CN108404873B - 一种纳米氧化铁/壳聚糖磷结合剂制备方法及应用 - Google Patents

一种纳米氧化铁/壳聚糖磷结合剂制备方法及应用 Download PDF

Info

Publication number
CN108404873B
CN108404873B CN201810036290.3A CN201810036290A CN108404873B CN 108404873 B CN108404873 B CN 108404873B CN 201810036290 A CN201810036290 A CN 201810036290A CN 108404873 B CN108404873 B CN 108404873B
Authority
CN
China
Prior art keywords
chitosan
oil
solution
binding agent
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810036290.3A
Other languages
English (en)
Other versions
CN108404873A (zh
Inventor
张文君
范险林
李晴
毛倩
贺高红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN201810036290.3A priority Critical patent/CN108404873B/zh
Publication of CN108404873A publication Critical patent/CN108404873A/zh
Application granted granted Critical
Publication of CN108404873B publication Critical patent/CN108404873B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/24Naturally occurring macromolecular compounds, e.g. humic acids or their derivatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/715Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkages; Derivatives thereof, e.g. ethers, esters
    • A61K31/716Glucans
    • A61K31/722Chitin, chitosan
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/24Heavy metals; Compounds thereof
    • A61K33/26Iron; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • B01J20/28007Sorbent size or size distribution, e.g. particle size with size in the range 1-100 nanometers, e.g. nanosized particles, nanofibers, nanotubes, nanowires or the like

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Diabetes (AREA)
  • Hematology (AREA)
  • Obesity (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Cosmetics (AREA)

Abstract

本发明属于生物体内高磷血症磷吸附剂的开发制备及其应用技术领域,涉及一种纳米氧化铁/壳聚糖磷结合剂制备方法及应用。以疏水改性纳米氧化铁用作乳化剂,壳聚糖溶液为水相,煤油为油相,制备水包油Pickering乳液;将Pickering乳液分散在含有Span‑80的石蜡溶液中,制备出均匀稳定的油包水包油乳液,向油包水包油乳液中加入戊二醛溶液,反应、静置;滤去上清液,用无水乙醇和去离子水反复破乳洗涤,抽滤;干燥,得到纳米氧化铁/壳聚糖磷结合剂。该纳米氧化铁/壳聚糖磷结合剂可应用于磷的吸附。本发明制备的磷结合剂具有比表面积大,吸附性能好,稳定性强,对人体无明显毒害作用的特点。

Description

一种纳米氧化铁/壳聚糖磷结合剂制备方法及应用
技术领域
本发明属于生物体内高磷血症磷吸附剂的开发制备及其应用技术领域,涉及一种纳米氧化铁/壳聚糖磷结合剂制备方法及应用。
背景技术
肾衰竭患者由于生理代谢能力下降,无法正常吸收和排放磷元素,引起体内磷元素的紊乱,引发高磷血症甚至多并发症,导致器官衰竭而死。临床用钙系、镧系等降磷药物,效果不佳、副作用大且成本过高。
纳米氧化铁Fe2O3本身颗粒细微化,具有极大的比表面积,且对无机磷有着较好的吸附作用,吸附迅速,可以用来吸收胃肠道中的磷酸盐离子,控制磷的积累。但长期直接服用氧化铁会存在毒副作用,对人体产生不良的影响。
为有效利用纳米Fe2O3的磷结合性,并降低其潜在的毒副作用,本发明提出一种用天然壳聚糖包裹纳米Fe2O3的方法,利用纳米Fe2O3吸附磷的特性并结合壳聚糖碱性氨基的正电荷吸附负电荷离子的特点,用于强化肠道磷吸附效果。
本发明避免了纳米Fe2O3的体内长期积累的负作用,同时提高了磷吸附特性,同时该结合剂也可用于吸附负电荷离子,为生物用阴离子结合剂提供了技术参考。
发明内容
为解决上述问题,本发明提供一种纳米氧化铁/壳聚糖磷结合剂制备方法及应用,制备的吸附剂集壳聚糖与纳米氧化铁的优点于一体,具有比表面积大,吸附性能好,稳定性强,对人体无明显毒害等优势。
本发明的技术方案:
一种纳米氧化铁/壳聚糖磷结合剂的制备方法,步骤如下:
(1)壳聚糖溶液作为水相,煤油作为油相,疏水改性纳米氧化铁作为乳化剂,制备水包油Pickering乳液;其中,乳化剂在混合体系中的浓度为6wt%~36wt%,油水比为1:1~1:4;
(2)将步骤(1)得到的水包油Pickering乳液分散在含有Span-80的石蜡溶液中,制备出均匀稳定的油包水包油乳液;其中,Span-80与石蜡溶液的体积比为1.5%~3%,水包油Pickering乳液和石蜡溶液的体积比为1:1~1:4,
(3)在20℃~60℃的温度下,向步骤(2)得到的油包水包油乳液中加入戊二醛溶液,反应1~4小时,静置半小时;滤去上清液,用无水乙醇和去离子水反复破乳洗涤,抽滤;干燥4-8小时,得到直径为5~15μm的复合微球,即纳米氧化铁/壳聚糖磷结合剂。
所述的壳聚糖溶液为质量浓度2~4wt%的壳聚糖与体积浓度为2%的乙酸混合得到的壳聚糖乙酸溶液。
所述的疏水改性纳米氧化铁的粒径范围为20~50nm。
所述的纳米氧化铁/壳聚糖磷结合剂的应用,步骤如下:
磷酸盐溶液,浓度为50~1000mgP/g,调节pH为1~8,温度为37℃;将纳米氧化铁/壳聚糖磷结合剂作为吸附剂,加入到磷酸盐溶液中,每100mL磷酸盐溶液加入0.1~0.4g吸附剂,吸附时间2~4h;过滤得到清液,检测吸附容量。
本发明的有益效果:利用壳聚糖表面有机基团和纳米氧化铁对磷酸阴离子的协同吸附,制备出具有比表面积大,吸附性能好,稳定性强,对人体无明显毒害作用的磷结合剂。
具体实施方式
下面通过实施例详述本发明的技术方案,但本发明的保护范围不限于此。
实施例1:
1.将疏水纳米氧化铁加入煤油中制成质量体积浓度为6wt%的浆料,以与煤油的体积计,搅拌分散使其充分混合均匀。将混合好的物料于逐滴加入到配制好的壳聚糖溶液中,煤油与壳聚糖的体积为1:2,制备出O/W Pickering乳液。将制备的Pickering乳液以1:2的体积分散在含有2%Span-80的石蜡溶液中,制备出均匀稳定的油包水包油(O/W/O)乳液。在20℃的温度下加入一定质量的50%的戊二醛溶液,反应4小时,静置半小时,滤去上清液后再用大量无水乙醇和去离子水反复破乳洗涤几次后,抽滤,置于烘箱中干燥4-8小时,直径为5~15μm的壳聚糖/纳米氧化铁复合微球。
2.将上述制备的微球作为吸附剂加入到要吸附的磷酸盐溶液中,调节pH为1~8,温度为37℃,浓度为1000mgP/g,每次100mL溶液加入0.1g吸附剂,吸附时间4h,然后取溶液过滤得清液,用紫外分光光度计检测吸附容量。
实施例2:
1.将疏水纳米氧化铁加入煤油中制成质量体积浓度为12wt%的浆料,以与煤油的体积计,搅拌分散使其充分混合均匀。将混合好的物料于逐滴加入到配制好的壳聚糖溶液中,煤油与壳聚糖的体积为1:2,制备出O/W Pickering乳液。将制备的Pickering乳液以1:2的体积分散在含有2%Span-80的石蜡溶液中,制备出均匀稳定的油包水包油(O/W/O)乳液。在20℃的温度下加入一定质量的50%的戊二醛溶液,反应4小时,静置半小时,滤去上清液后再用大量无水乙醇和去离子水反复破乳洗涤几次后,抽滤,置于烘箱中干燥4-8小时,直径为5~15μm的壳聚糖/纳米氧化铁复合微球。
2.将上述制备的微球作为吸附剂加入到要吸附的磷酸盐溶液中,调节pH为1~8,温度为37℃,浓度为1000mgP/g,每次100mL溶液加入0.1g吸附剂,吸附时间4h,然后取溶液过滤得清液,用紫外分光光度计检测吸附容量。
实施例3:
1.将疏水纳米氧化铁加入煤油中制成质量体积浓度为18wt%的浆料,以与煤油的体积计,搅拌分散使其充分混合均匀。将混合好的物料于逐滴加入到配制好的壳聚糖溶液中,煤油与壳聚糖的体积为1:2,制备出O/W Pickering乳液。将制备的Pickering乳液以1:2的体积分散在含有2%Span-80的石蜡溶液中,制备出均匀稳定的油包水包油(O/W/O)乳液。在20℃的温度下加入一定质量的50%的戊二醛溶液,反应4小时,静置半小时,滤去上清液后再用大量无水乙醇和去离子水反复破乳洗涤几次后,抽滤,置于烘箱中干燥4-8小时,直径为5~15μm的壳聚糖/纳米氧化铁复合微球。
2.将上述制备的微球作为吸附剂加入到要吸附的磷酸盐溶液中,调节pH为1~8,温度为37℃,浓度为1000mgP/g,每次100mL溶液加入0.1g吸附剂,吸附时间4h,然后取溶液过滤得清液,用紫外分光光度计检测吸附容量。
实施例4:
1.将疏水纳米氧化铁加入煤油中制成质量体积浓度为24wt%的浆料,以与煤油的体积计,搅拌分散使其充分混合均匀。将混合好的物料于逐滴加入到配制好的壳聚糖溶液中,煤油与壳聚糖的体积为1:2,制备出O/W Pickering乳液。将制备的Pickering乳液以1:2的体积分散在含有2%Span-80的石蜡溶液中,制备出均匀稳定的油包水包油(O/W/O)乳液。在20℃的温度下加入一定质量的50%的戊二醛溶液,反应4小时,静置半小时,滤去上清液后再用大量无水乙醇和去离子水反复破乳洗涤几次后,抽滤,置于烘箱中干燥4-8小时,直径为5~15μm的壳聚糖/纳米氧化铁复合微球。
2.将上述制备的微球作为吸附剂加入到要吸附的磷酸盐溶液中,调节pH为1~8,温度为37℃,浓度为1000mgP/g,每次100mL溶液加入0.1g吸附剂,吸附时间4h,然后取溶液过滤得清液,用紫外分光光度计检测吸附容量。
实施例5:
1.将疏水纳米氧化铁加入煤油中制成质量体积浓度为30wt%的浆料,以与煤油的体积计,搅拌分散使其充分混合均匀。将混合好的物料于逐滴加入到配制好的壳聚糖溶液中,煤油与壳聚糖的体积为1:2,制备出O/W Pickering乳液。将制备的Pickering乳液以1:2的体积分散在含有2%Span-80的石蜡溶液中,制备出均匀稳定的油包水包油(O/W/O)乳液。在20℃的温度下加入一定质量的50%的戊二醛溶液,反应4小时,静置半小时,滤去上清液后再用大量无水乙醇和去离子水反复破乳洗涤几次后,抽滤,置于烘箱中干燥4-8小时,直径为5~15μm的壳聚糖/纳米氧化铁复合微球。
2.将上述制备的微球作为吸附剂加入到要吸附的磷酸盐溶液中,调节pH为1~8,温度为37℃,浓度为1000mgP/g,每次100mL溶液加入0.1g吸附剂,吸附时间4h,然后取溶液过滤得清液,用紫外分光光度计检测吸附容量。
本实施例4制备的纳米氧化铁/壳聚糖复合微球在1000mgP/L,pH=3下溶液中对磷的吸附容量可高达60mg/g。
以上实施案例仅用于说明本发明的优选实施方式,但本发明并不限于上述实施方式,在所述领域普通技术人员所具备的知识范围内,本发明的精神和原则之内所作的任何修改、等同替代及改进等,均应视为本申请的保护范围。

Claims (5)

1.一种纳米氧化铁/壳聚糖磷结合剂的制备方法,其特征在于,具体步骤如下:
(1)壳聚糖溶液作为水相,煤油作为油相,疏水改性纳米氧化铁作为乳化剂,制备水包油Pickering乳液;其中,乳化剂在混合体系中的浓度为6wt%~36wt%,油水比为1:1~1:4;
(2)将步骤(1)得到的水包油Pickering乳液分散在含有Span-80的石蜡溶液中,制备出均匀稳定的油包水包油乳液;其中,Span-80在石蜡溶液中的体积浓度为1.5%~3%,水包油Pickering乳液和石蜡溶液的体积比为1:1~1:4,
(3)在20℃~60℃的温度下,向步骤(2)得到的油包水包油乳液中加入戊二醛溶液,反应1~4小时,静置半小时;滤去上清液,用无水乙醇和去离子水反复破乳洗涤,抽滤;干燥4-8小时,得到直径为5~15μm的复合微球,即纳米氧化铁/壳聚糖磷结合剂。
2.根据权利要求1所述的一种纳米氧化铁/壳聚糖磷结合剂的制备方法,其特征在于,所述的壳聚糖溶液为质量浓度2~4wt%的壳聚糖与体积浓度为2%的乙酸混合得到的壳聚糖乙酸溶液。
3.根据权利要求1或2所述的一种纳米氧化铁/壳聚糖磷结合剂的制备方法,其特征在于,所述的疏水改性纳米氧化铁的粒径范围为20~50nm。
4.权利要求1或2所述的纳米氧化铁/壳聚糖磷结合剂的应用,其特征在于,具体步骤如下:
磷酸盐溶液,浓度为50~1000mgP/g,调节pH为1~8,温度为37℃;将纳米氧化铁/壳聚糖磷结合剂作为吸附剂,加入到磷酸盐溶液中,每100mL磷酸盐溶液加入0.1~0.4g吸附剂,吸附时间2~4h;过滤得到清液,检测吸附容量。
5.权利要求3所述的纳米氧化铁/壳聚糖磷结合剂的应用,其特征在于,具体步骤如下:
磷酸盐溶液,浓度为50~1000mgP/g,调节pH为1~8,温度为37℃;将纳米氧化铁/壳聚糖磷结合剂作为吸附剂,加入到磷酸盐溶液中,每100mL磷酸盐溶液加入0.1~0.4g吸附剂,吸附时间2~4h;过滤得到清液,检测吸附容量。
CN201810036290.3A 2018-01-15 2018-01-15 一种纳米氧化铁/壳聚糖磷结合剂制备方法及应用 Active CN108404873B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810036290.3A CN108404873B (zh) 2018-01-15 2018-01-15 一种纳米氧化铁/壳聚糖磷结合剂制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810036290.3A CN108404873B (zh) 2018-01-15 2018-01-15 一种纳米氧化铁/壳聚糖磷结合剂制备方法及应用

Publications (2)

Publication Number Publication Date
CN108404873A CN108404873A (zh) 2018-08-17
CN108404873B true CN108404873B (zh) 2020-08-14

Family

ID=63125632

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810036290.3A Active CN108404873B (zh) 2018-01-15 2018-01-15 一种纳米氧化铁/壳聚糖磷结合剂制备方法及应用

Country Status (1)

Country Link
CN (1) CN108404873B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109125273B (zh) * 2018-09-28 2020-10-09 北京市中关村医院 一种磷结合剂及其制备方法和用途
CN109970989B (zh) * 2019-04-23 2021-07-06 北京市中关村医院 一种MOFs结构的磷结合剂及其制备方法和应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102350319B (zh) * 2011-07-15 2013-05-08 江苏大学 一种粉煤灰微珠磁性复合材料表面印迹吸附剂的制备方法
CN102585064B (zh) * 2012-02-24 2014-02-26 华南理工大学 一种多孔磁性各向异性微球及其制备方法
MX2014001910A (es) * 2014-02-18 2015-08-18 Univ Nac Autónoma De México Metodo para la obtencion de microesferas de liberacion controlada de activos sensibles preparadas por ensamblaje de microesferas porosas y nanoparticulas.
CN104258822B (zh) * 2014-10-22 2016-05-11 天津工业大学 壳聚糖及壳聚糖季铵盐复合磁性微球及制备方法
CN104479072B (zh) * 2014-11-24 2016-11-09 常州大学 一种制备磁性分子印迹吸附剂的方法
CN105944581B (zh) * 2016-05-16 2019-01-01 辽宁大学 一种阴离子响应性Pickering乳液及其制备方法和应用

Also Published As

Publication number Publication date
CN108404873A (zh) 2018-08-17

Similar Documents

Publication Publication Date Title
He et al. Preferable adsorption of phosphate using lanthanum-incorporated porous zeolite: characteristics and mechanism
Sankaran et al. Feasibility assessment of removal of heavy metals and soluble microbial products from aqueous solutions using eggshell wastes
Salam et al. Effective decontamination of As (V), Hg (II), and U (VI) toxic ions from water using novel muscovite/zeolite aluminosilicate composite: adsorption behavior and mechanism
Tomar et al. A critical study on efficiency of different materials for fluoride removal from aqueous media
Wei et al. Fast removal of methylene blue from aqueous solution by adsorption onto poorly crystalline hydroxyapatite nanoparticles
Wang et al. Preparation of modified sodium alginate aerogel and its application in removing lead and cadmium ions in wastewater
Cetin et al. The use of fly ash as a low cost, environmentally friendly alternative to activated carbon for the removal of heavy metals from aqueous solutions
He et al. Rapid removal of Hg (II) from aqueous solutions using thiol-functionalized Zn-doped biomagnetite particles
Wu et al. Comparative and competitive adsorption of Cr (VI), As (III), and Ni (II) onto coconut charcoal
Fernando et al. Biopolymer-based nanohydroxyapatite composites for the removal of fluoride, lead, cadmium, and arsenic from water
US20200123025A1 (en) Iron oxide modified halloysite nanomaterial
US20040050795A1 (en) Removal of arsenic and other anions using novel adsorbents
CN110252261A (zh) 一种树脂基纳米羟基磷灰石复合材料、制备方法及在氟污染水体处理中的应用
Lin et al. Evaluation of sediment amendment with zirconium-reacted bentonite to control phosphorus release
CN108404873B (zh) 一种纳米氧化铁/壳聚糖磷结合剂制备方法及应用
CN105170076A (zh) 一种蒙脱石基层状双氢氧化物聚合纳米材料、制备及应用
CN112755976A (zh) 一种双交联凝胶球吸附材料的制备方法及应用
Peng et al. Enhanced removal of Cd (II) by poly (acrylamide-co-sodium acrylate) water-retaining agent incorporated nano hydrous manganese oxide
Zhang et al. Efficient and selective immobilization of Pb2+ in highly acidic wastewater using strontium hydroxyapatite nanorods
Jia et al. Separable lanthanum-based porous PAN nanofiber membrane for effective aqueous phosphate removal
He et al. Design and optimization of a novel Y-Fe-GO magnetic adsorbent for simultaneous removal of tetracycline and arsenic and adsorption mechanisms
JP2546973B2 (ja) 重金属含有廃水の処理用組成物
Li et al. Adsorption, recovery, and regeneration of Cd by magnetic phosphate nanoparticles
Yang et al. In situ nano-assembly of Mg/Al LDH embedded on phosphorylated cellulose microspheres for tetracycline hydrochloride removal
Siéwé et al. Activation of clay surface sites of Bambouto's Andosol (Cameroon) with phosphate ions: Application for copper fixation in aqueous solution

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant