CN102143810A - 用于减少指纹在表面上出现的微观结构 - Google Patents

用于减少指纹在表面上出现的微观结构 Download PDF

Info

Publication number
CN102143810A
CN102143810A CN2009801307334A CN200980130733A CN102143810A CN 102143810 A CN102143810 A CN 102143810A CN 2009801307334 A CN2009801307334 A CN 2009801307334A CN 200980130733 A CN200980130733 A CN 200980130733A CN 102143810 A CN102143810 A CN 102143810A
Authority
CN
China
Prior art keywords
microstructure
fingerprint
substrate
curves
substrate according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2009801307334A
Other languages
English (en)
Inventor
罗伯特·佩特卡维奇
丹尼尔·K·凡·奥斯特兰
B·托德·考克斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unipixel Displays Inc
Original Assignee
Unipixel Displays Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unipixel Displays Inc filed Critical Unipixel Displays Inc
Publication of CN102143810A publication Critical patent/CN102143810A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B17/00Methods preventing fouling
    • B08B17/02Preventing deposition of fouling or of dust
    • B08B17/06Preventing deposition of fouling or of dust by giving articles subject to fouling a special shape or arrangement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B17/00Methods preventing fouling
    • B08B17/02Preventing deposition of fouling or of dust
    • B08B17/06Preventing deposition of fouling or of dust by giving articles subject to fouling a special shape or arrangement
    • B08B17/065Preventing deposition of fouling or of dust by giving articles subject to fouling a special shape or arrangement the surface having a microscopic surface pattern to achieve the same effect as a lotus flower
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/04Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing using rollers or endless belts
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24479Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness
    • Y10T428/24612Composite web or sheet

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Laminated Bodies (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Prevention Of Fouling (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)

Abstract

提供微观结构的多种形状和微观结构的多种图案,以减小由于操作而出现在基片表面上的指纹的可见度。微观结构可以直接形成在基片的外表面上,以使基片呈现抗指纹性,或者形成在聚合物片层的表面上,以提供能够布置到基片(例如光学显示器)的表面上的抗指纹保护层。微观结构在基片表面上的大小、形状、定向和分布可以最优化,从而增强微观结构的耐用性和/或使基片具有扩散表面,以用于基片的具体应用。微观结构在透明保护层上的密度和分布也可以最优化,从而当布置在光学显示器的表面上时,最小化雾度和摩尔纹的出现。

Description

用于减少指纹在表面上出现的微观结构
技术领域
本发明通常涉及为表面提供微观结构以减少由于操作污染而造成的指纹的出现的领域。更具体地,本发明涉及提供微观结构的多种形状和分布,其减少指纹的可见度并且呈现优良的耐用性以抵挡在操作过程中遇到的切变应力。
背景技术
透明基片的表面上的指纹和其他痕迹可能使该表面的透射性能在光学上失真,使得穿过该基片的光(例如从显示器发射的图像)失真。同样地,在不透明基片表面上,指纹和其他痕迹/污染物可能使该表面的反射性能光学地失真。指纹的出现或污迹是转印到操作或接触表面上的指纹油的结果。因为沉积的油在接触表面上自然展开,所以指纹是可见的。由于沉积在表面上的指纹而造成的光学失真在通常由操作者手持或操作的多种设备中特别明显。例如,举几个来说,指纹一般出现在用作便携式电话的显示屏的基片、交互设备的触控面板、家用电器(例如冰箱门、炉灶等等)和窗户的外表面上。这个问题的有效解决方法是分散并隐藏沉积的指纹油,使得由操作者(即观察者)的肉眼不再能看见该油。
一种传统的解决方法是使用洗涤剂和/或抹布(例如毛巾)清洁基片表面。然而,这种解决方法由于清洗的不期望的高频率和/或抹布不容易可用而不方便或实用。另一种解决方法是使用亲油的或疏油的表面涂层处理平坦表面以吸引或排斥油,但是因为指纹油在被处理的表面上仍然可见,所以这些处理并没有充分地影响沉积的油。例如,在触摸显示屏的领域中,存在几种现有的、但是无效的用于处理指纹污迹问题的方法。一种方法是将涂层(coating)施加到显示器表面上。这样的涂层通常是疏油涂层,其提供容易的清洁,但是不能隐藏指纹污迹。这种方法的另一个问题是该涂层随着使用细长而趋向于磨损。此外,涂层不能为显示器表面提供划伤保护。
另一种解决方法是在触摸显示屏的表面上施加透明覆盖膜。这样的覆盖膜确实能保护显示器表面防止其被划伤,但是不能隐藏指纹。所使用的一种这样的覆盖膜是平坦膜。然而,平坦膜不能隐藏指纹使得由肉眼感觉不到的沉积的指纹油。在下文中参考图27和28讨论平坦膜的例子(“不可见防护物”,在商业上可以从Zagg有限公司得到)。如果使用亲油涂层对平坦膜进行表面处理,这仅仅抹掉了指纹而剩下的指纹油仍然可见,并且呈现出通过膜斑点看到的下层图像。原因是亲油的(“与油亲近的”)表面不能有效地抵抗指纹,而仅仅分散指纹油而不是与指纹污迹相关的水和其他成分。结果是这样的污迹和其他的污染物仍然可见。如果平坦膜使用疏油涂层,则其趋向于使指纹油形成珠,而指纹油仍然清楚地可见。所使用的使表面疏油的含氟化合物表面处理期望提供一种机构,其建立高的液体接触角,并因此抵抗指纹。事实是这样的表面更容易清洁,但是因为指纹油仍然可见而不能抵抗指纹。此外,这样的涂层的折射率可能提供与覆盖玻璃/塑料的折射率的不匹配,从而使得涂层实际上使指纹污迹变得显著。此外,氟化聚合物的应用很昂贵。此外,亲油和疏油涂层随着使用而趋向于磨损,并且不能在售后情形中施加。另一种使用的覆盖膜是糙面精整(matte finish)膜。然而,这种膜不能充分地隐藏指纹,并且其糙面精整通过引入扩散表面同时还增加从表面反射的雾度(haze)而降低了光学性能,该扩散表面减损从下面的显示器透过膜而传送的光学图像。在下文中参考图25和26讨论粗糙膜的例子(“防炫光膜”,在商业上可以从Power Support得到)。应用糙面精整膜的策略是通过添加不透明的微米大小的填充物而提供粗糙表面(例如,峰到谷或者Rt=5.7微米),从而隐藏指纹。然而,这样的膜证明了较差的抗指纹性,此外,不透明的填充物为膜引入雾度,这使得透射的和反射的光不期望地分散,从而降低了通过膜看到的下层图像的可见度。
由沉积在基片表面上的指纹导致的光学失真的问题还没有适当地解决,并且对于包括玻璃、塑料或金属的多种基片也成为问题。
附图说明
图1是根据本发明的实施例的具有多个微观结构分布在基片的顶面上的基片部分的横截面示意图;
图2是根据本发明的实施例的具有多个微观结构的基片部分的横截面示意图,其中的微观结构分布在保护层(保护片层/膜)的顶面上,该保护层布置在基片的表面上;
图3A-3F示出了根据本发明的实施例的示例性微观结构的几种几何形状;
图4A是根据本发明的实施例的具有多个圆柱形微观结构的基片部分的顶视图,其中的微观结构分布在基片的顶面上;
图4B是在图4A中示出的基片部分的横截面示意图;
图5是根据本发明的实施例的具有多个平截头棱锥体微观结构的基片部分的顶视图,其中的微观结构以单一定向(orientation)分布;
图6是根据本发明的实施例的具有多个平截头棱锥体微观结构的基片部分的顶视图,其中的微观结构以大致随机的定向分布;
图7A是根据本发明的实施例的具有多个细长直线微观结构的基片部分的顶视图,其中的微观结构按照多个图案以不同的定向分布;
图7B是在图7A中描述的微观结构的一种图案的透视图;
图8是根据本发明的实施例的具有多个细长直线微观结构的基片部分的顶视图,其中的微观结构按照几种不同图案以不同的定向分布;
图9是根据本发明的实施例的具有多个细长直线微观结构的基片部分的顶视图,其中的微观结构按照直线星爆式图案以不同的定向分布;
图10是根据本发明的实施例的具有多个细长曲线微观结构的基片部分的顶视图,其中的微观结构按照曲线星爆式图案以不同的定向分布;
图11是根据本发明的实施例的具有多个细长曲线微观结构的基片部分的顶视图,其中的微观结构按照另一种曲线星爆式图案以不同的定向分布;
图12是根据本发明的实施例的具有多个细长曲线微观结构的基片部分的顶视图,其中的微观结构按照另一种曲线星爆式图案以不同的定向、大小和间隔分布;
图13是根据本发明的实施例的具有多个细长曲线微观结构的基片部分的顶视图,其中的微观结构按照同心开口环图案以同心的定向分布;
图14是根据本发明的实施例的具有多个细长曲线微观结构的基片部分的顶视图,其中的微观结构按照另一种同心开口环图案以同心的定向分布;
图15是根据本发明的实施例的具有以六边形紧密堆积的方式分布的多个细长曲线微观结构的基片部分的顶视图,其中的微观结构为同心环图案;
图16是具有以染色体图案沿不同定向分布的多个细长曲线微观结构的基片部分的顶视图,其中的微观结构具有单个长度和矩形端;
图17是具有以热狗图案沿不同定向分布的多个细长曲线微观结构的基片部分的顶视图,其中的微观结构具有两种不同长度(双模群体)和圆形端;
图18A是根据本发明的实施例的形成在保护层上的热狗形细长微观结构的双模群体的SEM显微图;
图18B是在图18A中所示的SEM显微图的一部分的放大图;
图19是根据本发明的实施例的形成在保护层上的热狗形细长微观结构的单种群体的SEM显微图;
图20是根据本发明的实施例的形成在保护层上的凹进细长曲线微观结构的SEM显微图;
图21示出了用于制造具有分布在基片的顶面上的多个微观结构的基片的示例性系统;
图22是本发明的抗指纹性和其他属性与现有技术相比的表格;
图23显示了由根据本发明的实施例的具有多个微观结构的基片呈现的抗指纹性的一个实例;
图24显示了由具有多个微观结构的基片的另一个实施例呈现的抗指纹性的一个比较例,其中的微观结构密度小于图23;
图25显示了具有大致糙面精整的一种现有技术表面膜的来自显微镜的数字图像;
图26显示了由具有大致糙面精整的一种现有技术表面膜提供的抗指纹性;
图27显示了具有大致光滑表面的另一种现有技术表面膜的来自显微镜的数字图像;
图28显示了由具有大致光滑表面的现有技术表面膜提供的抗指纹性的实例;
图29显示了对于在其上布置有或者没有本发明的抗指纹膜的光学显示器所测量的亮度数据的两个表格;以及
图30是对于给定的微观结构高度,雾度作为微观结构密度的函数的示例性标绘图。
具体实施例
在下面将描述本发明的一个或多个实施例。这些描述的实施例仅是本发明的示例性实施例。另外,为了提供这些示例性实施例的简洁描述,在说明书中可能并不描述实际执行过程的所有特征。应该意识到,在任何这样的实际执行过程的研发中,如同任何工程或设计项目中一样,必须进行许多执行过程-具体决定,以实现研发者的具体目标,例如顺从系统相关的和商业相关的约束,这些可能从一种执行过程到另一种发生变化。此外,应该意识到,这样的研发努力可能是复杂的并且耗时的,然而对于那些受益于本公开的普通技术人员却是设计、制作和制造的常规任务。
本发明的各种实施例提供在基片表面上的多个微观结构,从而减小在操作过程中典型地沉积到表面上的指纹油和其他污染物的可见度。在一个实施例中,多个微观结构102直接形成在基片101的表面上,如图1所示,从而为基片表面提供抗指纹性,该基片表面例如是光学显示器的外表面、炉灶的顶面或冰箱门的外表面。多个微观结构102指的是基片表面的凸起部分。包括多个微观结构的基片表面可以是通常暴露以操作的基片101的外表面。在另一个实施例中,微观结构202可以形成在基片的第一表面上,该基片包括透明或半透明的玻璃或聚合物片层(或膜),以提供抗指纹保护层203。透明或半透明的抗指纹保护层203在下文中被称为“保护层”,通过将保护层203的第二表面(即相对光滑和平坦的一侧)定位到另一个基片201的表面上,可以将保护层203布置到另一个基片201的表面上,如图2所示。保护层203可以有利地布置或定位在基本任何基片(例如透明的玻璃或聚合物,或者不透明材料)的表面上,从而有效地赋予表面抗指纹性。在一些实施例中,微观结构可以由共形的硬质涂层覆盖,从而提供加强的抗划伤性。
本发明的实施例提供在基片表面上的微观结构的多种微观结构形状和分布(例如图案),从而按照预期的使用和/或必需的耐用性(预期的切变应力暴露)而为基片的具体应用提供最优的抗指纹表面。在一些实施例中,基片或保护层的外表面可以具有从大约25至大约35达因/cm2范围内的表面能,从而增强沉积的指纹油的扩展。此外,在一些实施例中,保护层上的微观结构的密度和分布也是最优化的,从而当保护层被布置在光学显示器的表面或其他图像产生表面上时,使得最小化雾度和摩尔纹(Moiré)的出现。
微观结构可以具有包含通常的平坦上表面302的基本任意几何形状。关于图3A-3F,适当的微观结构几何形状的例子包括圆柱形(图3A)、平截头棱锥体(图3B)、平截头圆锥体(图3C)、复合抛物面(图3D)、复合椭圆形、多边形物体或旋转以形成固体的任何圆锥截面。平截头棱锥体几何形状包括通常为平坦表面的侧壁表面304,例如在图3B中描述为六个平坦侧壁表面,它们彼此相邻并且围绕微观结构的周边。应该注意到,平截头棱锥体并不限于任何具体数量的平坦侧壁表面,并且可以使用其他几何形状,例如具有三个平坦侧壁表面和一个三角形的平坦上表面、或者四个平坦侧壁表面和一个方形的平坦上表面的平截头棱锥体,如图5和6所示。另外,微观结构可以具有任何期望的细长带形,其具有通常的平坦上表面302和直线的或曲线的侧壁;这样的微观结构在下文中被称为“细长微观结构”。细长微观结构形状的例子包括:“矩形”,其中的侧壁304是直的或直线的(图3E),以及“弯曲矩形”,其中的侧壁304是曲线的,使得微观结构的长度(I)尺寸是曲线的(图3F)。细长带形在这里定义为具有的长度(I)尺寸大于其宽度(W)尺寸的微观结构。因此,多种微观结构中的每一种的平坦上表面302可以具有基本任意的直线或曲线形状,例如,诸如图3A、3C和3D中描述的圆形表面这样的多边形几何形状,如图3B中描述的六边形表面,如图3E中描述的矩形表面,以及如图3F中所示的曲线表面。此外,平坦上表面302可以平行于微观结构的下表面和基片或保护层的平面。尽管这样的微观结构对于肉眼是不可见的,但是可以使用显微镜检查微观结构,以确定是否存在表面微观结构。
微观结构可以具有垂直侧壁304,其中其高度(h)尺寸大致垂直于其宽度(w)尺寸(即,θ等于大约90度),如图3A、3E和3F所示。可替换地,微观结构可以具有不垂直的侧壁304(相对于其宽度尺寸和膜平面不垂直),如图3B、3C和3D所示。不垂直的侧壁提供扩散表面,其导致可以穿过微观结构的透射光和可以在微观结构的(一个或多个)侧壁表面反射的环境光的光散射。因此,当不期望光的光学失真时,可以使用具有垂直侧壁的微观结构为基片或保护层提供抗指纹性。反之,当期望粗糙或扩散表面时,可以使用具有不垂直侧壁的微观结构为基片或保护层提供抗指纹性。
微观结构具有的高度(h)在从大约1微米至大约25微米的范围内,并且更优选地在从大约3微米至大约10微米的范围内。微观结构的高度可以根据具体应用按照预期的具体污染物和具体污染物的量而最优化。例如,按压在光滑表面上的指纹通常留下3至6微米厚度范围内的油渍(即,具有3至6微米高度的指纹)。为了使该油渍有效地分裂并重新分布同时最小化由于指纹而造成的图像失真,适当的微观结构阵列可以被构造在基片的表面上,从而提供在大约3至10微米的类似范围内的表面拓扑结构(峰到谷的测量或者Rt)。
在另一方面,微观结构几何形状可以被最优化以具有必需的切变强度。例如,在触摸屏显示器应用中,在触摸屏(即基片)上的、或在布置于触摸屏上的保护层上的多个微观结构由于操作者与触摸屏的交互而经受手指接触或摩擦作用。在操作过程中发生在多个微观结构的上表面上的手指接触和摩擦作用可能导致外部切变应力的施加,该外部切变应力超过一个或多个微观结构的切变强度,从而导致一个或多个微观结构损坏并从基片磨掉。为了提高微观结构的切变强度和耐用性,多种微观结构几何形状可以具有低矮外形(low profile),其中微观结构的宽度等于或大于其高度。同样地,微观结构尺寸具有的宽度与高度的纵横比(即w∶h)在从大约1至大约13的范围内(即1∶1至13∶1),并且更优选地在从大约2至大约10的范围内。对于具有可变宽度(即如图3B、3C和3D所描述的,作为高度的函数而变化的宽度)的微观结构,在纵横比的确定过程中提及的宽度是微观结构的最大宽度(即下表面的宽度)。
除了低矮外形以外,细长微观结构的细长属性进一步增强了微观结构在操作过程中的耐用性,在细长微观结构中I大于w。与具有基本相等的长度和宽度尺寸的微观结构(例如,在图3A-3D中示出的微观结构)的接触面积(即I×w)相比,细长微观结构(其中I>w)由于增加了与基片或保护层的接触面积(I×w)而呈现出增强的耐用性,其中微观结构形成并连接在该基片或保护层上。增加单独的细长微观结构的接触面积有利地提高了其切变强度,因此使得细长微观结构能够抵挡可能在操作过程中发生的更高切变应力的施加。对于每个细长微观结构的适当长度可以是在大约10至大约250微米的范围内,更优选地在大约35至大约100微米的范围内。
此外,如图10-20所示,曲线细长微观结构(图3F)的曲线定向通过引入单个微观结构的多样化定向,使得施加的切变应力(在操作过程中遇到)由于微观结构的曲率而必须沿着微观结构的宽度和长度尺寸分布,从而更进一步地增强了耐用性。由于微观结构的相对小的(微观的)大小,所以假定当手指滑过多个微观结构的平坦上表面时,手指相对于任何一个微观结构沿一个方向(例如直线)滑动,因此沿单个方向施加切变应力。由于细长微观结构(其中I大于w)的相对的物理尺寸,细长微观结构沿其长度尺寸具有最大的强度,并且在其宽度尺寸上具有最弱的强度。因此,跨过微观结构的宽度的切变应力是最可能使材料破坏的点,其中微观结构可能损坏或从基片磨掉。这样的破坏对于沿细长直线微观结构(例如图3E,7-9)的宽度尺寸施加至其侧壁的足够高的切变应力(例如,施加至其侧壁的法线的切变应力)可能发生。然而,施加至曲线细长微观结构的侧壁(即曲线的侧壁)的相同的切变应力必定导致切变应力在曲线微观结构(例如图3F,10-20)的宽度和长度尺寸上的分布,这增加了导致曲线细长微观结构的材料破坏所需的切变应力。因此,例如图10-20所示的曲线细长微观结构特别地耐用,以抵挡由于操作而造成的摩擦切变应力。为微观结构提供低外形、细长的长度尺寸(I>w)和曲线细长的长度尺寸的曲线定向中的一种或多种属性在提高微观结构的切变强度方面是特别有益的,其中的微观结构由诸如聚合物材料(例如PET、丙烯酸酯等等)这样的相对低机械强度的材料制成。
基片可以包括能够被加工以在基片或保护层的表面中形成多个微观结构(例如圆柱形、平截头棱锥体、矩形或曲线细长微观结构)的基本任何材料。适当的基片材料包括玻璃、金属和聚合物。多个微观结构可以通过任何已知的加工技术而形成到基片表面中或基片表面上。例如,玻璃基片的平面可以被图案化并蚀刻以去除玻璃材料,从而使得多个微观结构形成并保留在基片的表面上。在另一个实例中,金属基片(例如金属片层)的表面可以被蚀刻、压花或冲压,从而在基片的表面上形成微观结构。在又一个实例中,基片上的可聚合材料可以被模制、由光化辐射固化、热成形、压花、剥离、蚀刻、或经历大量的聚合物加工技术的任何技术,从而在基片的表面上形成微观结构。同样地,可聚合的保护层(例如聚合物片层或膜)可以被模制、由光化辐射固化、热成形、压花、蚀刻、或经历大量的聚合物加工技术的任何技术,从而在保护层的表面上形成微观结构。
因此,形成在基片表面中或基片表面上的多个微观结构可以包括与基片本身相同的材料。换句话说,形成在透明或半透明基片(例如,光学透明玻璃或塑料基片或光学透明聚合物保护层)上的多个微观结构可以是保持基片表面的透射性能的透明/半透明微观结构。同样地,形成在不透明基片(例如不透明塑料、玻璃或金属基片)上的多个微观结构可以是保持基片表面的反射性能的不透明微观结构。
微观结构400减少了由于在基片401的正常操作过程中典型地沉积在基片401的表面上的诸如来自指纹的油这样的外来痕迹或污染物质而造成的图像失真,如图4A和4B所描述。微观结构400的大致平坦上表面402是微观结构的面对操作者/使用者的远端,并且使用者可以触摸。多个微观结构400通过使沉积在微观结构的平坦上表面402上的外来痕迹物质分裂并重新分布到基片的其他区域,而减少光失真(透射或反射)和外来痕迹物质的可见度。具体地,单独微观结构400的间隔开的关系提供了使外来痕迹分裂的表面形貌,并且促进或允许外来痕迹物质经由毛细管作用的重新分布。表面形貌包括由相邻微观结构之间的(一个或多个)空隙凹进区域404(也称为“谷”或“沟道”)围绕的多个微观结构400,其中的空隙凹进区域404容纳迁移到所述(一个或多个)区域的外来痕迹物质。相邻微观结构的存在和接近导致外来痕迹到(一个或多个)凹进区域的毛细管重新分布。凹进区域404可以是连续的(或邻接的凹进区域),如图4A所描述,并且形成足够的大小(即凹进的表面积)从而容纳迁移到凹进区域404的外来痕迹物质。痕迹物质的重新分布留下相对很少的外来痕迹物质在外来痕迹最初沉积在其上的微观结构的平坦上表面402上,并且因此允许透过平坦上表面402和凹进区域404(或从它们反射)的光到达观察基片401的操作者而只有较少的失真。单个连续的凹进区域404(如图4A所描述)有利地允许外来痕迹跨过整个凹进表面区域的重新分布,这最小化足以导致光学失真的外来材料的累积。此外,单个邻接的凹进区域404可以容纳更大量的外来材料。在一个实例中,来自沉积在多个微观结构的平坦上表面402上的指纹的油(例如在下面描述的图4A,5,6,7A,8-18所示)迁移到微观结构之间的凹进区域404,从而减少保留在平坦上表面402上的指纹油的量,其中指纹最初沉积在该平坦上表面402上。减少在微观结构的平坦上表面402上的指纹油的量并且使油扩展遍及凹进区域404减少了从基片表面穿过或反射的光的失真,从而最小化指纹的可见度。
此外,微观结构优选地具有的宽度在从大约2至120微米的范围内,并且更优选地在从大约10至50微米的范围内。尽管具有小于大约2微米宽度的多个微观结构呈现抗指纹性,但是单独的微观结构通常不足够耐用,以抵挡在操作者的交互接触过程中由于手指在多个微观结构的平坦上表面上滑动而产生的切变应力。对于大于大约120微米的宽度,沉积在多个微观结构的平坦上表面上的指纹油趋向于花费太长的时间以迁移到基片的凹进区域。换句话说,在使沉积在具有超过120微米宽度的微观结构的平坦上表面上的指纹物质重新分布的情况下,相邻微观结构之间的毛细管作用恶化,使得沉积的指纹不能充分地通过毛细管作用而移动到凹进区域。10至50微米的宽度范围是更优选的,因为对于大多数基片材料来说,大于大约10微米的微观结构宽度提供足够的耐用性,以抵挡由于手指接触(摩擦)而产生的切变应力,并且小于大约50微米的微观结构宽度不易由人眼察觉或发现,当期望微观结构表面特征不易被观察者发现时,这可能是优选的。
关于图22,显示了本发明的微观结构基片或保护层与在背景技术部分描述的现有技术相比的益处和优点的表格。可以容易地看出,除了提供抗指纹性和良好的光学性能以外,本发明的实施例还提供超越现有技术的几个其他的显著益处和优点。
上述的油的迁移也被称为“润湿”或“扩展”,可以通过改变基片(或保护层)的表面能而进一步地增强。因为基片的润湿在具有高表面能的表面上比具有低表面能的表面上通常更容易发生,所以可以改变基片或保护层的表面能,使其具有与沉积的外来痕迹物质的表面能大致相同或更高的表面能。在一个实例中,包括指纹油的外来痕迹与基片表面的相对表面能可以被最优化,从而易于指纹油在包括丙烯酸酯的聚合物保护层的表面上的扩展。保护层的表面能与指纹油的表面能相同或更高。指纹油具有大约29-33达因/cm2的表面张力(即表面能),并且丙烯酸酯保护层的表面能是大约30-35达因/cm2。相似的表面能增强了扩散,使得指纹油迅速地从油初始沉积为指纹的位置润湿并扩散开来。通过至少部分地由为保护层提供与指纹油相同或更高的表面能的材料形成保护层,易于沉积的指纹重新分布到并且遍及保护层(即基片)的凹进区域。在一些实施例中,可以使用具有比丙烯酸酯大的表面能的其他材料形成保护层或基片。在其他实施例中,基片或保护层的表面可以(例如通过气相沉积)使用亲油材料处理或涂覆,从而增加表面能并增强指纹油的润湿。
作为上述内容的结果,本发明的实施例使得外来痕迹物质难以累积在其初始沉积的微观结构的上表面上。减少保留在微观结构的上表面上的外来痕迹物质的数量使得外来痕迹由人眼难以察觉,并且允许透射或反射的光到达使用者,而只有很少的失真。例如,通过允许指纹油扩散遍及覆盖图像显示器的保护层(膜)的凹进区域,能导致光学失真的初始沉积的油的浓度或质量迅速地分散到凹进区域,并且来自下层图像的光能够穿过透明/半透明微观结构的平坦上表面和凹进区域,而只有最小的图像失真。在另一个实例中,沉积在不透明基片的多个微观结构上的指纹迅速分散到凹进区域,因此光从不透明微观结构的平坦上表面和凹进区域反射而只有最小的失真,从而使得指纹由人眼难以察觉。此外,在随后的操作过程中可能发生的摩擦作用也趋向于将油重新分布到微观结构之间的空隙凹进区域。
与玻璃和金属基片材料相比,由于聚合物基片或聚合物保护层的典型较低的硬度,所以有利的是,利用细长微观结构以增加聚合物基片的表面上的聚合物微观结构的耐用性(例如切变强度)。使用细长曲线微观结构,通过改变基片表面上的单独微观结构定向,可以具有进一步增强的耐用性。
可以取决于诸如具体应用和观察者到基片表面的正常观看距离这样的因素而使基片或保护层的表面上的微观结构的适当密度最优化。微观结构的凸起表面积(即多个微观结构的平坦上表面)优选地在基片的总体平坦表面积(即微观结构的凸起表面积加上基片的(一个或多个)凹进表面积)的大约5%至大约45%的范围内。在下端,小于大约5%的微观结构密度趋向于失去基片的抗指纹性,特别是在微观结构矮的时候(例如h<10微米)。换句话说,微观结构离得太远使得相邻微观结构之间的毛细管作用恶化并且因此抗指纹性减小。为了以相对小的表面积(即凸起表面积)保持抗指纹性,微观结构必须较高(例如h>10微米)如在下文中更详细地描述。然而,对于大于大约45%的密度,过多的微观结构不能显著地有助于膜的抗指纹性,并且伴随地凹进区域的表面积不必要地减小。此外,对于制作或制造,大于45%的微观结构密度由于微观结构之间的不可避免的小间隔距离而可能变得越来越复杂。当多个微观结构形成在透明/半透明基片或保护层上时,45%的密度上限是有用的,从而不会不期望地将不能接受的雾度量引入到基片或保护层。透明基片(或保护层)的雾度成比例地增加了多个微观结构的侧壁表面积。随着来自下层图像的光穿过基片,微观结构的侧壁趋向于使撞击到侧壁上的光散射。该散射光是重新定向的光,其导致由操作者/观察者察觉到的光损失,并且可以被量化或测量为穿透性雾度(transmission haze)。散射光还不期望地使基片(或保护层)具有发白的外观而不是透明的。优选的密度范围通常与任何两个相邻微观结构的最近部分之间的间隔距离(d)相关,该间隔距离(d)优选地在从大约2微米至大约120微米的范围内,并且更优选地在从大约10至50微米的范围内。
应该注意到,微观结构密度的最优化也是微观结构高度的函数。通常地,对于较高的微观结构,可以使用较低密度的部件以提供足够的抗指纹性,然而对于较矮的微观结构,使用较高密度的部件从而提供足够的抗指纹性。例如,对于8微米高的微观结构,具有15%密度的微观结构提供足够的抗指纹性,并且超过25%的密度可能导致透明基片(或保护层)中的过多的雾度。相反地,对于4微米高的微观结构(具有与8微米的微观结构相同的长度和宽度尺寸),使用具有20%密度的微观结构从而提供足够的抗指纹性,并且超过30%的密度可能导致透明基片或保护层中的过多的雾度。换句话说,较高的微观结构与较矮的微观结构(例如20%密度)相比,在较低密度(例如15%密度)下提供更好的抗指纹性。并且,在透明基片应用中,由于与较矮的微观结构(例如30%密度)相比,在较低密度下的较高侧壁的侧壁表面积(高度×长度)增加,所以在较低密度下(例如25%密度)的较高微观结构可能为透明基片或保护层引入不可接受的雾度量。因此,在5%至45%的密度范围内,对于具体的微观结构几何形状和期望应用,可以进一步地最优化微观结构的密度。
在透明基片应用中,多个微观结构的微观结构侧壁表面积(即微观结构的长度和高度)和密度是为了不引入不可接受的雾度量而进行控制的参数。由于基片或保护层上的微观结构的存在而散射的光(例如雾度)可以被测量,从而确定对于给定的微观结构几何形状,微观结构的最高可接受密度。此外,在使用两层或更多层的实际应用中,例如包括两层或更多层的基片或保护层,通过使多层基片中的两层或更多层的折射率大致匹配,也可以减小雾度。
微观结构的分布可以是以在相邻微观结构的中心点之间具有不变距离的微观结构的规则分布的形式,如图1,2和4-6所描述的。相似地,微观结构可以按照一种或多种图案以规则分布跨过基片表面地分布,如图7-11,13-15所示。图案指的是微观结构跨过基片表面的重复排列。形成在基片(或保护层)上的微观结构可以以多种图案定向、多种图案大小及其组合而排列,如图12所示,从而最优化用于具体应用的基片的透射或反射表面性能。在另一方面,图案的重复性质还帮助使得基片表面上的微观结构的可制造性变得容易。微观结构的单个图案的大小(即图案的长度和宽度)可以是基本任何大小。然而,在包括透射微观结构的一种或多种图案的透明保护层的情况下,其中保护层被布置在光发射基片(例如便携式电话的光学显示器或触摸屏面板)上,微观结构的图案的大小和分布相对于另一种图案(例如像素大小)的尺寸(即大小和分布)可以有利地最优化,其中的另一种图案可能在下面的光发射基片中存在,从而避免产生诸如摩尔纹图案这样的干涉图案。
可替换地,微观结构的分布或微观结构的(一个或多个)图案可以在基片上以随机的或接近(大致)随机的方式排列。如图16-19所示,微观结构的随机分布是有用的,从而避免当保护层布置在图像产生基片(例如光学显示器)的表面上时摩尔纹图案的出现。在需要微观结构的随机分布的应用中,特别是对于大于大约15%的微观结构密度,与较长结构相比,较小长度的细长微观结构趋向于更易于以随机分布的方式被分布。因此,为了使随机化变得容易的细长微观结构长度在大约35至100微米的范围内,并且更优选地从大约35微米到大约75微米。
实例
图4A是包括圆柱形微观结构400(参见图3A)的规则分布的基片(或保护层)的一部分的平面图,其中的微观结构400形成在基片(或保护层)401的顶面上。应该注意到,这里描述的每个实例可以同样地施加至保护层。圆柱形微观结构400通过减少由于在基片的正常操作过程中沉积在圆柱形微观结构的平坦上表面402上的诸如来自指纹的油这样的外来痕迹而导致的光失真(透射的和反射的),而隐藏外来痕迹的出现。圆柱形微观结构400可以由如这里之前描述的任何已知的加工技术(例如图案化和蚀刻、压花、模制等等)而形成在基片401的顶面中。在图4B中的基片的横截面图中已说明,相邻微观结构之间的间隔距离(d)在从大约2微米至大约120微米的范围内,并且优选地在从大约10至50微米的范围内。在一个实例中,玻璃基片的平面可以被图案化和蚀刻,以除去玻璃材料使得圆柱形微观结构400被形成并保持在基片401的表面上。在另一个实例中,金属基片(例如金属片层)的平面可以被蚀刻、压花或冲压,从而在基片401的表面上形成圆柱形微观结构400。在又一个实例中,聚合物基片(或片层/膜)可以被模制、热成形、压花、剥离、蚀刻或经历诸如在这里描述的大量的聚合物加工技术的任何技术,从而在基片401的表面上形成圆柱形微观结构400。单独微观结构的间隔开关系提供了表面形貌,其促进并允许外来痕迹物质分裂开并重新分布到凹进区域404,并且因此最小化外来痕迹物质的可见度。
图5是包括形成在基片或保护层501的顶面上的平截头棱锥体形微观结构500的规则分布的基片的一部分的平面图。微观结构500可以包括具有不变的微观结构定向的微观结构的规则分布,如图5所描述的,或者具有大致随机定向(旋转定向)的微观结构600的规则分布,如图6所描述的。当期望为基片601的表面提供光扩散表面(例如糙面精整)时,可以利用多个平截头棱锥体微观结构600的几种定向或大致随机定向的引入。换句话说,平截头棱锥体600的不同(大致随机)定向引入了大量的不同角度的侧壁表面,输入的或入射的光可以在较宽的方向范围内在这些侧壁表面上反射,因此提供更高比例的漫反射。例如,在不透明基片中形成棱锥体微观结构隐藏了指纹,并且还可以为不透明基片提供期望的扩散或粗糙表面。不透明基片的一个例子是用作冰箱门的外表面的金属基片。在图5和6中的棱锥体微观结构通过减少由于在基片的正常操作过程中沉积在棱锥体微观结构的平坦上表面上的诸如来自指纹的油这样的外来痕迹而导致的光失真(透射的或反射的光),而隐藏外来痕迹的出现。棱锥体微观结构可以由任何已知的加工技术(例如图案化和蚀刻、压花、模制等等)而形成在基片的顶面中。单独微观结构的间隔开关系提供了表面形貌,其促进并允许外来痕迹物质分裂开并重新分布到凹进区域504、604,并且因此最小化外来痕迹物质的可见度。
图7A是基片的一部分的平面图,基片包括细长微观结构的几种图案,其中每种图案具有以不同定向形成在基片或保护层701的顶面上的多个矩形微观结构700(即细长微观结构)。当保护层布置在光学显示器上时,在期望防止出现摩尔纹时,多个矩形微观结构700的不同定向或大致随机定向的引入可以用于分布形成在透明保护层中的微观结构。可替换地,当期望为基片提供更均匀的光扩散表面时,大致随机定向可以用于分布形成在不透明基片中的微观结构。换句话说,矩形微观结构700的不同定向引入了大量的不同角度的表面,入射的光可以在较宽的方向范围内在这些表面上反射,因此为不透明基片提供更高比例的漫反射。在图7A中的矩形微观结构700通过减少由于在基片的正常操作过程中沉积在矩形微观结构700的平坦上表面上的诸如来自指纹的油这样的外来痕迹而导致的光失真(透射的或反射的),而隐藏外来痕迹的出现。矩形微观结构700可以由任何已知的加工技术(例如图案化和蚀刻、压花、模制等等)而形成在基片701的顶面中。单独微观结构的间隔开关系提供了表面形貌,其促进并允许外来痕迹物质分裂开并重新分布到凹进区域704,并且因此最小化外来痕迹物质的可见度。
图7B是在图7A中描述的矩形微观结构700的一种图案的横截面示意图。关于图7B,相邻矩形微观结构700之间的适当间隔距离(d)可以在从大约2至大约120微米的范围内,并且优选地从大约10至大约50微米。在一个实例中,多个矩形细长微观结构中的每一个均具有的高度(h)707为6微米,宽度(w)706为11微米,以及相邻微观结构之间的变化的间隔距离(d)705在从大约10至大约50微米的范围内。
图8示出了包括微观结构的几种图案的基片,其中每种图案具有以多种定向形成在基片或保护层801的顶面上的多个矩形微观结构800(即细长微观结构)。对于布置在光学显示器上的保护层,当期望防止摩尔纹的发生时,在图案中的多个矩形微观结构800的不同定向的引入可以用于分布形成在透明保护层中的微观结构。可替换地,当期望为不透明基片提供更均匀的光扩散表面时,微观结构的多种定向可以用于分布形成在不透明基片中的微观结构。在图8中的矩形微观结构800通过减少由于在基片801的正常操作过程中沉积在矩形微观结构800的平坦上表面上的诸如来自指纹的油这样的外来痕迹而导致的光失真(透射的或反射的),而隐藏外来痕迹的出现。矩形微观结构800可以由任何已知的加工技术(例如图案化和蚀刻、压花、模制等等)而形成在基片801的顶面中。单独的矩形微观结构800的间隔开关系提供了表面形貌,其促进并允许外来痕迹物质分裂开并重新分布到凹进区域804,并且因此最小化外来痕迹物质的可见度。
图9示出了形成在基片或保护层901的顶面上的多个矩形细长微观结构900的另一个实例,表面图案的重复单元在这里被称为“直线星爆式”(linear starburst)图案。直线星爆式图案具有从中心点903(即该单元的中心)关于该中心点903沿着跨越360度的不同方向放射的直线矩形微观结构900。对于布置在光学显示器上的保护层,当期望防止摩尔纹的发生时,多个矩形微观结构900的多种不同定向的引入可以用于分布形成在透明保护层中的微观结构。可替换地,当期望为不透明基片提供更均匀的光扩散表面时,微观结构的多种不同定向可以用于分布形成在不透明基片中的微观结构。在图9中的矩形微观结构900通过减少由于在基片901的正常操作过程中沉积在矩形微观结构900的平坦上表面上的诸如来自指纹的油这样的外来痕迹而导致的光失真(透射的或反射的),而隐藏外来痕迹的出现。矩形微观结构900可以由任何已知的加工技术(例如图案化和蚀刻、压花、模制等等)而形成在基片901的顶面中。单独的矩形微观结构900的间隔开关系提供了表面形貌,其促进并允许外来痕迹物质分裂开并重新分布到凹进区域904,并且因此最小化外来痕迹物质的可见度。
图10示出了形成在基片或保护层1001的顶面上的多个曲线细长微观结构1000的一个实例,表面图案的重复单元在这里被称为“曲线星爆式”(curved starburst)图案。曲线星爆式图案具有曲线矩形微观结构1000,它们呈现从中心点1003(即该单元的中心)关于该中心点1003沿着跨越360度的不同方向放射的曲线定向。该图案提供了由多个微观结构1000的360度分布和矩形微观结构的曲线定向而引入的大量定向。对于布置在光学显示器上的保护层,当期望防止摩尔纹的发生时,在图案中的多个曲线矩形微观结构1000的多种不同定向的引入可以用于分布形成在透明保护层中的微观结构。可替换地,当期望为不透明基片提供更均匀的光扩散表面时,微观结构的多种不同定向可以用于分布形成在不透明基片中的微观结构。另外,曲线细长微观结构1000的曲线定向通过引入单个微观结构1000的变化的定向,使得将施加的切变应力沿着曲线微观结构1000的宽度和长度尺寸分布,而进一步增强了耐用性。在图10中的曲线矩形微观结构1000通过减少由于在基片1001的正常操作过程中沉积在微观结构1000的曲线平坦上表面上的诸如来自指纹的油这样的外来痕迹而导致的光失真(透射的或反射的),而隐藏外来痕迹的出现。微观结构1000可以由任何已知的加工技术(例如图案化和蚀刻、压花、模制等等)而形成在基片的顶面中。单独的微观结构1000的间隔开关系提供了表面形貌,其促进并允许外来痕迹物质分裂开并重新分布到凹进区域,并且因此最小化外来痕迹物质的可见度。
图11示出了曲线星爆式图案的可替换实施例。与上述图10相比,在图11中描述的曲线星爆式图案具有另外的曲线矩形微观结构1100,它们从中心点1103(即该单元的中心)关于该中心点1103沿着跨越360度的不同方向放射。在单个图案中的多个矩形微观结构1100的更多定向的引入可以用于当微观结构形成在布置于光学显示器上的透明基片中时更好地减少摩尔纹的出现,或者用于当微观结构形成在不透明基片中时提供更均匀的光扩散表面。在另一方面,另外的曲线矩形微观结构可以用于提供在该图案中的相邻微观结构之间的更小范围的间隔距离(d)。
图12示出了曲线星爆式图案的可替换实施例。与上述图11相比,在图12中描述的曲线星爆式图案可以关于它们的中心点1203以不同的(大致随机的)定向分布。另外,图案可以以不同的图案大小布置,例如图案大小从顶行到底行增加,如图12所示。此外,相邻图案之间的间隔可以跨过基片表面地变化。对于布置在光学显示器上的保护层,当期望防止摩尔纹的出现时,一种图案(或几种图案)的不同定向、大小和间隔的引入可以用于分布形成在透明保护层中的微观结构。可替换地,当期望为不透明基片提供更均匀的光扩散表面时,多种不同的图案定向、大小和间隔可以用于分布形成在不透明基片中的微观结构。
图13示出了形成在基片或保护层1301的顶面上的多个曲线细长微观结构1300的另一个实例,表面图案的重复单元在这里被称为“开口环”同心图案。开口环同心图案具有按照曲线定向的曲线矩形微观结构1300,上述曲线定向具有共同的中心点1303(即该单元的中心),关于该中心点1303跨越360度。对于布置在光学显示器上的保护层,当期望防止摩尔纹的发生时,在单个图案中的跨越360度的多种定向的引入可以用于分布形成在透明保护层中的微观结构。可替换地,当期望为不透明基片提供更均匀的光扩散表面时,微观结构的多种不同定向可以用于分布形成在不透明基片中的微观结构。另外,曲线细长微观结构1300的曲线定向通过引入单个微观结构的变化的定向,使得将施加的切变应力沿着曲线微观结构1300的宽度和长度尺寸分布,而进一步增强了耐用性。在图13中的曲线矩形微观结构1300通过减少由于在基片1301的正常操作过程中沉积在微观结构1300的曲线平坦上表面上的诸如来自指纹的油这样的外来痕迹而导致的光失真(透射的或反射的),而隐藏外来痕迹的出现。微观结构可以由任何已知的加工技术(例如图案化和蚀刻、压花、模制等等)而形成在基片1301的顶面中。单独的微观结构的间隔开关系提供了表面形貌,其促进并允许外来痕迹物质分裂开并重新分布到凹进区域1304,并且因此最小化外来痕迹物质的可见度。
图14示出了开口环同心图案的可替换实施例。与上述图13相比,在图14中描述的开口环同心图案具有从中心点1403放射的曲线细长微观结构1400,而不包括不形成大致完整的同心环的微观结构。单独的微观结构的间隔开关系提供了表面形貌,其促进并允许外来痕迹物质分裂开并重新分布到凹进区域1404,并且因此最小化外来痕迹物质的可见度。
图15示出了同心图案的可替换实施例。与上述图13和14相比,在图15中描述的同心图案具有从中心点1503放射的连续的(即不开口的)同心环形微观结构1500,其中该图案以六边形紧密堆积的分布方式分布在基片1501上。同心图案具有的环形微观结构1500具有曲线定向,该曲线定向具有共同的中心点1503(即该单元的中心),关于该中心点1503跨越360度。在单个图案中的多个曲线矩形微观结构1500的全定向(即360度)的引入可以用于当微观结构形成在布置于光学显示器上的透明基片中时更好地减少摩尔纹的出现,或者用于当微观结构形成在不透明基片中时提供更均匀的光扩散表面。此外,以紧密堆积的结构排列微观结构也可以用于当微观结构形成在布置于光学显示器上的透明基片中时更好地减少摩尔纹的出现,或者用于当微观结构形成在不透明基片中时提供更均匀的光扩散表面。
图16示出了形成在基片或保护层1601的顶面上的多个曲线细长微观结构1600,其中的表面图案在这里被称为“染色体”图案。染色体图案具有以大致随机分布方式的曲线矩形微观结构1600。在一些实施例中,曲线矩形微观结构1600可以形成为两个或更多个邻近微观结构的组。对于布置在光学显示器上的保护层,当期望防止摩尔纹的发生时,染色体图案的分组和大致随机分布的引入可以用于分布形成在透明保护层中的微观结构。可替换地,当期望为不透明基片提供更均匀的光扩散表面时,微观结构的随机分布和曲线定向可以用于分布形成在不透明基片中的微观结构。在图16中的曲线矩形微观结构1600通过减少由于在基片1601的正常操作过程中沉积在微观结构1600的曲线平坦上表面上的诸如来自指纹的油这样的外来痕迹而导致的光失真(透射的或反射的),而隐藏外来痕迹的出现。曲线矩形微观结构1600可以由任何已知的加工技术(例如图案化和蚀刻、压花、模制等等)而形成在基片1601的顶面中。单独的曲线细长微观结构1600的间隔开关系提供了表面形貌,其促进并允许外来痕迹物质分裂开并重新分布到凹进区域1604,并且因此最小化外来痕迹物质的可见度。
图17示出了利用微观结构的双模群体的多个曲线细长微观结构的可替换实施例,其中的微观结构在这里被称为“热狗”形微观结构。具有曲线定向的热狗形微观结构1700以大致随机分布的方式分布在基片1701的表面上。在一些实施例中,对于给定的密度,特别是对于大于15%的细长微观结构密度,与较长结构(例如具有75×15×4微米的长度×宽度×高度)相比,一群统一大小的较小结构(例如具有45×15×4微米的长度×宽度×高度)可能更易于以大致随机分布的方式分布。同样地,引入了第二种较小长度的细长微观结构的微观结构的双模群体(这样的微观结构的两种不同大小,但是本发明不限于利用仅一种或两种大小)可以用于使微观结构的随机化变得容易,从而基本上防止摩尔纹。随机曲线细长微观结构1700的引入可以用于当微观结构形成在布置于光学显示器上的透明基片中时防止摩尔纹的出现,或者用于当微观结构形成在不透明基片中时提供更均匀的光扩散表面。曲线细长微观结构1700通过减少由于在基片1701的正常操作过程中沉积在微观结构1700的曲线平坦上表面上的诸如来自指纹的油这样的外来痕迹而导致的光失真(透射的或反射的),而隐藏外来痕迹的出现。单独的曲线细长微观结构1700的间隔开关系提供了表面形貌,其促进并允许外来痕迹物质分裂开并重新分布到凹进区域1704,并且因此最小化外来痕迹物质的可见度。
曲线细长微观结构1700可以由任何已知的加工技术(例如图案化和蚀刻、压花、模制等等)而形成在基片1701的顶面中。在图示的实例中,曲线细长微观结构1700具有圆形端。在一些制造执行过程中,当与具有方形端的微观结构(例如由图16中所描述的染色体图案中的曲线细长微观结构1600所示)的可制造性相比时,使微观结构形成有圆形端可以改进细长微观结构在基片或保护层上的可制造性。图18A是热狗形微观结构的双模群体的SEM显微图,其中热狗形微观结构包括具有45×15×4微米的长度×宽度×高度的多个较短的热狗形微观结构1806,以及具有75×15×4微米的长度×宽度×高度的多个较长的热狗形微观结构1808。如所描述的,热狗形结构的双模群体以随机分布方式分布在透明保护层1801的表面上。当保护层布置在光学显示器上时,形成在透明保护层1801中的热狗形微观结构1806、1808的随机分布防止摩尔纹的出现。图18B是在图18A中所示的SEM显微图的一部分的放大图。该放大图清楚地显示了热狗形微观结构1808的垂直侧壁和圆形相反端。
图19是示出利用热狗形微观结构1900的单种群体(即统一大小)的曲线细长微观结构的另一个实例的SEM显微图。热狗形微观结构1900具有45×15×4微米的长度×宽度×高度,并且以大致随机分布的方式分布在基片1901的表面上。在45微米的相对短的细长微观结构长度的情况下,对于高达大约45%的微观结构密度,这些热狗形微观结构1900相对地易于在基片1901或保护层上以大致随机分布的方式分布。
在许多在先的实例中,微观结构已经通常被描述为从底面向外凸出的结构(例如凸起到平面上方的高地)。但是在其他执行过程中,微观结构可以反向地形成。例如,微观结构可以形成为在另外的大致平坦表面中的清晰凹陷处(例如切割到平面中的沟槽)。这些凹陷处可以形成有与凸起的微观结构大致相似的尺寸。例如,每个微观结构的适当深度可以在大约1与大约25微米之间的范围内,更优选地在大约3与大约10微米之间的范围内。每个微观结构的适当宽度可以在大约2至大约120微米的范围内,更优选地在大约10与大约50微米之间的范围内。每个微观结构的宽度与深度的适当纵横比可以在大约1至大约13的范围内。每个微观结构的适当长度可以在从大约10至大约250微米的范围内,更优选地在从大约35至大约100微米的范围内。任意两个相邻微观结构的最近部分之间的适当距离(d)(即间隔)可以在从大约2至大约120微米的范围内,更优选地在大约10与大约50微米之间的范围内。凹陷表面特征的表面积的适当百分比应该是在总平坦表面积(即,凹陷的或凹进的平坦表面积加上凹进微观结构周围的凸起的平坦表面积)的大约5%至45%的范围内。在一个实例中,多个矩形微观结构中的每一个具有的深度为6微米,宽度为11微米,以及相邻微观结构之间的变化的距离(d)在从大约10微米至大约50微米的范围内。图20是以曲线星爆式图案的凹进曲线细长微观结构2000的SEM显微图,如先前参考图11描述的,形成在基片2001的顶面中。
图21示出了用于制造具有分布在基片2102的顶面上的多个微观结构(例如,如在图1-20的描述中所讨论的微观结构)的基片2102的示例性的卷装进出式(roll to roll)压花系统2100。在一些执行过程中,系统2100可以用于在大致连续的过程中制造微观图案化的基片或保护层的长条形片层或基片或保护层的卷。
系统2100包括涂覆模块2110、干燥模块2120和压花模块2130。涂覆模块2110接收未图案化的基片2102(例如聚乙烯聚对苯二甲酸乙二醇酯膜(PET))的卷筒2112。在一些实施例中,未图案化的基片2102的卷筒2112可以由另一种形式供应的用于涂覆的未图案化的基片2102替代。例如,未图案化的基片2102可以以平铺片材形式供应,在该情况下,可以执行片材进给机构。在另一个实例中,未图案化的基片2102可以以折扇式折叠形式供应(例如像计算机用纸),其中基片2102呈现为大致平铺片材,其周期地被折叠以形成锯齿形图案。
涂覆模块2110包括施加至基片2102的树脂2114(例如紫外线可固化的丙烯酸酯)的供应。在一些执行过程中,可以在树脂2114的施加之前清洁基片2102。树脂2114可以以多种方式施加。例如,可以使基片2102经过,或浸泡在树脂2114的液池中,从而涂覆基片。在其他执行过程中,可以将树脂2114喷射、轧制、刷或者沉积到基片2102上。
基片2102经过干燥模块2120。在一些执行过程中,干燥模块2120可以通过将基片2102暴露至热或紫外线(UV)辐射,而对先前施加至基片2102的树脂2114进行干燥或部分干燥、加热、固化、或者其他加工。在一些执行过程中,通过使树脂2114至少部分地干燥或固化,可以将其接合至基片2102。
基片2102由压花模块2130加工。压花模块2130包括紫外线(UV)灯2132和压花滚筒2134。在一些执行过程中,压花滚筒2134由主垫片套着,该主垫片由微观结构的反向(例如负)图案覆盖,其中的微观结构诸如先前在图1-20的描述中所讨论的微观结构。在一些实施例中,微观结构的反向图案可以使用光刻加工而形成。例如,主垫片的基片可以由光致抗蚀材料清洁和涂覆,并且然后可以通过烘焙或暴露至UV光而预固化。然后可以通过使用投影图像或光学掩模而将期望的微观结构图案转印到预固化的光致抗蚀剂上。光致抗蚀剂可以由标准的光刻技术而显影(例如蚀刻),从而形成期望微观结构的图案化的抗蚀剂,之后可以将该图案化的抗蚀剂二次固化。然后可以使图案化的光致抗蚀材料涂覆有金属(例如铜)以使表面可以导电,然后可以将镍电镀到金属涂覆的图案化抗蚀剂上,从而形成镍主垫片。然后可以将该镍主垫片从基片分离,从而可以将其缠绕在圆筒周围,以形成压花滚筒2134。
使得压花滚筒2134与涂覆在基片2102上的树脂2114滚动接触。随着压花滚筒2134在基片2102上滚动,将微观结构的反向图案压印到树脂2114涂层中。UV灯2134使树脂2114固化,导致其至少部分地硬化,从而保留压印到树脂2114中的微观结构的图案。基片2102可以被模制、热成形、压花、蚀刻、或使用任意大量的聚合物加工技术的任何技术而被图案化,从而在保护层的表面上形成微观结构。基片2102由卷筒2136取得。在一些执行过程中,卷筒2136可以由容器替代,该容器用于容纳加工之后的基片2102的分开的片材、折扇式折叠的片材或其他形式的基片。在一些执行过程中,一旦基片2102已经被加工,可以将粘合剂和保护衬里施加至基片2102的光滑的(例如未图案化的)一侧。在一些执行过程中,可以将基片2102切割成期望的大小。例如,可以将基片2102切割成大致覆盖光学显示器的图像表面的片。
如上所述,保护层的实施例可以使用能够被加工从而在保护层的表面中形成多个微观结构(例如曲线细长微观结构)的基本任何聚合物而制作。一些适当的聚合物包括聚乙烯聚对苯二甲酸乙二醇酯(PET)、丙烯酸树脂、硅树脂和聚氨酯。保护层的材料和厚度可以根据具体应用和/或提供足够的耐用性所需的预期处理程度而被最优化。在一个实例中,由丙烯酸酯制成的20微米厚的保护层可以制作有使用模制加工在该层的顶面上形成的多个曲线细长微观结构(例如同心开口环图案)。细长曲线微观结构具有的高度为大约4微米,宽度为大约8微米,并且相邻微观结构之间的距离为大约11微米。可以将保护层的光滑侧定位或安装到便携式电话触摸垫上,其典型地为透明玻璃基片,从而为该触摸垫提供抗指纹性,而不会损失触摸垫的功能性。
将保护层的第二表面、也被称为光滑侧布置到另一个基片(例如透明基片)上。光滑侧可选择地涂覆有低粘性的粘合剂,以减少在使用过程中保护层的不期望的移动。可替换地,光滑侧可以被静电充电以依附于透明基片。低粘性的粘合剂和静电充电使得放置和适应性容易,并且当需要时允许保护层被容易地替换(即可丢弃的)。
除了具有表面形貌以减少操作污染效应(例如指纹效应)以外,本发明的实施例的保护层和/或基片还可以具有其他期望的属性,例如举几个来说,保密膜(视角减小)、亮度增强膜(使光学能量朝向主要视角重新定向)、防反射膜(例如具有防反射涂层或回射结构)、抗划伤膜、自清洁表面(例如使用自组装单层涂层)、抗菌膜、和/或抗静电膜所独有的特征。
例如,为了给聚合物保护层或基片提供硬度或抗划伤性,在微观结构的制作过程中,可以将硬质颗粒添加至聚合物树脂,从而使基片(或保护层)的微观结构表面具有良好的抗磨性和耐磨性,其中的硬质颗粒举几个来说诸如蓝宝石、氧化硅(例如SiO2)和氧化钛。硬质颗粒具有比光的波长小的颗粒大小(即纳米颗粒),使得当合并到保护层(即透明保护层)中时,这些颗粒是透明的。在微观结构的制作过程中,这些硬质颗粒趋向于均匀地分散并且迁移到保护层的表面,从而使保护层的微观结构表面具有良好的抗磨性和耐磨性。
在另一个实例中,通过将防反射涂层沉积到保护层或基片的顶面和多个微观结构上(即涂覆多个微观结构和凹进区域),可以使保护层或基片具有防反射或防闪光的属性。适当的防反射涂层包括具有在从大约1至大约1.35的范围内的低折射率的材料。示例性的材料包括氟化镁或具有大约1.3的折射率的含氟聚合物。
在另一个实例中,通过将包括氟化或氯氟官能聚合性单层的自组装单层(SAM)沉积到保护层或基片的顶面和多个微观结构上,可以使保护层或基片具有自清洁表面的属性。这些表面单层的应用可以显著地增加表面能,使得表面呈现疏水性和疏油性。疏水和疏油的表面性质增强了指纹去除。在另一个实例中,通过将包括羟基、羧基或多羟基官能单层的亲水SAM沉积到保护层或基片的顶面和多个微观结构上,可以使保护层或基片具有自清洁的属性。亲水单层给予低表面能,使得将水吸引到该表面,并且聚结为形成液滴,这些液滴可以流下该表面并冲走表面污染物。
在另一个实例中,在保护层或基片的表面上的微观结构的制作过程中,通过将一种或多种抗微生物剂添加至聚合物树脂,可以使聚合物保护层或基片具有抗菌表面的属性。例证性的抗微生物剂是银纳米颗粒和三氯生。
在另一个实例中,在保护层或基片的表面上的微观结构的制作过程中,通过将一种或多种亲水添加剂添加至聚合物树脂,可以使聚合物保护层或基片具有抗静电表面的属性。该表面性质对于聚合物保护层或易受摩擦充电影响的基片材料(例如聚合物、玻璃)是特别有用的。例如,在表面的接触或操作(例如摩擦)过程中,静电电荷可能从指尖传递至保护层(或基片)的表面。适当的亲水添加剂包括季胺和聚乙二醇。将足够量的亲水添加剂合并到聚合物保护层或基片中,从而将聚合物树脂的电气体积电阻率减小至小于大约1012欧姆-厘米的体积电阻率,并且优选地在从大约109-1011欧姆-厘米的范围内。对于这些材料,电子可以流动跨过表面并且经过粒状材料,从而使另外的静电电荷耗散。
关于图23,为了测试保护层的一个实例的抗指纹性,将具有先前所述微观结构的基片(即保护层)2301的片层装配在便携式电话显示器2308的右手侧上。单个指纹被沉积为跨越左手侧上的无遮蔽显示器和保护层2301,从而将大约一半的指纹沉积到无遮蔽显示器上,并且将另一半指纹沉积到保护层2301上。结果是保护层2301上的基本不可察觉的指纹,展示了由微观结构的图案提供的抗指纹性。在该实例中,保护层2301利用大致随机的微观结构的染色体图案,诸如先前在图16的讨论中所描述的。在本实例中的微观结构被赋予大约22.5%的密度,并且它们的尺寸是大约120微米长,34微米宽以及4微米高。
图24示出了另一个保护膜2401的抗指纹性的实例。与图23中相同,保护膜2401被切割以覆盖手机2408的一半显示器(在本实例中为左手侧),并且指纹被沉积为使得一半指纹被沉积在右手侧上的无遮蔽显示器上,并且另一半指纹被沉积在保护层2401上。本实例的保护层2401被赋予大约15%的微观结构密度,并且展示了比图23的保护层2301小的抗指纹性。因此,对于4微米高的微观结构,优选的密度范围是从大约15%至大约35%,并且更优选地在从大约20%至大约30%的范围内。
还使用两种商业上可使用的产品执行与由图23和24所执行和说明的测试相似的测试。一种产品是由加利福尼亚的Burbank的PowerSupport制造的膜2551。该产品的封装声明该膜2551是“防炫光膜”,并且其抵抗污迹和指纹。如图25所示的膜2551的放大图显示其具有糙面精整和大致随机的表面粗糙度,并且具有通过光学干涉量度法测量的大约5.7微米的峰到谷(Rt)尺寸和大约0.4微米的平均表面粗糙度(Ra)。膜2551被切割以覆盖手机2608的一半显示器(在本实例中为右手侧),并且指纹被沉积为使得一半指纹被沉积在左手侧上的无遮蔽显示器上,并且另一半指纹被沉积在膜2551上,如图26所展示的。因为尽管与无遮蔽显示器表面相比,指纹出现减少,但是沉积的指纹仍然由观察者可见,所以抗指纹性较差。另外,膜2551中的不透明微米大小的填充物2553导致从手机2608的在下面的光学显示器发射的图像的模糊和光学质量的降低。
关于图27和28,测试的另一种产品是被称为“不可见防护物”的光滑膜2771,其在商业上可以从犹他州盐湖城的Zagg有限公司得到。图27示出了膜2771的放大图,其具有通过光学干涉量度法测量的大约1.5微米的峰到谷表面粗糙度(Rt)尺寸和大约0.06微米的平均表面粗糙度(Ra)。膜2771被切割以覆盖手机2808的一半显示器(在本实例中为右手侧),并且指纹被沉积为使得一半指纹被沉积在左手侧上的无遮蔽显示器上,并且另一半指纹被沉积在膜2771上,如图28所展示的。Zagg有限公司的产品广告宣传为“抗划伤”膜,其对于抗指纹性没有作出任何已知的权利要求。同样地,膜2771几乎没有展示出抗指纹性。
通常,具有大约5.7微米的有意的、大致随机的表面粗糙度的粗糙膜(例如图25和26所示的膜)展示出较差的抗指纹性和光学性能,而大致光滑的膜没有展示出对于指纹的任何可察觉的抵抗性(例如图27和28所示的膜)。然而,根据本发明的实施例将微观结构引入到保护层上导致表面展示出非常良好的抗指纹性,如先前由图23示出的实例中所示。
图29描述了亮度数据的两个表格。第一个表格包括在无遮蔽的移动电话显示器上进行的亮度测量的集合,并且第二个表格包括在相同的、但是由根据本发明实施例的微观结构图案化的示例性保护层(即“FPR膜”)覆盖的移动电话显示器上进行的相似测量。在具有或没有保护层的显示器上测量亮度。根据示出的测量,在本实例中使用的保护层呈现了高度的亮度性能,而只有大约2.4%的光损失。
在另一个实验中,在大约420×320微米的面积上,测量具有包含圆形端的曲线细长结构的双模群体(例如测量为大约75×15×4微米和大约45×15×4微米的热狗形结构,诸如图17和18A所示)的保护层的雾度。透过保护层的雾度作为侧壁表面积(例如热狗形结构的垂直表面积)的函数的标绘图在图30中示出。对于给定高度(在本实例中例如为大约4微米),标绘图示出了随着微观结构的密度增加,雾度量也增加。在一些实施例中,可以限制在用于光学显示器的保护层上的微观结构的密度,从而不呈现出不期望的雾度量。
本发明可以受到多种改进形式和可替换形式的影响,同时,已经通过附图中的实例的方式显示并且已经在这里详细描述了具体实施例。然而,应该理解,不意味着将本发明限于公开的具体形式。相反地,本发明将覆盖落入由所附权利要求限定的本发明的精神和保护范围中的所有改进、等效和可替换。

Claims (40)

1.一种抗指纹基片,所述抗指纹基片包括在所述基片的外表面中形成的多个曲线细长微观结构以及所述多个曲线细长微观结构中的相邻微观结构之间的空隙区域,其中所述多个微观结构中的每一个具有平坦上表面和垂直的或接近垂直的侧壁,其中相邻微观结构之间的所述空隙区域是凹进区域,所述凹进区域被构造为允许遍及所述凹进区域的流体迁移。
2.根据权利要求1所述的抗指纹基片,其中所述多个曲线细长微观结构中的每一个具有大于宽度的长度。
3.根据权利要求2所述的抗指纹基片,其中所述多个曲线细长微观结构中的每一个沿着其长度弯曲。
4.根据权利要求1所述的抗指纹基片,其中所述多个曲线细长微观结构中的每一个具有的高度在从大约1微米至大约25微米的范围内。
5.根据权利要求4所述的抗指纹基片,其中所述多个曲线细长微观结构中的每一个具有的高度在从大约3微米至大约10微米的范围内。
6.根据权利要求1所述的抗指纹基片,其中所述多个曲线细长微观结构中的每一个具有的宽度在从大约2微米至大约120微米的范围内。
7.根据权利要求6所述的抗指纹基片,其中所述多个曲线细长微观结构中的每一个具有的宽度在从大约10微米至大约50微米的范围内。
8.根据权利要求4所述的抗指纹基片,其中所述多个曲线细长微观结构中的每一个具有的宽度在从大约2微米至大约120微米的范围内。
9.根据权利要求8所述的抗指纹基片,其中所述多个曲线细长微观结构中的每一个具有的宽度与高度的纵横比(W∶H)在从大约1至大约13的范围内。
10.根据权利要求1所述的抗指纹基片,其中所述多个曲线细长微观结构中的每一个具有的长度在从大约10微米至大约250微米的范围内。
11.根据权利要求10所述的抗指纹基片,其中所述多个曲线细长微观结构中的每一个具有的长度在从大约35微米至大约100微米的范围内。
12.根据权利要求8所述的抗指纹基片,其中所述多个曲线细长微观结构中的每一个具有的长度在从大约10微米至大约250微米的范围内。
13.根据权利要求1所述的抗指纹基片,其中所述多个曲线细长微观结构中的任意两个相邻微观结构的最近部分之间的距离在从大约2微米至大约120微米的范围内。
14.根据权利要求13所述的抗指纹基片,其中所述多个曲线细长微观结构中的任意两个相邻微观结构的最近部分之间的距离在从大约10微米至大约50微米的范围内。
15.根据权利要求8所述的抗指纹基片,其中所述多个曲线细长微观结构中的任意两个相邻微观结构的最近部分之间的距离在从大约2微米至大约120微米的范围内。
16.根据权利要求1所述的抗指纹基片,其中所述多个曲线细长微观结构的密度使得所述多个曲线细长微观结构的所述平坦上表面具有的表面积在所述基片的外表面的平面表面积的大约5%至大约45%的范围内,其中所述平面表面积是所述平坦上表面和所述凹进区域的表面积的总和。
17.根据权利要求8所述的抗指纹基片,其中所述多个曲线细长微观结构的密度使得所述多个曲线细长微观结构的所述平坦上表面具有的表面积在所述基片的外表面的平面表面积的大约5%至大约45%的范围内,其中所述平面表面积是所述平坦上表面和所述凹进区域的表面积的总和。
18.根据权利要求1所述的抗指纹基片,其中所述基片的所述外表面具有的表面能在从大约25达因/cm2至大约35达因/cm2的范围内。
19.根据权利要求8所述的抗指纹基片,其中所述基片的所述外表面具有的表面能在从大约25达因/cm2至大约35达因/cm2的范围内。
20.根据权利要求1所述的抗指纹基片,其中所述多个曲线细长微观结构中的每一个具有大致随机的定向。
21.根据权利要求1所述的抗指纹基片,其中所述多个曲线细长微观结构具有大致随机的分布。
22.根据权利要求15所述的抗指纹基片,其中所述多个曲线细长微观结构中的每一个具有大致随机的定向。
23.根据权利要求22所述的抗指纹基片,其中所述多个曲线细长微观结构具有大致随机的分布。
24.根据权利要求1所述的抗指纹基片,其中所述基片包括透明玻璃或聚合物。
25.根据权利要求1所述的抗指纹基片,其中所述基片包括不透明材料。
26.根据权利要求23所述的抗指纹基片,其中所述基片是适于布置在光学显示器的外表面上的聚合物膜。
27.根据权利要求1所述的抗指纹基片,其中所述凹进区域是单个连续的凹进区域,所述单个连续的凹进区域被构造为允许遍及整个凹进区域的流体迁移。
28.根据权利要求8所述的抗指纹基片,其中所述凹进区域是单个连续的凹进区域,所述单个连续的凹进区域被构造为允许遍及整个凹进区域的流体迁移。
29.一种抗指纹系统,包括:
光学显示器;以及
布置在光学显示器基片的外表面上的抗指纹膜,其中所述膜包括在所述膜的外表面中形成的多个曲线细长微观结构以及所述多个曲线细长微观结构中的相邻微观结构之间的空隙区域,其中所述多个微观结构中的每一个具有平坦上表面和垂直的或接近垂直的侧壁,其中相邻微观结构之间的所述空隙区域是平坦的凹进区域,所述平坦的凹进区域被构造为允许遍及所述凹进区域的流体迁移。
30.根据权利要求29所述的抗指纹基片,其中所述多个曲线细长微观结构中的每一个具有大致随机的定向。
31.根据权利要求30所述的抗指纹基片,其中所述多个曲线细长微观结构具有足够大致随机的分布,使得摩尔纹不能被人眼觉察到。
32.根据权利要求31所述的抗指纹基片,其中所述平坦的凹进区域是单个连续的平坦的凹进区域,所述单个连续的平坦的凹进区域被构造为允许遍及整个凹进区域的流体迁移。
33.一种抗指纹基片,所述抗指纹基片包括在所述基片的外表面中形成的多个曲线细长微观结构以及所述多个曲线细长微观结构中的相邻微观结构之间的空隙区域,其中所述多个微观结构中的每一个具有平坦的凹进表面和垂直的或接近垂直的侧壁,其中所述相邻微观结构之间的空隙区域是凸起区域,所述凸起区域在所述基片的整个外表面上延伸。
34.根据权利要求33所述的抗指纹基片,其中所述多个曲线细长微观结构中的每一个具有大致随机的定向。
35.根据权利要求34所述的抗指纹基片,其中所述多个曲线细长微观结构具有大致随机的分布。
36.根据权利要求33所述的抗指纹基片,其中所述凸起区域是单个连续的凸起区域。
37.一种抗指纹系统,包括:
光学显示器;以及
布置在光学显示器基片的外表面上的抗指纹膜,其中所述膜包括在所述膜的外表面中形成的多个曲线细长微观结构以及所述多个曲线细长微观结构中的相邻微观结构之间的空隙区域,其中所述多个微观结构中的每一个具有平坦的凹进表面和垂直的或接近垂直的侧壁,其中所述相邻微观结构之间的空隙区域是凸起区域,所述凸起区域在所述膜的整个外表面上延伸。
38.根据权利要求37所述的抗指纹基片,其中所述多个曲线细长微观结构中的每一个具有大致随机的定向。
39.根据权利要求38所述的抗指纹基片,其中所述多个曲线细长微观结构具有足够大致随机的分布,使得摩尔纹不能被人眼觉察到。
40.根据权利要求39所述的抗指纹基片,其中所述凸起区域是单个连续的凸起区域。
CN2009801307334A 2008-08-07 2009-08-07 用于减少指纹在表面上出现的微观结构 Pending CN102143810A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US8709908P 2008-08-07 2008-08-07
US61/087,099 2008-08-07
PCT/US2009/053195 WO2010017503A1 (en) 2008-08-07 2009-08-07 Microstructures to reduce the apperance of fingerprints on surfaces

Publications (1)

Publication Number Publication Date
CN102143810A true CN102143810A (zh) 2011-08-03

Family

ID=41168599

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009801307334A Pending CN102143810A (zh) 2008-08-07 2009-08-07 用于减少指纹在表面上出现的微观结构

Country Status (7)

Country Link
US (1) US20100033818A1 (zh)
EP (1) EP2328695A1 (zh)
JP (1) JP2011530403A (zh)
KR (1) KR20110053333A (zh)
CN (1) CN102143810A (zh)
TW (1) TW201026591A (zh)
WO (1) WO2010017503A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103660486A (zh) * 2013-12-10 2014-03-26 昆山东大智汇技术咨询有限公司 一种耐指纹透明硬化膜
CN103793698A (zh) * 2014-02-21 2014-05-14 江苏恒成高科信息科技有限公司 能够消除残留指纹的指纹读取传感器
CN105712637A (zh) * 2016-04-11 2016-06-29 广东欧珀移动通信有限公司 透明片材、制备方法以及电子设备
CN106457772A (zh) * 2014-05-12 2017-02-22 康宁公司 改进弯曲玻璃结构的光学质量的方法
CN107683266A (zh) * 2015-07-24 2018-02-09 株式会社度恩 具有图案的透明玻璃
CN107848611A (zh) * 2015-06-03 2018-03-27 沙克莱特技术公司 用于无毒性生物粘附控制的表面形貌
WO2020063285A1 (zh) * 2018-09-25 2020-04-02 华为技术有限公司 一种防指纹终端壳体和终端
CN114867566A (zh) * 2019-11-06 2022-08-05 Bvw控股公司 极值微结构化表面

Families Citing this family (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9016221B2 (en) * 2004-02-17 2015-04-28 University Of Florida Research Foundation, Inc. Surface topographies for non-toxic bioadhesion control
US7650848B2 (en) * 2004-02-17 2010-01-26 University Of Florida Research Foundation, Inc. Surface topographies for non-toxic bioadhesion control
CN102245314B (zh) 2008-11-11 2014-11-19 佛罗里达大学研究基金会有限公司 图案化表面的方法以及包含该表面的制品
US9943402B2 (en) 2008-11-20 2018-04-17 Insight Innovations, Llc Micropatterned intraocular implant
KR101597550B1 (ko) * 2009-03-20 2016-03-07 엘지전자 주식회사 디스플레이 장치의 윈도우 및 이를 갖는 휴대 단말기
US20110266724A1 (en) * 2009-05-08 2011-11-03 Hoowaki, Llc Method for manufacturing microstructured metal or ceramic parts from feedstock
CA2793784A1 (en) * 2010-03-31 2011-10-06 Nellcor Puritan Bennett Llc Films for touchscreen displays of medical device monitors
MX2012012033A (es) 2010-04-16 2013-05-20 Flex Lighting Ii Llc Dispositivo de iluminacion que comprende una guia de luz a base de pelicula.
US9028123B2 (en) 2010-04-16 2015-05-12 Flex Lighting Ii, Llc Display illumination device with a film-based lightguide having stacked incident surfaces
KR101609888B1 (ko) 2010-04-22 2016-04-06 엘지전자 주식회사 휴대용 디스플레이 장치
US8538224B2 (en) 2010-04-22 2013-09-17 3M Innovative Properties Company OLED light extraction films having internal nanostructures and external microstructures
US20110273773A1 (en) * 2010-05-07 2011-11-10 Ryan Mongan Three-dimensional Screen Protector
CN102959492B (zh) * 2010-06-25 2016-03-16 诺基亚技术有限公司 用户界面和相关设备及方法
TWI503225B (zh) * 2010-12-06 2015-10-11 Hon Hai Prec Ind Co Ltd 具有複合鍍層的板材及採用該板材的可攜式電子裝置
KR101243182B1 (ko) 2010-12-10 2013-03-14 한국전기연구원 나노 패턴이 형성된 내지문 필름 제조 방법
CN103340026B (zh) 2011-02-02 2016-12-21 3M创新有限公司 具有暗化的导体迹线的图案化基材
WO2012106386A1 (en) * 2011-02-03 2012-08-09 Entrotech, Inc. Polymeric film assemblies with improved resistance to smudges, related articles and methods
WO2012129521A1 (en) * 2011-03-23 2012-09-27 Gentex Corporation Lens cleaning apparatus
US8816974B2 (en) 2011-05-27 2014-08-26 Honeywell International Inc. Systems and methods for smudge control for touch screen human interface devices
JP2013010684A (ja) * 2011-05-31 2013-01-17 Central Glass Co Ltd 耐指紋汚染性基材
US9937655B2 (en) * 2011-06-15 2018-04-10 University Of Florida Research Foundation, Inc. Method of manufacturing catheter for antimicrobial control
US8715779B2 (en) 2011-06-24 2014-05-06 Apple Inc. Enhanced glass impact durability through application of thin films
KR101252243B1 (ko) * 2011-10-18 2013-04-08 (주)펜제너레이션스 미세구조화 광학 필름
US9023457B2 (en) 2011-11-30 2015-05-05 Corning Incorporated Textured surfaces and methods of making and using same
US9296183B2 (en) 2011-11-30 2016-03-29 Corning Incorporated Metal dewetting methods and articles produced thereby
US20150174625A1 (en) * 2011-11-30 2015-06-25 Corning Incorporated Articles with monolithic, structured surfaces and methods for making and using same
US8933445B2 (en) 2011-12-26 2015-01-13 Research & Business Foundation Sungkyunkwan University Functional thin film for touch screen and method for forming the same
WO2013116134A1 (en) * 2012-01-31 2013-08-08 Unipixel Displays, Inc. Low reflectance finger print resistant film
US20130244001A1 (en) * 2012-03-02 2013-09-19 Massachusetts Institute Of Technology Superhydrophobic Nanostructures
CN103367585B (zh) * 2012-03-30 2016-04-13 清华大学 发光二极管
CN103367584B (zh) * 2012-03-30 2017-04-05 清华大学 发光二极管及光学元件
JP2013209231A (ja) * 2012-03-30 2013-10-10 Hitachi Ltd 表面に微細構造を有するガラス基材
CN103367583B (zh) * 2012-03-30 2016-08-17 清华大学 发光二极管
KR20150003730A (ko) * 2012-04-19 2015-01-09 스미또모 가가꾸 가부시키가이샤 적층 필름
KR101492570B1 (ko) * 2012-05-09 2015-02-12 주식회사 엘지화학 내지문성과 지문 은닉성을 갖는 폴리디알킬실록산 코팅막 및 이의 제조 방법
US10898933B2 (en) * 2012-05-31 2021-01-26 Corning Incorporated Oleophobic glass articles
FR2992313B1 (fr) * 2012-06-21 2014-11-07 Eurokera Article vitroceramique et procede de fabrication
US9436005B2 (en) 2012-08-02 2016-09-06 Gentex Corporation Amplified piezoelectric camera lens cleaner
JP5918701B2 (ja) * 2012-10-17 2016-05-18 株式会社ダイセル 透明フィルム及びその使用方法並びにタッチパネル
JP6071696B2 (ja) * 2013-03-27 2017-02-01 デクセリアルズ株式会社 親油性積層体、及びその製造方法、並びに物品、及びその製造方法
US9194156B2 (en) * 2013-05-23 2015-11-24 Triangle Brass Manufacturing Company, Inc. Cover trim for a push bar of an exit device
WO2015016681A1 (ko) * 2013-08-02 2015-02-05 주식회사 엘지화학 발수성 및 발유성을 갖는 필름 및 전기 전자 장치
US10067269B2 (en) 2013-08-02 2018-09-04 Lg Chem, Ltd. Anti-fingerprint film and electrical and electronic apparatus
KR102039496B1 (ko) 2013-08-19 2019-11-04 삼성디스플레이 주식회사 접이식 표시 장치
US10317583B2 (en) * 2013-12-19 2019-06-11 Bright View Technologies Corporation 2D deglaring diffusers increasing axial luminous intensity
JP6393517B2 (ja) * 2014-05-09 2018-09-19 デクセリアルズ株式会社 親油性積層体、及びその製造方法、並びに物品
US10317578B2 (en) 2014-07-01 2019-06-11 Honeywell International Inc. Self-cleaning smudge-resistant structure and related fabrication methods
AU2015300869B2 (en) * 2014-08-07 2020-06-25 Sharklet Technologies, Inc. Patterns for flow control and bioadhesion control
EP3195048B1 (en) * 2014-09-15 2021-11-03 California Institute of Technology Simultaneous polarization and wavefront control using a planar device
DE102015100639A1 (de) 2015-01-16 2016-07-21 Fritz Egger Gmbh & Co. Og Bauelement mit durch Prägen erzeugter Oberflächenstruktur und Verfahren zu dessen Herstellung
US20180031904A1 (en) * 2015-02-13 2018-02-01 Corning Incorporated Angular filters and display devices comprising the same
JP2018523489A (ja) * 2015-08-21 2018-08-23 ステモニックス インコーポレイティド 積層されたマイクロエンボス加工フィルム底部を有するマイクロウェルプレート
DE102016205318A1 (de) * 2016-03-31 2017-10-05 BSH Hausgeräte GmbH Oberflächenbeschichtung für hochwertige Weiß- und/oder Grauware
KR102554290B1 (ko) * 2016-05-23 2023-07-13 삼성디스플레이 주식회사 표시 장치
CN110573351B (zh) * 2017-04-27 2021-08-10 京瓷株式会社 装饰部件
KR102426299B1 (ko) * 2017-10-13 2022-07-27 후아웨이 테크놀러지 컴퍼니 리미티드 고강도 지문 방지 글라스, 그의 제조 방법, 고강도 지문 방지 글라스의 외부 부분, 및 그의 제조 방법
JP7386593B2 (ja) * 2018-03-30 2023-11-27 大日本印刷株式会社 化粧材、化粧材の製造方法
US20210031483A1 (en) * 2018-03-30 2021-02-04 Dai Nippon Printing Co., Ltd. Decorative material and method for producing decorative material
JP7386594B2 (ja) * 2018-03-30 2023-11-27 大日本印刷株式会社 化粧材、化粧材の製造方法
US20210220107A1 (en) * 2018-09-07 2021-07-22 Sharklet Technologies, Inc. Patterns for energy distribution, methods of manufacture thereof and articles comprising the same
JP7230405B2 (ja) * 2018-09-28 2023-03-01 大日本印刷株式会社 化粧材、賦形シート
KR20200069799A (ko) * 2018-12-07 2020-06-17 엘지디스플레이 주식회사 폴더블 표시장치
WO2020203830A1 (ja) * 2019-03-29 2020-10-08 大日本印刷株式会社 化粧材
CN114072363B (zh) 2019-04-09 2023-10-03 康宁股份有限公司 具有一定高度/宽度比以提供抗眩光性及增加耐刮擦性的表面特征的纹理表面的玻璃基板
JP7044982B2 (ja) * 2020-03-03 2022-03-31 凸版印刷株式会社 化粧シート、化粧板及び化粧シートの製造方法
US20210389505A1 (en) * 2020-06-11 2021-12-16 Luminit Llc Anti-glare, privacy screen for windows or electronic device displays
WO2022046930A1 (en) * 2020-08-28 2022-03-03 Lumenco, Llc Antiviral and antimicrobial protective films with microstructure deterrents
KR102242644B1 (ko) * 2021-01-18 2021-04-20 이윤근 향상된 내마모성 및 우수한 필기감을 갖는 터치스크린패널용 보호필름
WO2022162528A1 (en) * 2021-01-28 2022-08-04 3M Innovative Properties Company Microstructured surface with increased microorganism removal when cleaned, articles and methods

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3354022A (en) * 1964-03-31 1967-11-21 Du Pont Water-repellant surface
DE19803787A1 (de) * 1998-01-30 1999-08-05 Creavis Tech & Innovation Gmbh Strukturierte Oberflächen mit hydrophoben Eigenschaften
KR20010101367A (ko) * 1999-08-24 2001-11-14 가부시키가이샤 쯔지덴 프리즘렌즈용 보호필름
DE10063171A1 (de) * 2000-12-18 2002-06-20 Heidelberger Druckmasch Ag Zylindermantelprofil
JP2005537034A (ja) * 2001-06-23 2005-12-08 シュペート ベルント 表面特性を改善した本体
DE10134506A1 (de) * 2001-07-04 2003-01-30 Blanco Gmbh & Co Kg Verfahren zum Herstellen eines Metallblechs, Metallblech und Vorrichtung zum Aufbringen einer Oberflächenstruktur auf ein Metallblech
DE10134362A1 (de) * 2001-07-14 2003-01-30 Creavis Tech & Innovation Gmbh Strukturierte Oberflächen mit Lotus-Effekt
DE10134477A1 (de) * 2001-07-16 2003-02-06 Creavis Tech & Innovation Gmbh Selbstreinigende Oberflächen durch hydrophobe Strukturen und Verfahren zu deren Herstellung
DE10138036A1 (de) * 2001-08-03 2003-02-20 Creavis Tech & Innovation Gmbh Strukturierte Oberflächen mit Lotus-Effekt
JP2003156297A (ja) * 2001-11-16 2003-05-30 Komatsu Ltd 熱交換器
DE10158347A1 (de) * 2001-11-28 2003-06-12 Tesa Ag Verfahren zur Erzeugung von nano- und mikrostrukturierten Polymerfolien
TW200526406A (en) * 2003-10-10 2005-08-16 Inventqjaya Sdn Bhd Self-cleaning window structure
CN1240331C (zh) * 2004-02-02 2006-02-08 吉林大学 不粘炊具
US7650848B2 (en) * 2004-02-17 2010-01-26 University Of Florida Research Foundation, Inc. Surface topographies for non-toxic bioadhesion control
US7258731B2 (en) * 2004-07-27 2007-08-21 Ut Battelle, Llc Composite, nanostructured, super-hydrophobic material
DE102005026359A1 (de) * 2005-06-07 2006-12-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Beschichtungsverfahren
US20070231542A1 (en) * 2006-04-03 2007-10-04 General Electric Company Articles having low wettability and high light transmission
EP2235231A1 (de) * 2007-04-05 2010-10-06 Incoat GmbH Verfahren zur herstellung einer werkstückoberfläche, sowie werkstück mit vorgebbaren hydrophilen benetzungseigenschaften der oberfläche
WO2009009185A2 (en) * 2007-05-09 2009-01-15 Massachusetts Institute Of Technology Tunable surfaces

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103660486A (zh) * 2013-12-10 2014-03-26 昆山东大智汇技术咨询有限公司 一种耐指纹透明硬化膜
CN103660486B (zh) * 2013-12-10 2016-04-13 汕头市东通光电材料有限公司 一种耐指纹透明硬化膜
CN103793698A (zh) * 2014-02-21 2014-05-14 江苏恒成高科信息科技有限公司 能够消除残留指纹的指纹读取传感器
CN106457772A (zh) * 2014-05-12 2017-02-22 康宁公司 改进弯曲玻璃结构的光学质量的方法
CN106457772B (zh) * 2014-05-12 2019-09-03 康宁公司 改进弯曲玻璃结构的光学质量的方法
US11097514B2 (en) 2014-05-12 2021-08-24 Corning Incorporated Method of improving optical quality of curved glass structures
US11673371B2 (en) 2014-05-12 2023-06-13 Corning Incorporated Method of improving optical quality of curved glass structures
CN107848611A (zh) * 2015-06-03 2018-03-27 沙克莱特技术公司 用于无毒性生物粘附控制的表面形貌
CN107683266A (zh) * 2015-07-24 2018-02-09 株式会社度恩 具有图案的透明玻璃
CN105712637A (zh) * 2016-04-11 2016-06-29 广东欧珀移动通信有限公司 透明片材、制备方法以及电子设备
WO2020063285A1 (zh) * 2018-09-25 2020-04-02 华为技术有限公司 一种防指纹终端壳体和终端
CN114867566A (zh) * 2019-11-06 2022-08-05 Bvw控股公司 极值微结构化表面

Also Published As

Publication number Publication date
US20100033818A1 (en) 2010-02-11
EP2328695A1 (en) 2011-06-08
TW201026591A (en) 2010-07-16
KR20110053333A (ko) 2011-05-20
WO2010017503A9 (en) 2010-05-14
JP2011530403A (ja) 2011-12-22
WO2010017503A1 (en) 2010-02-11

Similar Documents

Publication Publication Date Title
CN102143810A (zh) 用于减少指纹在表面上出现的微观结构
JP6502451B2 (ja) 光拡散フィルム及びそれを作製する方法
KR101476462B1 (ko) 광학 적층체의 제조 방법, 광학 적층체, 편광판 및 화상 표시 장치
KR101421757B1 (ko) 광학 적층체, 편광판 및 화상 표시 장치
JP5127698B2 (ja) 転写フィルム
US20150205139A1 (en) Decorative Film Articles Utilizing Fresnel Lens Films
US9524416B1 (en) Fingerprint sensing device comprising three-dimensional pattern
JP5630076B2 (ja) 反射スクリーン、映像表示システム、反射スクリーンの製造方法
US8641212B2 (en) Anti-reflection film and display device including the same, and manufacturing method of anti-reflection film and master film therefor
JP2015532724A (ja) 導光板表面構造、その応用及び製造方法
EP2963494A1 (en) Projection screen and manufacturing method of projection screen
JP2003050673A (ja) 反射防止機能付きの透明タッチパネル、及びそれを用いた表示装置
TWI435120B (zh) 複合光學膜
JP6079946B1 (ja) 離型シートおよび樹脂皮革
JP5521357B2 (ja) プリズムシート、それを用いたバックライトユニットおよび液晶表示装置
JP2010280203A (ja) 加飾シートおよび加飾シートの製造方法並びに加飾成形体
KR20010101367A (ko) 프리즘렌즈용 보호필름
WO2022025067A1 (ja) 照明装置用導光部材、照明装置および建築部材
JP2014511498A (ja) 超撥水基板及びその製造方法
CN115485502A (zh) 光导面板和包括光导面板的照明装置
TWI793270B (zh) 表面凹凸片、螢幕、圖像顯示系統及轉印輥
JP2017187561A (ja) 反射型スクリーン
JP2007133209A (ja) 表面保護シートおよび透過型スクリーン
JPWO2018212359A1 (ja) 反射防止部材
JP6515781B2 (ja) 表面微細凹凸シートおよび多層体

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20110803