纯水和乙醇洗涤直至呈中性,50℃下真空干燥,制备成纳米Fe3O4颗粒。
(3)氨基化Fe3O4@SiO2纳米颗粒的制备:将制备的纳米Fe3O4颗粒分散到乙醇/水混合溶液中,依次加入氨水、TEOS,室温搅拌12 h,得到外壳包覆 SiO2的Fe3O4@SiO2;然后加入APTES,室温反应8 h,得到氨基化的Fe3O4@SiO2纳米颗粒。
(3)磁性量子点(MQDs)颗粒的制备:选用CDTe量子点作为荧光发光材料,采用表面印迹技术将CDTe量子点接枝到氨基化的Fe3O4@SiO2纳米颗粒表面,Fe3O4颗粒与CDTe通过羧基-氨基结合,形成磁性量子点颗粒(MQDs)。
(4)吡咯素磁性量子点@分子印迹颗粒的制备(MQDs@MIPs):
a、称取0.5 mmol吡咯烷于50 mL圆底烧瓶中,加入10 mL环己烷(致孔剂)溶解模板,然后加入3 mmol的MAA-β-环糊精(功能单体),2 ml上述合成的磁性量子点MQDs颗粒,室温震摇预聚合30 min;
b、随后加入5 mmol TRIM(交联剂)和30 mg AIBN(引发剂),充氮5 min后立即封口,60℃水浴中聚合反应24 h;
c、聚合完成后,取出聚合物,离心(4000 rpm,3 min)除去上清液,再加入甲醇充分分散后离心,以除去未反应的溶液,滤纸包裹后放入索式抽提器中,用丙酮、去离子水溶液交替洗脱模板直至模板洗脱完全,HPLC检测不到模板分子为止。
制备的三嗪类农药磁性碳点@分子印迹(MCDs@MIPs)颗粒的荧光发射光谱图如图1所示。
吡咯素分子印迹颗粒MIP、未加模板的印迹颗粒NIP和磁性CDTe量子点@分子印迹MQDs@MIPs颗粒的红外光谱图如图2所示。由图2可知,成功合成了MQDs@MIPs颗粒。
MQDs@MIPs颗粒与吡咯素的作用时间对荧光强度的影响如图3所示。由图3可知,MQDs@MIPs颗粒吸附吡咯素的开始几分钟内,荧光值不稳定,变化较快,10分钟左右荧光值相对比较稳定,因此选择吸附作用10 min左右开始测定颗粒的荧光值。
吡咯烷模板和MAA功能单体的在不同量比例下, MQDs@MIPs识别吸附吡咯素的荧光吸收和荧光变化如图4所示;由图4可知,模板与功能单体的比例为3时,F0/F-1值最大,因此合成MQDs@MIPs颗粒时,模板与功能单体的比例定为3。
本实施例制备的吡咯素磁性量子点@分子印迹(MQDs@MIPs)颗粒的粒径≤5 μm。采用结构类似的吡咯烷作为虚拟模板,能够保证材料的特异吸附性能同时避免本底渗漏问题;采用磁性荧光材料进行表面印迹,使材料本身具有磁性与荧光性,在外加磁场下即可实现分离,并可以根据荧光性质变化进行污染物的检测。制备的吡咯素磁性量子点@分子印迹(MQDs@MIPs)颗粒具有特异性强、吸附量高、应用范围广的优点,可作为一种分散固相萃取材料针对性的对样品中吡咯素进行分离、富集。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (5)

1.一种磁性荧光材料@分子印迹颗粒的制备方法,其特征在于,步骤如下:
(1)预聚合:称取0.5-1 mmol虚拟模板或目标物于反应容器中,加入10-60 mL致孔剂溶解虚拟模板,然后加入2-8 mmol的功能单体且虚拟模板与功能单体的用量摩尔比为1:3,1-5 mL 磁性荧光材料,室温震摇预聚合25~35min,获得预聚合体系;
(2)聚合:将步骤(1)所得预聚合体系、加入4-20 mmol交联剂和10-50 mg引发剂,充氮5-20 min后立即封口,60-70℃水浴中聚合反应12-24 h获得聚合物;
(3)洗脱:用洗脱液洗脱步骤(2)所得聚合物,经洗脱后的标记物即为获得所对应待检测物质的磁性荧光材料@分子印迹颗粒;
当需要检测的物质为三嗪类农药时,虚拟模板为灭蝇胺;当需要检测物质为吡咯素时,虚拟模板为吡咯烷,
所述虚拟模板为灭蝇胺时,所述致孔剂为乙醇,所述功能单体为MAA;所述虚拟模板为吡咯烷时,所述致孔剂为环己烷,所述功能单体为MAA-β-环糊精;
所述交联剂为TRIM;
所述引发剂为AIBN;
所述磁性荧光材料为磁性碳点颗粒MCDs或磁性量子点颗粒MQDs;
步骤(1)中预聚合的温度为22-28℃;预聚合的时间为25-35 min;所述预聚合的过程中伴随震摇;
所述磁性碳点颗粒MCDs或磁性量子点颗粒MQDs的制备方法如下:
(1)Fe3O4颗粒的制备:将FeCl3·6H2O、FeCl2·4H2O分别超声分散在超纯水中;向反应容器中先加超纯水,再将上述两个溶液转移至反应容器中,氮气保护下高温搅拌反应;加入氨水,高温下继续搅拌;加入柠檬酸钠,搅拌反应,结束后冷却至室温,用磁铁将 Fe3O4分离;交替用超纯水和乙醇洗涤直至呈中性,真空干燥,得到纳米Fe3O4颗粒;
(2)氨基化Fe3O4@SiO2纳米颗粒的制备:将步骤(1)制备的纳米Fe3O4颗粒分散到乙醇/水混合溶液中,依次加入氨水、TEOS,室温搅拌,得到外壳包覆 SiO2的Fe3O4@SiO2;然后加入APTES,室温反应,得到氨基化的Fe3O4@SiO2纳米颗粒;
(3)磁性荧光材料的制备:选用碳点/CDTe量子点作为荧光发光材料,采用表面印迹技术将碳点接枝到步骤(2)制备所得的氨基化的Fe3O4@SiO2纳米颗粒表面,Fe3O4颗粒与CDs/CDTe通过羧基-氨基结合,形成磁性碳点颗粒MCDs或磁性量子点颗粒MQDs。
2.根据权利要求1所述磁性荧光材料@分子印迹颗粒的制备方法,其特征在于,所述虚拟模板为灭蝇胺时制备三嗪类农药的磁性荧光材料@分子印迹颗粒,其中步骤(3)为:聚合完成后,取出聚合物,4000-8000 rpm离心2-4 min除去上清液,再加入甲醇充分分散后离心,以除去未反应的溶液,滤纸包裹后放入索式抽提器中,用乙醇、甲醇溶液交替洗脱模板直至模板洗脱完全,HPLC检测不到模板分子为止。
3.根据权利要求1所述磁性荧光材料@分子印迹颗粒的制备方法,其特征在于,所述虚拟模板为吡咯烷时制备吡咯素磁性荧光材料@分子印迹颗粒,其中步骤(3)为:
聚合完成后,取出聚合物,4000-8000 rpm离心2-4 min除去上清液,再加入甲醇充分分散后离心,以除去未反应的溶液,滤纸包裹后放入索式抽提器中,用丙酮、去离子水溶液交替洗脱模板直至模板洗脱完全,HPLC检测不到模板分子为止。
4.权利要求1-3任一项所述制备方法得到的磁性荧光材料@分子印迹颗粒在快速检测食品加工及储藏中晚期中有害物质的残留检测中的应用。
5.根据权利要求4所述的应用,其特征在于:将所述磁性量子点@分子印迹颗粒制备成高分子复合膜,通过对基质的过滤及有害物的特异性吸附后,进行检测。
CN202110260738.1A 2021-03-10 2021-03-10 磁性荧光材料@分子印迹颗粒的制备及利用其制备复合膜的方法 Active CN112979893B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110260738.1A CN112979893B (zh) 2021-03-10 2021-03-10 磁性荧光材料@分子印迹颗粒的制备及利用其制备复合膜的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110260738.1A CN112979893B (zh) 2021-03-10 2021-03-10 磁性荧光材料@分子印迹颗粒的制备及利用其制备复合膜的方法

Publications (2)

Publication Number Publication Date
CN112979893A CN112979893A (zh) 2021-06-18
CN112979893B true CN112979893B (zh) 2023-03-24

Family

ID=76334836

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110260738.1A Active CN112979893B (zh) 2021-03-10 2021-03-10 磁性荧光材料@分子印迹颗粒的制备及利用其制备复合膜的方法

Country Status (1)

Country Link
CN (1) CN112979893B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113945529A (zh) * 2021-10-16 2022-01-18 中南大学 基于双功能可循环磁性荧光传感器的污水中甲卡西酮检测与净化的方法
CN115960377B (zh) * 2022-12-19 2023-07-21 北京工商大学 一种特异性荧光指示片及其制备方法和应用

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5156944B2 (ja) * 2006-11-20 2013-03-06 国立大学法人東京工業大学 蛍光機能具備磁性ポリマー粒子とその製造方法
GB0921025D0 (en) * 2009-12-01 2010-01-13 Univ Cranfield Preparation of soluble and colloidal molecularly imprinted polymers
CN102553497B (zh) * 2011-12-28 2014-04-02 北京化工大学 一种多功能复合印迹纳米球及其在农药残留检测中的应用
CN103172899B (zh) * 2012-12-24 2015-04-08 重庆大学 用于有机磷农药检测的分子印迹复合膜及其应用
CN103558203B (zh) * 2013-11-22 2015-07-01 中国农业科学院农业质量标准与检测技术研究所 磁性分子印迹聚合物-荧光分析方法
CN104744649B (zh) * 2015-03-19 2018-06-26 江苏大学 一种CdTe量子点荧光三氟氯氰菊酯印迹传感器的制备方法
CN106442436B (zh) * 2016-07-12 2019-11-05 江苏大学 用于检测水中痕量4-硝基苯酚的磁性量子点印迹材料、制备方法及用途
CN107189012B (zh) * 2017-07-03 2019-03-22 长江师范学院 邻苯二甲酸酯类分子印迹聚合物的制备方法及产品和应用
CN109092254B (zh) * 2018-08-16 2021-09-21 广东工业大学 一种双虚拟模板邻苯二甲酸酯分子印迹磁性材料的制备及应用方法
CN112251216B (zh) * 2020-10-09 2021-06-01 山东农业大学 一种基于磁性共价有机框架的双酚a碳点分子印迹荧光复合探针的制备方法及应用

Also Published As

Publication number Publication date
CN112979893A (zh) 2021-06-18

Similar Documents

Publication Publication Date Title
Gao et al. Recent advances and future trends in the detection of contaminants by molecularly imprinted polymers in food samples
Yang et al. Design and preparation of self-driven BSA surface imprinted tubular carbon nanofibers and their specific adsorption performance
Zhou et al. Recent progress of selective adsorbents: from preparation to complex sample pretreatment
Chiou et al. Adsorption of anionic dyes in acid solutions using chemically cross-linked chitosan beads
Dakova et al. Solid phase selective separation and preconcentration of Cu (II) by Cu (II)-imprinted polymethacrylic microbeads
Zhang et al. Homochiral fluorescence responsive molecularly imprinted polymer: Highly chiral enantiomer resolution and quantitative detection of L-penicillamine
CN112979893B (zh) 磁性荧光材料@分子印迹颗粒的制备及利用其制备复合膜的方法
CN112808256B (zh) 一种磁性核壳介孔表面分子印迹复合纳米材料及其制备方法
CN106883411B (zh) 超顺磁性核壳结构介孔分子印迹聚合物的制备及作为固相萃取剂的应用
CN108659255B (zh) 核酸适配体-分子印迹协同识别磁性微球及其制备方法和应用
Huang et al. Fast and selective recognizes polysaccharide by surface molecularly imprinted film coated onto aldehyde-modified magnetic nanoparticles
Tan et al. Development of surface imprinted core–shell nanoparticles and their application in a solid-phase dispersion extraction matrix for methyl parathion
Zhao et al. Magnetic surface molecularly imprinted poly (3-aminophenylboronic acid) for selective capture and determination of diethylstilbestrol
Akgöl et al. Magnetic dye affinity beads for the adsorption of β‐casein
Wang et al. Preparation and application of peptide molecularly imprinted material based on mesoporous metal-organic framework
Zhong et al. Synthesis and characterization of magnetic molecularly imprinted polymers for enrichment of sanguinarine from the extraction wastewater of M. cordata
Tan et al. Antibody-free ultra-high performance liquid chromatography/tandem mass spectrometry measurement of angiotensin I and II using magnetic epitope-imprinted polymers
Liang et al. Amido surface-functionalized magnetic molecularly imprinted polymers for the efficient extraction of Sibiskoside from Sibiraea angustata
Cui et al. Phenylboronic acid‐functionalized cross‐linked chitosan magnetic adsorbents for the magnetic solid‐phase extraction of benzoylurea pesticides
CN103599757B (zh) 一种磁性温敏型表面锶离子印迹吸附剂的制备方法
Zhang et al. Synthesis of a magnetic micelle molecularly imprinted polymers to selective adsorption of rutin from Sophora japonica
Zhang et al. Confinement effect of ionic liquid: improve of the extraction performance of parent metal organic framework for phthalates
CN113845632A (zh) 一种双模板磁性分子印迹聚合物及其制备方法和应用
Wang et al. Synthesis and characterization of core‐shell magnetic molecularly imprinted polymers for selective extraction of allocryptopine from the wastewater of Macleaya cordata (Willd) R. Br.
CN116440874A (zh) 一种基于核酸适配体功能化磁性疏水聚合物的交链孢酚吸附剂及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information

Inventor after: He Yahui

Inventor after: Liu Xinyu

Inventor after: Wang Liang

Inventor after: Jiao Xun

Inventor after: Wang Mengqiang

Inventor after: Wang Jing

Inventor after: Sun Baoguo

Inventor before: He Yahui

Inventor before: Wang Liang

Inventor before: Liu Xinyu

Inventor before: Jiao Xun

Inventor before: Wang Mengqiang

Inventor before: Wang Jing

Inventor before: Sun Baoguo

CB03 Change of inventor or designer information
GR01 Patent grant
GR01 Patent grant