CN102381933A - 一种环己烷催化氧化制备环己醇和环己酮的方法 - Google Patents

一种环己烷催化氧化制备环己醇和环己酮的方法 Download PDF

Info

Publication number
CN102381933A
CN102381933A CN2011102636145A CN201110263614A CN102381933A CN 102381933 A CN102381933 A CN 102381933A CN 2011102636145 A CN2011102636145 A CN 2011102636145A CN 201110263614 A CN201110263614 A CN 201110263614A CN 102381933 A CN102381933 A CN 102381933A
Authority
CN
China
Prior art keywords
hexanaphthene
modification
mcm
pimelinketone
hexalin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2011102636145A
Other languages
English (en)
Inventor
袁霞
胡晓勇
吴剑
罗和安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiangtan University
Original Assignee
Xiangtan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiangtan University filed Critical Xiangtan University
Priority to CN2011102636145A priority Critical patent/CN102381933A/zh
Publication of CN102381933A publication Critical patent/CN102381933A/zh
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals

Abstract

本发明公开了一种环己烷催化氧化制备环己醇和环己酮的方法。以经过硅烷化修饰的介孔分子筛MCM-41为载体,固载席夫碱钴配合物后作为催化剂,环己烷与含氧气体在相对温和的条件下不加任何溶剂进行反应,转化率提高的同时,仍然保持较高的环己醇和环己酮的选择性,反应体系中间产物环己基过氧化氢得到有效分解,催化剂经过简单过滤处理可以重复使用。

Description

一种环己烷催化氧化制备环己醇和环己酮的方法
技术领域
本发明涉及一种环己烷催化氧化制备环己醇和环己酮的方法。
背景技术
环己醇和环己酮是重要的有机化工原料,也是石油化工的关键中间体,环己酮主要用于制造己内酰胺、己二酸等聚酰胺(尼龙6、尼龙66)单体;也是制造环己烯乙胺等药物中间体的重要原料;在聚氨酯涂料、橡胶硫化促进剂、彩色油墨、塑料回收、染料等行业也有广泛的应用。
世界上环己酮工业生产工艺主要有三种:苯酚加氢法、环己烷液相氧化法和环己烯水合法。目前,90%以上的环己酮是采用环己烷氧化法生产。环己烷氧化工业化生产技术主要有三种方法:无催化氧化法,硼酸催化氧化法和钴盐催化氧化法。硼酸催化氧化法因增加硼酸酯水解及硼酸回收设备,基建投资高,另外工艺过程中生成浆糊状物料易沉积结焦影响生产的连续进行,因而经济效益不明显。钴盐催化氧化法在较低的环己烷转化率下,选择性也只有75%,特别是反应过程中设备和管道壁上结渣,影响生产的长周期运行。因而,环己酮的工业生产方法以环己烷无催化氧化法为主。
环己烷无催化氧化法分两步进行:首先不使用催化剂,在150-200℃的高温下用含氧10%-15%的贫氧或空气在1.0-2.0MPa的压力下使环己烷氧化为环己基过氧化氢,然后将氧化液降温至70℃左右,在85-90℃、钴或铬盐、碱性条件下,环己基过氧化氢催化分解为环己醇和环己酮,经分离得到环己酮产品。由于环己烷相对惰性,产物环己醇和环己酮性质活泼,更容易进一步氧化生成酸和酯类副产物,该工艺第一步反应通常控制环己烷的单程转化率3.5%-5%,可以获得总选择性为97%的环己基过氧化氢和环己醇和环己酮的混合氧化液,第二步的环己基过氧化氢分解反应选择性只在84%以下,因而环己烷无催化制备环己醇/酮的总选择性仅为81%-83%,而且低温碱性分解反应产生大量废碱液,难以处理,带来严重的环保问题。CN1105970A、CN1147499A、CN1184097A中均对环己基过氧化物的分解工艺进行了改进,使得分解选择性提高到90%以上,但对无催化氧化工艺来说,由于环己烷单程转化率低,大量未反应完的环己烷仍需要通过蒸馏的方法分离出来再重新氧化,整个过程能耗高,效率低下。开发高效的环己烷催化氧化体系,使得提高环己烷转化率的同时,保持相对较高的环己醇和环己酮的选择性成为努力的方向。
环己烷氧化是一连串反应,中间产物环己醇和环己酮性质比环己烷更活泼,更容易深度氧化生成酸酯类副产物,要使反应停留在醇酮阶段,对催化剂的设计提出了挑战。CN101264446A公开了金属合金催化剂的制法及用法,在140-150℃,氧气压力10-20atm下反应6h,环己烷转化率达到7%时,环己醇、酮选择性仍能保持在90%以上,但合金催化剂的来源有限,催化活性不高。CN1405131A公开了使用μ-氧双金属卟啉和单金属卟啉作主催化剂,过渡金属盐或氧化物作为共催化剂催化空气氧化环己烷的方法,环己烷转化率在4%-20%之间,反应温度低于150℃,环己醇与环己酮的选择性在95%以上。但金属卟啉制备方法复杂,价格昂贵,而且自身容易被氧化失活,加之卟啉催化反应体系对温度比较敏感,其工业应用受到限制。CN101204662A以具有介孔的全硅SBA-15为载体,一种或数种过渡金属氧化物为活性组分,催化氧气氧化环己烷,烷基过氧化物得到有效分解,但醇酮选择性不高。
发明内容
本发明的目的在于针对工业生产中环己烷无催化氧化反应条件苛刻,单程转化率低,环己醇和环己酮总选择性不高以及环己基过氧化物分解收率低带来的环境问题,提供一种环己烷催化氧化制备环己醇和环己酮的方法。该方法在相对温和的条件下提高环己烷转化率的同时,能保持较高的环己醇和环己酮的选择性,产物中环己基过氧化物的含量很低。
本发明的目的是通过如下方式实现的。
一种环己烷催化氧化制备环己醇和环己酮的方法:介孔分子筛MCM-41经过硅烷化修饰,固载席夫碱钴配合物后作为催化剂,催化环己烷与含氧气体反应即可。
所述的环己烷与催化剂的质量比为1∶0.001-0.01。
所述的催化环己烷与含氧气体反应的温度为120-160℃,反应时间0.5-3h,环己烷与含氧气体中氧分子的摩尔比为1∶0.02-0.20。
所述的含氧气体为纯氧,空气,贫氧空气,富氧空气中的一种。
所述的介孔分子筛MCM-41的硅烷化修饰包括以下三种方式:1)氨基硅烷化修饰,2)先进行氨基硅烷化修饰,再进行甲基硅烷化修饰,3)一步同时进行氨基硅烷化和甲基硅烷化修饰。
所述的氨基硅烷化修饰过程为:在无水甲苯介质中,通过氮气氛围保护,MCM-41分子筛与氨基硅烷化试剂按1∶0.5-10的质量比,在90-110℃下回流反应0.5-24h,抽滤后的固体分别经乙醚、二氯甲烷抽提,50-120℃真空干燥1-10h后得到产物MCM-41-NH2
所述的先进行氨基硅烷化修饰,再进行甲基硅烷化修饰的过程为:将所述的MCM-41-NH2与甲基硅烷化试剂按1∶0.5-10的质量比,在无水甲苯介质中,氮气氛围下,90-110℃下回流反应0.5-36h,过滤后,经二氯甲烷与乙醚混合溶液V二氯甲烷∶V乙醚=1∶1索氏萃取24h,然后在50-120℃下真空干燥1-10h得到催化剂载体;
所述的一步同时进行氨基硅烷化和甲基硅烷化修饰过程为:氨基硅烷化和甲基硅烷化试剂按摩尔比0.5-10∶1配成混合溶液,混合溶液与MCM-41按0.5-10∶1的质量比,氮气氛围下,90-110℃下回流反应0.5-36h,过滤后,经二氯甲烷与乙醚混合溶液V二氯甲烷∶V乙醚=1∶1索氏萃取24h,然后在50-120℃下真空干燥1-10h得到催化剂载体。
所述的氨基硅烷化试剂包括γ-氨丙基三乙氧基硅烷、氨丙基三甲氧基硅烷、双[(3-三乙氧基硅)丙基]胺、3-氨基丙基二甲基甲氧硅烷,3-氨丙基甲基二乙氧基硅烷中的一种;所述的甲基硅烷化试剂包括甲基三乙氧基硅烷,二甲基三乙氧基硅烷、三甲基三乙氧基硅烷、氯甲基硅烷、六甲基二硅氮烷中的一种。
所述的固载席夫碱钴配合物的过程如下:经过硅烷化修饰的MCM-41与席夫碱钴配合物按5-1∶1的质量比在无水甲苯介质中,20-110℃反应0.5-24h后,经过滤,丙酮洗涤,50-120℃下真空干燥1-10h后得到催化剂。
所述的席夫碱钴配合物的配体为双水杨醛缩乙二胺、双水杨醛缩邻苯二胺、双5-氟水杨醛缩乙二胺、双5-氯水杨醛缩乙二胺、双5-溴水杨醛缩乙二胺中的一种。
所述的介孔分子筛MCM-41在硅烷化修饰前,和氨基硅烷化的介孔分子筛MCM-41在甲基硅烷化之前,以及硅烷化修饰后的MCM-41分子筛在固载席夫碱钴配合物之前均要进行真空活化处理,处理温度20-200℃,处理时间0.5-10h。
本发明以经过硅烷化修饰的介孔分子筛MCM-41固载的席夫碱钴配合物(CoSalen)为催化剂,以分子氧为氧源,不加任何溶剂,在相对温和的条件下催化环己烷与含氧气体选择性氧化制备环己醇、环己酮,有效分解中间产物环己基过氧化氢,环己基过氧化氢的选择性小于0.2%。反应结束后,催化剂经过简单过滤分离后,可以重复使用。
介孔分子筛MCM-41进行硅烷化修饰的目的是为了固载活性组分席夫碱钴配合物和增加其疏水性,为此对其进行氨基硅烷化修饰,或者先进行氨基硅烷化修饰,再进行甲基硅烷化修饰,或者一步同时进行氨基硅烷化和甲基硅烷化修饰。
介孔分子筛MCM-41的比表面积为750-1800m2/g,孔容为0.6-1.8cm3/g;
分子氧是氧化反应廉价易得的氧源,分子氧的惰性是造成环己烷氧化反应条件苛刻的原因之一。本发明选择的活性组分Cosalen能有效活化氧分子,并催化过氧化物的分解,减少过氧化物单独分解的反应步骤,回避过氧化物分解步骤带来的废碱液处理和环境污染问题。单纯活化分子氧,有助于在相对温和的条件下提高环己烷的转化率,但醇酮接触活性氧后比环己烷更容易深度氧化,因而为活性组分选择的载体类型将影响到产物的分布。值得注意的是氧化体系的原料环己烷与氧化产物环己醇和环己酮的极性差异很大,本发明考虑选择具有规则的六方孔道结构的全硅介孔分子筛MCM-41作为载体,其表面和孔道硅羟基丰富,对其进行甲基硅烷化修饰,可以进一步增强其疏水性,在反应过程中使其更容易吸附非极性的原料环己烷,而使极性的产物环己醇和环己酮能及时从载体上脱附下来,离开催化氧化的场所,避免与活性组分CoSalen进一步接触,发生深度氧化副反应,从而达到提高环己烷转化率的同时,保持较高环己醇和环己酮选择性的目的。而且Cosalen这种小分子的席夫碱钴配合物分子之间很容易发生二聚和多聚的副反应而失活,固载化也是解决这一问题的有效途径。对MCM-41进行氨基硅烷化修饰,使活性组分与载体中的N原子进行配位从而固载在载体上,这不仅能阻止CoSalen分子之间的聚合副反应,防止失活,而且相对于浸渍型催化剂,其活性组分不容易流失,催化剂便于分离回收和重复使用。
本发明有如下优点:(1)环己烷转化率提高的同时,能保持较高的环己醇和环己酮选择性;(2)反应完后,催化剂经过简单过滤分离和处理,可以重复使用;(3)活性组分Cosalen具有类卟啉结构,合成原料来源广泛,制备过程简单;(4)环己基过氧化氢得到有效分解,反应一步完成;(5)在温度和压力相对温和的条件下进行,无需加入溶剂。
具体实施方式
下面结合实施例旨在进一步说明本发明,而非限制本发明。
实施例1:
(1)将在150℃下真空活化2h的3.0g市售全硅MCM-41分子筛悬浮在60ml无水甲苯中,加入3.0gγ-氨丙基三乙氧基硅烷,在氮气保护下,100℃回流反应15h,冷却后,抽滤,分别用乙醚、二氯甲烷抽提,80℃真空干燥5h,得到的白色的产物即为修饰后的MCM-41-NH2分子筛。
(2)将甲基三乙氧基硅烷和在150℃下真空活化2h的MCM-41-NH2按照质量比为2∶1加入到250ml三口瓶中,再加入100mL无水甲苯,在N2保护下110℃回流反应24h,溶液过滤后,将滤饼用二氯甲烷与乙醚混合溶液(V二氯甲烷∶V乙醚=1∶1)索氏萃取24h,再用丙酮洗涤,在80℃下真空干燥3h,得到修饰产物,记作CH3-MCM-41-NH2
(3)将在150℃下真空脱气2h的0.236g双水杨醛缩乙二胺合钴Cosalen溶解在20ml的甲苯中,搅拌;于100ml三口烧瓶中加入0.5g CH3-MCM-41-NH2(150℃真空活化2h),适量无水甲苯溶解,将Cosalen甲苯溶液缓慢滴加到三口烧瓶中,室温搅拌8h。抽滤,用丙酮洗涤滤饼,80℃真空干燥4h,得到的白色产物记作Cosalen/CH3-MCM-41(1)。
实施例2:
(1)将在150℃下真空活化2h的3.0g市售全硅MCM-41分子筛悬浮在60ml无水甲苯中,加入1.5gγ-氨丙基三乙氧基硅烷,在氮气保护下,100℃回流反应15h,冷却后,抽滤,分别用乙醚、二氯甲烷抽提,80℃真空干燥5h,得到的白色的产物即为修饰后的MCM-41-NH2分子筛。
(2)将甲基三乙氧基硅烷和在150℃下真空活化2h的MCM-41-NH2按照质量比为2∶1加入到250ml三口瓶中,再加入100mL无水甲苯,在N2保护下110℃回流反应24h,溶液过滤后,将滤饼用二氯甲烷与乙醚混合溶液(V二氯甲烷∶V乙醚=1∶1)索氏萃取24h,再用丙酮洗涤,在80℃下真空干燥3h,得到修饰产物,记作CH3-MCM-41-NH2
(3)将在150℃下真空脱气2h的0.236g双水杨醛缩乙二胺合钴Cosalen溶解在20ml的甲苯中,搅拌;于100ml三口烧瓶中加入0.5g CH3-MCM-41-NH2(150℃真空活化2h),适量无水甲苯溶解,将Cosalen甲苯溶液缓慢滴加到三口烧瓶中,90℃回流搅拌4h。抽滤,用丙酮洗涤滤饼,80℃真空干燥4h,得到的白色产物记作Cosalen/CH3-MCM-41(2)。
实施例3:
(1)将在150℃下真空活化2h的3.0g市售全硅MCM-41分子筛悬浮在60ml无水甲苯中,加入3.0gγ-氨丙基三乙氧基硅烷,在氮气保护下,90℃回流、反应15h,冷却后,抽滤,分别用乙醚、二氯甲烷抽提,100℃真空干燥2h,得到的白色的产物即为修饰后的MCM-41-NH2分子筛。
(2)取0.236g 100℃下真空干燥2h的双水杨醛缩乙二胺合钴配合物,将其溶解在20ml的甲苯中,搅拌;在100mL三口烧瓶中加入0.5g NH2-MCM-41(在200℃下真空干燥2h),适量甲苯溶解,Cosalen甲苯溶液缓慢滴加到三口烧瓶中,80℃搅拌6-8h。用丙酮洗涤滤饼,80℃真空干燥5h,得到的样品记作Cosalen/MCM-41。
实施例4:
将10g环己烷加入100ml不锈钢高压釜内,加入0.02g叔丁基过氧化氢作为引发剂,加入0.1g Cosalen/MCM-41作为催化剂,密封高压釜后,一次性通入氧气1.03g,油浴加热升温至反应温度130℃,2h后停止反应,急冷至低温,轻启尾管缓慢泄压后,开釜,加入定量的乙醇后,取出反应液。环己醇和环己酮采用气相色谱分析,环己基过氧化氢采用碘量滴定法分析,产物中的酸和酯采用酸碱滴定法分析,根据所有产物的收率计算转化率。环己烷转化率5.96%,环己醇和环己酮选择性87.03%,环己基过氧化物选择性0.07%,酸和酯的选择性12.89%。
实施例5:
将10g环己烷加入100ml不锈钢高压釜内,加入0.02g叔丁基过氧化氢作为引发剂,加入0.1g Cosalen/CH3-MCM-41(1)作为催化剂,密封高压釜后,一次性通入氧气1.03g,油浴加热升温至反应温度130℃,2h后停止反应,急冷至低温,轻启尾管缓慢泄压后,开釜,加入定量的乙醇后,取出反应液分析。环己烷转化率8.34%,环己醇和环己酮选择性93.66%,环己基过氧化物选择性0.11%,酸和酯的选择性6.23%。
实施例6:
将10g环己烷加入100ml不锈钢高压釜内,加入0.02g叔丁基过氧化氢作为引发剂,加入0.1g Cosalen/CH3-MCM-41(2)作为催化剂,密封高压釜后,一次性通入氧气1.03g,油浴加热升温至反应温度130℃,2h后停止反应,急冷至低温,轻启尾管缓慢泄压后,开釜,加入定量的乙醇后,取出反应液分析。环己烷转化率6.29%,环己醇和环己酮选择性91.30%,环己基过氧化物选择性0.18%,酸和酯的选择性8.52%。
对比例1:
不加入催化剂进行空白对比反应,反应条件与实施例4相同。环己烷转化率1.80%,环己醇和环己酮选择性42.20%,环己基过氧化物选择性51.70%,酸和酯的选择性5.50%。
对比例2:
采用0.01g Cosalen作为催化剂进行对比反应,反应条件与实施例4相同。环己烷转化率4.58%,环己醇和环己酮选择性74.45%,环己基过氧化物选择性3.63%,酸和酯的选择性21.92%。

Claims (10)

1.一种环己烷催化氧化制备环己醇和环己酮的方法,其特征在于:介孔分子筛MCM-41经过硅烷化修饰,固载席夫碱钴配合物后作为催化剂,催化环己烷与含氧气体反应即可。
2.根据权利要求1所述的环己烷催化氧化制备环己醇和环己酮的方法,其特征在于:所述的环己烷与催化剂的质量比为1∶0.001-0.01。
3.根据权利要求1所述的环己烷催化氧化制备环己醇和环己酮的方法,其特征在于:所述的催化环己烷与含氧气体反应的温度为120-160℃,反应时间0.5-3h,环己烷与含氧气体中氧分子的摩尔比为1∶0.02-0.20。
4.根据权利要求1或3所述的环己烷催化氧化制备环己醇和环己酮的方法,其特征在于:所述的含氧气体为纯氧,空气,贫氧空气,富氧空气中的一种。
5.根据权利要求1所述的环己烷催化氧化制备环己醇和环己酮的方法,其特征在于:所述的介孔分子筛MCM-41的硅烷化修饰包括以下三种方式:1)氨基硅烷化修饰,2)先进行氨基硅烷化修饰,再进行甲基硅烷化修饰,3)一步同时进行氨基硅烷化和甲基硅烷化修饰。
6.根据权利要求5所述的环己烷催化氧化制备环己醇和环己酮的方法,其特征在于:
所述的氨基硅烷化修饰过程为:在无水甲苯介质中,通过氮气氛围保护,MCM-41分子筛与氨基硅烷化试剂按1∶0.5-10的质量比,在90-110℃下回流反应0.5-24h,抽滤后的固体分别经乙醚、二氯甲烷抽提,50-120℃真空干燥1-10h后得到产物MCM-41-NH2;
所述的先进行氨基硅烷化修饰,再进行甲基硅烷化修饰的过程为:将所述的MCM-41-NH2与甲基硅烷化试剂按1∶0.5-10的质量比,在无水甲苯介质中,氮气氛围下,90-110℃下回流反应0.5-36h,过滤后,经二氯甲烷与乙醚混合溶液V二氯甲烷∶V乙醚=1∶1索氏萃取24h,然后在50-120℃下真空干燥1-10h得到催化剂载体;
所述的一步同时进行氨基硅烷化和甲基硅烷化修饰过程为:氨基硅烷化和甲基硅烷化试剂按摩尔比0.5-10∶1配成混合溶液,混合溶液与MCM-41按0.5-10∶1的质量比,氮气氛围下,90-110℃下回流反应0.5-36h,过滤后,经二氯甲烷与乙醚混合溶液V二氯甲烷∶V乙醚=1∶1索氏萃取24h,然后在50-120℃下真空干燥1-10h得到催化剂载体。
7.根据权利要求5或6所述的环己烷催化氧化制备环己醇和环己酮的方法,其特征在于,所述的氨基硅烷化试剂包括γ-氨丙基三乙氧基硅烷、氨丙基三甲氧基硅烷、双[(3-三乙氧基硅)丙基]胺、3-氨基丙基二甲基甲氧硅烷,3-氨丙基甲基二乙氧基硅烷中的一种;所述的甲基硅烷化试剂包括甲基三乙氧基硅烷,二甲基三乙氧基硅烷、三甲基三乙氧基硅烷、氯甲基硅烷、六甲基二硅氮烷中的一种。
8.根据权利要求1或5或6所述的环己烷催化氧化制备环己醇和环己酮的方法,其特征在于:所述的固载席夫碱钴配合物的过程如下:经过硅烷化修饰的MCM-41与席夫碱钴配合物按5-1∶1的质量比在无水甲苯介质中,20-110℃反应0.5-24h后,经过滤,丙酮洗涤,50-120℃下真空干燥1-10h后得到催化剂。
9.根据权利要求8所述的环己烷催化氧化制备环己醇和环己酮的方法,其特征在于:所述的席夫碱钴配合物的配体为双水杨醛缩乙二胺、双水杨醛缩邻苯二胺、双5-氟水杨醛缩乙二胺、双5-氯水杨醛缩乙二胺、双5-溴水杨醛缩乙二胺中的一种。
10.根据权利要求1或5所述的环己烷催化氧化制备环己醇和环己酮的方法,其特征在于,所述的介孔分子筛MCM-41在硅烷化修饰前,和氨基硅烷化的介孔分子筛MCM-41在甲基硅烷化之前,以及硅烷化修饰后的MCM-41分子筛在固载席夫碱钴配合物之前均要进行真空活化处理,处理温度20-200℃,处理时间0.5-10h。
CN2011102636145A 2011-09-07 2011-09-07 一种环己烷催化氧化制备环己醇和环己酮的方法 Pending CN102381933A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2011102636145A CN102381933A (zh) 2011-09-07 2011-09-07 一种环己烷催化氧化制备环己醇和环己酮的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2011102636145A CN102381933A (zh) 2011-09-07 2011-09-07 一种环己烷催化氧化制备环己醇和环己酮的方法

Publications (1)

Publication Number Publication Date
CN102381933A true CN102381933A (zh) 2012-03-21

Family

ID=45821830

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011102636145A Pending CN102381933A (zh) 2011-09-07 2011-09-07 一种环己烷催化氧化制备环己醇和环己酮的方法

Country Status (1)

Country Link
CN (1) CN102381933A (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102627541A (zh) * 2012-03-28 2012-08-08 肖藻生 一种环己烷氧化制备环己醇和环己酮的工艺及其设备
CN102962099A (zh) * 2012-11-01 2013-03-13 淮阴师范学院 凹凸棒土固载水杨醛希夫碱Co2+、Mn2+配合物氧化催化剂的制备方法
CN107056649A (zh) * 2017-05-31 2017-08-18 湘潭大学 一种负载席夫碱配合物的金属有机骨架材料的制备方法及其应用
CN110437048A (zh) * 2018-05-04 2019-11-12 江西和德瑞新材料有限公司 一种环己烷氧化液加工的方法
CN110437037A (zh) * 2018-05-04 2019-11-12 江西和德瑞新材料有限公司 一种环己烷氧化液加工的方法
CN110437032A (zh) * 2018-05-04 2019-11-12 江西和德瑞新材料有限公司 一种环己烷氧化液加工的方法
CN111747832A (zh) * 2020-07-17 2020-10-09 山东卓俊实业有限公司 一种制备环己酮的方法
CN111848345A (zh) * 2019-04-26 2020-10-30 中国石油化工股份有限公司 联产环己醇和环氧烷烃的方法
CN112138673A (zh) * 2019-06-27 2020-12-29 湘潭大学 一种双金属氧化物材料的制备方法及其在环己基过氧化氢分解反应中的应用
CN112973788A (zh) * 2019-12-13 2021-06-18 中国科学院大连化学物理研究所 烃类催化选择氧化的方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101357878A (zh) * 2007-08-03 2009-02-04 住友化学株式会社 制备环烷醇和/或环烷酮的方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101357878A (zh) * 2007-08-03 2009-02-04 住友化学株式会社 制备环烷醇和/或环烷酮的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
《现代化工》 20090930 单高峰等 分子筛固载型Cosalen的制备、表征及其应用研究 第164-167页 1-5 第29卷, *
单高峰等: "分子筛固载型Cosalen的制备、表征及其应用研究", 《现代化工》, vol. 29, 30 September 2009 (2009-09-30), pages 164 - 167 *
王伟: "介孔分子筛MCM-41的改型及Schiff碱配合物功能化修饰研究", 《中国优秀硕士学位论文全文数据库工程科技Ⅰ辑》, no. 4, 31 December 2004 (2004-12-31), pages 014 - 303 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102627541A (zh) * 2012-03-28 2012-08-08 肖藻生 一种环己烷氧化制备环己醇和环己酮的工艺及其设备
CN102962099A (zh) * 2012-11-01 2013-03-13 淮阴师范学院 凹凸棒土固载水杨醛希夫碱Co2+、Mn2+配合物氧化催化剂的制备方法
CN107056649A (zh) * 2017-05-31 2017-08-18 湘潭大学 一种负载席夫碱配合物的金属有机骨架材料的制备方法及其应用
CN107056649B (zh) * 2017-05-31 2019-03-19 湘潭大学 一种负载席夫碱配合物的金属有机骨架材料的制备方法及其应用
CN110437032A (zh) * 2018-05-04 2019-11-12 江西和德瑞新材料有限公司 一种环己烷氧化液加工的方法
CN110437037A (zh) * 2018-05-04 2019-11-12 江西和德瑞新材料有限公司 一种环己烷氧化液加工的方法
CN110437048A (zh) * 2018-05-04 2019-11-12 江西和德瑞新材料有限公司 一种环己烷氧化液加工的方法
CN111848345A (zh) * 2019-04-26 2020-10-30 中国石油化工股份有限公司 联产环己醇和环氧烷烃的方法
CN111848345B (zh) * 2019-04-26 2023-04-07 中国石油化工股份有限公司 联产环己醇和环氧烷烃的方法
CN112138673A (zh) * 2019-06-27 2020-12-29 湘潭大学 一种双金属氧化物材料的制备方法及其在环己基过氧化氢分解反应中的应用
CN112973788A (zh) * 2019-12-13 2021-06-18 中国科学院大连化学物理研究所 烃类催化选择氧化的方法
CN111747832A (zh) * 2020-07-17 2020-10-09 山东卓俊实业有限公司 一种制备环己酮的方法
CN111747832B (zh) * 2020-07-17 2022-08-30 东营市金虹利工贸有限责任公司 一种制备环己酮的方法

Similar Documents

Publication Publication Date Title
CN102381933A (zh) 一种环己烷催化氧化制备环己醇和环己酮的方法
CN107056649B (zh) 一种负载席夫碱配合物的金属有机骨架材料的制备方法及其应用
Munir et al. Development of photocatalysts for selective and efficient organic transformations
CN1047587C (zh) 一种含环烷酮和环烷醇的混合物的制备方法
CN105712867B (zh) 一种金属有机骨架材料的制备方法及其在环己基过氧化氢分解反应中的应用
CA2138751A1 (en) Process for preparing an alkanone and/or an alkanol
CN109456176A (zh) 一种铜卟啉促进的环烷烃催化氧化新方法
CN109456175A (zh) 一种锌卟啉促进的环烷烃催化氧化新方法
CN102295524B (zh) 一种环己烷选择氧化制环己醇和环己酮的方法
CN102452869B (zh) 一种催化氧化环酮的方法
CN1191218C (zh) 金属卟啉催化空气氧化环己烷的方法
Deshmukh et al. Study of catalytic activity of silica supported Schiff base complexes
CN1414937A (zh) 制备醇/酮混合物的方法
CN101367709B (zh) 超细a1ooh固载金属卟啉催化空气氧化环己烷的方法
Li et al. Advances and perspectives in catalysts for liquid-phase oxidation of cyclohexane
CN102382143B (zh) 一种烯烃氢甲酰化均相络合催化剂的制备方法
CN113499782A (zh) 一种中空介孔二氧化硅溶解再生限域钼酸钴催化剂的制备及催化氧化柴油脱硫方法
CN103922903B (zh) 用共轭聚合金属卟啉催化氧化烷烃和环烷烃的方法
CN1247501C (zh) 催化氧化环已烷工艺
CN106582879A (zh) 一种环氧化催化剂及其制备方法,一种环氧化催化剂体系及其制备方法
US20040030054A1 (en) Oxidation reaction process catalyzed by phase-transfer catalyst controlling reaction
CN102126930B (zh) 交联聚苯乙烯固载化金属卟啉催化氧气氧化环己烷的方法
CN103965014A (zh) 一种环己烷选择氧化制环己醇和环己酮的方法
CN103508845A (zh) 一种环己烷氧化的方法
CN202688232U (zh) 微通道内的环己醇、环己酮、己二酸共合成装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20120321