CN102214585B - 在金属氧化物半导体场效应晶体管中形成栅极的方法 - Google Patents

在金属氧化物半导体场效应晶体管中形成栅极的方法 Download PDF

Info

Publication number
CN102214585B
CN102214585B CN201110154040.8A CN201110154040A CN102214585B CN 102214585 B CN102214585 B CN 102214585B CN 201110154040 A CN201110154040 A CN 201110154040A CN 102214585 B CN102214585 B CN 102214585B
Authority
CN
China
Prior art keywords
gate
fin
grid
effect transistor
dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CN201110154040.8A
Other languages
English (en)
Other versions
CN102214585A (zh
Inventor
J·X·安
汪海宏
B·于
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advanced Micro Devices Inc
Original Assignee
Advanced Micro Devices Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advanced Micro Devices Inc filed Critical Advanced Micro Devices Inc
Publication of CN102214585A publication Critical patent/CN102214585A/zh
Application granted granted Critical
Publication of CN102214585B publication Critical patent/CN102214585B/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/785Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42384Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66545Unipolar field-effect transistors with an insulated gate, i.e. MISFET using a dummy, i.e. replacement gate in a process wherein at least a part of the final gate is self aligned to the dummy gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66787Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel
    • H01L29/66795Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Film Transistor (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

一种在金属氧化物半导体场效应晶体管中形成栅极的方法,包括鳍部结构(310)、形成于邻接该鳍部结构(310)的第一侧边的第一栅极(410)、形成于邻接该鳍部结构(310)相对于该第一侧边的第二侧边的第二栅极(420)、以及形成于该鳍部结构(310)上端的上端栅极(610)。一种栅极环绕金属氧化物半导体场效应晶体管(800),包括多个鳍部(1110)、形成于邻接该多个鳍部(1110)其中一个鳍部的第一侧壁栅极结构(1010)、形成于邻接该多个鳍部(1110)其中另一个鳍部的第二侧壁栅极结构(1020)、形成于该多个鳍部(1110)其中一个或多个鳍部上的上端栅极结构(1230)、以及形成于该多个鳍部(1110)其中一个或多个鳍部(1110)下的底部栅极结构(1240)。

Description

在金属氧化物半导体场效应晶体管中形成栅极的方法
本申请是申请号为200480002698.5.申请日为2004年1月15日,发明名称为“三栅极与栅极环绕的金属氧化物半导体场效应晶体管器件及其制造方法”的中国专利申请的分案申请。
技术领域
本发明涉及一种半导体制造方法,更详细地,涉及一种三栅极与栅极环绕的金属氧化物半导体场效应晶体管(MOSFET)器件及其制造方法。
背景技术
器件尺寸的缩小已成为驱使集成电路性能的改进与集成电路成本降低的重要因素。由于栅极氧化物(gate-oxide)的厚度与源极/漏极(source/drain;S/D)结深的限制,将现有的块体(bulk)金属氧化物半导体场效应晶体管器件缩小至0.1微米以下的工艺,即使可能的话,也是很困难的。因此,需要新的器件结构与新的材料来改进场效应晶体管(FET)性能。
双栅极(double-gate)金属氧化物半导体场效应晶体管被选择用来作为取代现有的平面金属氧化物半导体场效应晶体管的新器件。再双栅极金属氧化物半导体场效应晶体管中,该双栅极用以控制该沟道,以有效的防止短沟道(short-channel)效应的发生。鳍式场效应晶体管(FinFET)是一种包括在垂直鳍部(fin)中形成有沟道的双栅极结构。尽管有双栅极结构,但鳍式场效应晶体管仍在版图与工艺技术方面与现有的平面金属氧化物半导体场效应晶体管类似。相比于其它双栅极结构,鳍式场效应晶体管还提供沟道长度的范围、CMOS兼容性、以及较大的封装密度。
发明内容
本发明所揭露的技术内容是提供一种三栅极与栅极环绕的金属氧化物半导体场效应晶体管器件及其制造方法。
依据本发明的一个方面,本发明的三栅极金属氧化物半导体场效应晶体管包括鳍部结构、形成于邻接该鳍部结构的第一侧边的第一栅极、形成于邻接该鳍部结构的相对于该第一侧边的第二侧边的第二栅极以及形成于该鳍部结构上端的上端栅极。
依据本发明的另一方面,本发明的栅极环绕金属氧化物半导体场效应晶体管包括多个鳍部、形成于邻接该多个鳍部其中一个鳍部的第一侧壁栅极结构、形成于邻接该多个鳍部其中另一个鳍部的第二侧壁栅极结构、形成于该多个鳍部其中一个或多个鳍部上的上端栅极结构、以及形成于该多个鳍部其中一个或多个鳍部下的底部栅极结构。
依据本发明的又一方面,本发明提供一种在金属氧化物半导体场效应晶体管中形成栅极的方法。该方法包括在衬底上形成鳍部结构;在邻接该鳍部结构处形成侧壁栅极结构;以及在该鳍部结构上形成上端栅极结构。
依据本发明的另一方面,本发明提供一种在金属氧化物半导体场效应晶体管中形成栅极的方法。该方法包括在衬底上形成鳍部结构;在邻接该鳍部结构处形成侧壁栅极结构;移除该鳍部结构的一个或多个部分以形成多个鳍部;在该些鳍部下形成至少一个额外的栅极结构;以及在该些鳍部上形成至少一个额外的栅极结构。
附图说明
并入并构成本说明书的一部分的附图连同说明部分被用来说明显示本发明的实施例以及解释本发明。在附图中:
图1是例示的流程图,用于显示依据本发明的实施方法制造三栅极金属氧化物半导体场效应晶体管的工艺;
图2至图6是例示的剖面图,用于显示依据图1所述的工艺所制造的三栅极金属氧化物半导体场效应晶体管;
图7是例示的流程图,用于显示依据本发明的实施方法制造栅极环绕金属氧化物半导体场效应晶体管的工艺;
图8至图12是例示的剖面图,用于显示依据图7的工艺所制造的栅极环绕金属氧化物半导体场效应晶体管;
图13至图15显示了用于将在多晶硅栅极中扩散活性掺杂物所需求的热预算(budget)减至最少的示意性工艺;以及
图16至图18显示了用于显示形成高掺杂突变结的示意性工艺。
具体实施方式
本发明实施例的详细说明将伴随附图揭露如下,在不同附图中的相同组件符号用以表示相同或相似的组件。此外,以下的详细说明并非用以限定本发明。相反地,本发明的范畴是由所附的权利要求或其等价物所定义。
本发明所揭露的技术内容是提供一种三栅极与栅极环绕的金属氧化物半导体场效应晶体管器件及其制造方法。
三栅极金属氧化物半导体场效应晶体管
图1是例示的流程图,用于显示依据本发明所揭露的方法制造三栅极金属氧化物半导体场效应晶体管的工艺。图2至图6是例示的剖面图,用于显示依据图1的工艺所制造的三栅极金属氧化物半导体场效应晶体管。
请同时参阅图1与图2,工艺可从半导体器件200开始。半导体器件200可包括绝缘体上硅(Silicon On Insulator;SOI)结构,该结构包括硅衬底210、埋入氧化层220以及在该埋入氧化层220上的硅层230。埋入氧化层220与硅层230可通过传统的方法形成在衬底210上。该埋入氧化层220的厚度可例如为约500埃
Figure BSA00000514010900031
至3000埃之间。该硅层230的厚度可例如为200埃至1000埃之间。应了解到该硅层230被用于形成该鳍部。在可替代的其它实施例中,衬底210与层230可包括其它半导体材料(如锗)或其它如硅锗等半导体材料的组合物。埋入氧化层220可包括氧化硅或其它类型的介电材料。
栅极介电层240可选择性的被沉积或热生长在该硅层230上(步骤110)。栅极介电层240可在大约5埃至30埃的厚度范围被形成。栅极介电层240可包括传统的如氧化物(如二氧化硅)的介电材料。在其它的实施例中,如氮化硅的介电材料可用作为该栅极介电材料。
上端栅极电极层250可选择沉积在该栅极介电层240上以形成该上端栅极(步骤120)。栅极电极层250可以大约100埃至1000埃的厚度范围被形成。一些导电性材料可用作该栅极电极层250。举例而言,栅极电极层250可包括金属(如,钨、钽、铝、镍、钌、铑、钯、铂、钛、钼等),包含金属的化合物(如,氮化钛、氮化钽、氧化钌等),或掺杂的半导体材料(如多晶硅、多晶硅锗等)。
覆盖层260(或硬掩膜)可选择形成在该栅极电极层250的上端,以支持图形最佳化并在后续的工艺中保护上端栅极电极层250(步骤130)。举例而言,覆盖层260可包括氮化硅材料或一些其它类型的材料,而能够于后续的工艺中保护该栅极电极。覆盖层260可通过如化学气相沉积(CVD)而沉积大约介于100埃至300埃的厚度范围。
硅层230、栅极介电层240以及上端栅极电极层250可通过传统的光刻技术(如电子光束(EB)光刻技术)予以图形化。如图3所示,接着可利用公知的蚀刻技术来蚀刻硅层230与层240/250,以形成结构300(步骤140)。结构300包括鳍部310、栅极介电层240、上端栅极电极层250以及覆盖层260。鳍310的宽度可大约介于50埃至1000埃范围之间。
依据该结构300的形态,埋入氧化层220的部分可通过如传统的一种或多种蚀刻技术加以移除(步骤150)。在一种实施例中,埋入氧化层220可被蚀刻至大约200埃至500埃间的深度范围。如第4图所示,在蚀刻期间,可移除在鳍部310下方的埋入氧化层220的部分。如图4所示,然后可形成侧壁栅极410与420(步骤160)。举例而言,栅极介电层430可选择性的利用已知技术以沉积或热生长在该结构300的侧表面上。栅极介电层430可在大约5埃至30埃的厚度范围间被形成。栅极介电层430可包括传统的介电材料,如氧化物(如二氧化硅)。在另一实施例中,氮化硅或其它材料可用以形成该栅极介电层。如图4所示,接着在半导体器件200上沉积栅极电极层440,以形成侧壁栅极电极440。栅极电极层440可在大约100埃至1000埃的厚度范围间被形成。与该上端栅极电极层250类似,一些材料可用以形成该侧壁栅极电极440。如图4所示,可使用例如化学机械剖光(Chemical-Mechanical Polishing;CMP)以平坦化该侧壁栅极电极440,以暴露出该覆盖层260的上表面并形成二个分离的侧壁栅极410与420。
如图5所示,接着可选择移除覆盖层260、上端栅极电极层250以与栅极介电层240(步骤170)。举例而言,可以传统的方法利用掩膜或相似的结构使覆盖层260、上端栅极电极层250以与栅极介电层240被蚀刻,同时将对侧壁栅极410与420的影响减至最小。在其它的实施例中,栅极介电层240可选择原封不动的留下来(例如不与覆盖层260以及上端栅极电极层250一同移除)。
如图6所示,接着可选择形成上端栅极610(步骤180)。举例而言,可选择性的再次在该鳍310上生长或形成栅极介电材料620。在此情况下,栅极介电材料620可包括与用于栅极介电层240类似的材料,且可形成大约介于5埃至30埃的厚度范围。此外,栅极介电材料240可被保留。接着可选择性的在栅极介电材料240/260上沉积上端栅极电极材料630,以形成上端栅极610。栅极介电材料630可包括与用于上端栅极电极层250类似的材料,且可通过沉积形成大约介于100埃至1000埃的厚度范围。
图6中所示的半导体器件200可包括三个栅极(即,侧壁栅极410、侧壁栅极420以及上端栅极610)。传统的金属氧化物半导体场效应晶体管工艺可用于实现用在该三栅极金属氧化物半导体场效应晶体管的晶体管(如形成该源极与漏极区域)、接触、互连结构以及层间(inter-level)介电层。
栅极环绕金属氧化物半导体场效应晶体管
图7是例示的流程图,用以显示依据本发明所揭露的方法制造栅极环绕金属氧化物半导体场效应晶体管的工艺。图8至图12是例示的剖面图,用以显示依据图7的工艺所制造的栅极环绕金属氧化物半导体场效应晶体管。工艺可由半导体器件800开始。半导体器件800可包括绝缘体上硅结构,该绝缘体上硅结构包括硅衬底810、埋入氧化层820以及硅层830。该绝缘体上硅结构可类似于图2所揭露的结构。可选择的,栅极介电层840(步骤710)、上端栅极电极层850(步骤720)以及覆盖层860(步骤730)可以按照与前述图1中步骤110至130所揭露类似的方法而形成在该绝缘体上硅结构上。
硅层830、栅极介电层840以及上端栅极电极层850可通过传统的光刻技术(如电子光束光刻技术等)进行图形化。如图9所示,接着可通过传统的蚀刻技术蚀刻硅层830以及层840/850,以形成结构900(步骤740)。结构900包括鳍部910、栅极介电层840、上端栅极电极层850以及覆盖层860。依据本发明,鳍部910相当宽。举例而言,该鳍部910的宽度的范围可大约介于50埃至1000埃间。
依据结构900的形式,埋入氧化层820的部分可利用如传统的蚀刻技术被移除(步骤750)。在一个实施例中,可蚀刻埋入氧化层820至约200埃至约500埃的深度范围。如图10所示,在蚀刻过程中,鳍部910下的埋入氧化层820的部分可被移除。
如图10所示,接着可形成侧壁栅极1010与1020(步骤760)。举例而言,可利用传统技术来沉积或热生长栅极介电层1030。栅极介电层1030可被形成为约5至30埃的厚度范围。栅极介电层1030可包括传统的如氧化物(如二氧化硅)等的介电材料。在其它实施例中,氮化硅或其它的材料均可用作为该栅极介电材料。
侧壁栅极电极层1040可沉积在该半导体器件800上。栅极电极层1040可形成在大约100埃至1000埃的厚度范围内。与该上端栅极电极层850类似,多种材料可用于侧壁栅极电极层1040。如图10所示,可利用如化学机械剖光来平坦化栅极电极层1040,以暴露出该覆盖层860的上表面,并形成两个分离的侧壁栅极1010与1020。
如图11所示,接着可选择性移除覆盖层860、上端栅极电极层850、栅极介电层840以及一个或多个鳍部910的部分(步骤770)。举例而言,可使用传统的图形化技术与蚀刻技术在最不影响侧壁栅极1010与1020的情况下来移除覆盖层860、上端栅极电极层850、栅极介电层840以及一个或多个鳍部910的部分。在另一实施例中,栅极介电层840可选择性的原封不动地留存在鳍部910未移除的部分上。如图11所示,鳍部910的蚀刻可终止于埋入氧化层820上,以形成两个分离的鳍部1110。每一个鳍部1110具有大约在50埃至1000埃间的宽度范围。如图11所示,形成有两个鳍部1110。在另一实施例中,可形成超过两个以上的鳍部1110。
如图12所示,接着可在该鳍部1110暴露的表面上热生长栅极介电层1210(步骤780)。举例而言,栅极介电层1210可生成至大约5埃至约30埃间的厚度。栅极介电层1210可包括与用作栅极介电层840类似的材料。可选择的,栅极介电层840可保留在鳍部1110的上表面上,而该栅极介电层1210可生长在该鳍部1110暴露的侧表面上。
如图12所示,接着可形成额外的栅极(步骤790)。举例而言,栅极电极材料1220可选择性的沉积在该栅极介电材料840/1210上,以形成额外的栅极。栅极电极材料1210可包括与用于栅极电极层850和/或侧壁栅极电极层1040类似的材料,且可沉积至大约介于100埃至1000埃范围内的厚度。
如图12所示,半导体器件800可包括四个(或更多个)栅极(即,侧壁栅极1010、侧壁栅极1020、上端栅极1230以及底部栅极1240)。上端栅极1230可形成在鳍部1110上,而底部栅极1240则可形成在鳍部1110下。传统的金属氧化物半导体场效应晶体管工艺可用于实现用在该栅极环绕金属氧化物半导体场效应晶体管的晶体管(如形成该源极与漏极区域)、接触、互连结构以及层间介电层。
其它实施例
本领域所极需要的便是将多晶硅栅极中掺杂物扩散与激活所要求的热预算减至最少。图13至图15显示了用于将多晶硅栅极中扩散活性掺杂物所需求的热预算减至最少的示意性工艺。如图13所示,鳍部1300可形成在如绝缘体上硅衬底等的衬底上。可使用例如前述该些实施例中所揭露的工艺来形成鳍部1300。
如图14所示,薄形多晶硅材料1400可沉积在鳍部1300上。可执行离子注入工艺以将掺杂物掺杂至多晶硅材料1400中。接着执行传统的退火(annealing)工艺。如图15所示,这些步骤可重复一次或更多次。换言之,鳍部1300可经历多次的多晶硅沉积、注入以及退火工艺,以将掺杂该多晶硅所要求的热预算减至最少。
本领域中另一个亟需要的是形成高掺杂的突变结。图16至图18显示了用于形成高掺杂突变结的示意性工艺。图16显示了例示的鳍式场效应晶体管1600的上视图。鳍式场效应晶体管1600包括鳍部1610与栅极电极1620。图17是鳍式场效应晶体管1600的侧视图。鳍式场效应晶体管1600包括源极区域1710、漏极区域1720以及沟道1730。源极区域1710以及漏极区域1720可注入掺杂物。
如图18所示,在掺杂工艺之后,可通过在源极/漏极区域上沉积金属而使源极区域1710以及漏极区域1720硅化,并随着退火工艺而形成金属-硅化物材料。掺杂物可累积在该沟道界面以形成高浓度的突变结。
结论
依照本发明的原理所揭露的实施例提供了一种三栅极与栅极环绕的金属氧化物半导体场效应晶体管器件及其制造方法。
本发明的实施例的前述叙述提供了说明与叙述,而非用于限制本发明。根据上述教示能够进行修饰与变化,或者可由本发明的实施而取得修饰与变化。
举例而言,在前述的内容中,提出了许多具体的细节,如特定的材料、结构、化学物品、工艺等等,以便提供对本发明的各种实施例的透彻了解。然而,前述的这些实施例或其它的实施例可在不凭借此处所述的细节而予以实现。另一方面,公知的工艺结构并未详细揭露于本说明书中,以避免不必要的模糊了本发明的特征所在。在实施本发明时,可利用传统的沉积、光刻以及蚀刻等技术,而该些技术的细节在此将不予赘述。
虽然已经详细说明了关于图1与图7的一系列步骤,但是可依据本发明的其它实施例来改变这些步骤的顺序。此外,这些步骤可被同时执行而不互相依赖。
除非在说明书已明有说明,否则没有任何使用在本说明书中的组件、步骤或指示对本发明而言是关键性或不可或缺者。此外,本说明书中所使用的“一”包括“一个”或“多个”项目。仅在特别强调“一个”时才使用“one”或类似的语词。本发明的范畴由权利要求及其等价物所定义。

Claims (1)

1.一种在金属氧化物半导体场效应晶体管中形成栅极的方法,包括:
在衬底上形成鳍部结构;
在鳍部结构上形成栅极介电层;
在该栅极介电层上形成上端栅极电极层;
形成多个邻接该鳍部结构的侧壁栅极结构;
移除该上端栅极电极层和该栅极介电层;
移除该鳍部结构的一个或多个部分,以形成多个鳍部;
在该多个鳍部的暴露的表面上热生长栅极介电材料,
在该栅极介电材料上可选择性的沉积栅极电极材料,以及
在该栅极介电上图形化与蚀刻该栅极电极材料以形成额外的栅极,
其中该金属氧化物半导体场效应晶体管包括:
第一和第二侧壁栅极,在该多个鳍部上端形成上端栅极,以及底部栅极形成在该多个鳍部下。
CN201110154040.8A 2003-01-23 2004-01-15 在金属氧化物半导体场效应晶体管中形成栅极的方法 Expired - Lifetime CN102214585B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/348,911 US7259425B2 (en) 2003-01-23 2003-01-23 Tri-gate and gate around MOSFET devices and methods for making same
US10/348,911 2003-01-23

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CNA2004800026985A Division CN1742362A (zh) 2003-01-23 2004-01-15 三栅极与栅极环绕的金属氧化物半导体场效应晶体管器件及其制造方法

Publications (2)

Publication Number Publication Date
CN102214585A CN102214585A (zh) 2011-10-12
CN102214585B true CN102214585B (zh) 2014-02-26

Family

ID=32735400

Family Applications (2)

Application Number Title Priority Date Filing Date
CNA2004800026985A Pending CN1742362A (zh) 2003-01-23 2004-01-15 三栅极与栅极环绕的金属氧化物半导体场效应晶体管器件及其制造方法
CN201110154040.8A Expired - Lifetime CN102214585B (zh) 2003-01-23 2004-01-15 在金属氧化物半导体场效应晶体管中形成栅极的方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CNA2004800026985A Pending CN1742362A (zh) 2003-01-23 2004-01-15 三栅极与栅极环绕的金属氧化物半导体场效应晶体管器件及其制造方法

Country Status (8)

Country Link
US (1) US7259425B2 (zh)
EP (1) EP1593150B1 (zh)
JP (1) JP4795932B2 (zh)
KR (1) KR101066975B1 (zh)
CN (2) CN1742362A (zh)
DE (1) DE602004008034T2 (zh)
TW (1) TWI353054B (zh)
WO (1) WO2004068571A1 (zh)

Families Citing this family (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8222680B2 (en) 2002-10-22 2012-07-17 Advanced Micro Devices, Inc. Double and triple gate MOSFET devices and methods for making same
US7148526B1 (en) 2003-01-23 2006-12-12 Advanced Micro Devices, Inc. Germanium MOSFET devices and methods for making same
US6855606B2 (en) * 2003-02-20 2005-02-15 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor nano-rod devices
US7074656B2 (en) * 2003-04-29 2006-07-11 Taiwan Semiconductor Manufacturing Company, Ltd. Doping of semiconductor fin devices
US6909151B2 (en) * 2003-06-27 2005-06-21 Intel Corporation Nonplanar device with stress incorporation layer and method of fabrication
KR100517559B1 (ko) * 2003-06-27 2005-09-28 삼성전자주식회사 핀 전계효과 트랜지스터 및 그의 핀 형성방법
US7005330B2 (en) * 2003-06-27 2006-02-28 Taiwan Semiconductor Manufacturing Company, Ltd. Structure and method for forming the gate electrode in a multiple-gate transistor
US7456476B2 (en) * 2003-06-27 2008-11-25 Intel Corporation Nonplanar semiconductor device with partially or fully wrapped around gate electrode and methods of fabrication
JP2005064500A (ja) * 2003-08-14 2005-03-10 Samsung Electronics Co Ltd マルチ構造のシリコンフィンおよび製造方法
KR100496891B1 (ko) * 2003-08-14 2005-06-23 삼성전자주식회사 핀 전계효과 트랜지스터를 위한 실리콘 핀 및 그 제조 방법
US7196374B1 (en) * 2003-09-03 2007-03-27 Advanced Micro Devices, Inc. Doped structure for FinFET devices
US7154118B2 (en) 2004-03-31 2006-12-26 Intel Corporation Bulk non-planar transistor having strained enhanced mobility and methods of fabrication
US7452778B2 (en) * 2004-06-10 2008-11-18 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor nano-wire devices and methods of fabrication
US7042009B2 (en) 2004-06-30 2006-05-09 Intel Corporation High mobility tri-gate devices and methods of fabrication
US7348284B2 (en) 2004-08-10 2008-03-25 Intel Corporation Non-planar pMOS structure with a strained channel region and an integrated strained CMOS flow
KR100616230B1 (ko) 2004-08-11 2006-08-25 한국과학기술원 실리콘 채널 전면에 게이트가 형성된 3차원 전계 효과트랜지스터 제작 방법 및 그 구조
KR100591770B1 (ko) * 2004-09-01 2006-06-26 삼성전자주식회사 반도체 핀을 이용한 플래쉬 메모리 소자 및 그 제조 방법
US7422946B2 (en) 2004-09-29 2008-09-09 Intel Corporation Independently accessed double-gate and tri-gate transistors in same process flow
US20060086977A1 (en) 2004-10-25 2006-04-27 Uday Shah Nonplanar device with thinned lower body portion and method of fabrication
JP2008529295A (ja) * 2005-01-28 2008-07-31 エヌエックスピー ビー ヴィ デュアルゲートfetを製造する方法
US7518196B2 (en) 2005-02-23 2009-04-14 Intel Corporation Field effect transistor with narrow bandgap source and drain regions and method of fabrication
US20060202266A1 (en) 2005-03-14 2006-09-14 Marko Radosavljevic Field effect transistor with metal source/drain regions
FR2885733B1 (fr) * 2005-05-16 2008-03-07 St Microelectronics Crolles 2 Structure de transistor a trois grilles
US7858481B2 (en) 2005-06-15 2010-12-28 Intel Corporation Method for fabricating transistor with thinned channel
US7411252B2 (en) * 2005-06-21 2008-08-12 International Business Machines Corporation Substrate backgate for trigate FET
US7547637B2 (en) 2005-06-21 2009-06-16 Intel Corporation Methods for patterning a semiconductor film
US7279375B2 (en) 2005-06-30 2007-10-09 Intel Corporation Block contact architectures for nanoscale channel transistors
US7288802B2 (en) * 2005-07-27 2007-10-30 International Business Machines Corporation Virtual body-contacted trigate
US7348642B2 (en) * 2005-08-03 2008-03-25 International Business Machines Corporation Fin-type field effect transistor
US7402875B2 (en) 2005-08-17 2008-07-22 Intel Corporation Lateral undercut of metal gate in SOI device
JP4963021B2 (ja) * 2005-09-06 2012-06-27 独立行政法人産業技術総合研究所 半導体構造
US7479421B2 (en) 2005-09-28 2009-01-20 Intel Corporation Process for integrating planar and non-planar CMOS transistors on a bulk substrate and article made thereby
US20070090416A1 (en) 2005-09-28 2007-04-26 Doyle Brian S CMOS devices with a single work function gate electrode and method of fabrication
US7638381B2 (en) * 2005-10-07 2009-12-29 International Business Machines Corporation Methods for fabricating a semiconductor structure using a mandrel and semiconductor structures formed thereby
US7326976B2 (en) * 2005-11-15 2008-02-05 International Business Machines Corporation Corner dominated trigate field effect transistor
US7485503B2 (en) 2005-11-30 2009-02-03 Intel Corporation Dielectric interface for group III-V semiconductor device
US8143646B2 (en) 2006-08-02 2012-03-27 Intel Corporation Stacking fault and twin blocking barrier for integrating III-V on Si
US7692254B2 (en) * 2007-07-16 2010-04-06 International Business Machines Corporation Fin-type field effect transistor structure with merged source/drain silicide and method of forming the structure
US7671418B2 (en) * 2007-09-14 2010-03-02 Advanced Micro Devices, Inc. Double layer stress for multiple gate transistors
JP4518180B2 (ja) * 2008-04-16 2010-08-04 ソニー株式会社 半導体装置、および、その製造方法
US8362566B2 (en) 2008-06-23 2013-01-29 Intel Corporation Stress in trigate devices using complimentary gate fill materials
JP4530098B1 (ja) * 2009-05-29 2010-08-25 日本ユニサンティスエレクトロニクス株式会社 半導体装置
US8188546B2 (en) 2009-08-18 2012-05-29 International Business Machines Corporation Multi-gate non-planar field effect transistor structure and method of forming the structure using a dopant implant process to tune device drive current
US8344425B2 (en) * 2009-12-30 2013-01-01 Intel Corporation Multi-gate III-V quantum well structures
US8263451B2 (en) * 2010-02-26 2012-09-11 Taiwan Semiconductor Manufacturing Company, Ltd. Epitaxy profile engineering for FinFETs
JP5569243B2 (ja) 2010-08-09 2014-08-13 ソニー株式会社 半導体装置及びその製造方法
US8502279B2 (en) * 2011-05-16 2013-08-06 Globalfoundries Singapore Pte. Ltd. Nano-electro-mechanical system (NEMS) structures with actuatable semiconductor fin on bulk substrates
JP5713837B2 (ja) * 2011-08-10 2015-05-07 株式会社東芝 半導体装置の製造方法
EP3540782A3 (en) 2011-10-11 2020-01-01 Massachusetts Institute Of Technology Semiconductor devices having a recessed electrode structure
US9224611B2 (en) * 2012-08-09 2015-12-29 Macronix International Co., Ltd. Semiconductor structure and manufacturing method and operating method of the same
US8847324B2 (en) * 2012-12-17 2014-09-30 Synopsys, Inc. Increasing ION /IOFF ratio in FinFETs and nano-wires
US9224849B2 (en) * 2012-12-28 2015-12-29 Taiwan Semiconductor Manufacturing Company, Ltd. Transistors with wrapped-around gates and methods for forming the same
US8802512B2 (en) 2013-01-11 2014-08-12 International Business Machines Corporation Overlap capacitance nanowire
US9006842B2 (en) 2013-05-30 2015-04-14 Taiwan Semiconductor Manufacturing Company, Ltd. Tuning strain in semiconductor devices
US9349850B2 (en) 2013-07-17 2016-05-24 Taiwan Semiconductor Manufacturing Company, Ltd. Thermally tuning strain in semiconductor devices
US9685501B2 (en) 2014-04-02 2017-06-20 International Business Machines Corporation Low parasitic capacitance finFET device
US9590105B2 (en) * 2014-04-07 2017-03-07 National Chiao-Tung University Semiconductor device with metal alloy over fin, conductive layer over channel region of fin, and semiconductive layer over conductive layer and formation thereof
US10418271B2 (en) 2014-06-13 2019-09-17 Taiwan Semiconductor Manufacturing Co., Ltd. Method of forming isolation layer
US9755071B1 (en) * 2016-06-30 2017-09-05 International Business Machines Corporation Merged gate for vertical transistors
JP6547702B2 (ja) * 2016-07-26 2019-07-24 信越半導体株式会社 半導体装置の製造方法及び半導体装置の評価方法
TWI604569B (zh) * 2016-11-15 2017-11-01 新唐科技股份有限公司 半導體裝置及其形成方法
WO2018182615A1 (en) 2017-03-30 2018-10-04 Intel Corporation Vertically stacked transistors in a fin

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2582794B2 (ja) * 1987-08-10 1997-02-19 株式会社東芝 半導体装置及びその製造方法
JPH03250770A (ja) * 1990-02-28 1991-11-08 Sony Corp 半導体装置
EP0623963A1 (de) 1993-05-06 1994-11-09 Siemens Aktiengesellschaft MOSFET auf SOI-Substrat
US6288431B1 (en) * 1997-04-04 2001-09-11 Nippon Steel Corporation Semiconductor device and a method of manufacturing the same
US6483156B1 (en) * 2000-03-16 2002-11-19 International Business Machines Corporation Double planar gated SOI MOSFET structure
JP4443008B2 (ja) 2000-06-30 2010-03-31 富士通株式会社 半導体装置及びその製造方法
JP4044276B2 (ja) 2000-09-28 2008-02-06 株式会社東芝 半導体装置及びその製造方法
US6413802B1 (en) * 2000-10-23 2002-07-02 The Regents Of The University Of California Finfet transistor structures having a double gate channel extending vertically from a substrate and methods of manufacture
US6359311B1 (en) * 2001-01-17 2002-03-19 Taiwan Semiconductor Manufacturing Co., Ltd. Quasi-surrounding gate and a method of fabricating a silicon-on-insulator semiconductor device with the same
US6635923B2 (en) * 2001-05-24 2003-10-21 International Business Machines Corporation Damascene double-gate MOSFET with vertical channel regions
KR100431489B1 (ko) * 2001-09-04 2004-05-12 한국과학기술원 플래쉬 메모리 소자 및 제조방법
US6433609B1 (en) * 2001-11-19 2002-08-13 International Business Machines Corporation Double-gate low power SOI active clamp network for single power supply and multiple power supply applications
US6800905B2 (en) * 2001-12-14 2004-10-05 International Business Machines Corporation Implanted asymmetric doped polysilicon gate FinFET
US6770516B2 (en) * 2002-09-05 2004-08-03 Taiwan Semiconductor Manufacturing Company Method of forming an N channel and P channel FINFET device on the same semiconductor substrate
US6833588B2 (en) * 2002-10-22 2004-12-21 Advanced Micro Devices, Inc. Semiconductor device having a U-shaped gate structure
US7214991B2 (en) * 2002-12-06 2007-05-08 Taiwan Semiconductor Manufacturing Co., Ltd. CMOS inverters configured using multiple-gate transistors
US6812119B1 (en) * 2003-07-08 2004-11-02 Advanced Micro Devices, Inc. Narrow fins by oxidation in double-gate finfet

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Toshikazu Mukaiyama,et al.Fabrication of gate-all-around MOSFET by silicon anisotropic etching technique.《Solid-State Electronics》.1998,第42卷(第7-8期),1623-1626. *

Also Published As

Publication number Publication date
EP1593150B1 (en) 2007-08-08
US20040145000A1 (en) 2004-07-29
TWI353054B (en) 2011-11-21
WO2004068571A1 (en) 2004-08-12
DE602004008034D1 (de) 2007-09-20
DE602004008034T2 (de) 2008-04-30
US7259425B2 (en) 2007-08-21
JP4795932B2 (ja) 2011-10-19
KR101066975B1 (ko) 2011-09-23
TW200417013A (en) 2004-09-01
CN1742362A (zh) 2006-03-01
CN102214585A (zh) 2011-10-12
EP1593150A1 (en) 2005-11-09
KR20050095871A (ko) 2005-10-04
JP2006517060A (ja) 2006-07-13

Similar Documents

Publication Publication Date Title
CN102214585B (zh) 在金属氧化物半导体场效应晶体管中形成栅极的方法
US6800885B1 (en) Asymmetrical double gate or all-around gate MOSFET devices and methods for making same
US6780694B2 (en) MOS transistor
CN100472810C (zh) 双栅极及三栅极金属氧化物半导体场效应晶体管装置及其制造方法
US6200866B1 (en) Use of silicon germanium and other alloys as the replacement gate for the fabrication of MOSFET
US6432754B1 (en) Double SOI device with recess etch and epitaxy
US8334181B1 (en) Germanium MOSFET devices and methods for making same
US8445340B2 (en) Sacrificial offset protection film for a FinFET device
CN101714507A (zh) 具有金属栅极堆叠的半导体装置及其制造方法
TW200425519A (en) Self-aligned isolation double-gate FET
TW202133443A (zh) 半導體裝置
US11532750B2 (en) Semiconductor device and method of manufacture
TWI632615B (zh) 鰭型電晶體之源汲區中的共形緩衝層
US20230335619A1 (en) Gate structure and method
US7442612B2 (en) Nitride-encapsulated FET (NNCFET)
US7410840B2 (en) Building fully-depleted and bulk transistors on same chip
US20220367717A1 (en) Semiconductor Device and Method of Manufacture
US20220059411A1 (en) Method for fabricating semiconductor device with porous dielectric structure
US11575004B2 (en) Semiconductor structure and formation method thereof
CN114649210A (zh) 竖直沟道硅场效应晶体管的制造工艺
CN111668309A (zh) 具有扩散阻挡间隙件部分的场效应晶体管
JP3859439B2 (ja) Mosfet構造の製造方法
KR101130331B1 (ko) 서로 다른 높이를 갖는 융기 드레인 및 소스 영역들을구비한 트랜지스터를 형성하는 고급기술
CN110571194A (zh) 半导体器件的制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term

Granted publication date: 20140226

CX01 Expiry of patent term