CN102522374A - 一种用来制造具有柱状底电极相变化存储装置的方法 - Google Patents

一种用来制造具有柱状底电极相变化存储装置的方法 Download PDF

Info

Publication number
CN102522374A
CN102522374A CN2008100742218A CN200810074221A CN102522374A CN 102522374 A CN102522374 A CN 102522374A CN 2008100742218 A CN2008100742218 A CN 2008100742218A CN 200810074221 A CN200810074221 A CN 200810074221A CN 102522374 A CN102522374 A CN 102522374A
Authority
CN
China
Prior art keywords
electrode
material layer
layer
junction point
conductive junction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2008100742218A
Other languages
English (en)
Other versions
CN102522374B (zh
Inventor
龙翔澜
陈介方
陈逸舟
陈士弘
蓝中弘
艾瑞克安德鲁 乔瑟夫
亚历桑德罗加布里尔 史克鲁特
马修J·布雷杜斯克
杰弗里威廉 柏尔
汉普D·汤玛斯
骞鲍里斯 菲利普
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qimonda AG
Macronix International Co Ltd
International Business Machines Corp
Qimonda North America Corp
Original Assignee
Qimonda AG
Macronix International Co Ltd
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qimonda AG, Macronix International Co Ltd, International Business Machines Corp filed Critical Qimonda AG
Publication of CN102522374A publication Critical patent/CN102522374A/zh
Application granted granted Critical
Publication of CN102522374B publication Critical patent/CN102522374B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0004Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements comprising amorphous/crystalline phase transition cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/30Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having three or more electrodes, e.g. transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/021Formation of switching materials, e.g. deposition of layers
    • H10N70/026Formation of switching materials, e.g. deposition of layers by physical vapor deposition, e.g. sputtering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/041Modification of switching materials after formation, e.g. doping
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/061Shaping switching materials
    • H10N70/063Shaping switching materials by etching of pre-deposited switching material layers, e.g. lithography
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/231Multistable switching devices, e.g. memristors based on solid-state phase change, e.g. between amorphous and crystalline phases, Ovshinsky effect
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/826Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/841Electrodes
    • H10N70/8413Electrodes adapted for resistive heating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/882Compounds of sulfur, selenium or tellurium, e.g. chalcogenides
    • H10N70/8828Tellurides, e.g. GeSbTe
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/883Oxides or nitrides
    • H10N70/8833Binary metal oxides, e.g. TaOx
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/883Oxides or nitrides
    • H10N70/8836Complex metal oxides, e.g. perovskites, spinels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/884Switching materials based on at least one element of group IIIA, IVA or VA, e.g. elemental or compound semiconductors

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Semiconductor Memories (AREA)

Abstract

本发明公开了一种用来制造伞状相变化存储器的方法,在一衬底上制造一底电极材料柱,而该衬底包含一导电接点阵列与存取电路电性连接。沉积一电极材料层并与该导电接点阵列可靠的电性连结。刻蚀电极材料以在对应的导电接点上形成一电极材料柱图案。接着,在该图案上沉积一介电材料以及平面化,以提供一电极表面并裸露出该电极柱的顶表面。接着沉积一可编程电阻材料,例如:硫属化物或其它相变化材料,之后再沉积一顶电极材料层。本发明是描述一种底表面大于顶表面的电极柱的装置。

Description

一种用来制造具有柱状底电极相变化存储装置的方法
技术领域
本发明关于以相变化存储材料为基础的高密度存储装置,包含以硫属化物为基础的材料及其它材料,以及特别是针对用来制造具有柱状底电极相变化存储元件的方法。
背景技术
相变化为基础存储材料已经广泛运用于非易失随机存取存储单元中。相变化材料,诸如硫属化物材料等,可利用集成电路施加适当的电流以在结晶态与非晶态之间转换相态。大致为非晶态者较大致为结晶态者具有较高的电阻率,由此即可感知数据。
非晶态转换至结晶态的过程,通常采用较低的操作电压,其电流需足以将相变化材料的温度提升至相变化温度与熔点之间。由结晶态转换为非晶态的过程,则通常需要较高的操作电压;此后称此过程为『复位』(reset)。因为此一过程需要一短时间且高密度的电流脉冲,以熔化或破坏结晶结构,随后快速冷却相变化材料,经淬火处理,将至少一部分的相变化结构稳定为非晶态。此一过程,藉复位电流将相变化材料由结晶态转变为非晶态,而吾人希望尽量降低复位电流的强度。欲降低复位电流的强度,可降低存储单元中主动区域的大小。降低主动区域大小的技术,包含降低电极与相变化材料的接触区域面积,因此可在主动区域中获得较高的电流密度,而以较小的电流绝对值通过相变化材料元件。
在集成电路结构中制作小孔洞(pores),为此项技术发展方向之一;同时,亦采用少量的可编程电阻材料填充该小孔洞。显示小孔洞发展的专利包含:Ovshinsky,“Multibit Single Cell Memory Element HavingTapered Contact”,U.S.Pat,No.5,687,112,专利发证日期1997年11月11日;Zahorik et al.,“Method of Making Chalcogenide[sic]MemoryDevice”,U.S.Pat.No.5,789,277,专利发证日期1998年8月4日;Doanet al.,“Controllable Ovonic Phase-Change Semiconductor Memory Deviceand Methods of Gabracting the Same,”U.S,Pat.No.6,150,253,专利发证日期2000年11月21日。
另一种发展中的存储单元结构,亦称为伞状结构,其是因为其典型结构中底部电极上的主动区域的形状而得名。该种结构是形成小电极区域,使之与较大区域的相变化材料接触,同时通常利用较大的电极与相变化材料的另一面接触。电流由小接触区域流向大接触区域者,可用做存储单元的读取、设定、与复位操作。小电极区域可将电流密度集中于接触点上,因此相变化材料中的主动区域可限制在接近于接触点的小区域中。举例而言,参见Ann et al.,“Highly reliable 50nmcontact cell technology for 256Mb PRAM”,VLSI Technology 2005 Digestof Technical Papers,第98~99页,2005年6月4日;Denison,国际公开号WO2004/055916 A2“Phase Change Memory and MethodTherefore”,公开日期2004年7月1日;以及Song et al.,美国专利申请公开号US 2005/0263829 A1,“Semiconductor Devices Having PhaseChange Memory Cells,Electronic Systems Employing the Same andMethods of Fabricating the Same”,公开日期2005年12月1日。
用以制造非常微小底电极的一先前技术,如Ahn et al.所发表的论文所述,称为介层孔中栓塞工艺,并且包括形成一介电填充层于存储单元的存取电路之上、在介电填充层中刻蚀介层孔以形成一开口而制造接触接触至此电路、以及沉积电极材料于此介层孔中。所生成的结构接着被平面化以将介层孔中的电极材料外露。接着沉积相变化材料并图案化,以接触至电极。虽然此介层孔中栓塞工艺技术适用于形成非常微小的底电极结构,但此技术也被证实有可靠性以及良率的问题。举例而言,如Ahn et al.所言,研究证实此方法难以在非常微小的介层孔与其底部以下的存取电路之间,形成可靠的电性连接。此缺憾造成存储单元阵列中的某些存储单元永久地与存取电路之间形成断路。
此外,Ahn et al.亦提到在介层孔中栓塞工艺中,难以确保在针对存储单元阵列进行平面化工艺后,栓塞电极所外露的顶端面积为均匀的。由于底电极的上表面积会影响在相变化材料中的电流密度,并且是此类型相变化存储单元的临界尺寸之一,故接点区域的变化会导致在单一阵列中各存储单元产生剧烈的操作变化。此问题亦会因欲成功地填充该介层孔技术时又更行恶化,包含薄膜沉积及该薄膜的非等向刻蚀以形成该介层孔的侧壁子。在形成侧壁子工艺的本质上,趋于使该介层孔顶部边缘圆滑,且使栓塞电极材料进入介层孔内,以产生具有扩张剖面的顶端。由于在忍受程度范围内,要对整个阵列一致地平面化所得的结构,又要避开掉此扩张顶端是具有相当的困难程度,回蚀并无法对所有的存储单元完全地移除该扩张顶端,以及会导致该底电极栓塞的该扩张顶表面尺寸上有极大的变异性。
在形成介层孔中栓塞电极时会产生另一个问题,其原因在于难以均匀地填充介层孔。尤其,因为在微小介层孔中的薄膜沉积动力学特性,使得所生成的栓塞可能包括一空洞,因为在还没有完全填满之前介层孔的顶端就已经封闭了。将此结构平面化之后可能会将空洞暴露出来,因而在电极栓塞的上表面生成一个介层孔。后续在电极上形成相变化材料层的时候,这些介层孔可能会造成问题。
因此,需要一种存储单元的制造方法与结构,对于该底电极临界尺寸以及该底电极集成电路连结上具有较佳的控制,使用可靠且可重复的工艺技术制造高密度集成电路存储装置。
发明内容
有鉴于此,本发明的主要目的在于提供一种用来制造具有一底电极材料柱的伞状相变化存储器的方法,并提供较佳的临界尺寸一致性及介层孔中栓塞工艺上的电性连接。基本上制造一集成电路存储装置包含在本发明中所描述的多个存储单元,提供一包含供该多个存储单元用的存取电路的一衬底,该衬底具有一导电接点阵列的一接点表面,且该导电接点阵列连接至该存取电路。在该接点表面上沉积一底电极材料层,使其与该导电接点阵列可靠地电性连接。移除该底电极材料层中的电极材料的一部分,以形成一电极柱图案并对应于导电接点阵列中的导电接点。在代表性的工艺中,电极柱可为直径约小于50纳米的圆柱。接着,沉积一介电材料在该电极柱图案以及接点表面上方以提供一介电填充层。平面化该介电填充层及电极柱图案,以提供在电极柱图案中裸露的电极柱顶表面的一电极表面,使得该层包含该介电质细胞及该电极柱图案在该阵列中具有实质均匀的厚度。在一代表性的工艺中,此层厚度包含该介电填充层及该电极柱图案可小于约120纳米,该层顶部裸露的电极柱顶表面系实质地均匀且小于约2000nm2。接着,沉积一可编程电阻材料层,例如:一硫属化物或其它相变化材料,然后在沉积一顶电极材料层。
在一示范的工艺中,图案化该可编程电阻材料层及该顶电极材料层以定义在阵列中个别的存储单元。本工艺中的一个实施例包含形成接触垫包括在个别存储单元中,该相变化材料层部位及顶电极材料层部位。接着形成一介电填充材料层于该接触垫上。在该接触垫上覆盖一介电填充材料层,透过该介电材料层形成接点,以及形成包含与该接点电性连接位线的一图案化导电层。本发明亦包含完成与该顶电极电性连接的替代工艺。
移除电极材料层的电极材料工艺以形成本发明所述的一电极柱图案。形成一电极柱图案包含形成一刻蚀掩膜,例如:使用在光刻工艺中的光刻胶,于该电极材料层上以定义一块体图案在该导电接点阵列内的导电接点上。在光刻工艺之后,剪裁该刻蚀掩膜,例如使用等向刻蚀,以降低该块体图案的光点尺寸在次光刻尺寸的范围。接着该电极材料依据该块体图案使用非等向刻蚀,在该衬底的接点表面上停止,以产生该电极柱。
在制造存储单元的一变化工艺中,包含使用一多层堆栈来形成该底电极材料层,包含选自与该下方接点工艺相容及有良好电性连接的一第一金属层,而该第一金属层当下方接点包含钨金属时,可为氮化钛材料,以及选自与该相变化材料层工艺兼容及有良好电性连接的一第二金属层,而该第二金属层当该第一金属层包含氮化钛时,可为氮化钽材料,而第二金属层较第一金属层有更高的电阻率。
在本工艺的其它变化中,在沉积该可编程电阻材料之前刻蚀该电极柱顶部以形成一凹陷。该可编程电阻材料填充该凹陷,在该电极柱顶部可编程电阻材料内产生一区域,而可以具有更高的电流密度,此可增加该存储单元的操作特性。在本工艺的另一变化中,当与该相变化材料接触时提供较小面积时,该电极柱呈逐渐变细,或是其它形状,使得在平面化该电极柱底表面后比该顶表面具有更大的面积,可改善在工艺中对该电极柱的电性连接及机械稳定性。
本发明所描述的集成电路,其中该底电极柱与下方存取电路接触的接点面积大于与该可编程电阻材料的面积。
本发明其它的目的以及优点可以参照下述相关图式、详尽的说明书内容及权利要求书内容。
附图说明
图1是绘示包含一柱状底电极的一相变化存储单元的透视图。
图2是绘示图1所示的类似存储单元的一剖面图。
图3是绘示包含以多层堆栈为基础一柱状底电极的替代存储单元的剖面图。
图4是绘示包含该柱状电极的顶部凹陷沉积相变化物质的替代存储单元的剖面图。
图5是绘示包含底部比顶部具有一大表面的替代存储单元的剖面图。
图6是绘示具有一接点表面的接点阵列,并与存取电路接触衬底的剖面图,以及制造柱状底电极相变化存储单元的第一步骤。
图7至图15是绘示制造柱状底表面相变化存储单元后续工艺步骤。
图16是提供一柱状底电极相变化存储单元阵列的一简明电路图。
图17是绘示包含一柱状底电极相变化存储单元阵列的集成电路装置的方块图
【主要元件符号说明】
10    接点
11    接点表面
12    底电极柱
13、230  相变化材料层
14    导电材料层
15    主动区域
17、260  介电层(介电填充层)
20、25  第一区段
21、26 第二区段
30    电极柱
31、222、223  顶表面
32    底表面
99    衬底
100    接点表面
110    半导体衬底
111、112  介电质沟槽
113、114  多晶硅字线
115、117  漏极区域
116       共同源极区域
118、212  介电填充层
119       共同源极线
120、121、141、261、262  栓塞
125、126  导电接点
200       电极材料层
201、202  掩膜结构
201A、202A剪裁的掩膜结构
210、211  预备电极柱
224       平面顶表面
231       顶电极材料层
250、251  存储单元
255       相变化材料片
256、258  顶电极材料片
270     图案化导体层
1606    译码器
1623    共同字线
1624    字线
1628    源极线
1632、1633  漏极
1635、1636  相变化元件
1641、1642  位线
1645        Y译码器/字线译码器
1650、1651、1652、1653  存取晶体管
1700    存储阵列
1701    列译码器
1703    行译码器
1705    总线
1706    方块
1707    数据总线
1708    偏压安排供应电压
1709    控制器
1750    集成电路
具体实施方式
以下之发明说明将参照至相关图式。熟习该项技艺者可以根据后续的叙述而了解本发明的均等变化。
在此所使用的方位描述,以「上」、「下」、「左」、「右」描述并以各图式中个别的结构作为参照。相似地,「厚度」是指垂直尺寸,而「宽度」是指水平尺寸。而这些方向在电路操作或其它相关的方位上并无限制,如同熟习本项技艺的人士所知晓。
图1是提供本发明所描述的制造移除如图式中所示的介电填充材料的一相变化存储单元。该存储单元形成于具有一接点表面11的一接点10之上。接点10包含由一「栓塞」延伸穿透过一层间介电质至下方存取电路(未示),在本实施例中使用钨金属或其它导电材料。在此亦可使用其它接点结构。一底电极柱12是制造于该接点表面之上。该底电极柱12在该顶部具有非常小的接点表面。该非常小的接点表面会在操作该装置时集中电流密度,同时允许低功率操作。形成一相变化材料层13在该底电极柱12的该接点表面(未示)之上。形成一导电材料层14在该相变化材料层13之上,以提供一顶电极。该底电极柱是使用导电材料制造,像是氮化钛或其它导电金属,例如:TaN、TiAlNi、W、WN、硅化物、SiGe、碳化硅、氧化钌、氧化镍、氧化铱、LaNiO3、其它金属氧化物及其它金属氮化物,选择自与该接点表面11及与该相变化材料13相容的材料,当该顶表面与该相变化材料层13相连接时,较佳地具有一电阻率可使该底电极柱12作为一加热器。
依据本发明所描述的方法,该底电极柱12首先沉积一电极材料层于该底接点之上,使用一掩膜来定义该底电极柱12的位置,以及依据此掩膜由从该电极材料层移除该电极材料一部分以保留该电极柱。本项技术可以在接点表面上制造可靠的接点,在遍及一大型阵列中制造均匀的柱状结构,以及制造与该相变化材料连接的该柱状结构的顶部有一致的尺寸。
图2绘示图1结构中的剖面图。基本结构包含所述的该接点10、该底电极柱12、该相变化材料层13及提供一顶电极的导电材料层14。位于该底电极柱12顶部的该接点表面是一小块区域使得电流集中。在该相变化材料层13的一小块主动区域15,其特征在于具有像伞状头部的构造。因此该相变化存储单元可视为「伞状存储单元」。图2亦描述该层间介电材料。在实施例中所描述的该接点10包含在一介电层中一介层孔中形成的一栓塞。举例来说,该介电层包含二氧化硅、氮氧化硅、氮化硅或其它介电材料,可分隔该相变化存储元件与下方的存取电路,如以下进一步描述。该底电极柱12是被一介电层17所围绕,包含介电材料,在典型的实施例中像是氮化硅或氮氧化硅,亦可作为一扩散势垒以保护该相变化材料及该下方存取电路,以防止可能由其它金属层扩散的元件所造成的污染。
该相变化材料层13能在此存储单元主动沟道区域内依其位置顺序于材料为一般非晶状态的第一结构状态与为一般结晶固体状态的第二结构状态之间切换。这些材料至少为双稳定态。此词汇「非晶」是用以指称一相对较无次序的结构,其较之一单晶更无次序性,而带有可检测的特征如较之结晶态更高的电阻率。此词汇「结晶态」是用以指称一相对较有次序的结构,其较之非晶态更有次序,因此包括有可检测的特征例如比非晶态更低的电阻率。
典型地,相变化材料可电切换至完全结晶态与完全非晶态之间所有可检测的不同状态。其它受到非晶态与结晶态的改变而影响的材料特征包括,原子次序、自由电子密度、以及活化能。此材料可切换成为不同的固态、或可切换成为由两种以上固态所形成的混合物,提供从非晶态至结晶态之间的灰阶部分。此材料中的电性质亦可能随之改变。
相变化合金可通过施加一电脉冲而从一种相态切换至另一相态。先前观察指出,一较短、较大幅度的脉冲倾向于将相变化材料的相态改变成大体为非晶态。一较长、较低幅度的脉冲倾向于将相变化材料的相态改变成大体为结晶态。在较短、较大幅度脉冲中的能量够大,因此足以破坏结晶结构的键能,同时够短因此可以防止原子再次排列成结晶态。在没有不适当实验的情形下,可以利用实验方法决定特别适用于一特定相变化合金的适当脉冲量变曲线。
硫属化物是为适合用于本发明实施例的存储材料。硫属化物包括具有较多正电元素或根基的化合物,硫属元素与下列四元素之任一者:氧(O)、硫(S)、硒(Se)、以及碲(Te),形成元素周期表上第VI族的部分。硫属化合物合金包括将硫属化合物与其它材料如过渡金属等结合。一硫属化合物合金通常包括一个以上选自元素周期表第IV族的元素,例如锗(Ge)以及锡(Sn)。通常,硫属化合物合金包括下列元素中一个以上的复合物:锑(Sb)、镓(Ga)、铟(In)、以及银(Ag)。许多以相变化为基础的存储材料已经被描述于技术文件中,包括下列合金:镓/锑、锗/锑、铟/锑、铟/硒、锑/碲、锗/碲、锗/锑/碲、铟/锑/碲、镓/硒/碲、锡/锑/碲、铟/锑/锗、银/铟/锑/碲、锗/锡/锑/碲、锗/锑/硒/碲、以及碲/锗/锑/硫。在锗/锑/碲合金家族中,可以尝试大范围的合金成分。此成分可以下列特征式表示:TeaGebSb100-(a+b)。一位研究员描述了最有用的合金系为,在沉积材料中所包含之平均碲浓度系远低于70%,典型地是低于60%,并在一般型态合金中的碲含量范围从最低23%至最高58%,且最佳是介于48%至58%的碲含量。锗的浓度是高于约5%,且其在材料中的平均范围是从最低8%至最高30%,一般是低于50%。最佳地,锗的浓度范围是介于8%至40%。在此成分中所剩下的主要成分则为锑。(Ovshinky‘112专利,栏10~11)由另一研究者所评估的特殊合金包括Ge2Sb2Te5、GeSb2Te4、以及GeSb4Te7。(NoboruYamada,”Potential of GeSbTe Phasechange Optical Disks forHighDataRate Recording”,SPIE v.3109,pp.2837(1997))更一般地,过渡金属如铬(Cr)、铁(Fe)、镍(Ni)、铌(Nb)、钯(Pd)、铂(Pt)、以及上述的混合物或合金,可与锗/锑/碲结合以形成一相变化合金其包括有可编程的电阻性质。可使用的存储材料的特殊范例,系如Ovshinsky‘112专利中栏11~13所述,其范例在此系列入参考。可以使用于本发明PCRAM存储单元中的材料之一,系为Ge2Sb2Te5,一般系被指称为「GST」。
可以使用于本发明底电极柱的结构的各种变形。代表性的各种变形如图3、图4、图5所示,而其中图1及图2所使用参考标号仍继续使用余对应结构中。
在图3所述的一实施例中,其中该电极柱包含由电极材料多层堆栈所形成的该第一区段20及一第二区段21。用作该第一区段20的材料是选自与该接点表面11兼容的材料,以及其电阻率是相对地较第二区段21来的低。用作该第二区段21的材料是选自与该相变化材料兼容的材料,以及其电阻率是相对地较该第一区段来的高。在一代表的实施例中,其中该接点表面11包含钨,该第一区段20包含氮化钛,及该第二区段21包含氮化钽。该第二区段21作为一「加热器」之用因为其高电阻率,在一给定电流下使得较其它装置来有更高的温度变化发生,在该相变化材料层13中增加该相变化转换周期的效率。
图4绘示另一实施例,其中该电极柱包含一第一区段25包括一导体,像是氮化钛,以及该第二区段26包含一相变化材料,像是与该相变化材料层13相同的相变化材料。在一些实施例中,在该第二区段26中所使用的相变化材料不同于该相变化材料层13的相变化材料。此结构可以在该底电极柱顶部刻蚀一凹陷来制造,接着平面化。然后当沉积该相变化材料层13时,该凹陷被填满。在本实施例中,相变化材料的该地二区段26会更加集中该电流,会倾向降低在该存储单元中该主动区域的体积。
图5是绘示又一实施例,其中该底电极柱的该底表面32与该下方接点10连接至该存取电路的区域较大于该电极柱的顶表面31与该可编程电阻材料片连接的区域。图5是绘示一平滑、圆锥形的电极柱。理所当然地,底表面大于顶表面的底电极柱,亦可为其它形状。在此情况下,在处理该介电填充层17沉积工艺前及过程中,该较大底表面会导致在结构上更坚固,并提供更可靠的及较低电阻的电性连结至该下方接点10的该接点表面。同时,该电极柱30的该顶表面31可制造的相当地小,对于该相变化材料的操作上更加集中电流。形成一端逐渐变细的电极柱的一工艺包含使用一亦为逐渐变细的掩膜结构,以及在某种程度上可以转换该顶电极材料至该逐渐变细的形状的刻蚀。在一实施例中,该电极柱该结构具有底面积大于顶面积至少30%。当然,在其它实施例中亦可实施于不同面积大小,包含底面积仅仅微幅的大于顶面积,以及底面积有两倍大于顶面积的情况,端视达到一或更多上述的目的而决定。
图6至图15说明制造如图1至图5所述的一底电极柱相变化存储单元的代表工艺。图6绘示本工艺中的第一步骤在一般CMOS工艺技术之后,其中制造包含存取电路的一衬底99。在一半导体衬底110上形成存取电路。在本实施例中,隔离结构像是浅沟槽隔离(STI)介电质沟槽111及112隔离每列的存储单元存取晶体管对。该存取晶体管由在该衬底110的共同源极区域116以及在该半导体衬底110的漏极区域115、117所形成。多晶硅字线113及114形成该存取晶体管的栅极。该介电填充层118是形成在该多晶硅字线113、114之上。接触栓塞结构141及120连接个别的存取晶体管漏极115及117。共同源极线119沿着阵列中的一列连接源极。该共同源极线119连接该共同源极区域116。对于多个存储单元该衬底99包含存取电路,并具有在该接触栓塞120、141的顶接点表面上含有导电接点125、126的一接点表面100,而该接触栓塞120、141依次连接至该存取电路。亦可使用其它存取电路的配置包含使用二极管来取代晶体管配置。
图7是绘示本工艺中下一步骤,在沉积一电极材料层200于该衬底99的接点表面后。依据所需底电极柱的实施例,该电极材料层200可包含一导电金属、合金、半导体、相变化材料及类似材料的多层堆栈。在一代表实施例中该底电极柱包含一单层氮化钛柱。使用像是物理或化学气相沉积法来沉积于该衬底的接点表面100上。在本实施例中所描述制造该电极材料层200厚度选择稍小于所需的该底电极柱高度。
图8是绘示沉积及图案化一层光刻胶以提供掩膜结构201、202,而该掩膜结构202定义在该导电栓塞120、141上电极柱位置。该沉积及图案化光刻胶可以使用标准光光刻技术,包含相偏移掩膜及其它先进图案化技术以在该电极材料层上形成一小光点阵列。
图9是绘示刻蚀该掩膜结构201、202之后以提供具有次光刻尺寸的剪裁的掩膜结构201A及202A。举例来说,该光刻胶掩膜结构201、202可被等向刻蚀以缩小及薄化结构以形成具有尺寸小于50纳米的光点,或一些实施例中可为30纳米或更低。举例来说,在光刻胶剪裁使用一含氧等离子体来等向刻蚀该光刻胶,并剪裁其宽度及厚度。在一替代实施例中,一硬式掩膜层像是一被定义的低温沉积的SiNx或SiO2层可使用光光刻来定义一图案,接下来使用一等向刻蚀剪裁,像是对二氧化硅使用稀释氢氟酸或对于氮化硅使用热磷酸,或等向氟或氢溴酸为基础的反应离子刻蚀(REI)。
图10绘示刻蚀该电极材料层200以形成预备电极柱210及211在该栓塞120、141上方之该接点表面100上。在一大型阵列结构上,可使用各种方法来形成具有相同直径之均匀的栓塞。举例来说,可以使用具有一含氯等离子体的REI工艺来刻蚀一氮化钛层,以及可以使用具有一含氯等离子体的REI工艺来刻蚀一氮化钽层。在氮化钛或其它金属层的顶部形成一加热器材料层的一替代工艺,举例来说,包含先形成上述的一电极柱,然后填充及使用化学机械抛光法抛光,以露出该电极柱的顶表面。该电极柱的顶表面可以使用具有低离子能量REI工艺来缓慢地挖凹该顶表面,而不会实质地损害该介电质。然后沉积该加热器材料覆盖在该产生的结构上,以及再以化学机械抛光法来回刻蚀,以提供一加热器层在该电极柱的顶部。对图4实施例可使用一类似工艺,使用GST覆盖沉积。对于图5的实施例可在氮化钛上使用一氮化硅的硬式掩膜来形成一端逐渐变细电极柱,举例来说,在该电极材料垂直刻蚀工艺中,以氯为基础并添加氧的REI刻蚀化学配方中,会逐渐地横向破坏该硬式掩膜,对该电极柱造成一倾斜外观。
图11是绘示在该预备电极柱结构210、211上形成该介电填充层212的步骤。该介电填充层212包含使用像是高密度等离子体化学气相沉积法,来沉积氮化硅或氮氧化硅或相关介电材料,对于氮化硅在400℃至450℃在硅烷或氧气环境下,添加氨于硅烷中,对于氮氧化物使用氨、硅烷、及氧。该介电填充层212的材料亦作为一扩散势垒之用。
图12是绘示该介电填充层212及该预备电极柱210、211回刻蚀工艺,使用一平面化工艺像是化学机械抛光法,以形成具有一顶表面222、223的电极柱结构220、221,并露出该介电填充层212的平面顶表面224。选择一介电化学机械抛光法。在该化学机械抛光工艺中,该介电填充层212的厚度是使用一椭圆测厚仪、一干涉仪或其它非破坏性工具来监测。在一代表的工艺中,所得到的电极柱约40纳米至120纳米高,较佳为60纳米,以及在高度变异上该电极柱图案小于10%。
图13是绘示沉积具有一厚度约40纳米至140纳米高的一相变化材料层230,其厚度较佳为100纳米,接着沉积具有一厚度的顶电极材料层231,例如其厚度约为40至80纳米。该顶电极材料是选择具有导电性且与该相变化材料兼容。在一代表的实施例中,该相变化材料包含上述的GST,以及该顶电极材料包含氮化钛或其它金属、金属氧化物及金属氮化物。在本步骤中,沉积该相变化材料层230于该介电填充层212的表面224形成与该电极柱220、221的顶表面可靠的电性连接。
用来形成硫属化物材料的示范方法,是利用PVD溅射或磁电管(magnetron)溅射方式,其反应气体为氩气、氮气、及/或氦气等以及硫属化物,在压力为1mTorr至100mTorr。此沉积步骤一般在室温下进行。一长宽比为1~5的准直器(collimater)可用以改良其注入表现。为了改善其注入表现,亦可使用数十至数百伏特的直流偏压。另一方面,同时合并使用直流偏压以及准直器亦是可行的。
有时需要在真空中或氮气环境中进行一沉积后退火处理,以改良硫属化物材料的结晶态。此退火处理的温度典型地是介于100℃至400℃,而退火时间则少于30分钟。
图14是绘示光刻图案化及刻蚀该相变化材料层230与该顶电极材料层231以对个别存储单元250、251形成接触垫,而其包含被一顶电极材料片256覆盖的一相变化材料片255,并具有在制造中该光刻工艺的最小特征尺寸。因此,该图案化步骤的结果,可形成具有一底电极柱的一存储单元阵列,像是电极柱220、一相变化材料层230,像是相变化材料片255、一顶电极材料层231,像是顶电极材料片256。
图15是绘示一系列工艺步骤来完成该存取电路。该等步骤包含在该个别的存储单元250、251上沉积一介电填充层260。举例来说该介电填充层是以高密度等离子体HDP化学气相沉积法CVD来形成,接下来化学机械抛光工艺及清洗工艺。该介电填充层260可以包含氧化硅、氮化硅或其它绝缘材料较佳具有良好热绝缘及电绝缘特性。接着,对于阵列中每一个别存储单元,形成介层孔以及填充该栓塞261、262并与该顶电极片256、258接触。在一代表的实施例中,该栓塞261、262包含具有该使用光刻工艺中该最小特征尺寸的直径的钨栓塞。栓塞261、262形成后接着沉积一图案化导体层270。在此工艺的实施例中,一铜合金嵌镶金属化工艺是用以形成图案化导电层,并使其形成于氟硅玻璃(FSG)的外露表面上,接着形成一预设的光刻胶图案。接着实施刻蚀以移除外露的氟硅玻璃,接着沉积衬底与种子层于此图案中。接着实施铜电镀以填充此图案。在电镀后,进行退火步骤,跟着进行抛光工艺。其它实施例可使用铝-铜工艺,或其它习知的金属化工艺。
图16是绘示本发明所述的具有柱状底电极存储单元基本阵列结构。在该型存储单元阵列中每个存储单元包括了一个存取晶体管(或其它存取装置,例如二极管),其中四个存取晶体管在图上是以标号1650、1651、1652、1653显示的,以及一相变化元件,在存储单元中是以标号1635、1636耦接于存取晶体管1650、1651。每个存取晶体管1650、1651、1652、1653的源极是共同连接至一源极线1628。在另一实施例中,这些选择元件的源极线并未电连接,而是可独立控制的。字线1623、1624是沿着第一方向平行地延伸。字线1623、1624是与字线译码器1645(以Y译码器标示)电性连接。存取晶体管1650、1652的栅极是连接至一共同字线1623,而存取晶体管1651、1653的栅极是共同连接至字线1624。位线1642是连接到相变化元件,而其耦接于该存取晶体管1652、1653。该位线1641、1642耦接至感测放大器及译码器1606,由于图中方向标示为X译码器,该相变化元件1635的柱状底电极是分别耦接至晶体管1650、1651的漏极1632、1633。需要注意的是,在图中为了方便起见,仅绘示四个存储单元,在实务中,该阵列会大的许多。
如图17所示,显示本发明所述具有柱状底电极相变化存储单元阵列的一集成电路1750的简化方块图。此集成电路1750是包括一存储阵列1700,其是利用柱状底电极相变化存储单元而实施。该存储阵列可能包含数以百万计的存储单元。一字线或列译码器1701是电性连接至多个字线1702。一位线或行译码器1703是电性连接至多个位线1704,以在阵列中的相变化存储单元读取数据,以及读取数据至阵列中的相变化存储单元。地址是经由一总线1705而提供至一字线译码器1701与一位线译码器1703。在方块中的感测放大器与数据输入结构1706,是经由一数据总线1707而耦接至位线译码器1703。数据是从集成电路1750的输入/输出端、或集成电路内部与外部的其它数据来源,而经由数据输入线1711以将数据传输至方块1706中的数据输入结构。其它电路(未示)是包括于此集成电路1750中,例如一泛用目的处理器或特定目的应用电路、或可提供单芯片系统功能的模块组合其是由系统于单芯片的存储阵列1700所支持。数据是从方块1706中的感测放大器、经由数据输出线1715、而传输至集成电路1750的输入/输出端或其它位于集成电路1750内部或外部的数据目的地。
在本实施例中所使用的控制器1709,使用了偏压调整状态机构,并控制了偏压安排供应电压1708的应用,例如读取、编程、擦除、擦除确认与编程确认电压。控制器1709可利用特殊目的逻辑电路而应用,如熟习该项技艺者所熟知。在替代实施例中,控制器1709包括了通用目的处理器,其可使于同一集成电路,以执行一计算机程序而控制装置的操作。在又一实施例中,控制器1709是由特殊目的逻辑电路与通用目的处理器组合而成。
本发明的叙述是参照至相变化材料。然而,其它种有时亦被称为可编程材料的材料,也可被使用。如本发明中所使用者,存储材料是指其电性性质,像是电阻,可以通过外加的能量而改变的材料;上述的改变可以是阶段性的改变或一连续性的改变、或者二者的综合。可用于本发明其它实施例中的其它可编程的存储材料包括,掺杂N2的GST、GexSby、或其它以不同结晶态转换来决定电阻的物质;PrxCayMnO3、PrSrMnO、ZrOx、经掺杂的SrTiO3或其它利用电脉冲以改变电阻状态的材料;或其它使用一电脉冲以改变电阻状态的物质;TCNQ、PCBM、TCNQ-PCBM、Cu-TCNQ、Ag-TCNQ、C60-TCNQ、以其它物质掺杂的TCNQ、或任何其它聚合物材料其包括有以一电脉冲而控制的双稳定或多稳定电阻态。可编程电阻存储材料的其它范例,包括GeSbTe、GeSb、NiO、Nb-SrTiO3、Ag-GeTe、PrCaMnO、ZnO、Nb2O5、Cr-SrTiO3
熟习本项技艺的人士依照本发明在此揭露的精神,将知晓相关替代可能以及更新实施例,而本发明本身是定义于专利权利要求书中。

Claims (12)

1. 一种制造多个存储单元的方法,其特征在于,该方法包含:
提供一包含供该多个存储单元用的存取电路的一衬底,该衬底具有一导电接点阵列的一接点表面,且该导电接点阵列连接至该存取电路;
在该衬底的该接点表面上形成一底电极材料层;
移除该底电极材料层的一部分,以形成一电极柱图案于导电接点阵列中相对应的导电接点上;
形成一介电材料层,而其覆盖于该电极柱图案及该接点表面的裸露部位;
平面化该介电材料层及该电极柱,以提供一电极表面来露出该电极柱图案中的该电极柱顶部;
在该电极表面上形成一可编程电阻材料层;
在该可编程电阻材料层上形成一顶电极材料层;以及
图案化该可编程电阻材料层及该顶电极材料层。
2. 根据权利要求1所述的方法,其特征在于,该方法进一步包含形成一掩膜于该底电极材料层上以定义一多个块体图案,包含以光刻方式定义一光刻图案,该光刻图案包含在该导电接点阵列内的导电接点上刻蚀该掩膜,以及剪裁该掩膜以产生具有次光刻尺寸的一块体图案,且其中该剪裁移除步骤包含非等向刻蚀该底电极材料层,以移除未被该块体图案所覆盖的材料。
3. 根据权利要求1所述的方法,其特征在于,该底电极材料层包含适合与该可编程电阻材料电性接触的一第一材料,以及适合与该接点阵列电性接触的一第二材料。
4. 根据权利要求3所述的方法,其特征在于,该第一材料具有高于该第二材料的电阻率。
5. 根据权利要求1所述的方法,其特征在于,该电极柱具有一底表面与该接点阵列中的接点相接触,以及一顶表面与该可编程电阻材料层相接触,以及该底表面的面积大于该顶表面的面积。
6. 根据权利要求1所述的方法,其特征在于,包含于该平面化步骤时,监测该介电层的厚度、以及当检测至一预定厚度时停止平面化步骤。
7. 根据权利要求1所述的方法,其特征在于,包含于该平面化步骤之后、选择性地移除该电极柱顶部一部位,以形成一凹陷于该电极柱顶部,以及其中可编程电阻材料层的形成包含在该凹陷填充可编程电阻材料。
8. 一种制造多个存储单元的方法,其特征在于,该方法包含:
提供一供该多个存储单元用的存取电路的一衬底,该衬底具有一导电接点阵列的一接点表面,且该导电接点阵列连接至该存取电路;
在该衬底的该接点表面上形成一底电极材料层;
移除底电极材料层的材料以形成一电极柱图案在导电接点阵列中相对应的导电接点上,其中该电极材料柱具有一底表面与在该导电接点阵列中对应的导电接点电性连结;
形成一介电扩散势垒材料层,而其覆盖于该电极柱图案及该接点表面;
平面化该介电扩散势垒材料层及电极柱,以提供一具有厚度小于120纳米的一底电极层,并于该电极柱图案内具有一电极表面裸露出该电极柱的顶表面,该电极柱的顶表面具有小于2000nm2的面积且于该电极柱图案中实质地均匀;
在该电极表面上形成一可编程电阻材料层,该可编程电阻材料包含具有一厚度小于120nm的一相变化材料;
在该可编程电阻材料层上形成一顶电极材料层;以及
图案化该可编程电阻材料层及该顶电极材料层。
9. 根据权利要求8所述的方法,其特征在于,该平面化步骤包含:监测该介电层的厚度、以及当检测至一小于120纳米的预定厚度时停止平面化步骤。
10. 根据权利要求8所述的方法,其特征在于,包含于该平面化步骤之后:选择性地移除该电极柱顶部一部位以形成一凹陷于该电极柱顶部,以及其中编程电阻材料层的形成包含在该凹陷填充相变化材料。
11. 一种集成电路存储装置,其特征在于,该装置包含:
多个存储单元的存取电路,其包含连结至该存取电路的一导电接点阵列;
在该导电接点阵列之上的一电极层,该电极层具有一顶表面,以及包含多个电极柱与在该导电接点阵列内对应的导电接点电性接触,以及一介电填充材料围绕于该多个电极柱;
在该电极顶表面之上的一可编程电阻材料层与该电极柱的该顶部接触;以及
一顶电极材料层与该可编程电阻材料层相接触;以及其中
在多个电极柱中该电极柱具有一底表面与该接点阵列中对应接点接触,并具有一顶表面与可编程电阻材料层相接触,其中该底表面大于该顶表面。
12. 根据权利要求11所述的装置,其特征在于,包含可编程电阻材料位于该电极柱顶部的凹陷之内。
CN200810074221.8A 2007-02-12 2008-02-13 一种具有柱状底电极相变化存储装置及其制造方法 Active CN102522374B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US88941507P 2007-02-12 2007-02-12
US60/889,415 2007-02-12
US11/764,678 US8138028B2 (en) 2007-02-12 2007-06-18 Method for manufacturing a phase change memory device with pillar bottom electrode
US11/764,678 2007-06-18

Publications (2)

Publication Number Publication Date
CN102522374A true CN102522374A (zh) 2012-06-27
CN102522374B CN102522374B (zh) 2014-07-09

Family

ID=39685055

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200810074221.8A Active CN102522374B (zh) 2007-02-12 2008-02-13 一种具有柱状底电极相变化存储装置及其制造方法

Country Status (4)

Country Link
US (1) US8138028B2 (zh)
CN (1) CN102522374B (zh)
DE (1) DE102008008679A1 (zh)
TW (1) TWI349332B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109904187A (zh) * 2017-12-08 2019-06-18 旺宏电子股份有限公司 具有无势垒结构的氧化钨电阻式随机存取存储器
CN111029362A (zh) * 2019-11-12 2020-04-17 华中科技大学 一种高密度的相变存储器三维集成电路结构的制备方法

Families Citing this family (113)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7786460B2 (en) 2005-11-15 2010-08-31 Macronix International Co., Ltd. Phase change memory device and manufacturing method
US7635855B2 (en) 2005-11-15 2009-12-22 Macronix International Co., Ltd. I-shaped phase change memory cell
US7449710B2 (en) 2005-11-21 2008-11-11 Macronix International Co., Ltd. Vacuum jacket for phase change memory element
US7459717B2 (en) 2005-11-28 2008-12-02 Macronix International Co., Ltd. Phase change memory cell and manufacturing method
US7688619B2 (en) 2005-11-28 2010-03-30 Macronix International Co., Ltd. Phase change memory cell and manufacturing method
US7531825B2 (en) 2005-12-27 2009-05-12 Macronix International Co., Ltd. Method for forming self-aligned thermal isolation cell for a variable resistance memory array
US8062833B2 (en) 2005-12-30 2011-11-22 Macronix International Co., Ltd. Chalcogenide layer etching method
US7741636B2 (en) 2006-01-09 2010-06-22 Macronix International Co., Ltd. Programmable resistive RAM and manufacturing method
US7785920B2 (en) 2006-07-12 2010-08-31 Macronix International Co., Ltd. Method for making a pillar-type phase change memory element
KR100749740B1 (ko) * 2006-08-01 2007-08-17 삼성전자주식회사 상변화 메모리 장치의 제조 방법
US7511984B2 (en) * 2006-08-30 2009-03-31 Micron Technology, Inc. Phase change memory
US7504653B2 (en) 2006-10-04 2009-03-17 Macronix International Co., Ltd. Memory cell device with circumferentially-extending memory element
US7863655B2 (en) 2006-10-24 2011-01-04 Macronix International Co., Ltd. Phase change memory cells with dual access devices
US7476587B2 (en) 2006-12-06 2009-01-13 Macronix International Co., Ltd. Method for making a self-converged memory material element for memory cell
US7903447B2 (en) 2006-12-13 2011-03-08 Macronix International Co., Ltd. Method, apparatus and computer program product for read before programming process on programmable resistive memory cell
US7718989B2 (en) 2006-12-28 2010-05-18 Macronix International Co., Ltd. Resistor random access memory cell device
US7619311B2 (en) 2007-02-02 2009-11-17 Macronix International Co., Ltd. Memory cell device with coplanar electrode surface and method
US7956344B2 (en) 2007-02-27 2011-06-07 Macronix International Co., Ltd. Memory cell with memory element contacting ring-shaped upper end of bottom electrode
US7786461B2 (en) 2007-04-03 2010-08-31 Macronix International Co., Ltd. Memory structure with reduced-size memory element between memory material portions
US7545668B2 (en) * 2007-06-22 2009-06-09 Qimonda North America Corp. Mushroom phase change memory having a multilayer electrode
TWI402980B (zh) 2007-07-20 2013-07-21 Macronix Int Co Ltd 具有緩衝層之電阻式記憶結構
US7729161B2 (en) 2007-08-02 2010-06-01 Macronix International Co., Ltd. Phase change memory with dual word lines and source lines and method of operating same
US7919766B2 (en) 2007-10-22 2011-04-05 Macronix International Co., Ltd. Method for making self aligning pillar memory cell device
US8217380B2 (en) * 2008-01-09 2012-07-10 International Business Machines Corporation Polysilicon emitter BJT access device for PCRAM
US8158965B2 (en) 2008-02-05 2012-04-17 Macronix International Co., Ltd. Heating center PCRAM structure and methods for making
US8084842B2 (en) 2008-03-25 2011-12-27 Macronix International Co., Ltd. Thermally stabilized electrode structure
US8030634B2 (en) 2008-03-31 2011-10-04 Macronix International Co., Ltd. Memory array with diode driver and method for fabricating the same
US7825398B2 (en) 2008-04-07 2010-11-02 Macronix International Co., Ltd. Memory cell having improved mechanical stability
US7791057B2 (en) 2008-04-22 2010-09-07 Macronix International Co., Ltd. Memory cell having a buried phase change region and method for fabricating the same
US8077505B2 (en) 2008-05-07 2011-12-13 Macronix International Co., Ltd. Bipolar switching of phase change device
US7701750B2 (en) 2008-05-08 2010-04-20 Macronix International Co., Ltd. Phase change device having two or more substantial amorphous regions in high resistance state
US8415651B2 (en) 2008-06-12 2013-04-09 Macronix International Co., Ltd. Phase change memory cell having top and bottom sidewall contacts
US8134857B2 (en) 2008-06-27 2012-03-13 Macronix International Co., Ltd. Methods for high speed reading operation of phase change memory and device employing same
US7932506B2 (en) 2008-07-22 2011-04-26 Macronix International Co., Ltd. Fully self-aligned pore-type memory cell having diode access device
US7903457B2 (en) 2008-08-19 2011-03-08 Macronix International Co., Ltd. Multiple phase change materials in an integrated circuit for system on a chip application
US7719913B2 (en) 2008-09-12 2010-05-18 Macronix International Co., Ltd. Sensing circuit for PCRAM applications
US8324605B2 (en) 2008-10-02 2012-12-04 Macronix International Co., Ltd. Dielectric mesh isolated phase change structure for phase change memory
US7897954B2 (en) 2008-10-10 2011-03-01 Macronix International Co., Ltd. Dielectric-sandwiched pillar memory device
US8036014B2 (en) 2008-11-06 2011-10-11 Macronix International Co., Ltd. Phase change memory program method without over-reset
US8907316B2 (en) 2008-11-07 2014-12-09 Macronix International Co., Ltd. Memory cell access device having a pn-junction with polycrystalline and single crystal semiconductor regions
US8664689B2 (en) 2008-11-07 2014-03-04 Macronix International Co., Ltd. Memory cell access device having a pn-junction with polycrystalline plug and single-crystal semiconductor regions
US7869270B2 (en) 2008-12-29 2011-01-11 Macronix International Co., Ltd. Set algorithm for phase change memory cell
US8089137B2 (en) 2009-01-07 2012-01-03 Macronix International Co., Ltd. Integrated circuit memory with single crystal silicon on silicide driver and manufacturing method
US8107283B2 (en) 2009-01-12 2012-01-31 Macronix International Co., Ltd. Method for setting PCRAM devices
US8030635B2 (en) 2009-01-13 2011-10-04 Macronix International Co., Ltd. Polysilicon plug bipolar transistor for phase change memory
US8064247B2 (en) 2009-01-14 2011-11-22 Macronix International Co., Ltd. Rewritable memory device based on segregation/re-absorption
US8933536B2 (en) 2009-01-22 2015-01-13 Macronix International Co., Ltd. Polysilicon pillar bipolar transistor with self-aligned memory element
US20100213431A1 (en) * 2009-02-20 2010-08-26 Tung-Ti Yeh Treated Chalcogenide Layer for Semiconductor Devices
US8084760B2 (en) 2009-04-20 2011-12-27 Macronix International Co., Ltd. Ring-shaped electrode and manufacturing method for same
US8173987B2 (en) 2009-04-27 2012-05-08 Macronix International Co., Ltd. Integrated circuit 3D phase change memory array and manufacturing method
US8097871B2 (en) 2009-04-30 2012-01-17 Macronix International Co., Ltd. Low operational current phase change memory structures
US7933139B2 (en) 2009-05-15 2011-04-26 Macronix International Co., Ltd. One-transistor, one-resistor, one-capacitor phase change memory
US8250010B2 (en) * 2009-05-21 2012-08-21 International Business Machines Corporation Electronic learning synapse with spike-timing dependent plasticity using unipolar memory-switching elements
US8447714B2 (en) * 2009-05-21 2013-05-21 International Business Machines Corporation System for electronic learning synapse with spike-timing dependent plasticity using phase change memory
US8350316B2 (en) 2009-05-22 2013-01-08 Macronix International Co., Ltd. Phase change memory cells having vertical channel access transistor and memory plane
US7968876B2 (en) 2009-05-22 2011-06-28 Macronix International Co., Ltd. Phase change memory cell having vertical channel access transistor
US8809829B2 (en) 2009-06-15 2014-08-19 Macronix International Co., Ltd. Phase change memory having stabilized microstructure and manufacturing method
US8406033B2 (en) 2009-06-22 2013-03-26 Macronix International Co., Ltd. Memory device and method for sensing and fixing margin cells
US8238149B2 (en) 2009-06-25 2012-08-07 Macronix International Co., Ltd. Methods and apparatus for reducing defect bits in phase change memory
US8363463B2 (en) 2009-06-25 2013-01-29 Macronix International Co., Ltd. Phase change memory having one or more non-constant doping profiles
KR101602007B1 (ko) * 2009-07-02 2016-03-09 인티그리스, 인코포레이티드 유전체-충전된 중공 gst 구조
US8110822B2 (en) 2009-07-15 2012-02-07 Macronix International Co., Ltd. Thermal protect PCRAM structure and methods for making
US7894254B2 (en) 2009-07-15 2011-02-22 Macronix International Co., Ltd. Refresh circuitry for phase change memory
US8198619B2 (en) 2009-07-15 2012-06-12 Macronix International Co., Ltd. Phase change memory cell structure
US8030130B2 (en) * 2009-08-14 2011-10-04 International Business Machines Corporation Phase change memory device with plated phase change material
KR101535462B1 (ko) * 2009-08-27 2015-07-09 삼성전자주식회사 상변화 물질을 포함하는 비휘발성 메모리 소자
US8012790B2 (en) * 2009-08-28 2011-09-06 International Business Machines Corporation Chemical mechanical polishing stop layer for fully amorphous phase change memory pore cell
US8283202B2 (en) * 2009-08-28 2012-10-09 International Business Machines Corporation Single mask adder phase change memory element
US8283650B2 (en) * 2009-08-28 2012-10-09 International Business Machines Corporation Flat lower bottom electrode for phase change memory cell
US8064248B2 (en) 2009-09-17 2011-11-22 Macronix International Co., Ltd. 2T2R-1T1R mix mode phase change memory array
KR101069701B1 (ko) * 2009-09-30 2011-10-04 주식회사 하이닉스반도체 리셋 커런트를 줄일 수 있는 상변화 메모리 장치, 그 제조방법 및 그것의 회로
US8178387B2 (en) 2009-10-23 2012-05-15 Macronix International Co., Ltd. Methods for reducing recrystallization time for a phase change material
US20110108792A1 (en) * 2009-11-11 2011-05-12 International Business Machines Corporation Single Crystal Phase Change Material
US8233317B2 (en) * 2009-11-16 2012-07-31 International Business Machines Corporation Phase change memory device suitable for high temperature operation
US8129268B2 (en) 2009-11-16 2012-03-06 International Business Machines Corporation Self-aligned lower bottom electrode
US7943420B1 (en) * 2009-11-25 2011-05-17 International Business Machines Corporation Single mask adder phase change memory element
US8470635B2 (en) * 2009-11-30 2013-06-25 Micron Technology, Inc. Keyhole-free sloped heater for phase change memory
US8283198B2 (en) * 2010-05-10 2012-10-09 Micron Technology, Inc. Resistive memory and methods of processing resistive memory
US8729521B2 (en) 2010-05-12 2014-05-20 Macronix International Co., Ltd. Self aligned fin-type programmable memory cell
US8310864B2 (en) 2010-06-15 2012-11-13 Macronix International Co., Ltd. Self-aligned bit line under word line memory array
US8728859B2 (en) * 2010-08-12 2014-05-20 International Business Machines Corporation Small footprint phase change memory cell
US9082954B2 (en) 2010-09-24 2015-07-14 Macronix International Co., Ltd. PCRAM with current flowing laterally relative to axis defined by electrodes
US8395935B2 (en) 2010-10-06 2013-03-12 Macronix International Co., Ltd. Cross-point self-aligned reduced cell size phase change memory
US8497705B2 (en) 2010-11-09 2013-07-30 Macronix International Co., Ltd. Phase change device for interconnection of programmable logic device
US8467238B2 (en) 2010-11-15 2013-06-18 Macronix International Co., Ltd. Dynamic pulse operation for phase change memory
US8374019B2 (en) 2011-01-05 2013-02-12 Macronix International Co., Ltd. Phase change memory with fast write characteristics
US8946666B2 (en) 2011-06-23 2015-02-03 Macronix International Co., Ltd. Ge-Rich GST-212 phase change memory materials
KR101541056B1 (ko) * 2011-09-13 2015-07-31 아데스토 테크놀러지스 코포레이션 합금 전극을 갖는 저항 스위칭 디바이스 및 그 형성 방법
US8987700B2 (en) 2011-12-02 2015-03-24 Macronix International Co., Ltd. Thermally confined electrode for programmable resistance memory
US8716059B2 (en) 2012-02-02 2014-05-06 Micron Technology, Inc. Combined conductive plug/conductive line memory arrays and methods of forming the same
US8877628B2 (en) 2012-07-12 2014-11-04 Micron Technologies, Inc. Methods of forming nano-scale pores, nano-scale electrical contacts, and memory devices including nano-scale electrical contacts, and related structures and devices
US9640757B2 (en) 2012-10-30 2017-05-02 Entegris, Inc. Double self-aligned phase change memory device structure
US9878386B2 (en) * 2013-10-31 2018-01-30 Foundation Of Soongsil University-Industry Cooperation Eccentric electrode for electric discharge machining, method of manufacturing the same, and micro electric discharge machining apparatus including the same
TWI549229B (zh) 2014-01-24 2016-09-11 旺宏電子股份有限公司 應用於系統單晶片之記憶體裝置內的多相變化材料
US9559113B2 (en) 2014-05-01 2017-01-31 Macronix International Co., Ltd. SSL/GSL gate oxide in 3D vertical channel NAND
US9601689B2 (en) * 2014-09-11 2017-03-21 Kabushiki Kaisha Toshiba Memory device
US9672906B2 (en) 2015-06-19 2017-06-06 Macronix International Co., Ltd. Phase change memory with inter-granular switching
US9917252B2 (en) 2015-06-19 2018-03-13 Macronix International Co., Ltd. GaSbGe phase change memory materials
US20190280047A1 (en) * 2016-09-30 2019-09-12 Intel Corporation Dual pedestal memory
US10050196B1 (en) 2017-05-04 2018-08-14 Macronix International Co., Ltd. Dielectric doped, Sb-rich GST phase change memory
CN108987362B (zh) * 2017-05-31 2020-10-16 华邦电子股份有限公司 内连线结构、其制造方法与半导体结构
US10360958B2 (en) * 2017-06-08 2019-07-23 International Business Machines Corporation Dual power rail cascode driver
US10374009B1 (en) 2018-07-17 2019-08-06 Macronix International Co., Ltd. Te-free AsSeGe chalcogenides for selector devices and memory devices using same
US10700274B2 (en) * 2018-10-04 2020-06-30 International Business Machines Corporation Planar single-crystal phase change material device
CN109742308A (zh) * 2019-03-13 2019-05-10 芜湖天弋能源科技有限公司 一种锂离子电池顶盖结构及锂离子电池
US10833269B1 (en) 2019-05-07 2020-11-10 International Business Machines Corporation 3D phase change memory
US11289540B2 (en) 2019-10-15 2022-03-29 Macronix International Co., Ltd. Semiconductor device and memory cell
US11264569B2 (en) 2019-11-01 2022-03-01 International Business Machines Corporation Phase change memory device
US11158787B2 (en) 2019-12-17 2021-10-26 Macronix International Co., Ltd. C—As—Se—Ge ovonic materials for selector devices and memory devices using same
US20210249600A1 (en) * 2020-02-11 2021-08-12 Macronix International Co., Ltd. Phase change memory with a carbon buffer layer
US11362276B2 (en) 2020-03-27 2022-06-14 Macronix International Co., Ltd. High thermal stability SiOx doped GeSbTe materials suitable for embedded PCM application
US11910731B2 (en) * 2021-02-10 2024-02-20 International Business Machines Corporation Embedded heater in a phase change memory material
US11930724B2 (en) 2021-08-20 2024-03-12 International Business Machines Corporation Phase change memory cell spacer

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6423621B2 (en) * 1996-10-02 2002-07-23 Micron Technology, Inc. Controllable ovonic phase-change semiconductor memory device and methods of fabricating the same
US20030036232A1 (en) * 2000-12-14 2003-02-20 Charles Dennison Method to selectively increase the top resistance of the lower programming electrode in a phase-change memory.
CN1449062A (zh) * 2002-04-04 2003-10-15 惠普公司 用于相变介质存储装置的低热耗小接触面积复合电极
US20050045915A1 (en) * 2002-10-25 2005-03-03 Se-Ho Lee Phase changeable layers including protruding portions in electrodes thereof and methods of forming same
US20050173691A1 (en) * 2004-02-09 2005-08-11 Macronix International Co., Ltd. Structure for phase change memory and the method of forming same
US20060071204A1 (en) * 2004-09-30 2006-04-06 Thomas Happ Resistive memory element

Family Cites Families (171)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3271591A (en) 1963-09-20 1966-09-06 Energy Conversion Devices Inc Symmetrical current controlling device
US3530441A (en) 1969-01-15 1970-09-22 Energy Conversion Devices Inc Method and apparatus for storing and retrieving information
IL61678A (en) 1979-12-13 1984-04-30 Energy Conversion Devices Inc Programmable cell and programmable electronic arrays comprising such cells
US4719594A (en) 1984-11-01 1988-01-12 Energy Conversion Devices, Inc. Grooved optical data storage device including a chalcogenide memory layer
US4876220A (en) 1986-05-16 1989-10-24 Actel Corporation Method of making programmable low impedance interconnect diode element
JP2685770B2 (ja) 1987-12-28 1997-12-03 株式会社東芝 不揮発性半導体記憶装置
US5534712A (en) 1991-01-18 1996-07-09 Energy Conversion Devices, Inc. Electrically erasable memory elements characterized by reduced current and improved thermal stability
US5166758A (en) 1991-01-18 1992-11-24 Energy Conversion Devices, Inc. Electrically erasable phase change memory
US5177567A (en) 1991-07-19 1993-01-05 Energy Conversion Devices, Inc. Thin-film structure for chalcogenide electrical switching devices and process therefor
US5166096A (en) 1991-10-29 1992-11-24 International Business Machines Corporation Process for fabricating self-aligned contact studs for semiconductor structures
US5329486A (en) 1992-04-24 1994-07-12 Motorola, Inc. Ferromagnetic memory device
US5958358A (en) 1992-07-08 1999-09-28 Yeda Research And Development Co., Ltd. Oriented polycrystalline thin films of transition metal chalcogenides
US5515488A (en) 1994-08-30 1996-05-07 Xerox Corporation Method and apparatus for concurrent graphical visualization of a database search and its search history
US5785828A (en) 1994-12-13 1998-07-28 Ricoh Company, Ltd. Sputtering target for producing optical recording medium
US5831276A (en) 1995-06-07 1998-11-03 Micron Technology, Inc. Three-dimensional container diode for use with multi-state material in a non-volatile memory cell
US5789758A (en) 1995-06-07 1998-08-04 Micron Technology, Inc. Chalcogenide memory cell with a plurality of chalcogenide electrodes
US5879955A (en) 1995-06-07 1999-03-09 Micron Technology, Inc. Method for fabricating an array of ultra-small pores for chalcogenide memory cells
US6420725B1 (en) 1995-06-07 2002-07-16 Micron Technology, Inc. Method and apparatus for forming an integrated circuit electrode having a reduced contact area
US5869843A (en) 1995-06-07 1999-02-09 Micron Technology, Inc. Memory array having a multi-state element and method for forming such array or cells thereof
US5751012A (en) 1995-06-07 1998-05-12 Micron Technology, Inc. Polysilicon pillar diode for use in a non-volatile memory cell
US5837564A (en) 1995-11-01 1998-11-17 Micron Technology, Inc. Method for optimal crystallization to obtain high electrical performance from chalcogenides
US5687112A (en) 1996-04-19 1997-11-11 Energy Conversion Devices, Inc. Multibit single cell memory element having tapered contact
US6025220A (en) 1996-06-18 2000-02-15 Micron Technology, Inc. Method of forming a polysilicon diode and devices incorporating such diode
US5789277A (en) 1996-07-22 1998-08-04 Micron Technology, Inc. Method of making chalogenide memory device
US5985698A (en) 1996-07-22 1999-11-16 Micron Technology, Inc. Fabrication of three dimensional container diode for use with multi-state material in a non-volatile memory cell
US5814527A (en) 1996-07-22 1998-09-29 Micron Technology, Inc. Method of making small pores defined by a disposable internal spacer for use in chalcogenide memories
US5998244A (en) 1996-08-22 1999-12-07 Micron Technology, Inc. Memory cell incorporating a chalcogenide element and method of making same
US6087674A (en) 1996-10-28 2000-07-11 Energy Conversion Devices, Inc. Memory element with memory material comprising phase-change material and dielectric material
US6015977A (en) 1997-01-28 2000-01-18 Micron Technology, Inc. Integrated circuit memory cell having a small active area and method of forming same
US5952671A (en) 1997-05-09 1999-09-14 Micron Technology, Inc. Small electrode for a chalcogenide switching device and method for fabricating same
US6031287A (en) 1997-06-18 2000-02-29 Micron Technology, Inc. Contact structure and memory element incorporating the same
US6768165B1 (en) 1997-08-01 2004-07-27 Saifun Semiconductors Ltd. Two bit non-volatile electrically erasable and programmable semiconductor memory cell utilizing asymmetrical charge trapping
US6617192B1 (en) 1997-10-01 2003-09-09 Ovonyx, Inc. Electrically programmable memory element with multi-regioned contact
US7023009B2 (en) 1997-10-01 2006-04-04 Ovonyx, Inc. Electrically programmable memory element with improved contacts
US6034882A (en) 1998-11-16 2000-03-07 Matrix Semiconductor, Inc. Vertically stacked field programmable nonvolatile memory and method of fabrication
US7157314B2 (en) 1998-11-16 2007-01-02 Sandisk Corporation Vertically stacked field programmable nonvolatile memory and method of fabrication
US6351406B1 (en) 1998-11-16 2002-02-26 Matrix Semiconductor, Inc. Vertically stacked field programmable nonvolatile memory and method of fabrication
US6825489B2 (en) * 2001-04-06 2004-11-30 Axon Technologies Corporation Microelectronic device, structure, and system, including a memory structure having a variable programmable property and method of forming the same
US6177317B1 (en) 1999-04-14 2001-01-23 Macronix International Co., Ltd. Method of making nonvolatile memory devices having reduced resistance diffusion regions
US6077674A (en) 1999-10-27 2000-06-20 Agilent Technologies Inc. Method of producing oligonucleotide arrays with features of high purity
US6314014B1 (en) 1999-12-16 2001-11-06 Ovonyx, Inc. Programmable resistance memory arrays with reference cells
US6420216B1 (en) 2000-03-14 2002-07-16 International Business Machines Corporation Fuse processing using dielectric planarization pillars
US6888750B2 (en) 2000-04-28 2005-05-03 Matrix Semiconductor, Inc. Nonvolatile memory on SOI and compound semiconductor substrates and method of fabrication
US6420215B1 (en) 2000-04-28 2002-07-16 Matrix Semiconductor, Inc. Three-dimensional memory array and method of fabrication
US6501111B1 (en) 2000-06-30 2002-12-31 Intel Corporation Three-dimensional (3D) programmable device
US6440837B1 (en) 2000-07-14 2002-08-27 Micron Technology, Inc. Method of forming a contact structure in a semiconductor device
US6563156B2 (en) 2001-03-15 2003-05-13 Micron Technology, Inc. Memory elements and methods for making same
US6555860B2 (en) 2000-09-29 2003-04-29 Intel Corporation Compositionally modified resistive electrode
US6429064B1 (en) 2000-09-29 2002-08-06 Intel Corporation Reduced contact area of sidewall conductor
US6339544B1 (en) 2000-09-29 2002-01-15 Intel Corporation Method to enhance performance of thermal resistor device
US6567293B1 (en) 2000-09-29 2003-05-20 Ovonyx, Inc. Single level metal memory cell using chalcogenide cladding
DE10050076C2 (de) 2000-10-10 2003-09-18 Infineon Technologies Ag Verfahren zur Herstellung einer ferromagnetischen Struktur und ferromagnetisches Bauelement
US6555858B1 (en) 2000-11-15 2003-04-29 Motorola, Inc. Self-aligned magnetic clad write line and its method of formation
US6569705B2 (en) 2000-12-21 2003-05-27 Intel Corporation Metal structure for a phase-change memory device
US6271090B1 (en) 2000-12-22 2001-08-07 Macronix International Co., Ltd. Method for manufacturing flash memory device with dual floating gates and two bits per cell
US6627530B2 (en) 2000-12-22 2003-09-30 Matrix Semiconductor, Inc. Patterning three dimensional structures
TW490675B (en) 2000-12-22 2002-06-11 Macronix Int Co Ltd Control method of multi-stated NROM
US6534781B2 (en) 2000-12-26 2003-03-18 Ovonyx, Inc. Phase-change memory bipolar array utilizing a single shallow trench isolation for creating an individual active area region for two memory array elements and one bipolar base contact
US6487114B2 (en) 2001-02-28 2002-11-26 Macronix International Co., Ltd. Method of reading two-bit memories of NROM cell
US6730928B2 (en) 2001-05-09 2004-05-04 Science Applications International Corporation Phase change switches and circuits coupling to electromagnetic waves containing phase change switches
US6514788B2 (en) 2001-05-29 2003-02-04 Bae Systems Information And Electronic Systems Integration Inc. Method for manufacturing contacts for a Chalcogenide memory device
US6613604B2 (en) 2001-08-02 2003-09-02 Ovonyx, Inc. Method for making small pore for use in programmable resistance memory element
US6589714B2 (en) 2001-06-26 2003-07-08 Ovonyx, Inc. Method for making programmable resistance memory element using silylated photoresist
US6605527B2 (en) 2001-06-30 2003-08-12 Intel Corporation Reduced area intersection between electrode and programming element
US6511867B2 (en) 2001-06-30 2003-01-28 Ovonyx, Inc. Utilizing atomic layer deposition for programmable device
US6673700B2 (en) 2001-06-30 2004-01-06 Ovonyx, Inc. Reduced area intersection between electrode and programming element
US6643165B2 (en) 2001-07-25 2003-11-04 Nantero, Inc. Electromechanical memory having cell selection circuitry constructed with nanotube technology
US6709958B2 (en) 2001-08-30 2004-03-23 Micron Technology, Inc. Integrated circuit device and fabrication using metal-doped chalcogenide materials
US6507061B1 (en) 2001-08-31 2003-01-14 Intel Corporation Multiple layer phase-change memory
US6586761B2 (en) 2001-09-07 2003-07-01 Intel Corporation Phase change material memory device
US6861267B2 (en) 2001-09-17 2005-03-01 Intel Corporation Reducing shunts in memories with phase-change material
US7045383B2 (en) 2001-09-19 2006-05-16 BAE Systems Information and Ovonyx, Inc Method for making tapered opening for programmable resistance memory element
US6800563B2 (en) 2001-10-11 2004-10-05 Ovonyx, Inc. Forming tapered lower electrode phase-change memories
US6566700B2 (en) 2001-10-11 2003-05-20 Ovonyx, Inc. Carbon-containing interfacial layer for phase-change memory
US6545903B1 (en) 2001-12-17 2003-04-08 Texas Instruments Incorporated Self-aligned resistive plugs for forming memory cell with phase change material
US6512241B1 (en) 2001-12-31 2003-01-28 Intel Corporation Phase change material memory device
US6867638B2 (en) 2002-01-10 2005-03-15 Silicon Storage Technology, Inc. High voltage generation and regulation system for digital multilevel nonvolatile memory
JP3796457B2 (ja) 2002-02-28 2006-07-12 富士通株式会社 不揮発性半導体記憶装置
US6579760B1 (en) 2002-03-28 2003-06-17 Macronix International Co., Ltd. Self-aligned, programmable phase change memory
US7623370B2 (en) 2002-04-04 2009-11-24 Kabushiki Kaisha Toshiba Resistance change memory device
US6864500B2 (en) 2002-04-10 2005-03-08 Micron Technology, Inc. Programmable conductor memory cell structure
US6605821B1 (en) 2002-05-10 2003-08-12 Hewlett-Packard Development Company, L.P. Phase change material electronic memory structure and method for forming
US6864503B2 (en) 2002-08-09 2005-03-08 Macronix International Co., Ltd. Spacer chalcogenide memory method and device
US6850432B2 (en) 2002-08-20 2005-02-01 Macronix International Co., Ltd. Laser programmable electrically readable phase-change memory method and device
KR100448908B1 (ko) 2002-09-03 2004-09-16 삼성전자주식회사 상전이 기억 소자 구조 및 그 제조 방법
JP4133141B2 (ja) 2002-09-10 2008-08-13 株式会社エンプラス 電気部品用ソケット
JP4190238B2 (ja) 2002-09-13 2008-12-03 株式会社ルネサステクノロジ 不揮発性半導体記憶装置
US6992932B2 (en) 2002-10-29 2006-01-31 Saifun Semiconductors Ltd Method circuit and system for read error detection in a non-volatile memory array
JP4928045B2 (ja) 2002-10-31 2012-05-09 大日本印刷株式会社 相変化型メモリ素子およびその製造方法
US6744088B1 (en) 2002-12-13 2004-06-01 Intel Corporation Phase change memory device on a planar composite layer
US6869883B2 (en) 2002-12-13 2005-03-22 Ovonyx, Inc. Forming phase change memories
US6791102B2 (en) 2002-12-13 2004-09-14 Intel Corporation Phase change memory
US6815266B2 (en) 2002-12-30 2004-11-09 Bae Systems Information And Electronic Systems Integration, Inc. Method for manufacturing sidewall contacts for a chalcogenide memory device
KR100486306B1 (ko) 2003-02-24 2005-04-29 삼성전자주식회사 셀프 히터 구조를 가지는 상변화 메모리 소자
WO2004084229A1 (en) 2003-03-18 2004-09-30 Kabushiki Kaisha Toshiba Programmable resistance memory device
US7067865B2 (en) 2003-06-06 2006-06-27 Macronix International Co., Ltd. High density chalcogenide memory cells
KR100615586B1 (ko) 2003-07-23 2006-08-25 삼성전자주식회사 다공성 유전막 내에 국부적인 상전이 영역을 구비하는상전이 메모리 소자 및 그 제조 방법
US7893419B2 (en) 2003-08-04 2011-02-22 Intel Corporation Processing phase change material to improve programming speed
US6815704B1 (en) 2003-09-04 2004-11-09 Silicon Storage Technology, Inc. Phase change memory device employing thermally insulating voids
US6927410B2 (en) 2003-09-04 2005-08-09 Silicon Storage Technology, Inc. Memory device with discrete layers of phase change memory material
US7485891B2 (en) 2003-11-20 2009-02-03 International Business Machines Corporation Multi-bit phase change memory cell and multi-bit phase change memory including the same, method of forming a multi-bit phase change memory, and method of programming a multi-bit phase change memory
US6937507B2 (en) 2003-12-05 2005-08-30 Silicon Storage Technology, Inc. Memory device and method of operating same
US7265050B2 (en) 2003-12-12 2007-09-04 Samsung Electronics Co., Ltd. Methods for fabricating memory devices using sacrificial layers
JP4124743B2 (ja) 2004-01-21 2008-07-23 株式会社ルネサステクノロジ 相変化メモリ
KR100564608B1 (ko) 2004-01-29 2006-03-28 삼성전자주식회사 상변화 메모리 소자
US6936840B2 (en) 2004-01-30 2005-08-30 International Business Machines Corporation Phase-change memory cell and method of fabricating the phase-change memory cell
JP4529493B2 (ja) 2004-03-12 2010-08-25 株式会社日立製作所 半導体装置
KR100598100B1 (ko) 2004-03-19 2006-07-07 삼성전자주식회사 상변환 기억 소자의 제조방법
DE102004014487A1 (de) 2004-03-24 2005-11-17 Infineon Technologies Ag Speicherbauelement mit in isolierendes Material eingebettetem, aktiven Material
US7482616B2 (en) 2004-05-27 2009-01-27 Samsung Electronics Co., Ltd. Semiconductor devices having phase change memory cells, electronic systems employing the same and methods of fabricating the same
JP2006019455A (ja) 2004-06-30 2006-01-19 Nec Electronics Corp 半導体装置およびその製造方法
KR100668824B1 (ko) 2004-06-30 2007-01-16 주식회사 하이닉스반도체 상변환 기억 소자 및 그 제조방법
JP4167212B2 (ja) * 2004-10-05 2008-10-15 富士通株式会社 カーボンナノチューブ構造体、半導体装置、および半導体パッケージ
TWI254443B (en) 2004-10-08 2006-05-01 Ind Tech Res Inst Multilevel phase-change memory, manufacture method and status transferring method thereof
US20060108667A1 (en) 2004-11-22 2006-05-25 Macronix International Co., Ltd. Method for manufacturing a small pin on integrated circuits or other devices
KR100827653B1 (ko) 2004-12-06 2008-05-07 삼성전자주식회사 상변화 기억 셀들 및 그 제조방법들
US7220983B2 (en) 2004-12-09 2007-05-22 Macronix International Co., Ltd. Self-aligned small contact phase-change memory method and device
US7419771B2 (en) * 2005-01-11 2008-09-02 Taiwan Semiconductor Manufacturing Co., Ltd. Method for forming a finely patterned resist
US7214958B2 (en) 2005-02-10 2007-05-08 Infineon Technologies Ag Phase change memory cell with high read margin at low power operation
US7166533B2 (en) 2005-04-08 2007-01-23 Infineon Technologies, Ag Phase change memory cell defined by a pattern shrink material process
US7696503B2 (en) 2005-06-17 2010-04-13 Macronix International Co., Ltd. Multi-level memory cell having phase change element and asymmetrical thermal boundary
US8237140B2 (en) 2005-06-17 2012-08-07 Macronix International Co., Ltd. Self-aligned, embedded phase change RAM
US7238994B2 (en) 2005-06-17 2007-07-03 Macronix International Co., Ltd. Thin film plate phase change ram circuit and manufacturing method
US7514367B2 (en) 2005-06-17 2009-04-07 Macronix International Co., Ltd. Method for manufacturing a narrow structure on an integrated circuit
US7321130B2 (en) 2005-06-17 2008-01-22 Macronix International Co., Ltd. Thin film fuse phase change RAM and manufacturing method
US7514288B2 (en) 2005-06-17 2009-04-07 Macronix International Co., Ltd. Manufacturing methods for thin film fuse phase change ram
US7598512B2 (en) 2005-06-17 2009-10-06 Macronix International Co., Ltd. Thin film fuse phase change cell with thermal isolation layer and manufacturing method
US7534647B2 (en) 2005-06-17 2009-05-19 Macronix International Co., Ltd. Damascene phase change RAM and manufacturing method
US7651906B2 (en) * 2005-06-20 2010-01-26 Samsung Electronics Co., Ltd. Integrated circuit devices having a stress buffer spacer and methods of fabricating the same
US7381982B2 (en) 2005-08-26 2008-06-03 Macronix International Co., Ltd. Method for fabricating chalcogenide-applied memory
US20070045606A1 (en) 2005-08-30 2007-03-01 Michele Magistretti Shaping a phase change layer in a phase change memory cell
US20070111429A1 (en) 2005-11-14 2007-05-17 Macronix International Co., Ltd. Method of manufacturing a pipe shaped phase change memory
US7397060B2 (en) 2005-11-14 2008-07-08 Macronix International Co., Ltd. Pipe shaped phase change memory
US7635855B2 (en) 2005-11-15 2009-12-22 Macronix International Co., Ltd. I-shaped phase change memory cell
US7786460B2 (en) 2005-11-15 2010-08-31 Macronix International Co., Ltd. Phase change memory device and manufacturing method
US7450411B2 (en) 2005-11-15 2008-11-11 Macronix International Co., Ltd. Phase change memory device and manufacturing method
US7394088B2 (en) 2005-11-15 2008-07-01 Macronix International Co., Ltd. Thermally contained/insulated phase change memory device and method (combined)
US7414258B2 (en) 2005-11-16 2008-08-19 Macronix International Co., Ltd. Spacer electrode small pin phase change memory RAM and manufacturing method
US7479649B2 (en) 2005-11-21 2009-01-20 Macronix International Co., Ltd. Vacuum jacketed electrode for phase change memory element
US7449710B2 (en) 2005-11-21 2008-11-11 Macronix International Co., Ltd. Vacuum jacket for phase change memory element
US7507986B2 (en) 2005-11-21 2009-03-24 Macronix International Co., Ltd. Thermal isolation for an active-sidewall phase change memory cell
US7829876B2 (en) 2005-11-21 2010-11-09 Macronix International Co., Ltd. Vacuum cell thermal isolation for a phase change memory device
US7599217B2 (en) 2005-11-22 2009-10-06 Macronix International Co., Ltd. Memory cell device and manufacturing method
US7688619B2 (en) 2005-11-28 2010-03-30 Macronix International Co., Ltd. Phase change memory cell and manufacturing method
US7459717B2 (en) 2005-11-28 2008-12-02 Macronix International Co., Ltd. Phase change memory cell and manufacturing method
US7605079B2 (en) 2005-12-05 2009-10-20 Macronix International Co., Ltd. Manufacturing method for phase change RAM with electrode layer process
US7642539B2 (en) 2005-12-13 2010-01-05 Macronix International Co., Ltd. Thin film fuse phase change cell with thermal isolation pad and manufacturing method
US7531825B2 (en) 2005-12-27 2009-05-12 Macronix International Co., Ltd. Method for forming self-aligned thermal isolation cell for a variable resistance memory array
US8062833B2 (en) 2005-12-30 2011-11-22 Macronix International Co., Ltd. Chalcogenide layer etching method
US7560337B2 (en) * 2006-01-09 2009-07-14 Macronix International Co., Ltd. Programmable resistive RAM and manufacturing method
US7741636B2 (en) 2006-01-09 2010-06-22 Macronix International Co., Ltd. Programmable resistive RAM and manufacturing method
US20070158632A1 (en) 2006-01-09 2007-07-12 Macronix International Co., Ltd. Method for Fabricating a Pillar-Shaped Phase Change Memory Element
US7595218B2 (en) 2006-01-09 2009-09-29 Macronix International Co., Ltd. Programmable resistive RAM and manufacturing method
US7825396B2 (en) 2006-01-11 2010-11-02 Macronix International Co., Ltd. Self-align planerized bottom electrode phase change memory and manufacturing method
US7432206B2 (en) 2006-01-24 2008-10-07 Macronix International Co., Ltd. Self-aligned manufacturing method, and manufacturing method for thin film fuse phase change ram
US7456421B2 (en) 2006-01-30 2008-11-25 Macronix International Co., Ltd. Vertical side wall active pin structures in a phase change memory and manufacturing methods
US7494910B2 (en) * 2006-03-06 2009-02-24 Micron Technology, Inc. Methods of forming semiconductor package
US7910907B2 (en) * 2006-03-15 2011-03-22 Macronix International Co., Ltd. Manufacturing method for pipe-shaped electrode phase change memory
TWI297948B (en) * 2006-06-26 2008-06-11 Ind Tech Res Inst Phase change memory device and fabrications thereof
US7394089B2 (en) 2006-08-25 2008-07-01 International Business Machines Corporation Heat-shielded low power PCM-based reprogrammable EFUSE device
US8003972B2 (en) * 2006-08-30 2011-08-23 Micron Technology, Inc. Bottom electrode geometry for phase change memory
US7504653B2 (en) 2006-10-04 2009-03-17 Macronix International Co., Ltd. Memory cell device with circumferentially-extending memory element
US20080090324A1 (en) * 2006-10-12 2008-04-17 Lee Jong-Won S Forming sublithographic heaters for phase change memories
US20080090400A1 (en) 2006-10-17 2008-04-17 Cheek Roger W Self-aligned in-contact phase change memory device
US7778063B2 (en) 2006-11-08 2010-08-17 Symetrix Corporation Non-volatile resistance switching memories and methods of making same
US7728318B2 (en) 2006-11-16 2010-06-01 Sandisk Corporation Nonvolatile phase change memory cell having a reduced contact area
US7463512B2 (en) * 2007-02-08 2008-12-09 Macronix International Co., Ltd. Memory element with reduced-current phase change element
US7745807B2 (en) 2007-07-11 2010-06-29 International Business Machines Corporation Current constricting phase change memory element structure
TW200926356A (en) 2007-12-11 2009-06-16 Ind Tech Res Inst Method for fabricating phase-change memory
US7868313B2 (en) 2008-04-29 2011-01-11 International Business Machines Corporation Phase change memory device and method of manufacture
US8173987B2 (en) 2009-04-27 2012-05-08 Macronix International Co., Ltd. Integrated circuit 3D phase change memory array and manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6423621B2 (en) * 1996-10-02 2002-07-23 Micron Technology, Inc. Controllable ovonic phase-change semiconductor memory device and methods of fabricating the same
US20030036232A1 (en) * 2000-12-14 2003-02-20 Charles Dennison Method to selectively increase the top resistance of the lower programming electrode in a phase-change memory.
CN1449062A (zh) * 2002-04-04 2003-10-15 惠普公司 用于相变介质存储装置的低热耗小接触面积复合电极
US20050045915A1 (en) * 2002-10-25 2005-03-03 Se-Ho Lee Phase changeable layers including protruding portions in electrodes thereof and methods of forming same
US20050173691A1 (en) * 2004-02-09 2005-08-11 Macronix International Co., Ltd. Structure for phase change memory and the method of forming same
US20060071204A1 (en) * 2004-09-30 2006-04-06 Thomas Happ Resistive memory element

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109904187A (zh) * 2017-12-08 2019-06-18 旺宏电子股份有限公司 具有无势垒结构的氧化钨电阻式随机存取存储器
CN109904187B (zh) * 2017-12-08 2021-08-13 旺宏电子股份有限公司 具有无势垒结构的氧化钨电阻式随机存取存储器
CN111029362A (zh) * 2019-11-12 2020-04-17 华中科技大学 一种高密度的相变存储器三维集成电路结构的制备方法
CN111029362B (zh) * 2019-11-12 2023-07-18 华中科技大学 一种高密度的相变存储器三维集成电路结构的制备方法

Also Published As

Publication number Publication date
DE102008008679A1 (de) 2008-09-18
US8138028B2 (en) 2012-03-20
US20080191187A1 (en) 2008-08-14
TWI349332B (en) 2011-09-21
TW200849477A (en) 2008-12-16
CN102522374B (zh) 2014-07-09

Similar Documents

Publication Publication Date Title
CN102522374B (zh) 一种具有柱状底电极相变化存储装置及其制造方法
CN101197317B (zh) 具有热障的相变化存储单元及其制造方法
CN101872838B (zh) 具有埋入相变化区域的存储单元及其制造方法
US8062923B2 (en) Thin film fuse phase change cell with thermal isolation pad and manufacturing method
US7932506B2 (en) Fully self-aligned pore-type memory cell having diode access device
CN100563040C (zh) 相变化存储单元及其制造方法
US8237140B2 (en) Self-aligned, embedded phase change RAM
US7993962B2 (en) I-shaped phase change memory cell
CN101345251B (zh) 位于半导体衬底之上的存储单元阵列及其制造方法
CN101252167B (zh) 具有自我形成间隙的可程序化电阻存储单元
US8106376B2 (en) Method for manufacturing a resistor random access memory with a self-aligned air gap insulator
US7534647B2 (en) Damascene phase change RAM and manufacturing method
CN101840928B (zh) 带有自对准存储元件的多晶硅柱双极晶体管
CN101685826B (zh) 一种具有二极管驱动器的存储阵列及其制造方法
CN101226771B (zh) 使用多存储器层的多层单元存储器结构及其制造方法
US8415651B2 (en) Phase change memory cell having top and bottom sidewall contacts
CN101083298B (zh) 具有缩减活性面积及接触面积的电阻式随机存取存储单元
TWI497706B (zh) 具有自動對準底電極和二極體存取裝置之蕈狀記憶胞
CN101237026B (zh) 一种存储装置及其制造方法
US20100144128A1 (en) Phase Change Memory Cell and Manufacturing Method
US20090101879A1 (en) Method for Making Self Aligning Pillar Memory Cell Device
CN101290948A (zh) 4f平方自对准侧壁主动相变化存储器
CN100573899C (zh) 自我对准的嵌入式相变存储器及其制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant