WO2022025067A1 - 照明装置用導光部材、照明装置および建築部材 - Google Patents

照明装置用導光部材、照明装置および建築部材 Download PDF

Info

Publication number
WO2022025067A1
WO2022025067A1 PCT/JP2021/027768 JP2021027768W WO2022025067A1 WO 2022025067 A1 WO2022025067 A1 WO 2022025067A1 JP 2021027768 W JP2021027768 W JP 2021027768W WO 2022025067 A1 WO2022025067 A1 WO 2022025067A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light guide
refractive index
light
guide member
Prior art date
Application number
PCT/JP2021/027768
Other languages
English (en)
French (fr)
Inventor
恒三 中村
宇峰 翁
貴博 吉川
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to JP2022539501A priority Critical patent/JP7560557B2/ja
Priority to US18/017,695 priority patent/US20230280523A1/en
Priority to KR1020237003730A priority patent/KR20230035069A/ko
Priority to EP21850387.8A priority patent/EP4191132A4/en
Priority to CN202180059208.9A priority patent/CN116134268A/zh
Publication of WO2022025067A1 publication Critical patent/WO2022025067A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0053Prismatic sheet or layer; Brightness enhancement element, sheet or layer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V33/00Structural combinations of lighting devices with other articles, not otherwise provided for
    • F21V33/006General building constructions or finishing work for buildings, e.g. roofs, gutters, stairs or floors; Garden equipment; Sunshades or parasols
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V33/00Structural combinations of lighting devices with other articles, not otherwise provided for
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/18Coatings for keeping optical surfaces clean, e.g. hydrophobic or photo-catalytic films
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0038Linear indentations or grooves, e.g. arc-shaped grooves or meandering grooves, extending over the full length or width of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/004Scattering dots or dot-like elements, e.g. microbeads, scattering particles, nanoparticles
    • G02B6/0041Scattering dots or dot-like elements, e.g. microbeads, scattering particles, nanoparticles provided in the bulk of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0066Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form characterised by the light source being coupled to the light guide
    • G02B6/0073Light emitting diode [LED]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V2200/00Use of light guides, e.g. fibre optic devices, in lighting devices or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2131/00Use or application of lighting devices or systems not provided for in codes F21W2102/00-F21W2121/00
    • F21W2131/10Outdoor lighting
    • F21W2131/1005Outdoor lighting of working places, building sites or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2131/00Use or application of lighting devices or systems not provided for in codes F21W2102/00-F21W2121/00
    • F21W2131/10Outdoor lighting
    • F21W2131/107Outdoor lighting of the exterior of buildings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems

Definitions

  • the present invention relates to a light guide member for a lighting device, a lighting device, and a building member, and more particularly to a sheet-shaped or film-shaped transparent light guide member for a lighting device, and a lighting device and a building member including the same.
  • the building materials include those for exterior and those for interior.
  • SSD Solid State Lighting
  • Patent Document 1 has a light source at the end of a plate-shaped transparent base material, and emits light emitted from the light source and guided through the transparent base material from one side of the transparent base material during lighting such as at night.
  • a single-sided lighting combined window that functions as a lighting device and functions as a transparent window during non-lighting such as in the daytime is disclosed.
  • a plurality of reflective concave surfaces are formed on one main surface of a transparent substrate, and a plurality of reflective concave surfaces (or convex surfaces) are formed to guide the inside of the transparent substrate.
  • the light reflected by the reflective concave (or convex) surface of is emitted from the other main surface.
  • Such a plurality of reflective concave surfaces are susceptible to dirt and dust, or are easily scratched.
  • it is difficult to control the light distribution (controlling the distribution of the illumination light in the light distribution direction) by using a plurality of reflective concave surfaces (or convex surfaces), or the transmittance for visible light (hereinafter referred to as "visible light transmittance") is high. It may not be sufficiently obtained, and may have problems such as appearing cloudy like ground glass.
  • Patent Document 2 includes an optical medium layer (for example, an image display object such as a poster, a reflective display, electronic paper, or a transparent window or wall) and a transparent lighting device that irradiates the optical medium layer with light.
  • Optical devices are disclosed.
  • the transparent lighting device includes a light guide layer, a low refractive index layer arranged on the observer side of the light guide layer, and an optical functional layer (low refractive index layer, provided between the light guide layer and the optical medium layer. Or a layer having a plurality of air cavities).
  • the transparent illuminating device described in Patent Document 2 does not have a reflective concave surface (or convex surface) on the outermost surface.
  • Patent Document 3 discloses an LED lighting fixture including a light guide layer, a low refractive index layer, and a base material layer. Even if dirt adheres to the surface of the lighting fixture of Patent Document 3, the waveguide efficiency of light does not decrease.
  • Patent Documents 4 and 5 disclose a light distribution structure utilizing total reflection by the interface of a plurality of air cavities. By using the light distribution structure disclosed in Patent Documents 4 and 5, the degree of freedom and accuracy of light distribution control can be improved.
  • Patent Documents 2 to 5 All of the disclosed contents of Patent Documents 2 to 5 are incorporated herein by reference.
  • Patent Document 6 discloses an optical film including a layer having a plurality of groove structures including an optical path conversion slope, a cover film, and an antifouling layer, but sufficient transparency cannot be ensured by this.
  • the present invention has been made to solve at least one of the above problems of a conventional transparent luminaire, for example, for a luminaire and a luminaire having a higher transmittance and a smaller haze value than the conventional one. It is an object of the present invention to provide a light guide member. Another object of the present invention is to provide a building member provided with such a lighting device.
  • a light guide layer having a first main surface, a second main surface opposite to the first main surface, and a light receiving side surface that receives light emitted from a light source.
  • a first low refractive index layer arranged on the first main surface side of the light guide layer and having a refractive index n L1 smaller than the refractive index n GP of the light guide layer.
  • a light distribution control structure capable of directing a part of the light propagating in the light guide layer to at least the side of the first low refractive index layer or the side opposite to the first low refractive index layer.
  • Item 4 Item 2.
  • Optical member Optical member.
  • the first low refractive index layer has a first base material layer on the opposite side of the light guide layer, and the first hard coat layer is different from the first low refractive index layer of the first base material layer.
  • the light guide member for a lighting device according to any one of items 1 to 4, which is formed on the opposite side.
  • the refractive index n L1 of the first low refractive index layer is, for example, 1.05 or more and 1.30 or less.
  • the light distribution control structure has a plurality of internal spaces that form an interface that directs light toward the first low refractive index layer side or the side opposite to the first low refractive index layer side by total internal reflection.
  • the light guide member for a lighting device according to any one of 5.
  • the light distribution control structure includes a second light distribution control structure in which the plurality of internal spaces are formed in a first direction conversion layer provided between the light guide layer and the first low refractive index layer. ,
  • the light guide member for a lighting device according to item 8 which has n C1 and has a plurality of first low refractive index regions.
  • Item 6 includes the third light distribution control structure in which the plurality of internal spaces are formed in a second direction conversion layer provided on the second main surface of the light guide layer.
  • the ratio of the area of the plurality of internal spaces to the area of the light guide layer is 30% or less when the light guide layer is viewed in a plan view from the normal direction of the first main surface.
  • the light guide member for a lighting device according to any one of items 6 to 10.
  • the second item has a second hard coat layer which is arranged on the side opposite to the light guide layer of the second low refractive index layer and has a hardness H H2 higher than the hardness H GP of the light guide layer.
  • the hardness H H2 of the second hard coat layer is, for example, H or more in pencil hardness.
  • the second low refractive index layer has a second base material layer on the side opposite to the light guide layer, and the second hard coat layer is different from the second low refractive index layer of the second base material layer.
  • the refractive index of the second low refractive index layer is, for example, 1.05 or more and 1.30 or less. Since the second low refractive index layer having a refractive index of 1.30 or less is formed by using, for example, a porous material, its hardness HL2 is lower than the hardness HGP of the light guide layer and is brittle.
  • the light guide member for a lighting device according to item 10 which has n C2 and has a plurality of second low refractive index regions.
  • Item 17 Item 2.
  • Light guide member having water repellency and / or oil repellency (or hydrophilicity) as the outermost layer on the first main surface side or the second main surface side.
  • a building member comprising the light guide member for a lighting device according to any one of items 1 to 18.
  • a lighting device having a higher transmittance and a smaller haze value than the conventional one is provided. Further, according to another embodiment of the present invention, a building member provided with such a lighting device is provided.
  • FIG. 9 It is a schematic sectional drawing which shows the recess 64 of the shaping film 62. It is a schematic plan view for demonstrating the distribution of a low refractive index region 80a. It is a schematic cross-sectional view of the light guide member 910A of the comparative example. It is a schematic cross-sectional view of the light guide member 920A of a comparative example. It is a schematic plan view which shows the recess 94 of the shaping film 92 used in the comparative example 3. FIG. It is a schematic cross-sectional view which shows the recess 94 of the shaping film 92 used in the comparative example 3. FIG.
  • the light guide member for a lighting device, the lighting device, and the building member according to the embodiment of the present invention will be described with reference to the drawings.
  • the light guide member for a lighting device, the lighting device, and the building member according to the embodiment of the present invention are not limited to those exemplified below.
  • FIG. 1A shows a schematic cross-sectional view of the lighting device 100A_L according to the embodiment of the present invention.
  • the lighting device 100A_L has a light source LS and a light guide member 100A that receives the light emitted from the light source LS, propagates it in the Y direction, and emits it in the Z direction.
  • the light propagation direction has a variation (distribution) from the Y direction
  • the light emission direction also has a variation (distribution) from the Z direction.
  • the light guide member 100A has a visible light transmittance of 60% or more.
  • light having a wavelength of 380 nm or more and 780 nm or less is regarded as visible light.
  • the light guide layer 10A included in the light guide member 100A has a first main surface, a second main surface opposite to the first main surface, and a light receiving side surface that receives light emitted from the light source LS. ..
  • the upper main surface is the first main surface and the lower side is the second main surface.
  • the light source LS is, for example, an LED device, and a plurality of LED devices may be arranged and used.
  • a coupled optical system for efficiently guiding the light emitted from the light source LS to the light guide layer 10A may be provided between the light source LS and the light guide layer 10A.
  • the light guide member 100A is arranged on the first main surface side of the light guide layer 10A, and has a first low refractive index layer 20A and a first low refractive index layer 20A having a refractive index n L1 smaller than the refractive index n GP of the light guide layer 10A. It has a first hard coat layer 40A which is arranged on the side opposite to the light guide layer 10A of the refractive index layer 20A and has a pencil hardness of H or more.
  • the light guide layer 10A is made of a known material having a high transmittance for visible light.
  • the light guide layer 10A is formed of, for example, an acrylic resin such as polymethylmethacrylate (PMMA), a polycarbonate (PC) resin, a cycloolefin resin, and glass (for example, quartz glass, non-alkali glass, borosilicate glass).
  • PMMA polymethylmethacrylate
  • PC polycarbonate
  • nGP of the light guide layer 10A is, for example, 1.40 or more and 1.80 or less. Unless otherwise specified, the refractive index refers to the refractive index measured by an ellipsometer at a wavelength of 550 nm.
  • the thickness of the light guide layer 10A can be appropriately set according to the application.
  • the thickness of the light guide layer 10A is, for example, 0.05 mm or more and 50 mm or less.
  • the refractive index n L1 of the first low refractive index layer 20A is, for example, preferably 1.30 or less, more preferably 1.20 or less, and even more preferably 1.15 or less.
  • the first low refractive index layer 20A is preferably a solid, and the refractive index is preferably 1.05 or more, for example.
  • the difference between the refractive index of the light guide layer 10A and the refractive index layer of the first low refractive index layer 20A is preferably 0.20 or more, more preferably 0.23 or more, still more preferably 0.25 or more. Is.
  • the first low refractive index layer 20A having a refractive index of 1.30 or less can be formed by using, for example, a porous material.
  • the thickness of the first low refractive index layer 20A is, for example, 0.3 ⁇ m or more and 5 ⁇ m or less.
  • the porosity is preferably 35% by volume or more, more preferably 38% by volume or more, and particularly preferably 40% by volume or more. .. Within such a range, a low refractive index layer having a particularly low refractive index can be formed.
  • the upper limit of the porosity of the low refractive index layer is, for example, 90% by volume or less, preferably 75% by volume or less. Within such a range, a low refractive index layer having excellent strength can be formed.
  • the porosity is a value calculated from Lorentz-Lorenz's formula (Lorentz-Lorenz's formula) from the value of the refractive index measured by the ellipsometer.
  • the low refractive index layer having voids disclosed in Patent Document 3 can be used. All of the disclosures of Patent Document 3 are incorporated herein by reference.
  • the low refractive index layer having voids includes silica particles, silica particles having fine pores, substantially spherical particles such as silica hollow nanoparticles, and fibrous particles such as cellulose nanofibers, alumina nanofibers, and silica nanofibers. Includes flat particles such as nanoclay composed of bentonite.
  • the low index of refraction layer having voids is a porous body formed by directly chemically bonding particles (for example, fine pore particles) to each other.
  • the particles constituting the low refractive index layer having voids may be bonded via a small amount (for example, the mass or less of the particles) of one binder component.
  • the void ratio and the refractive index of the low refractive index layer can be adjusted by adjusting the particle size, particle size distribution, and the like of the particles constituting the low refractive index layer.
  • JP-A-2010-189212 JP-A-2008-040171, JP-A-2006-101175, International Publication No. 2004/113966, and the like thereof.
  • Examples include the methods described in the references.
  • Japanese Patent Application Laid-Open No. 2010-189212, Japanese Patent Application Laid-Open No. 2008-040171, Japanese Patent Application Laid-Open No. 2006-011175, and International Publication No. 2004/113966 are all incorporated herein by reference.
  • a silica porous body As the low refractive index layer having voids, a silica porous body can be preferably used.
  • the silica porous body is produced, for example, by the following method. Silicon compound; a method for hydrolyzing and polycondensing at least one of hydrolyzable silanes and / or silsesquioxane, and its partial hydrolysates and dehydration condensates, porous particles and / or hollow fine particles.
  • the method to be used the method of forming an airgel layer using the springback phenomenon, the gel-like silicon compound obtained by the sol-gel method is pulverized, and the obtained pulverized micropore particles are chemically bonded to each other by a catalyst or the like.
  • the low refractive index layer is not limited to the porous silica body, and the production method is not limited to the exemplified production method, and any production method may be used.
  • the porous layer is not limited to the silica porous body, and the production method is not limited to the exemplified production method, and any production method may be used.
  • Sylsesquioxane is a silicon compound having (RSiO 1.5 , R is a hydrocarbon group) as a basic constituent unit, and is strictly different from silica having SiO 2 as a basic constituent unit, but has a siloxane bond.
  • a porous body containing silsesquioxane as a basic constituent unit is also referred to as a silica porous body or a silica-based porous body here.
  • the silica porous body may be composed of fine pore particles of a gel-like silicon compound bonded to each other.
  • the fine pore particles of the gel-like silicon compound include pulverized bodies of the gel-like silicon compound.
  • the silica porous body can be formed, for example, by applying a coating liquid containing a pulverized body of a gel-like silicon compound to a base material.
  • the pulverized gel-like silicon compound can be chemically bonded (for example, siloxane bond) by the action of a catalyst, light irradiation, heating, or the like.
  • the interface between the light guide layer 10A and the first low refractive index layer 20A becomes an interface capable of totally reflecting the light propagating in the light guide layer 10A, and the first low refractive index layer. Not affected by the condition above 20A. If the surface of the light guide layer 10A is exposed without the first low refractive index layer 20A, total reflection occurs at the interface between the surface of the light guide layer 10A and air. When the surface of the light guide layer 10A becomes dirty, total reflection may not occur at the portion of the surface to which the dirt is attached. Then, problems such as light leaking from the surface portion to which dirt is attached and / or the distribution of light propagating in the light guide layer 10A changes. That is, the first low refractive index layer 20A can improve the antifouling property of the surface of the light guide member 100A. This effect is the same even if the first hard coat layer 40A is formed on the first low refractive index layer 20A.
  • the hardness H H1 of the first hard coat layer 40A is, for example, preferably H or more, more preferably 2H or more, and even more preferably 4H or more in terms of pencil hardness.
  • the upper limit of the hardness H H1 of the first hard coat layer 40A is not particularly limited, but the pencil hardness is preferably 6 H or less, and more preferably 5 H or less. Pencil hardness is measured by a method according to the "pencil hardness test" of JIS K 5400.
  • the hardness HGP of the light guide layer 10A is, for example, B.
  • the thickness of the first hardcoat layer 40A is preferably 1 ⁇ m or more and 30 ⁇ m or less, more preferably 2 ⁇ m or more and 20 ⁇ m or less, and further preferably 3 ⁇ m or more and 15 ⁇ m or less. When the thickness of the first hard coat layer 40A is in such a range, it has good scratch resistance.
  • the first low refractive index layer 20A may also serve as the first hard coat layer 40A. That is, the first hard coat layer 40A may be omitted.
  • the hardness HL1 of the first low refractive index layer 20A is preferably H or more, more preferably 2H or more, more preferably 4H or more, and the upper limit is not particularly limited. However, it is preferably 6H or less, and more preferably 5H or less.
  • the first hardcoat layer 40A can be made of any suitable material as long as the above characteristics are satisfied.
  • the first hard coat layer 40A is, for example, a cured layer of a thermosetting resin or an ionizing radiation (for example, visible light, ultraviolet light) curable resin.
  • a curable resin include acrylates such as urethane (meth) acrylate, polyester (meth) acrylate, and epoxy (meth) acrylate, silicon resins such as polysiloxane, unsaturated polyesters, and epoxy resins.
  • the first hardcoat layer 40A can be formed, for example, by applying a material containing a solvent and a curable compound to the surface of the target substrate and curing the material.
  • hard coat layer preferably used as the first hard coat layer 40A are described in, for example, Japanese Patent Application Laid-Open No. 2011-237789. All of the disclosures of JP-A-2011-237789 are incorporated herein by reference.
  • the light guide member 100A has a light distribution control structure capable of directing a part of the light propagating in the light guide layer 10A toward at least the first low refractive index layer 20A.
  • the light distribution control structure has a plurality of internal spaces 14A forming an interface for directing light toward the first low refractive index layer 20A by total internal reflection.
  • the internal space 14A may be referred to as an optical cavity.
  • a plurality of internal spaces 14A are formed in the light guide layer 10A.
  • the internal space 14A has a triangular cross-sectional shape (perpendicular to the X direction, parallel to the YZ plane) having an apex angle on the first low refractive index layer 20A side (Z direction, upper side in the figure).
  • the light propagating in the light guide layer 10A in the Y direction is directed to the first low refractive index layer 20A.
  • the cross-sectional shape of the internal space 14A is not limited to this, and may be trapezoidal or the like as long as it has an interface that directs light propagating in the Y direction toward the first low refractive index layer 20A.
  • the light distribution control structure formed in the light guide layer 10A may be referred to as a first light distribution control structure.
  • the light guide member 100A has a first light distribution control structure composed of a plurality of internal spaces 14A in the light guide layer 10A, the visible light transmittance is 60% or more and the haze value is less than 10%. obtain. Further, as will be described later, by adjusting the shape and arrangement of the plurality of internal spaces 14A, it is possible to control the light distribution, the emission efficiency, and the luminance distribution of the emitted light.
  • the plurality of internal spaces 14A are typically voids (air cavities) filled with air. However, the air cavity may be filled with a material having a refractive index lower than that of the light guide layer 10A instead of air.
  • the light guide member 100A is provided with a plurality of internal spaces 14A regularly or randomly along the main surface.
  • the size of the internal space 14A can be appropriately selected within a range that can be installed inside the light guide layer 10A.
  • the light guide layer including the internal space 14A is not particularly limited, and for example, the light guide layer disclosed in Patent Documents 2, 4, and 5 and International Publication No. 2011/127187 can be used. All of the disclosures of these publications are incorporated herein by reference.
  • a first film in which a pattern is not formed and a second film in which a desired fine pattern is formed are bonded together by a lamination method, or an adhesive (including a pressure-sensitive adhesive) is used. ) Is produced by bonding.
  • Laser patterning direct laser imaging, laser drilling, masked or maskless laser or electron beam irradiation is used to form the fine pattern on the second film.
  • the material and the refractive index value may be changed by imparting individual characteristics by printing, inkjet printing, screen printing or the like.
  • Micro / nano-dispensing, dosing, direct "writing”, discrete laser sintering, micro-electric discharge machining (micro-EDM), or micromachining, micromolding, imprinting, embossing and the like can also be used.
  • the plurality of internal spaces 14A having a light distribution control structure are the ratio (occupied) of the area of the plurality of internal spaces 14A to the area of the light guide layer 10A when the light guide layer 10A is viewed in a plan view from the normal direction of the main surface.
  • the area ratio) is preferably 30% or less in order to obtain a good visible light transmittance and a haze value.
  • the occupied area ratio of the internal space 14A may be uniform, and the occupied area ratio increases as the distance increases so that the brightness does not decrease even if the distance from the light source LS increases. May be good. As will be described later with a specific example, it is preferable that the occupied area ratio of the internal space 14A is uniform.
  • the occupied area ratio of the internal space 14A is preferably 1% or more from the viewpoint of obtaining good brightness.
  • the occupied area ratio of the internal space 14A is preferably 1% or more and 30% or less, the upper limit value is more preferably 25% or less, and 10% or less is preferable in order to obtain a high visible light transmittance. % Or less is more preferable.
  • the above-mentioned features of the light distribution control structure are not limited to the plurality of internal spaces 14A formed in the light guide layer 10A exemplified here, and are common to various light distribution control structures described later.
  • the light distribution control structure composed of a plurality of internal spaces for example, the light distribution structure (Light Distribution Structure) described in Patent Document 5 can be used.
  • FIG. 1B shows a schematic cross-sectional view of the lighting device 100B_L according to the embodiment of the present invention.
  • the illuminating device 100B_L differs from the illuminating device 100A_L shown in FIG. 1A in that it has a light guide member 100B that receives the light emitted from the light source LS, propagates it in the Y direction, and emits it in the ⁇ Z direction. ..
  • the light guide layer 10B included in the light guide member 100B has a light distribution control structure capable of directing a part of the light propagating in the light guide layer 10B to at least the side opposite to the first low refractive index layer 20A.
  • the light distribution control structure has a plurality of internal spaces 14B forming an interface that directs light to the side opposite to the first low refractive index layer 20A by total internal reflection.
  • the internal space 14B has a triangular cross-sectional shape (perpendicular to the X direction, on the YZ plane) having an apex angle on the side opposite to the first low refractive index layer 20A (-Z direction, lower side in the figure).
  • the cross-sectional shape of the internal space 14B is not limited to this, and may be trapezoidal or the like as long as it has an interface that directs light propagating in the Y direction to the side opposite to the first low refractive index layer 20A. In this way, the light emission direction can be changed by changing the cross-sectional shape of the internal space 14B (for example, the direction of the apex angle of the triangle).
  • FIG. 2A shows a schematic cross-sectional view of the lighting device 200A_L according to the embodiment of the present invention.
  • the light guide member 200A included in the lighting device 200A_L has a first direction conversion layer 60A formed between the light guide layer 10 and the first low refractive index layer 20A, and has a plurality of light distribution control structures.
  • the internal space 64A of the above is formed in the first direction conversion layer 60A.
  • the first direction conversion layer 60A can direct a part of the light propagating in the light guide layer 10 toward at least the first low refractive index layer 20A.
  • the light distribution control structure formed in the first direction conversion layer 60A may be referred to as a second light distribution control structure.
  • the interior space 64A may have various cross-sectional shapes like the interior space 14A.
  • FIG. 2B shows a schematic cross-sectional view of the lighting device 200B_L according to the embodiment of the present invention.
  • the light guide member 200B included in the lighting device 200B_L has a first direction conversion layer 60B formed between the light guide layer 10 and the first low refractive index layer 20A, and has a plurality of light distribution control structures.
  • the internal space 64B of the above is formed in the first direction conversion layer 60B.
  • the first direction conversion layer 60B can direct a part of the light propagating in the light guide layer 10 to at least the side opposite to the first low refractive index layer 20A (—Z direction).
  • the light distribution control structure formed in the first direction conversion layer 60B may be referred to as a second light distribution control structure.
  • the interior space 64B may have various cross-sectional shapes like the interior space 14B.
  • FIG. 3 shows a schematic cross-sectional view of another lighting device 300A_L according to the embodiment of the present invention.
  • the light guide member 300A included in the lighting device 300A_L has a first direction conversion layer 70A formed between the light guide layer 10 and the first low refractive index layer 20A, and the first direction conversion layer 70A has.
  • a plurality of convex portions 74A form a light distribution control structure.
  • the first direction conversion layer 70A including the plurality of convex portions 74A may be, for example, a known prism sheet.
  • the plurality of convex portions 74A direct the light propagating in the light guide layer 10 in the Y direction toward the first low refractive index layer 20A side (Z direction).
  • the cross-sectional shape of the convex portion 74A is, for example, a triangle, but the cross-sectional shape is not limited to this and may be a trapezoid or the like.
  • the light propagating in the Y direction can be directed to the opposite side (-Z direction) from the first low refractive index layer 20A.
  • a plurality of convex portions may be directly formed on the surface of the light guide layer 10A.
  • the light distribution control structure refers to a plurality of internal spaces (14A) forming an interface for directing light toward the first low refractive index layer by internal total reflection, or light with a first low refractive index layer by internal total reflection.
  • the light distribution control structure refers to a plurality of internal spaces (14A) forming an interface for directing light toward the first low refractive index layer by internal total reflection, or light with a first low refractive index layer by internal total reflection.
  • a plurality of internal spaces (14B) forming an interface facing opposite sides.
  • FIG. 4A shows a cross-sectional view of the light guide member 100A of the lighting device 100A_L shown in FIG. 1A
  • FIG. 4B shows a cross-sectional view of the light guide member 100B of the lighting device 100B_L shown in FIG. 1B
  • FIG. 5A shows a cross-sectional view of the light guide member 200A of the lighting device 200A_L shown in FIG. 2A
  • FIG. 5B shows a cross-sectional view of the light guide member 200B of the lighting device 200B_L shown in FIG. 2B.
  • a plurality of internal spaces 14A formed in the light guide layer 10A form a light distribution control structure
  • a plurality of internal spaces 14B formed in the light guide layer 10B constitute a light distribution control structure.
  • a plurality of internal spaces 64A formed in the first direction conversion layer 60A formed on the light guide layer 10 form a light distribution control structure.
  • a plurality of internal spaces 64B formed in the first direction conversion layer 60B formed on the light guide layer 10 form a light distribution control structure.
  • the refractive index n D1 of the first direction conversion layers 60A and 60B is preferably substantially equal to the refractive index n GP of the light guide layer 10, and the difference in refractive index (absolute value) is preferably 0.15 or less, 0.1. The following is more preferable. Further, the difference between the refractive index n GP of the light guide layer 10 and the refractive index n L1 of the first low refractive index layer 20A (FIGS. 4A and 4B), and the refractive indexes n D1 and the first of the first direction conversion layer 60A. The difference between the low refractive index layer 20A and the refractive index n L1 (FIGS. 5A and 5B) is preferably 0.2 or more, and more preferably 0.25 or more, respectively. By adjusting this difference, the critical angle at which total reflection occurs can be controlled.
  • the light propagating in the light guide layers 10A, 10B or the first direction conversion layers 60A, 60B is transmitted by the internal spaces 14A, 14B, 64A, 64B.
  • the light emission direction is directed to the Z direction (internal space 14A, 64A) or the ⁇ Z direction (internal space 14B, 64B).
  • the first direction conversion layer 70A made of, for example, a known prism sheet shown in FIG. 3, a part of the light propagating in the first direction conversion layer 70A is the first low refractive index layer 20A.
  • the light distribution control structure having the internal spaces 14A, 14B, 64A, 64B has higher light utilization efficiency than the light distribution control structure such as a known prism sheet. Further, the light distribution is controlled by adjusting the cross-sectional shape (for example, the angles ⁇ a and ⁇ b of the inclined surface in FIG. 15), the size, the arrangement density, and the distribution of the internal spaces 14A, 14B, 64A, and 64B. Can be done.
  • visible light transmittance of the light guide member 100A, 100B, 200A or 200B is transmitted by adjusting the cross-sectional shape, size, arrangement density and distribution of the plurality of internal spaces 14A, 14B, 64A and 64B of the light distribution control structure. You can control the rate and haze value.
  • the visible light transmittances of the light guide members 100A, 100B, 200A and 200B are 60% or more, preferably 65% or more, 70% or more, 75% or more or 80% or more, and the haze value is less than 10%. Yes, preferably less than 9%, less than 8%, less than 7%, less than 6%, less than 5%, less than 4%, less than 3%.
  • the haze value is measured using a haze meter as described in the following examples.
  • the plurality of internal spaces 14A, 14B, 64A, 64B of the light distribution control structure are the light guide layers 10A, 10B, or 10 when the light guide layers 10A, 10B, or 10 are viewed in a plan view from the normal direction of the main surface. It is preferable that the ratio (occupied area ratio) of the areas of the plurality of internal spaces 14A, 14B, 64A, 64B to the area is 30% or less in order to obtain good visible light transmittance and haze value.
  • the occupied area ratio of the internal spaces 14A, 14B, 64A, and 64B may be uniform, and the occupied area ratio increases as the distance increases so that the brightness does not decrease even if the distance from the light source LS increases. May be increased.
  • the occupied area ratios of the internal spaces 14A, 14B, 64A, and 64B are uniform.
  • the occupied area ratio of the internal spaces 14A, 14B, 64A, and 64B is preferably 1% or more from the viewpoint of obtaining good brightness.
  • the occupied area ratio of the internal spaces 14A, 14B, 64A, 64B is preferably 1% or more and 30% or less, and the upper limit is more preferably 25% or less. In order to obtain a high visible light transmittance, 10 % Or less is preferable, and 5% or less is more preferable.
  • the size and density of the internal spaces 14A, 14B, 64A, 64B affect the haze value.
  • the size of the internal spaces 14A, 14B, 64A, 64B (length L, width W: see FIGS. 14A and 14B) is preferably, for example, a length L of 10 ⁇ m or more and 500 ⁇ m or less, and a width W of 1 ⁇ m or more. It is preferably 100 ⁇ m or less. Further, from the viewpoint of light extraction efficiency, the height H is preferably 1 ⁇ m or more and 100 ⁇ m or less.
  • the plurality of internal spaces 14A, 14B, 64A, and 64B are preferably distributed uniformly in a discrete manner, and are preferably arranged periodically, for example, as shown in FIG. 14A.
  • the pitch Px is preferably, for example, 10 ⁇ m or more and 500 ⁇ m or less
  • the pitch Py is preferably, for example, 10 ⁇ m or more and 500 ⁇ m or less.
  • a light distribution control structure (third light distribution control) is provided by a plurality of internal spaces 64A formed in the second direction conversion layer 60A provided on the second main surface of the light guide layer 10. It is sometimes called a structure.)
  • the second direction conversion layer 60A having the internal space 64A directs a part of the light propagating in the light guide layer 10 toward at least the first low refractive index layer 20A side (Z direction).
  • a light distribution control structure (third light distribution control) is provided by a plurality of internal spaces 64B formed in the second direction conversion layer 60B provided on the second main surface of the light guide layer 10. It is sometimes called a structure.)
  • the second direction conversion layer 60B having the internal space 64B directs a part of the light propagating in the light guide layer 10 to at least the side opposite to the first low refractive index layer 20A (-Z direction).
  • the light guide member 220A shown in FIG. 7A further has a first optical coupling layer 80 on the light guide member 200A shown in FIG. 5A.
  • the first optical coupling layer 80 is provided between the light guide layer 10 and the first direction conversion layer 60A.
  • the first optical coupling layer 80 has a plurality of first low refractive index regions 80a having a refractive index n C1 smaller than the refractive index n GP of the light guide layer 10.
  • the first light coupling layer 80 composed of the plurality of first low refractive index regions 80a more selectively and efficiently guides the light propagating through the light guide layer 10 to the first direction conversion layer 60A.
  • the refractive index n C1 of the first low refractive index region 80a is preferably 1.05 or more and 1.30 or less, and more preferably 1.05 or more and 1.25 or less.
  • the light guide member 220B shown in FIG. 7B further has a first optical coupling layer 80 on the light guide member 200B shown in FIG. 5B.
  • the first optical coupling layer 80 is provided between the light guide layer 10 and the first direction conversion layer 60B.
  • the first optical coupling layer 80 has a plurality of first low refractive index regions 80a having a refractive index n C1 smaller than the refractive index n GP of the light guide layer 10.
  • the first light coupling layer 80 composed of the plurality of first low refractive index regions 80a more selectively and efficiently guides the light propagating through the light guide layer 10 to the first direction conversion layer 60B.
  • the light guide member 100AD shown in FIG. 8 has a refraction smaller than the refractive index nGP of the light guide layer 10A arranged on the second main surface side of the light guide layer 10A in addition to the light guide member 100A shown in FIG. 1A.
  • a second low refraction layer 20B having a factor n L2 and a hardness H H2 higher than the hardness H GP of the light guide layer 10A arranged on the opposite side of the light guide layer 10A of the second low refraction layer 20B. It further has a second hard coat layer 40B having.
  • the second low refractive index layer 20B and the second hard coat layer 40B may have the same characteristics as the first low refractive index layer 20A and the first hard coat layer 40A, respectively.
  • the above-mentioned effect can be obtained on the second main surface side as well.
  • the light guide member 100AD has a light guide layer 10A in which a plurality of internal spaces 14A are formed, light is emitted in the Z direction.
  • the light guide layer 10B having a plurality of internal spaces 14B in place of the light guide layer 10A of the light guide member 100AD, a light guide member that emits light in the ⁇ Z direction can be obtained. ..
  • the light guide member 210AD shown in FIG. 9 has a refraction smaller than the refractive index nGP of the light guide layer 10 arranged on the second main surface side of the light guide layer 10 in addition to the light guide member 210A shown in FIG. 6A.
  • a second low refractive index layer 20B having a rate n L2 and a second hard coat layer 40B having a pencil hardness of H or more arranged on the opposite side of the light guide layer 10 of the second low refractive index layer 20B are further added.
  • the second direction conversion layer 60B having a plurality of internal spaces 14B in place of the second direction conversion layer 60A of the light guide member 210AD, the light guide that emits light in the ⁇ Z direction is emitted. A member is obtained.
  • the light guide member 200AD shown in FIG. 10 has a refraction smaller than the refractive index nGP of the light guide layer 10 arranged on the second main surface side of the light guide layer 10 in addition to the light guide member 200A shown in FIG. 5A.
  • a second low refraction layer 20B having a factor n L2 and a hardness H H2 higher than the hardness H GP of the light guide layer 10 arranged on the opposite side of the light guide layer 10 of the second low refraction layer 20B. It further has a second hard coat layer 40B having. Since the light guide member 200AD has a second direction conversion layer 60A in which a plurality of internal spaces 64A are formed, light is emitted in the Z direction.
  • the second direction conversion layer 60B having a plurality of internal spaces 64B (see, for example, FIG. 5B) in place of the second direction conversion layer 60A of the light guide member 200AD, the light guide that emits light in the ⁇ Z direction is emitted. A member is obtained.
  • the light guide member 220AD shown in FIG. 11 has a refraction smaller than the refractive index nGP of the light guide layer 10 arranged on the second main surface side of the light guide layer 10 in addition to the light guide member 220A shown in FIG. 7A.
  • a second low refraction layer 20B having a factor n L2 and a hardness H H2 higher than the hardness H GP of the light guide layer 10 arranged on the opposite side of the light guide layer 10 of the second low refraction layer 20B. It further has a second hard coat layer 40B having. Since the light guide member 220AD has a second direction conversion layer 60A in which a plurality of internal spaces 64A are formed, light is emitted in the Z direction.
  • the second direction conversion layer 60B having a plurality of internal spaces 64B (see, for example, FIG. 7B) in place of the second direction conversion layer 60A of the light guide member 220AD, the light guide that emits light in the ⁇ Z direction is emitted. A member is obtained.
  • the light guide member according to the embodiment of the present invention can be variously modified.
  • an antiglare hardcoat layer having an uneven surface may be obtained by mixing particles with the material for forming the first hardcoat layer and / or the second hardcoat layer. Further, this makes it possible to control the haze value of the light guide member.
  • particles include inorganic particles and organic particles.
  • the inorganic particles are not particularly limited, and examples thereof include silicon oxide particles, titanium oxide particles, aluminum oxide particles, zinc oxide particles, tin oxide particles, calcium carbonate particles, barium sulfate particles, talc particles, kaolin particles, and calcium sulfate particles. Be done.
  • the organic particles are not particularly limited, and are, for example, polymethylmethacrylate resin powder (PMMA particles), silicone resin powder, polystyrene resin powder, polycarbonate resin powder, acrylic styrene resin powder, benzoguanamine resin powder, melamine resin powder, and polyolefin resin. Examples thereof include powder, polyester resin powder, polyamide resin powder, polyimide resin powder, and polyfluoroethylene resin powder.
  • PMMA particles polymethylmethacrylate resin powder
  • silicone resin powder silicone resin powder
  • polystyrene resin powder polycarbonate resin powder
  • acrylic styrene resin powder acrylic styrene resin powder
  • benzoguanamine resin powder benzoguanamine resin powder
  • melamine resin powder melamine resin powder
  • polyolefin resin examples thereof include powder, polyester resin powder, polyamide resin powder, polyimide resin powder, and polyfluoroethylene resin powder.
  • One type of these inorganic particles and organic particles may be used alone, or two or more types may be used
  • the mass average particle size of the particles mixed in the material for forming the first hard coat layer and / or the second hard coat layer is in the range of 0.5 ⁇ m or more and 8.0 ⁇ m or less from the viewpoint of imparting good antiglare properties. It is preferable to have.
  • the mass average particle size of the particles is more preferably in the range of 2.0 ⁇ m or more and 6.0 ⁇ m or less, and further preferably in the range of 3.0 ⁇ m or more and 6.0 ⁇ m or less. Further, it is also preferable that the mass average particle size of the particles is in the range of 30% or more and 80% or less of the thickness of the first hard coat layer and / or the second hard coat layer.
  • the mass average particle size of the particles can be measured by the Coulter counter method.
  • the electricity of the electrolytic solution corresponding to the volume of the particles when the particles pass through the pores is calculated.
  • the number and volume of particles are measured, and the mass average particle size is calculated.
  • the shape of the particles is not particularly limited, and may be, for example, a bead-shaped substantially spherical shape or an irregular shape such as powder, but a substantially spherical shape is preferable, and the aspect ratio is more preferable. It is a substantially spherical fine particle of 1.5 or less, and most preferably a spherical particle.
  • the mixing ratio of the particles is preferably in the range of 5 parts by mass or more and 20 parts by mass or less, and more preferably in the range of 5 parts by mass or more and 17 parts by mass or less with respect to 100 parts by mass of the hard coat layer forming material.
  • the antiglare hard coat layer described in Japanese Patent Application Laid-Open No. 2013-178534 can be preferably used. All of the disclosures of JP2013-178534 are incorporated herein by reference.
  • an antifouling layer having water repellency and / or oil repellency (hydrophilicity) may be further provided on one or both main surfaces.
  • the configuration of the antifouling layer is appropriately selected according to the intended use.
  • the antifouling layer is formed using a known material.
  • a silicone-based compound or a fluorine-containing compound is preferable.
  • the fluorine-containing compound has excellent water repellency and can exhibit high antifouling property, and a fluorine-based polymer containing a perfluoropolyether skeleton is particularly preferable.
  • perfluoropolyether having a main chain structure capable of being rigidly paralleled is particularly preferable.
  • perfluoroalkylene oxide which may have a branch having 1 to 4 carbon atoms is preferable, and for example, perfluoromethylene oxide, (-CF 2 O-).
  • perfluoromethylene oxide (-CF 2 O-).
  • Perfluoroethylene oxide (-CF 2 CF 2 O-)
  • perfluoropropylene oxide -CF 2 CF 2 CF 2 O-
  • perfluoroisopropylene oxide -CF (CF 3 ) CF 2 O-
  • the thickness of the antifouling layer is preferably 3 nm or more and 15 nm or less, and more preferably 3 nm or more and 10 nm or less.
  • the antifouling layer may be formed by a physical vapor deposition method such as thin film deposition or sputtering, a chemical vapor deposition method, a reverse coating method, a die coating method, a wet coating method such as a gravure coating method, etc., depending on the material to be formed. Can be used.
  • the antifouling layer described in Japanese Patent Application Laid-Open No. 2020-067582 can be preferably used. All of the disclosures of JP-A-2020-067582 are incorporated herein by reference.
  • An antireflection layer may be formed on the light guide layer side of the antifouling layer.
  • the antireflection layer include a multilayer laminate composed of a plurality of thin films having different refractive indexes.
  • the material of the thin film constituting the antireflection layer include metal oxides, nitrides, and fluorides.
  • the antireflection layer is preferably an alternating laminate of high refractive index layers and low refractive index layers.
  • the high refractive index layer has, for example, a refractive index of 1.9 or more, preferably 2.0 or more.
  • the high refractive index material include titanium oxide, niobium oxide, zirconium oxide, tantalum oxide, zinc oxide, indium oxide, indium tin oxide (ITO), antimony-doped tin oxide (ATO) and the like. Of these, titanium oxide or niobium oxide is preferable.
  • the low refractive index layer has, for example, a refractive index of 1.6 or less, preferably 1.5 or less.
  • the low refractive index material examples include silicon oxide, titanium nitride, magnesium fluoride, barium fluoride, calcium fluoride, hafnium fluoride, lanthanum fluoride and the like. Of these, silicon oxide is preferable. In particular, it is preferable that the niobium oxide (Nb 2 O 5 ) thin film as the high refractive index layer and the silicon oxide (SiO 2 ) thin film as the low refractive index layer are alternately laminated. In addition to the low refractive index layer and the high refractive index layer, a medium refractive index layer having a refractive index of about 1.6 to 1.9 may be provided.
  • the film thickness of the high refractive index layer and the low refractive index layer is about 5 nm or more and 200 nm or less, and preferably about 15 nm or more and 150 nm or less, respectively.
  • the film thickness of each layer may be designed so that the reflectance of visible light becomes small according to the refractive index, the laminated structure, and the like.
  • the antireflection layer is preferably laminated on the hard coat layer via the primer layer.
  • the materials constituting the primer layer include, for example, metals such as silicon, nickel, chromium, tin, gold, silver, platinum, zinc, titanium, tungsten, aluminum, zirconium, and palladium; alloys of these metals; Oxides, fluorides, sulfides or nitrides; etc. Of these, oxides are preferable as the material of the primer layer, and silicon oxide is particularly preferable.
  • the primer layer is preferably an inorganic oxide layer having a smaller amount of oxygen than the stoichiometric composition.
  • silicon oxide represented by the composition formula SiOx (0.5 ⁇ x ⁇ 2) is preferable.
  • the thickness of the primer layer is, for example, about 1 nm or more and 20 nm or less, preferably 3 nm or more and 15 nm or less.
  • the method for forming the thin film constituting the antireflection layer is not particularly limited, and either a wet coating method or a dry coating method may be used.
  • a dry coating method such as vacuum deposition, CVD, sputtering, or electron beam deposition is preferable because a thin film having a uniform film thickness can be formed.
  • the sputtering method is preferable because it has excellent film thickness uniformity and easily forms a dense film.
  • the antireflection layer described in JP-A-2020-52221 can be preferably used. All of the disclosures of JP-A-2020-52221 are incorporated herein by reference.
  • the light guide members 200AD_a and 220AD_a having the cross-sectional structures shown in FIGS. 12A and 13A were produced.
  • the light guide member 200AD_a shown in FIG. 12A substantially corresponds to the light guide member 200AD shown in FIG. 10
  • the light guide member 220AD_a shown in FIG. 13A substantially corresponds to the light guide member 220AD shown in FIG. do.
  • the light guide member 200AD_a shown in FIG. 12A has the base material layers 30A and 30B and the adhesive layers 52, 54 and 56 in addition to the light guide member 200AD shown in FIG.
  • the first direction conversion layer 60A in the light guide member 200AD is composed of the shaping film 62 and the adhesive layer 54 (or the adhesive layer 52) shown in FIGS. 14A and 14B in the light guide member 200AD_a. That is, by arranging the shaping film 62A so that the recess 64 of the shaping film 62 shown in FIG. 14B forms the internal space 64A by the adhesive layer 54, the structure substantially corresponds to the first direction conversion layer 60A. Is obtained.
  • the light guide member 200BD_a shown in FIG. 12B is obtained.
  • the base material layers 30A, 30B, and 30C play a role of supporting, for example, the first low refractive index layer 20A, the second low refractive index layer 20B, the first hard coat layer 40A, or the second hard coat layer 40B. ..
  • the arrangement relationship between the base material layers 30A, 30B, and 30C and the first low refractive index layer 20A, the second low refractive index layer 20B, the first hard coat layer 40A, and the second hard coat layer 40B can be appropriately changed.
  • the first low refractive index layer 20A is supported by the base material layer 30A, but in the light guide member 200BD_a, the first low refractive index layer 20A is supported by the base material layer 30B. There is.
  • the light guide member 220AD_a shown in FIG. 13A has the base material layers 30A, 30B, 30C and the adhesive layers 52, 54, 56, 58 in addition to the light guide member 220AD shown in FIG.
  • the first direction conversion layer 60A in the light guide member 220AD is composed of the shaping film 62 and the adhesive layer 54 (or the adhesive layer 52) shown in FIGS. 14A and 14B in the light guide member 220AD_a. That is, by arranging the shaping film 62A so that the recess 64 of the shaping film 62 shown in FIG. 14B forms the internal space 64A by the adhesive layer 54, the structure substantially corresponds to the first direction conversion layer 60A. Is obtained.
  • the shaping film 62A is placed on the base material layer 30B so that the recess 64 of the shaping film 62 shown in FIG. 14B forms the internal space 64A by the adhesive layer 54. These may be arranged to obtain a structure substantially corresponding to the first direction conversion layer 60A. Similarly, by arranging the shaping film 62B so that the recess 64 of the shaping film 62 shown in FIG. 14B forms the internal space 64B by the adhesive layer 54, the light guide member 220BD_a shown in FIG. 13C is obtained. Be done.
  • adhesive is used in the sense of including a pressure-sensitive adhesive (also called an adhesive).
  • specific examples of the adhesive include rubber-based adhesives, acrylic-based adhesives, silicone-based adhesives, epoxy-based adhesives, cellulose-based adhesives, and polyester-based adhesives. These adhesives may be used alone or in combination of two or more.
  • the low refractive index layer 20A and 20B and the low refractive index region 80a are formed on the base material layer by using the base material layer (for example, an acrylic film).
  • the base material layer for example, an acrylic film
  • a configuration in which a laminated body laminated on a plurality of base material layers is bonded with an adhesive layer is adopted.
  • the configuration corresponding to the first direction conversion layer 60A (FIGS. 10 and 11) having a plurality of internal spaces 64A was composed of the shaping film 62 having the recesses 64 and the adhesive layer 54.
  • the thicknesses of the base material layers 30A, 30B, and 30C are independently, for example, 1 ⁇ m or more and 1000 ⁇ m or less, preferably 10 ⁇ m or more and 100 ⁇ m or less, and more preferably 20 ⁇ m or more and 80 ⁇ m.
  • the refractive index of the substrate layers 30A, 30B, and 30C is preferably 1.40 or more and 1.70 or less, and more preferably 1.43 or more and 1.65 or less, respectively.
  • the thicknesses of the adhesive layers 52, 54, 56, and 58 are independently, for example, 0.1 ⁇ m or more and 100 ⁇ m or less, preferably 0.3 ⁇ m or more and 100 ⁇ m or less, and more preferably 0.5 ⁇ m or more and 50 ⁇ m or less.
  • the refractive indexes of the adhesive layers 52, 54, 56, and 58 are independently, preferably 1.42 or more and 1.60 or less, and more preferably 1.47 or more and 1.58 or less.
  • the refractive index of the adhesive layers 52, 54, 56, 58 is preferably close to the refractive index of the light guide layer 10 or the shaped film 62 with which the adhesive layers 52, 54, 56, 58 are in contact, and the absolute value of the difference in refractive index is 0.2 or less. Is preferable.
  • the measurement method for each characteristic is as follows.
  • the sample is set in an ellipsometer (manufactured by JA Woollam Japan: trade name VASE), the refractive index is measured under the conditions of a wavelength of 550 nm and an incident angle of 50 degrees or more and 80 degrees or less, and the average value is refracted. It was a rate. Refractive index in the present specification is based on this provision unless otherwise specified.
  • the visible light transmittance of the sample was taken as the average value of the visible light transmittance at each wavelength when measured at a measurement wavelength of 380 nm or more and 780 nm or less using a spectrophotometer.
  • the visible light transmittance was also measured using the above haze meter.
  • a concavo-convex shaped film was produced according to the method described in Japanese Patent Publication No. 2013-524288. Specifically, the surface of a polymethyl methacrylate (PMMA) film is coated with lacquer (Fine Cure RM-64 manufactured by Sanyo Kasei Kogyo Co., Ltd.), an optical pattern is embossed on the surface of the film containing the lacquer, and then the lacquer is applied. The desired unevenness shaping film was produced by curing. The total thickness of the uneven shaping film was 130 ⁇ m, and the haze was 0.8%.
  • PMMA polymethyl methacrylate
  • lacquer Feine Cure RM-64 manufactured by Sanyo Kasei Kogyo Co., Ltd.
  • FIG. 14A shows a plan view of a part of the manufactured uneven shape shaping film as viewed from the uneven surface side.
  • 14B-14B'cross-sectional view of the uneven shaping film of FIG. 14A is shown in FIG. 14B.
  • a plurality of recesses having a length L of 80 ⁇ m, a width W of 14 ⁇ m, and a depth H of 10 ⁇ m and having a triangular cross section were arranged at intervals of a width E (155 ⁇ m) in the X direction. Further, patterns of such recesses are arranged at intervals of a width D (100 ⁇ m) in the Y direction.
  • the density of the recesses on the surface of the uneven shaping film was 3612 pieces / cm 2 .
  • Both ⁇ a and ⁇ b in FIG. 15 were 41 °, and the occupied area ratio of the concave portion when the film was viewed in a plan view from the uneven surface side was 4.05%.
  • MTMS methyltrimethoxysilane
  • DMSO dimethyl sulfoxide
  • the gelled silicon compound aged as described above was crushed into granules having a size of several mm to several cm using a spatula. Then, 40 g of isopropyl alcohol (IPA) was added to the mixture C, and the mixture was lightly stirred and then allowed to stand at room temperature for 6 hours to decant the solvent and catalyst in the gel. The same decantation treatment was carried out three times to replace the solvent, and a mixed solution D was obtained. Next, the gelled silicon compound in the mixed solution D was pulverized (high pressure medialess pulverization).
  • IPA isopropyl alcohol
  • a homogenizer manufactured by SMTE, trade name “UH-50” was used, and 1.85 g of the gel compound and IPA in the mixed solution D were placed in a 5 cc screw bottle. After weighing 15 g, pulverization was performed for 2 minutes under the conditions of 50 W and 20 kHz.
  • the gelled silicon compound in the mixed solution D was pulverized, so that the mixed solution D'became a sol solution of the pulverized product.
  • the volume average particle size showing the variation in the particle size of the pulverized material contained in the mixture D' was confirmed by a dynamic light scattering type nanotrack particle size analyzer (UPA-EX150 type manufactured by Nikkiso Co., Ltd.) and found to be 0.50 to. It was 0.70.
  • An ultraviolet curable resin monomer or oligomer containing urethane acrylate as a main component is dissolved in butyl acetate in a resin solution (manufactured by DIC, trade name "Unidic 17-806", solid content concentration 80%) in the solution.
  • a resin solution manufactured by DIC, trade name "Unidic 17-806", solid content concentration 80%
  • a photopolymerization initiator manufactured by BASF, product name "IRGACURE906”
  • a leveling agent manufactured by DIC, product name "GRANDIC PC4100
  • butyl acetate was added to the solution so that the solid content concentration in the solution was 75%.
  • cyclopentanone was added to the solution so that the solid content concentration in the solution was 50%.
  • an HC layer coating liquid for forming the HC layer was prepared.
  • adhesive layer A (adhesive layer 54)
  • the adhesive A layer was formed by the following procedure. The adhesive A layer can be adhered without filling the recesses on the surface.
  • Adhesive A Layer An adhesive layer after drying is applied to one side of a 38 ⁇ m polyethylene terephthalate (PET) film (trade name “MRF38”, manufactured by Mitsubishi Chemical Corporation) in which the adhesive A solution is subjected to silicone peeling treatment. was applied to a thickness of 1 ⁇ m and dried at 150 ° C. for 3 minutes to form an adhesive A layer.
  • the refractive index was 1.47.
  • Adhesive B Layer The adhesive B solution obtained above is uniformly applied to the surface of the release base material (MRF38CK manufactured by Mitsubishi Resin Co., Ltd.) of the PET film treated with the silicone-based release agent with an applicator.
  • the adhesive B layer was formed by coating and drying in an air circulation type constant temperature oven at 155 ° C. for 2 minutes.
  • the refractive index of the adhesive B layer was 1.47, and the thickness was 10 ⁇ m.
  • the adhesive A layer formed in Production Example 4 was bonded to the uneven surface of the uneven shaping film of Production Example 1 using a hand roller to obtain a laminated body of the uneven shaping film / adhesive A layer / PET film. ..
  • the PET film of the laminated body is peeled off and bonded to an acrylic plate (manufactured by Mitsubishi Chemical Corporation: trade name Acrylite) having a thickness of 5 mm, a width of 120 mm, and a length of 700 mm using a hand roller to form an uneven shape film.
  • a laminated body of / adhesive A layer / light guide layer was obtained.
  • the HC layer coating solution prepared in Production Example 3 is applied to one side of an acrylic film (base material layer) having a refractive index of 1.51 and a thickness of 40 ⁇ m with a wire bar, dried at 80 ° C. for 1 minute, and then wavelength.
  • UV irradiation was performed with a light irradiation amount (energy) of 300 mJ / cm 2 using light of 360 nm to obtain an HC layer / acrylic film laminate.
  • the thickness of the HC layer was 5 ⁇ m.
  • the refractive index of the HC layer was 1.52.
  • the low refractive index layer coating solution prepared in Production Example 2 is applied to the acrylic film surface of the HC layer / acrylic film laminate, treated at a temperature of 100 ° C. for 1 minute, dried, and further dried.
  • the layer was UV-irradiated with light having a wavelength of 360 nm at a light irradiation amount (energy) of 300 mJ / cm 2 , to obtain a laminate of an HC layer / acrylic film / low refractive index layer.
  • the refractive index of the low refractive index layer was 1.15 (thickness 1 ⁇ m).
  • the adhesive B layer produced in Production Example 5 is attached to the low refractive index layer surface of the laminated body of the HC layer / acrylic film / low refractive index layer prepared as described above, and the HC layer / acrylic film / low refractive index is applied.
  • a laminate of layer / adhesive B layer / PET film was obtained. I prepared two of them.
  • the PET film of each laminated body was peeled off and attached to both sides of the laminated body of the uneven shape shaping film / adhesive
  • Example 2 (1) Preparation of light guide member The light guide member 220AD_a shown in FIG. 13A was manufactured.
  • a mask plate having a hole in a predetermined region was placed on one side of an acrylic film having a refractive index of 1.51 and a thickness of 40 ⁇ m, and the coating liquid for forming a low refractive index layer of Production Example 2 was applied.
  • the low refractive index region 80a becomes dense on the side close to the light source (almost the low refractive index region 80a exists), and becomes sparse (the region without the low refractive index region 800a) as the distance from the light source increases. I used a mask plate that would be (mostly).
  • the coated layer after drying was irradiated with UV at a light irradiation amount (energy) of 300 mJ / cm 2 using light having a wavelength of 360 nm, and the mask plate was removed to form a low refractive index region 80a.
  • a plan view of the formed low refractive index region 80a is shown in FIG.
  • the dots in the figure indicate the portion coated with the coating liquid for forming a low refractive index (the pattern layer portion also exists in the portion surrounded by the broken line, but is omitted in the figure).
  • the size of the dots is, for example, 1 ⁇ m or more and 1000 ⁇ m or less.
  • An adhesive A solution was applied to the pattern layer to obtain a laminate of an acrylic film / a pattern layer of a low refractive index material / an adhesive A layer. Further, the uneven surface of the unevenness shaping film was bonded to the adhesive A layer of the laminated body to obtain a laminated body of an acrylic film / a pattern layer of a low refractive index material / an adhesive A layer / an unevenness shaping film.
  • the adhesive B layer of the laminated body of the agent B layer is laminated, and the HC layer / acrylic film / low refractive index layer / adhesive B layer / uneven shaping film / adhesive A layer / pattern layer of low refractive index material / acrylic A laminate of films was obtained.
  • the laminate and the light guide layer are bonded to each other so that the light guide layer and the acrylic film face each other via the adhesive B layer, and the HC layer / acrylic film / low refractive index layer / adhesive B layer / unevenness is formed.
  • a laminate of a shaping film / adhesive A layer / pattern layer of low refractive index material / acrylic film / adhesive B layer / light guide layer was obtained.
  • the adhesive B layer of the laminated body of the HC layer / acrylic film / low refractive index layer / adhesive B layer manufactured in Example 1 is bonded to the light guide layer surface of the laminated body to prepare a target light guide member. did.
  • FIG. 17 shows a schematic diagram of the light guide member 910A of Comparative Example 1.
  • the adhesive B layer of Production Example 5 was attached to the surface opposite to the uneven surface of the unevenness shaping film of Production Example 1. Then, the PET film of the adhesive B layer was peeled off and bonded to the light guide layer to prepare a target light guide member.
  • FIG. 18 shows a schematic diagram of the light guide member 920A of Comparative Example 2.
  • the unevenness-forming film surface of the laminated body of the unevenness-forming film / adhesive A layer / light guide layer produced in Example 1 and the adhesive B layer of the laminated body of the HC layer / acrylic film / adhesive B layer were formed.
  • the desired light guide member was manufactured by bonding them together.
  • FIG. 19A shows a plan view of a part of the uneven shaping film 92 used as seen from the uneven surface side. Further, a cross-sectional view taken along the line 19B-19B'in FIG. 19A is shown in FIG. 19B.
  • the ratio of the area of the concave portion 94 to the entire area of the uneven shaping film 92 was 61%.
  • a black tape (vinyl tape manufactured by Nitto Denko Corporation) with a width of 10 mm and a length of 120 mm is attached to the center of the light emitting surface of the light guide member to measure the brightness at a position 30 mm from the light source and the brightness at a position 670 mm away from the light source. It was measured. The brightness was measured with a two-dimensional luminance meter (manufactured by TOPCOM: trade name SR-5000HS). The ratio of the brightness at the position 670 mm away from the light source (far end) was measured, assuming that the brightness at the position 30 mm from the light source (near end) was 100%. The results are shown in Table 1.
  • Example 1 since the low refractive index layers are present on both sides of the light guide layer, it can be seen that the light is guided without loss without being affected by dirt. Furthermore, it can be seen that even if a medium that absorbs light exists in the middle of the waveguide, the light propagates at the entrance and exit without loss.
  • Example 2 it can be seen that the low refractive index layer is patterned so that light can be extracted more uniformly at the entrance and the exit.
  • the above-mentioned sheet-shaped (or film-shaped) transparent lighting device is used for building members.
  • the lighting device itself can be used as a building member or can be used as a part of the building member.
  • Building materials include exterior and interior use. For example, it can be used as a window member, a wall member, a partition, a ceiling (skylight) member, a staircase member, a handrail member, and a floor member.
  • it can be used as a lighting device for streets, crime prevention, emergencies, gardens, pools / ponds (underwater), warehouses, factories, and under eaves (outdoors). Both are used as transparent boards when not in use.
  • the color or lighting area may change over time.
  • the type (color), number, and arrangement of LEDs used as a light source can vary.
  • the shape, size, and thickness of the light guide layer can also vary.
  • a plurality of sheet-shaped lighting devices it can be used as a larger lighting device and as a larger building member. Further, a plurality of sheet-shaped lighting devices can be stacked and used.
  • a lighting device having a higher transmittance and a smaller haze value than the conventional one and a light guide member for the lighting device are provided, and lighting rich in design or entertainment is provided.
  • a building member capable of lighting which is rich in design or entertainment.
  • 10, 10A, 10B Light guide layer 14, 14A, 14B, 64A, 64B: Internal space 20A, 20B: Low refractive index layer 30A, 30B, 30C: Base material layer 40A, 40B: Hard coat layer 52, 54, 56 , 58
  • Adhesive layer 100A, 100B, 200A, 200B Light guide member 100A_L, 200A_L: Lighting device

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Planar Illumination Modules (AREA)

Abstract

照明装置用導光部材は、導光層であって、第1主面と、第1主面とは反対側の第2主面と、光源から出射された光を受ける受光側面とを有する導光層と、導光層の第1主面側に配置され、導光層の屈折率nGPよりも小さい屈折率nL1を有する第1低屈折率層(20A)と、導光層内を伝搬する光の一部を少なくとも第1低屈折率層側または第1低屈折率層とは反対側に向けることができる配光制御構造(14A、14B)と有し、可視光透過率が60%以上であり、ヘイズ値が10%未満である。

Description

照明装置用導光部材、照明装置および建築部材
 本発明は、照明装置用導光部材、照明装置および建築部材に関し、特に、シート状またはフィルム状の透明な照明装置用導光部材、およびそれを備える照明装置ならびに建築部材に関する。なお、建築部材は、外装用および内装用を含む。
 近年、LED照明に代表される次世代半導体照明(Solid State Lighting:SSL)の利用が進んでいる。例えば、アーキテイメント照明(Architainment Lighting)と呼ばれる、例えば建築部材と照明装置とを組み合わせることによって、意匠性または娯楽性に富む照明が提案されつつある。
 例えば、特許文献1には、板状の透明基材の端部に光源を有し、夜間等の照明時には光源から出射され透明基材内を導光した光を透明基材の片面から出射する照明装置として機能し、昼間等の非照明時には透明窓として機能する、片面照明兼用窓が開示されている。
 特許文献1に記載の片面照明兼用窓という照明装置は、透明基材の一方の主面に、複数の反射性凹面(または凸面)が形成されており、透明基材内を導光し、複数の反射性凹面(または凸面)によって反射された光が他方の主面から出射される。
 このような複数の反射性凹面(または凸面)は、汚れやほこりが付着しやすい、または傷付きやすい。また、複数の反射性凹面(または凸面)による配光制御(照明光の配光方向の分布の制御)が難しい、あるいは、可視光に対する透過率(以下、「可視光透過率」という。)が十分に得られず、例えば、すりガラス状に白濁して見える等の課題を有し得る。
 一方、特許文献2には、光学媒体層(例えば、ポスター、反射型ディスプレイ、電子ペーパー等の画像表示物、あるいは透明窓または壁)と、光学媒体層に光を照射する透明照明装置とを有する光学装置が開示されている。透明照明装置は、導光層と、導光層の観察者側に配置された低屈折率層と、導光層と光学媒体層との間に設けられた光学機能層(低屈折率層、または複数のエアキャビティを有する層)とを有する。特許文献2に記載の透明な照明装置は、最外面に反射性凹面(または凸面)を有しない。また、観察者側に配置された低屈折率層を有するので、その表面に汚れが付着しても、そこから光が漏れることがない。また、特許文献3には、導光層と、低屈折率層と、基材層とを含むLED照明器具が開示されている。特許文献3の照明器具の表面に汚れが付着しても、光の導波効率は低下しない。
 また、特許文献4および5には、複数のエアキャビティの界面による全反射を利用する配光構造が開示されている。特許文献4および5に開示されている配光構造を用いると、配光制御の自由度および精度を向上させることができる。
 特許文献2~5の開示内容のすべてを参照により本明細書に援用する。
国際公開第2019/102959号 国際公開第2019/182091号 国際公開第2019/146628号 国際公開第2011/124765号 国際公開第2019/087118号 特開2001-215312号公報
 従来の透明な照明装置は、例えば、窓や壁に用いることができるものの、透過率が低い、あるいは、白濁する(ヘイズ値が大きい)などの理由から、用途に制限があった。従来技術として導光板にドット状のパターンを形成して光を取り出す方式が挙げられるが、本方式は法線方向に対しては透明性が十分ではない。さらには、表面が汚れやすい、傷付きやすい、あるいは、汚れや傷による光学特性の変化が大きいという問題を有するものもあった。また、使用環境によっては、表面に結露が発生し、その結果、表面に汚れが付着するという問題が生じることがあった。特許文献6には、光路変換斜面を具備する溝構造を複数有する層とカバーフィルムと防汚層を含む光学フィルムが開示されているが、これでは十分な透明性は確保できない。
 本発明は、従来の透明な照明装置の上記の問題点の少なくとも1つを解決するためになされたものであり、例えば、従来よりも透過率が高く、ヘイズ値が小さい照明装置および照明装置用導光部材を提供することを目的とする。また、本発明は、そのような照明装置を備える建築部材を提供することを目的とする。
 本発明の実施形態によると、以下の項目に記載の解決手段が提供される。
[項目1]
 導光層であって、第1主面と、前記第1主面とは反対側の第2主面と、光源から出射された光を受ける受光側面とを有する導光層と、
 前記導光層の前記第1主面側に配置され、前記導光層の屈折率nGPよりも小さい屈折率nL1を有する第1低屈折率層と、
 導光層内を伝搬する光の一部を少なくとも前記第1低屈折率層側または前記第1低屈折率層とは反対側に向けることができる配光制御構造と、
を有し、
 可視光透過率が60%以上であり、ヘイズ値が10%未満である、照明装置用導光部材。
[項目2]
 前記配光制御構造は、前記導光層内を伝搬する光の一部を少なくとも前記第1低屈折率層側に向ける、項目1に記載の照明装置用導光部材。
[項目3]
 前記配光制御構造は、前記導光層内を伝搬する光の一部を少なくとも前記第1低屈折率層側とは反対側に向ける、項目1に記載の照明装置用導光部材。
[項目4]
 前記第1低屈折率層の前記導光層とは反対側に配置され、硬度が鉛筆硬度H以上の第1ハードコート層をさらに有する、項目1から3のいずれかに記載の照明装置用導光部材。
[項目5]
 前記第1低屈折率層の前記導光層とは反対側に第1基材層を有し、前記第1ハードコート層は、前記第1基材層の前記第1低屈折率層とは反対側に形成されている、項目1から4のいずれかに記載の照明装置用導光部材。前記第1低屈折率層の屈折率nL1は、例えば1.05以上1.30以下である。
[項目6]
 前記配光制御構造は、内部全反射によって光を前記第1低屈折率層側または前記第1低屈折率層側とは反対側に向ける界面を形成する複数の内部空間を有する、項目1から5のいずれかに記載の照明装置用導光部材。
[項目7]
 前記配光制御構造は、前記複数の内部空間が前記導光層内に形成されている第1配光制御構造を含む、項目6に記載の照明装置用導光部材。
[項目8]
 前記配光制御構造は、前記複数の内部空間が前記導光層と前記第1低屈折率層との間に設けられた第1方向変換層に形成されている第2配光制御構造を含む、項目6に記載の照明装置用導光部材。
[項目9]
 前記導光層と前記第1方向変換層との間に設けられた第1光結合層をさらに有し、前記第1光結合層は、前記導光層の屈折率nGPよりも小さい屈折率nC1を有する、複数の第1低屈折率領域を有する、項目8に記載の照明装置用導光部材。
[項目10]
 前記配光制御構造は、前記複数の内部空間が前記導光層の前記第2主面上に設けられた第2方向変換層に形成されている第3配光制御構造を含む、項目6に記載の照明装置用導光部材。
[項目11]
 前記複数の内部空間は、前記導光層を前記第1主面の法線方向から平面視したときに、前記導光層の面積に占める前記複数の内部空間の面積の割合は30%以下である、項目6から10のいずれかに記載の照明装置用導光部材。
[項目12]
 前記導光層の前記第2主面側に配置され、前記導光層の屈折率nGPよりも小さい屈折率nL2を有する第2低屈折率層をさらに有する、項目1から11のいずれかに記載の照明装置用導光部材。
[項目13]
 前記第2低屈折率層の前記導光層とは反対側に配置され、前記導光層の硬度HGPよりも高い硬度HH2を有する第2ハードコート層をさらに有する、項目12に記載の照明装置用導光部材。前記第2ハードコート層の硬度HH2は、例えば、鉛筆硬度でH以上である。
[項目14]
 前記第2低屈折率層の前記導光層とは反対側に第2基材層を有し、前記第2ハードコート層は、前記第2基材層の前記第2低屈折率層とは反対側に形成されている、項目13に記載の照明装置用導光部材。
 前記第2低屈折率層の屈折率は、例えば、1.05以上1.30以下である。屈折率が1.30以下の第2低屈折率層は、例えば、多孔質材料を用いて形成されるので、その硬度HL2は、導光層の硬度HGPよりも低く、脆い。
[項目15]
 前記導光層と前記第2方向変換層との間に設けられた第2光結合層をさらに有し、前記第2光結合層は、前記導光層の屈折率nGPよりも小さい屈折率nC2を有する、複数の第2低屈折率領域を有する、項目10に記載の照明装置用導光部材。
[項目16]
 前記第1ハードコート層のヘイズ値は、前記第2ハードコート層のヘイズ値よりも大きい、項目4を間接的に引用する項目13または14に記載の照明装置用導光部材。前記第1ハードコート層および/または前記第2ハードコート層は、例えば粒子を含む。
[項目17]
 撥水性および/または撥油性(または親水性)を有する防汚層を前記第1主面側または前記第2主面側の最外層としてさらに有する、項目1から16のいずれかに記載の照明装置用導光部材。
[項目18]
 前記防汚層の前記導光層側に設けられた反射防止層をさらに有する、項目17に記載の照明装置用導光部材。
[項目19]
 項目1から18のいずれかに記載の照明装置用導光部材と、
 前記受光側面に向けて光を出射する光源と
を備える、照明装置。
[項目20]
 項目1から18のいずれかに記載の照明装置用導光部材を備える建築部材。
 本発明の実施形態によると、従来よりも透過率が高く、ヘイズ値が小さい照明装置が提供される。また、本発明の他の実施形態によると、そのような照明装置を備える建築部材が提供される。
本発明の実施形態による照明装置100A_Lの模式的な断面図である。 本発明の実施形態による照明装置100B_Lの模式的な断面図である。 本発明の実施形態による照明装置200A_Lの模式的な断面図である。 本発明の実施形態による照明装置200B_Lの模式的な断面図である。 本発明の実施形態による照明装置300A_Lの模式的な断面図である。 本発明の実施形態による導光部材100Aの模式的な断面図である。 本発明の実施形態による導光部材100Bの模式的な断面図である。 本発明の実施形態による導光部材200Aの模式的な断面図である。 本発明の実施形態による導光部材200Bの模式的な断面図である。 本発明の実施形態による導光部材210Aの模式的な断面図である。 本発明の実施形態による導光部材210Bの模式的な断面図である。 本発明の実施形態による導光部材220Aの模式的な断面図である。 本発明の実施形態による導光部材220Bの模式的な断面図である。 本発明の実施形態による導光部材100ADの模式的な断面図である。 本発明の実施形態による導光部材210ADの模式的な断面図である。 本発明の実施形態による導光部材200ADの模式的な断面図である。 本発明の実施形態による導光部材220ADの模式的な断面図である。 実施例の導光部材200AD_aの模式的な断面図である。 実施例の導光部材200BD_aの模式的な断面図である。 実施例の導光部材220AD_aの模式的な断面図である。 実施例の導光部材220AD_bの模式的な断面図である。 実施例の導光部材220BD_bの模式的な断面図である。 本発明の実施形態による導光部材が有する方向変換層を構成する賦形フィルム62の模式的な平面図である。 賦形フィルム62の模式的な断面図である。 賦形フィルム62の凹部64を示す模式的な断面図である。 低屈折率領域80aの分布を説明するための模式的な平面図である。 比較例の導光部材910Aの模式的な断面図である。 比較例の導光部材920Aの模式的な断面図である。 比較例3に用いた賦形フィルム92の凹部94を示す模式的な平面図である。 比較例3に用いた賦形フィルム92の凹部94を示す模式的な断面図である。
 以下、図面を参照して、本発明の実施形態による照明装置用導光部材、照明装置および建築部材を説明する。本発明の実施形態による照明装置用導光部材、照明装置および建築部材は、以下で例示するものに限定されない。
 [照明装置用導光部材および照明装置]
 まず、本発明の実施形態による照明装置用導光部材および照明装置の例を図面を参照して説明する。
 図1Aに本発明の実施形態による照明装置100A_Lの模式的な断面図を示す。照明装置100A_Lは、光源LSと、光源LSから出射された光を受け、Y方向に伝搬させるとともに、Z方向に出射させる導光部材100Aとを有している。もちろん、光の伝搬方向はY方向からばらつき(分布)を有し、光の出射方向もZ方向からばらつき(分布)を有している。導光部材100Aは、60%以上の可視光透過率を有している。ここでは、波長が380nm以上780nm以下の光を可視光とする。
 導光部材100Aが有する導光層10Aは、第1主面と、第1主面とは反対側の第2主面と、光源LSから出射された光を受ける受光側面とを有している。図1Aにおいて上側の主面が第1主面であり、下側が第2主面である。光源LSは、例えばLED装置であり、複数のLED装置を配列して用いてもよい。また、光源LSと導光層10Aとの間に、光源LSから出射された光を効率的に導光層10Aに導くための結合光学系を設けてもよい。
 導光部材100Aは、導光層10Aの第1主面側に配置され、導光層10Aの屈折率nGPよりも小さい屈折率nL1を有する第1低屈折率層20Aと、第1低屈折率層20Aの導光層10Aとは反対側に配置され、鉛筆硬度がH以上の第1ハードコート層40Aとを有している。
 導光層10Aは、可視光に対する透過率が高い公知の材料で形成される。導光層10Aは、例えば、ポリメチルメタクリレート(PMMA)等のアクリル系樹脂、ポリカーボネート(PC)系樹脂、シクロオレフィン系樹脂、ガラス(例えば、石英ガラス、無アルカリガラス、ホウケイ酸ガラス)で形成される。導光層10Aの屈折率nGPは、例えば、1.40以上1.80以下である。なお屈折率は、特に断らない限り、波長550nmにおいてエリプソメーターで測定した屈折率をいう。導光層10Aの厚さは用途に応じて適宜設定され得る。導光層10Aの厚さは、例えば、0.05mm以上50mm以下である。
 第1低屈折率層20Aの屈折率nL1は、例えば1.30以下であることが好ましく、1.20以下であることがより好ましく、1.15以下がさらに好ましい。第1低屈折率層20Aは固体であることが好ましく、屈折率は、例えば1.05以上であることが好ましい。導光層10Aの屈折率と第1低屈折率層20Aの屈折率層との差は、好ましくは0.20以上であり、より好ましくは0.23以上であり、さらに好ましくは0.25以上である。屈折率が1.30以下の第1低屈折率層20Aは、例えば多孔質材料を用いて形成され得る。第1低屈折率層20Aの厚さは、例えば、0.3μm以上5μm以下である。
 低屈折率層が内部に空隙を有する多孔質材料である場合、その空隙率は、好ましくは35体積%以上であり、より好ましくは38体積%以上であり、特に好ましくは40体積%以上である。このような範囲であれば、屈折率が特に低い低屈折率層を形成することができる。低屈折率層の空隙率の上限は、例えば、90体積%以下であり、好ましくは75体積%以下である。このような範囲であれば、強度に優れる低屈折率層を形成することができる。空隙率は、エリプソメーターで測定した屈折率の値から、Lorentz‐Lorenz’s formula(ローレンツ-ローレンツの式)より算出された値である。
 低屈折率層については、例えば、特許文献3に開示された空隙を有する低屈折率層を用いることができる。特許文献3の開示内容のすべてを参照により本願明細書に援用する。具体的には、空隙を有する低屈折率層は、シリカ粒子、微細孔を有するシリカ粒子、シリカ中空ナノ粒子等の略球状粒子、セルロースナノファイバー、アルミナナノファイバー、シリカナノファイバー等の繊維状粒子、ベントナイトから構成されるナノクレイ等の平板状粒子等を含む。1つの実施形態において、空隙を有する低屈折率層は、粒子(例えば微細孔粒子)同士が直接的に化学的に結合して構成される多孔体である。また、空隙を有する低屈折率層を構成する粒子同士は、その少なくとも一部が、少量(例えば、粒子の質量以下)のバインダ一成分を介して結合していてもよい。低屈折率層の空隙率および屈折率は、当該低屈折率層を構成する粒子の粒径、粒径分布等により調整することができる。
 空隙を有する低屈折率層を得る方法としては、例えば、特開2010-189212号公報、特開2008-040171号公報、特開2006-011175号公報、国際公開第2004/113966号、およびそれらの参考文献に記載された方法が挙げられる。特開2010-189212号公報、特開2008-040171号公報、特開2006-011175号公報、国際公開第2004/113966号の開示内容のすべてを参照により本明細書に援用する。
 空隙を有する低屈折率層として、シリカ多孔体を好適に用いることができる。シリカ多孔体は、例えば、以下の方法で製造される。ケイ素化合物;加水分解性シラン類および/またはシルセスキオキサン、ならびにその部分加水分解物および脱水縮合物の少なくともいずれか1つを加水分解および重縮合させる方法、多孔質粒子および/または中空微粒子を用いる方法、ならびにスプリングバック現象を利用してエアロゲル層を生成する方法、ゾルゲル法により得られたゲル状ケイ素化合物を粉砕し、得られた粉砕体である微細孔粒子同士を触媒等で化学的に結合させた粉砕ゲルを用いる方法、等が挙げられる。ただし、低屈折率層は、シリカ多孔体に限定されず、製造方法も例示した製造方法に限定されず、どのような製造方法により製造しても良い。ただし、多孔質層は、シリカ多孔体に限定されず、製造方法も例示した製造方法に限定されず、どのような製造方法により製造しても良い。なお、シルセスキオキサンは、(RSiO1.5、Rは炭化水素基)を基本構成単位とするケイ素化合物であり、SiOを基本構成単位とするシリカとは厳密には異なるが、シロキサン結合で架橋されたネットワーク構造を有する点でシリカと共通しているので、ここではシルセスキオキサンを基本構成単位として含む多孔体もシリカ多孔体またはシリカ系多孔体という。
 シリカ多孔体は、互いに結合したゲル状ケイ素化合物の微細孔粒子から構成され得る。ゲル状ケイ素化合物の微細孔粒子としては、ゲル状ケイ素化合物の粉砕体が挙げられる。シリカ多孔体は、例えば、ゲル状ケイ素化合物の粉砕体を含む塗工液を、基材に塗工して形成され得る。ゲル状ケイ素化合物の粉砕体は、例えば、触媒の作用、光照射、加熱等により化学的に結合(例えば、シロキサン結合)し得る。
 第1低屈折率層20Aがあると、導光層10Aと第1低屈折率層20Aとの界面は、導光層10A内を伝搬する光を全反射できる界面となり、第1低屈折率層20A上の状態に影響されない。第1低屈折率層20Aがなく、導光層10Aの表面が露出していると、導光層10Aの表面と空気との界面で全反射が起こる。導光層10Aの表面が汚れると、汚れが付着した表面の部分では全反射が起こらないことがある。そうすると、汚れが付着した表面の部分から光が漏れる、および/または、導光層10A内を伝搬する光の分布が変化するなどの不具合が生じる。すなわち、第1低屈折率層20Aは、導光部材100Aの表面の防汚性を向上させることができる。この効果は、第1低屈折率層20A上に第1ハードコート層40Aを形成しても同じである。
 第1ハードコート層40Aの硬度HH1は、例えば鉛筆硬度でH以上であることが好ましく、2H以上であることがさらに好ましく、4H以上であることがより好ましい。一方、第1ハードコート層40Aの硬度HH1の上限は特に限定は無いが、好ましくは鉛筆硬度で6H以下であり、より好ましくは5H以下である。鉛筆硬度は、JIS K 5400の「鉛筆硬度試験」に準拠した方法で測定される。なお、導光層10Aの硬度HGPは、例えば、Bである。第1ハードコート層40Aの厚さは、好ましくは、1μm以上30μm以下であり、より好ましくは2μm以上20μm以下であり、さらに好ましくは3μm以上15μm以下である。第1ハードコート層40Aの厚さがこのような範囲であれば、良好な耐擦傷性を有する。
 第1低屈折率層20Aが、導光層10Aの硬度HGPよりも高い硬度HL1を有している場合、第1低屈折率層20Aが第1ハードコート層40Aを兼ねてもよい。すなわち、第1ハードコート層40Aを省略してもよい。このとき、第1低屈折率層20Aの硬度HL1は鉛筆硬度でH以上であることが好ましく、2H以上であることがさらに好ましく、4H以上であることがより好ましく、上限は特に限定は無いが、好ましくは6H以下であり、より好ましくは5H以下である。
 第1ハードコート層40Aは、上記のような特性を満足する限りにおいて、任意の適切な材料で構成され得る。第1ハードコート層40Aは、例えば、熱硬化性樹脂または電離放射線(例えば、可視光、紫外線)硬化性樹脂の硬化層である。このような硬化性樹脂としては、例えば、ウレタン(メタ)アクリレート、ポリエステル(メタ)アクリレート、エポキシ(メタ)アクリレート等のアクリレート、ポリシロキサン等のケイ素樹脂、不飽和ポリエステル、エポキシ樹脂が挙げられる。第1ハードコート層40Aは、例えば溶媒と硬化型化合物とを含む材料を対象基材表面に塗工し、かつ硬化させることによって形成することができる。第1ハードコート層40Aとして好適に用いられるハードコート層の詳細は、例えば、特開2011-237789号公報に記載されている。特開2011-237789号公報の開示内容のすべてを本明細書に参照により援用する。
 導光部材100Aは、導光層10A内を伝搬する光の一部を少なくとも第1低屈折率層20A側に向けることができる配光制御構造を有している。配光制御構造は、内部全反射によって光を第1低屈折率層20A側に向ける界面を形成する複数の内部空間14Aを有している。内部空間14Aを光キャビティということもある。導光部材100Aにおいては、複数の内部空間14Aが導光層10A内に形成されている。内部空間14Aは、例えば図示したように、第1低屈折率層20A側(Z方向、図中上側)に頂角を有する三角形の断面形状(X方向に垂直、YZ面に平行)を有しており、導光層10A内をY方向に伝搬する光を第1低屈折率層20A側に向ける。内部空間14Aの断面形状はこれに限られず、Y方向に伝搬する光を第1低屈折率層20A側に向ける界面を有していれば、台形などであってもよい。導光層10A内に形成された配光制御構造を第1配光制御構造ということがある。
 導光部材100Aは、導光層10A内の複数の内部空間14Aによって構成される第1配光制御構造を有するので、可視光透過率は60%以上であり、ヘイズ値が10%未満であり得る。また、後述する様に、複数の内部空間14Aの形状および配置等を調整することによって、出射光の配光分布、出射効率、輝度分布を制御することができる。複数の内部空間14Aは典型的には、内部に空気が充填された空隙部(エアキャビティ)である。ただし、エアキャビティは、空気に代えて、導光層10Aより屈折率の低い材料が充填されても良い。
 導光部材100Aには、主面に沿って複数の内部空間14Aが規則的にまたはランダムに設けられている。内部空間14Aの大きさは、導光層10Aの内部に設置可能な範囲で適宜選択可能である。内部空間14Aを内部に含む導光層については、特に限定されないが、例えば、特許文献2、4、5および国際公開第2011/127187号に開示された導光層を使用することができる。これらの公報の開示内容のすべてを参照により本願明細書に援用する。
 導光層10Aは、例えば、パターンが形成されていない第1フィルムと、所望の微細パターンが形成された第2フィルムとを、ラミネーション法で貼り合わせるか、または接着剤(感圧接着剤を含む)により接着することで作製される。
 第2フィルムへの微細パターンの形成には、レーザパターニング、ダイレクトレーザイメージング、レーザドリル、マスクによるまたはマスクレスのレーザまたは電子ビーム照射が用いられる。また印刷、インクジェット印刷、スクリーン印刷等によって個別の特性を付与して、材料や屈折率値を変更してもよい。マイクロ/ナノディスペンス、ドージング、ダイレクト「書込み」、離散的レーザ焼結、マイクロ放電加工(マイクロEDM)、またはマイクロマシニング、マイクロ成形、インプリンティング、エンボス加工およびこれらに類するものを用いることもできる。
 配光制御構造である複数の内部空間14Aは、導光層10Aを主面の法線方向から平面視したときに、導光層10Aの面積に占める複数の内部空間14Aの面積の割合(占有面積率)は30%以下であることが、良好な可視光透過率およびヘイズ値を得るうえで好ましい。なお、内部空間14Aの占有面積率は、均一であっても良いし、光源LSからの距離が増大しても輝度が低下しないように、距離の増大につれて、占有面積率が増大するようにしてもよい。具体例を示して後述するように、内部空間14Aの占有面積率は均一であることが好ましい。なお、内部空間14Aの占有面積率は、良好な輝度を得る観点から1%以上であることが好ましい。内部空間14Aの占有面積率は、1%以上30%以下であることが好ましく、上限値は、25%以下がさらに好ましく、高い可視光透過率を得るためには、10%以下が好ましく、5%以下がさらに好ましい。
 なお、配光制御構造の上述の特徴は、ここで例示した導光層10A内に形成された複数の内部空間14Aに限られず、後述する種々の配光制御構造に共通する。複数の内部空間によって構成される配光制御構造としては、例えば、特許文献5に記載の配光構造体(Light Distribution Structure)を用いることができる。
 図1Bに本発明の実施形態による照明装置100B_Lの模式的な断面図を示す。照明装置100B_Lは、光源LSから出射された光を受け、Y方向に伝搬させるとともに、-Z方向に出射させる導光部材100Bを有している点で、図1Aに示した照明装置100A_Lと異なる。
 導光部材100Bが有する導光層10Bは、導光層10B内を伝搬する光の一部を少なくとも第1低屈折率層20Aとは反対側に向けることができる配光制御構造を有している。配光制御構造は、内部全反射によって光を第1低屈折率層20Aとは反対側に向ける界面を形成する複数の内部空間14Bを有している。内部空間14Bは、例えば図示したように、第1低屈折率層20Aとは反対側(-Z方向、図中下側)に頂角を有する三角形の断面形状(X方向に垂直、YZ面に平行)を有しており、導光層10B内をY方向に伝搬する光を第1低屈折率層20Aとは反対側に向ける。内部空間14Bの断面形状はこれに限られず、Y方向に伝搬する光を第1低屈折率層20Aとは反対側に向ける界面を有していれば、台形などであってもよい。このように、内部空間14Bの断面形状(例えば、三角形の頂角の方向)を変えることによって、光の出射方向を変えることができる。
 図2Aに本発明の実施形態による照明装置200A_Lの模式的な断面図を示す。照明装置200A_Lが有する導光部材200Aは、導光層10と第1低屈折率層20Aとの間に形成された第1方向変換層60Aを有しており、配光制御構造を構成する複数の内部空間64Aは、第1方向変換層60Aに形成されている。第1方向変換層60Aは、導光層10内を伝搬する光の一部を少なくとも第1低屈折率層20A側に向けることができる。第1方向変換層60A内に形成された配光制御構造を第2配光制御構造ということがある。内部空間64Aは、内部空間14Aと同様に、種々の断面形状を有し得る。
 図2Bに本発明の実施形態による照明装置200B_Lの模式的な断面図を示す。照明装置200B_Lが有する導光部材200Bは、導光層10と第1低屈折率層20Aとの間に形成された第1方向変換層60Bを有しており、配光制御構造を構成する複数の内部空間64Bは、第1方向変換層60Bに形成されている。第1方向変換層60Bは、導光層10内を伝搬する光の一部を少なくとも第1低屈折率層20Aとは反対側(-Z方向)に向けることができる。第1方向変換層60B内に形成された配光制御構造を第2配光制御構造ということがある。内部空間64Bは、内部空間14Bと同様に、種々の断面形状を有し得る。
 図3に本発明の実施形態による他の照明装置300A_Lの模式的な断面図を示す。照明装置300A_Lが有する導光部材300Aは、導光層10と第1低屈折率層20Aとの間に形成された第1方向変換層70Aを有しており、第1方向変換層70Aが有する複数の凸部74Aが配光制御構造を構成する。複数の凸部74Aを含む第1方向変換層70Aは、例えば、公知のプリズムシートであってよい。複数の凸部74Aは、導光層10内をY方向に伝搬する光を第1低屈折率層20A側(Z方向)に向ける。凸部74Aの断面形状は例えば三角形であるが、これに限られず台形等であってもよい。凸部74Aの断面形状を変えることによって、Y方向に伝搬する光を第1低屈折率層20Aとは反対側(-Z方向)に向けることもできる。また、第1方向変換層70Aを設ける代わりに、導光層10Aの表面に複数の凸部(プリズム部)を直接形成してもよい。
 次に、導光部材の構造を詳細に説明する。以下では、配光制御構造が、内部全反射によって光を第1低屈折率層側に向ける界面を形成する複数の内部空間(14A)または、内部全反射によって光を第1低屈折率層とは反対側に向ける界面を形成する複数の内部空間(14B)を有する例を説明する。
 図4Aに、図1Aに示した照明装置100A_Lの導光部材100Aの断面図を示し、図4Bに、図1Bに示した照明装置100B_Lの導光部材100Bの断面図を示す。また、図5Aに、図2Aに示した照明装置200A_Lの導光部材200Aの断面図を示し、図5Bに、図2Bに示した照明装置200B_Lの導光部材200Bの断面図を示す。
 図4Aに示すように、導光部材100Aにおいては、導光層10A内に形成された複数の内部空間14Aが配光制御構造を構成しており、図4Bに示すように、導光部材100Bにおいては、導光層10B内に形成された複数の内部空間14Bが配光制御構造を構成している。また、図5Aに示すように、導光部材200Aにおいては、導光層10上に形成された第1方向変換層60A内に形成された複数の内部空間64Aが配光制御構造を構成しており、図5Bに示すように、導光部材200Bにおいては、導光層10上に形成された第1方向変換層60B内に形成された複数の内部空間64Bが配光制御構造を構成している。第1方向変換層60A、60Bの屈折率nD1は導光層10の屈折率nGPと概ね等しいことが好ましく、屈折率の差(絶対値)は、0.15以下が好ましく、0.1以下であることがさらに好ましい。また、導光層10の屈折率nGPと第1低屈折率層20Aの屈折率nL1との差(図4A、図4B)、および第1方向変換層60Aの屈折率nD1と第1低屈折率層20Aの屈折率nL1との差(図5A、図5B)は、それぞれ、0.2以上あることが好ましく、0.25以上あることがさらに好ましい。この差を調整することによって、全反射が起こる臨界角を制御することができる。
 複数の内部空間14A、14B、64A、64Bを有する配光制御構造は、導光層10A、10Bまたは第1方向変換層60A、60B内を伝搬する光を内部空間14A、14B、64A、64Bが形成する界面で全反射させることによって、光の出射方向をZ方向(内部空間14A、64A)または-Z方向(内部空間14B、64B)に向ける。これに対し、図3に示した、例えば公知のプリズムシートで構成される第1方向変換層70Aでは、第1方向変換層70A内を伝搬する光の一部は、第1低屈折率層20Aとの界面で全反射され、第1方向変換層70A内に戻される。このように、内部空間14A、14B、64A、64Bを有する配光制御構造は、公知のプリズムシートなどの配光制御構造よりも光の利用効率が高い。また、内部空間14A、14B、64A、64Bの断面形状(例えば、図15中の傾斜面の角度θa、θb)、大きさ、配置密度、分布を調整することによって、配光分布を制御することができる。
 一方、配光制御構造が有する複数の内部空間14A、14B、64A、64Bの断面形状、大きさ、配置密度、分布を調整することによって、導光部材100A、100B、200Aまたは200Bの可視光透過率およびヘイズ値を制御することができる。導光部材100A、100B、200Aおよび200Bの可視光透過率は60%以上であり、好ましくは、65%以上、70%以上、75%以上または80%以上であり、ヘイズ値が10%未満であり、好ましくは9%未満、8%未満、7%未満、6%未満、5%未満、4%未満、3%未満であり得る。なお、ヘイズ値は以下の実施例に記載の通りヘイズメータ―を用いて測定される。
 配光制御構造が有する複数の内部空間14A、14B、64A、64Bは、導光層10A、10Bまたは10を主面の法線方向から平面視したときに、導光層10A、10Bまたは10の面積に占める複数の内部空間14A、14B、64A、64Bの面積の割合(占有面積率)は30%以下であることが、良好な可視光透過率およびヘイズ値を得るうえで好ましい。なお、内部空間14A、14B、64A、64Bの占有面積率は、均一であっても良いし、光源LSからの距離が増大しても輝度が低下しないように、距離の増大につれて、占有面積率が増大するようにしてもよい。具体例を示して後述するように、内部空間14A、14B、64A、64Bの占有面積率は均一であることが好ましい。なお、内部空間14A、14B、64A、64Bの占有面積率は、良好な輝度を得る観点から1%以上であることが好ましい。内部空間14A、14B、64A、64Bの占有面積率は、1%以上30%以下であることが好ましく、上限値は、25%以下がさらに好ましく、高い可視光透過率を得るためには、10%以下が好ましく、5%以下がさらに好ましい。
 また、内部空間14A、14B、64A、64Bの大きさおよび密度はヘイズ値に影響する。内部空間14A、14B、64A、64Bの大きさ(長さL、幅W:図14A、図14B参照)は、例えば、長さLは10μm以上500μm以下であることが好ましく、幅Wは1μm以上100μm以下であることが好ましい。また、光取り出し効率の観点から、高さHは1μm以上100μm以下であることが好ましい。複数の内部空間14A、14B、64A、64Bは、離散的に均一に分布させることが好ましく、例えば、図14Aに示したように、周期的に配置することが好ましい。ピッチPxは、例えば、10μm以上500μm以下であることが好ましく、ピッチPyは、例えば、10μm以上500μm以下であることが好ましい。
 次に、図6A、図6B、図7A、図7B、図8~図11を参照して、本発明の実施形態による導光部材の他の構成例を説明するが、これらに限定されるものではなく、種々に組み合わせられる。
 図6Aに示す導光部材210Aでは、導光層10の第2主面上に設けられた第2方向変換層60Aに形成された複数の内部空間64Aによって配光制御構造(第3配光制御構造ということがある。)を構成している。内部空間64Aを有する第2方向変換層60Aは、導光層10内を伝搬する光の一部を少なくとも第1低屈折率層20A側(Z方向)に向ける。
 図6Bに示す導光部材210Bでは、導光層10の第2主面上に設けられた第2方向変換層60Bに形成された複数の内部空間64Bによって配光制御構造(第3配光制御構造ということがある。)を構成している。内部空間64Bを有する第2方向変換層60Bは、導光層10内を伝搬する光の一部を少なくとも第1低屈折率層20Aとは反対側(-Z方向)に向ける。
 図7Aに示す導光部材220Aは、図5Aに示した導光部材200Aにさらに第1光結合層80を有している。第1光結合層80は、導光層10と第1方向変換層60Aとの間に設けられている。第1光結合層80は、導光層10の屈折率nGPよりも小さい屈折率nC1を有する複数の第1低屈折率領域80aを有している。複数の第1低屈折率領域80aで構成される第1光結合層80は、導光層10を伝搬する光をより選択的かつ効率的に第1方向変換層60Aに導く。第1低屈折率領域80aの屈折率nC1は、1.05以上1.30以下であることが好ましく、1.05以上1.25以下であることがさらに好ましい。
 図7Bに示す導光部材220Bは、図5Bに示した導光部材200Bにさらに第1光結合層80を有している。第1光結合層80は、導光層10と第1方向変換層60Bとの間に設けられている。第1光結合層80は、導光層10の屈折率nGPよりも小さい屈折率nC1を有する複数の第1低屈折率領域80aを有している。複数の第1低屈折率領域80aで構成される第1光結合層80は、導光層10を伝搬する光をより選択的かつ効率的に第1方向変換層60Bに導く。
 図8に示す導光部材100ADは、図1Aに示した導光部材100Aにさらに、導光層10Aの第2主面側に配置された、導光層10Aの屈折率nGPよりも小さい屈折率nL2を有する第2低屈折率層20Bと、第2低屈折率層20Bの導光層10Aとは反対側に配置された、導光層10Aの硬度HGPよりも高い硬度HH2を有する第2ハードコート層40Bとをさらに有している。第2低屈折率層20Bおよび第2ハードコート層40Bは、それぞれ、第1低屈折率層20Aおよび第1ハードコート層40Aと同様の特徴を有し得る。導光層10Aの第2主面側にも、第2低屈折率層20Bおよび第2ハードコート層40Bを設けることによって、上述の効果を第2主面側でも得られる。導光部材100ADは、複数の内部空間14Aが形成された導光層10Aを有しているので、光をZ方向に出射する。導光部材100ADの導光層10Aに代えて、複数の内部空間14Bを有する導光層10B(例えば図1B参照)を配置することによって、光を-Z方向に出射する導光部材が得られる。
 図9に示す導光部材210ADは、図6Aに示した導光部材210Aにさらに、導光層10の第2主面側に配置された、導光層10の屈折率nGPよりも小さい屈折率nL2を有する第2低屈折率層20Bと、第2低屈折率層20Bの導光層10とは反対側に配置された、鉛筆硬度がH以上の第2ハードコート層40Bとをさらに有している。導光部材210ADは、複数の内部空間64Aが形成された第2方向変換層60Aを有しているので、光をZ方向に出射する。導光部材210ADの第2方向変換層60Aに代えて、複数の内部空間14Bを有する第2方向変換層60B(例えば図6B参照)を配置することによって、光を-Z方向に出射する導光部材が得られる。
 図10に示す導光部材200ADは、図5Aに示した導光部材200Aにさらに、導光層10の第2主面側に配置された、導光層10の屈折率nGPよりも小さい屈折率nL2を有する第2低屈折率層20Bと、第2低屈折率層20Bの導光層10とは反対側に配置された、導光層10の硬度HGPよりも高い硬度HH2を有する第2ハードコート層40Bとをさらに有している。導光部材200ADは、複数の内部空間64Aが形成された第2方向変換層60Aを有しているので、光をZ方向に出射する。導光部材200ADの第2方向変換層60Aに代えて、複数の内部空間64Bを有する第2方向変換層60B(例えば図5B参照)を配置することによって、光を-Z方向に出射する導光部材が得られる。
 図11に示す導光部材220ADは、図7Aに示した導光部材220Aにさらに、導光層10の第2主面側に配置された、導光層10の屈折率nGPよりも小さい屈折率nL2を有する第2低屈折率層20Bと、第2低屈折率層20Bの導光層10とは反対側に配置された、導光層10の硬度HGPよりも高い硬度HH2を有する第2ハードコート層40Bとをさらに有している。導光部材220ADは、複数の内部空間64Aが形成された第2方向変換層60Aを有しているので、光をZ方向に出射する。導光部材220ADの第2方向変換層60Aに代えて、複数の内部空間64Bを有する第2方向変換層60B(例えば図7B参照)を配置することによって、光を-Z方向に出射する導光部材が得られる。
 本発明の実施形態による導光部材は、種々に改変され得る。例えば、第1ハードコート層および/または第2ハードコート層の形成材料に、粒子を混合することによって、凹凸形状表面を有する防眩性ハードコート層としても良い。また、これによって、導光部材のヘイズ値を制御することができる。粒子としては、例えば、無機粒子と有機粒子とがある。無機粒子は、特に制限されず、例えば、酸化ケイ素粒子、酸化チタン粒子、酸化アルミニウム粒子、酸化亜鉛粒子、酸化錫粒子、炭酸カルシウム粒子、硫酸バリウム粒子、タルク粒子、カオリン粒子、硫酸カルシウム粒子が挙げられる。また、有機粒子は、特に制限されず、例えば、ポリメチルメタクリレート樹脂粉末(PMMA粒子)、シリコーン樹脂粉末、ポリスチレン樹脂粉末、ポリカーボネート樹脂粉末、アクリルスチレン樹脂粉末、ベンゾグアナミン樹脂粉末、メラミン樹脂粉末、ポリオレフィン樹脂粉末、ポリエステル樹脂粉末、ポリアミド樹脂粉末、ポリイミド樹脂粉末、ポリフッ化エチレン樹脂粉末が挙げられる。これらの無機粒子および有機粒子は、1種類を単独で使用してもよいし、2種類以上を併用してもよい。
 第1ハードコート層および/または第2ハードコート層の形成材料に混合される粒子の質量平均粒径は、良好な防眩性を付与できる観点から、0.5μm以上8.0μm以下の範囲であることが好ましい。粒子の質量平均粒径は、より好ましくは、2.0μm以上6.0μm以下の範囲、さらに好ましくは、3.0μm以上6.0μm以下の範囲である。また、粒子の質量平均粒径は、第1ハードコート層および/または第2ハードコート層の厚さの30%以上80%以下の範囲であることも好ましい。なお、粒子の質量平均粒径は、コールターカウンター法により測定できる。例えば、細孔電気抵抗法を利用した粒度分布測定装置(商品名:コールターマルチサイザー、ベックマン・コールター社製)を用い、粒子が細孔を通過する際の粒子の体積に相当する電解液の電気抵抗を測定することにより、粒子の数と体積を測定し、質量平均粒径を算出する。
 粒子の形状は特に制限されず、例えば、ビーズ状の略球形であってもよく、粉末等の不定形のものであってもよいが、略球形のものが好ましく、より好ましくは、アスペクト比が1.5以下の略球形の微粒子であり、最も好ましくは球形粒子である。
 粒子の配合割合は、ハードコート層形成材料100質量部に対し、5質量部以上20質量部以下の範囲が好ましく、より好ましくは、5質量部以上17質量部以下の範囲である。例えば特開2013-178534号公報に記載されている防眩性ハードコート層を好適に用いることができる。特開2013-178534号公報の開示内容のすべてを参照により本明細書に援用する。
 さらに、導光部材の最外層として、一方または両方の主面に、撥水性および/または撥油性(親水性)を有する防汚層をさらに設けてもよい。防汚層の構成は、用途に応じて、適宜選択される。防汚層は、公知の材料を用いて形成される。防汚層を構成する材料としては、シリコーン系化合物またはフッ素含有化合物が好ましい。中でも、フッ素含有化合物は撥水性に優れ、高い防汚性を発揮でき、特にパーフルオロポリエーテル骨格を含有するフッ素系ポリマーが好ましい。防汚性を高める観点から、剛直に並列可能な主鎖構造を有するパーフルオロポリエーテルが特に好ましい。パーフルオロポリエーテルの主鎖骨格の構造単位としては、炭素数1~4の分枝を有していてもよいパーフルオロアルキレンオキシドが好ましく、例えば、パーフルオロメチレンオキシド、(-CFO-)、パーフルオロエチレンオキシド(-CFCFO-)、パーフルオロプロピレンオキシド(-CFCFCFO-)、パーフルオロイソプロピレンオキシド(-CF(CF)CFO-)等が挙げられる。
 防汚層の厚さは、好ましくは3nm以上15nm以下であり、より好ましくは3nm以上10nm以下である。
 防汚層の形成方法は、形成する材料に応じて、蒸着、スパッタリング等の物理的気相成長法、化学的気相成長法、リバースコート法、ダイコート法、グラビアコート法等の湿式コーティング法等を用いることができる。例えば、特開2020-067582号公報に記載の防汚層を好適に用いることができる。特開2020-067582号公報の開示内容のすべてを参照により本明細書に援用する。
 防汚層の導光層側に反射防止層を形成してもよい。反射防止層としては、例えば屈折率の異なる複数の薄膜からなる多層積層体が挙げられる。反射防止層を構成する薄膜の材料としては、金属の酸化物、窒化物、フッ化物等が挙げられる。
 反射防止層は、好ましくは、高屈折率層と低屈折率層の交互積層体である。高屈折率層は、例えば屈折率が1.9以上、好ましくは2.0以上である。高屈折率材料としては、酸化チタン、酸化ニオブ、酸化ジルコニウム、酸化タンタル、酸化亜鉛、酸化インジウム、酸化インジウムスズ(ITO)、アンチモンドープ酸化スズ(ATO)等が挙げられる。中でも、酸化チタンまたは酸化ニオブが好ましい。低屈折率層は、例えば屈折率が1.6以下、好ましくは1.5以下である。低屈折率材料としては、酸化ケイ素、窒化チタン、フッ化マグネシウム、フッ化バリウム、フッ化カルシウム、フッ化ハフニウム、フッ化ランタン等が挙げられる。中でも酸化ケイ素が好ましい。特に、高屈折率層としての酸化ニオブ(Nb)薄膜と、低屈折率層としての酸化ケイ素(SiO)薄膜とを交互に積層することが好ましい。低屈折率層と高屈折率層に加えて、屈折率1.6~1.9程度の中屈折率層が設けられてもよい。
 高屈折率層および低屈折率層の膜厚は、それぞれ、5nm以上200nm以下程度であり、15nm以上150nm以下程度が好ましい。屈折率や積層構成等に応じて、可視光の反射率が小さくなるように、各層の膜厚を設計すればよい。
 反射防止層は、好ましくは、プライマー層を介してハードコート層に積層される。プライマー層を構成する材料としては、例えば、ケイ素、ニッケル、クロム、スズ、金、銀、白金、亜鉛、チタン、タングステン、アルミニウム、ジルコニウム、パラジウム等の金属;これらの金属の合金;これらの金属の酸化物、フッ化物、硫化物または窒化物;等が挙げられる。中でも、プライマー層の材料は酸化物が好ましく、酸化ケイ素が特に好ましい。プライマー層は、好ましくは、化学量論組成よりも酸素量が少ない無機酸化物層である。非化学量論組成の無機酸化物の中でも、組成式SiOx(0.5≦x<2)で表される酸化ケイ素が好ましい。プライマー層の厚さは、例えば、1nm以上20nm以下程度であり、好ましくは3nm以上15nm以下である。
 反射防止層を構成する薄膜の成膜方法は特に限定されず、ウェットコーティング法、ドライコーティング法のいずれでもよい。膜厚が均一な薄膜を形成できることから、真空蒸着、CVD、スパッタ、電子線蒸着等のドライコーティング法が好ましい。中でも、膜厚の均一性に優れ、緻密な膜を形成しやすいことから、スパッタ法が好ましい。例えば特開2020-52221号公報に記載の反射防止層を好適に用いることができる。特開2020-52221号公報の開示内容のすべてを参照により本明細書に援用する。
 以下、実施例を例示して、本発明の実施形態による照明装置用導光部材をより詳細に説明する。
 実施例では、図12Aおよび図13Aに示す断面構造を有する導光部材200AD_aおよび220AD_aを作製した。図12Aに示す導光部材200AD_aは、図10に示した導光部材200ADに実質的に対応し、図13Aに示す導光部材220AD_aは、図11に示した導光部材220ADに実質的に対応する。
 図12Aに示す導光部材200AD_aは、図10に示した導光部材200ADに加え、基材層30A、30Bと、接着剤層52、54、56とを有している。導光部材200ADにおける第1方向変換層60Aは、導光部材200AD_aにおいては、図14Aおよび図14Bに示す賦形フィルム62と接着剤層54(またはさらに接着剤層52)によって構成されている。すなわち、図14Bに示す賦形フィルム62の凹部64が接着剤層54によって内部空間64Aを形成するように賦形フィルム62Aを配置することによって、第1方向変換層60Aに実質的に対応する構造が得られる。
 また、同様に、図14Bに示す賦形フィルム62の凹部64が接着剤層54によって内部空間64Bを形成するように賦形フィルム62Bを配置することによって、図12Bに示す導光部材200BD_aが得られる。なお、基材層30A、30B、および30Cは、例えば、第1低屈折率層20A、第2低屈折率層20B、第1ハードコート層40Aまたは第2ハードコート層40Bを支持する役割を果たす。基材層30A、30B、および30Cと、第1低屈折率層20A、第2低屈折率層20B、第1ハードコート層40Aおよび第2ハードコート層40Bとの配置関係は適宜変更され得る。例えば、導光部材200AD_aにおいて、第1低屈折率層20Aは基材層30Aに支持されているが、導光部材200BD_aにおいては、第1低屈折率層20Aは基材層30Bに支持されている。
 図13Aに示す導光部材220AD_aは、図11に示した導光部材220ADに加え、基材層30A、30B、30Cと、接着剤層52、54、56、58とを有している。導光部材220ADにおける第1方向変換層60Aは、導光部材220AD_aにおいては、図14Aおよび図14Bに示す賦形フィルム62と接着剤層54(またはさらに接着剤層52)によって構成されている。すなわち、図14Bに示す賦形フィルム62の凹部64が接着剤層54によって内部空間64Aを形成するように賦形フィルム62Aを配置することによって、第1方向変換層60Aに実質的に対応する構造が得られる。
 また、図13Bに示す導光部材220AD_bのように、図14Bに示す賦形フィルム62の凹部64が接着剤層54によって内部空間64Aを形成するように賦形フィルム62Aを基材層30B上に配置し、これらによって、第1方向変換層60Aに実質的に対応する構造を得てもよい。また、同様に、図14Bに示す賦形フィルム62の凹部64が接着剤層54によって内部空間64Bを形成するように賦形フィルム62Bを配置することによって、図13Cに示す導光部材220BD_aが得られる。
 ここで「接着剤」は、感圧接着剤(粘着剤とも呼ぶ)を含む意味で用いる。接着剤の具体例としては、ゴム系接着剤、アクリル系接着剤、シリコーン系接着剤、エポキシ系接着剤、セルロース系接着剤、ポリエステル系接着剤が挙げられる。これらの接着剤は単独でも良いし、2種以上の組み合わせでも良い。
 低屈折率層として、多孔質材料(例えば、ケイ素化合物から形成されたゲル)を用いると、強度が低く、脆い。そこで、基材層(例えば、アクリルフィルム)を用いて、基材層上に低屈折率層20A、20B、低屈折率領域80aを形成する。
 また、導光部材をロール・ツー・ロール法またはロール・ツー・シート法で量産するために、複数の基材層上に積層した積層体を接着剤層で貼り合せた構成を採用した。また、複数の内部空間64Aを有する第1方向変換層60A(図10、図11)に対応する構成を、凹部64を有する賦形フィルム62と接着剤層54とで構成した。
 基材層30A、30B、30Cの厚さはそれぞれ独立に、例えば1μm以上1000μm以下であり、10μm以上100μm以下が好ましく、20μm以上80μmがさらに好ましい。基材層30A、30B、30Cの屈折率は、それぞれ独立に、1.40以上1.70以下が好ましく、1.43以上1.65以下がさらに好ましい。
 接着剤層52、54、56、58の厚さは、それぞれ独立に、例えば0.1μm以上100μm以下であり、0.3μm以上100μm以下が好ましく、0.5μm以上50μm以下がさらに好ましい。接着剤層52、54、56、58の屈折率は、それぞれ独立に、好ましくは1.42以上1.60以下であり、より好ましくは1.47以上1.58以下である。また、接着剤層52、54、56、58の屈折率は、それが接する導光層10または賦形フィルム62の屈折率と近いことが好ましく、屈折率の差の絶対値が0.2以下であることが好ましい。
 各特性の測定方法は以下の通りである。
[屈折率]
 アクリルフィルムに低屈折率層を形成した後に、50mm×50mmのサイズにカットし、これを粘着層でガラス板(厚さ:3mm)の表面に貼合した。前記ガラス板の裏面中央部(直径20mm程度)を黒マジックで塗りつぶして、前記ガラス板の裏面で反射しないサンプルを調製した。
 エリプソメーター(J.A.Woollam Japan社製:商品名VASE)に前記サンプルをセットし、550nmの波長、入射角50度以上80度以下の条件で、屈折率を測定し、その平均値を屈折率とした。本明細書における屈折率は特に断らない限り、この規定による。
[耐擦傷性]
 スチールウール試験(φ25mm)100g荷重×10往復を行い、キズの有無を目視で確認した。傷を視認できない場合を〇(Good)、傷を視認できる場合には×(NG)と評価した。
[防汚性]
 油性マジック(ゼブラ社製:商品名マッキー極細)で導光部材の光出射面に一塗りした時に、目視でインクを弾いている場合に〇、インクが表面になじんで弾かない場合は×と評価した。
[ヘイズ値]
 サンプルを50mm×50mmのサイズにカットし、ヘイズメータ(村上色彩技術研究所製:商品名HM-150)にてヘイズ値を測定した。
[可視光透過率]
 サンプルの可視光透過率は、分光光度計を用いて測定波長380nm以上780nm以下で測定したときの、各波長における可視光透過率の平均値とした。ここでは、上記のヘイズメータを用いて可視光透過率も測定した。
 [製造例1]
 凹凸賦形フィルムの製造
 特表2013-524288号公報に記載の方法にしたがって凹凸賦形フィルムを製造した。具体的には、ポリメタクリル酸メチル(PMMA)フィルムの表面をラッカー(三洋化成工業社製ファインキュアー RM-64)でコーティングし、当該ラッカーを含むフィルム表面上に光学パターンをエンボス加工し、その後ラッカーを硬化させることによって目的の凹凸賦形フィルムを製造した。凹凸賦形フィルムの総厚さは130μmであり、ヘイズは0.8%であった。
 製造された凹凸賦形フィルムの一部について凹凸面側から見た平面図を図14Aに示す。また、図14Aの凹凸賦形フィルムの14B-14B’断面図を図14Bに示す。長さLが80μm、幅Wが14μm、深さHが10μmの、断面が三角形である複数の凹部が、X方向に幅E(155μm)の間隔を空けて配置された。さらにこのような凹部のパターンが、Y方向に幅D(100μm)の間隔を空けて配置された。凹凸賦形フィルム表面における凹部の密度は、3612個/cmであった。図15におけるθaおよびθbはいずれも41°であり、フィルムを凹凸面側から平面視した際の凹部の占有面積率は4.05%であった。
 [製造例2]
 低屈折率層形成用塗工液の調製
 国際公開第2019/026865号の記載にしたがって製造した。具体的には以下の通りである。
(1)ケイ素化合物のゲル化
 2.2gのジメチルスルホキシド(DMSO)に、ゲル状ケイ素化合物の前駆体であるメチルトリメトキシシラン(MTMS)を0.9g溶解させて混合液Aを調製した。この混合液Aに、0.01mol/Lのシュウ酸水溶液を0.5g添加し、室温で30分撹拌を行うことでMTMSを加水分解して、トリス(ヒドロキシ)メチルシランを含む混合液Bを生成した。
 5.5gのDMSOに、28質量%のアンモニア水0.38g、および純水0.2gを添加した後、さらに、上記混合液Bを追添し、室温で15分撹拌することで、トリス(ヒドロキシ)メチルシランのゲル化を行い、ゲル状ケイ素化合物を含む混合液Cを得た。
(2)熟成処理
 上記のように調製したゲル状ケイ素化合物を含む混合液Cを、そのまま、40℃で20時間インキュベートして、熟成処理を行った。
(3)粉砕処理
 次に、上記のように熟成処理したゲル状ケイ素化合物を、スパチュラを用いて数mm~数cmサイズの顆粒状に砕いた。次いで、混合液Cにイソプロピルアルコール(IPA)を40g添加し、軽く撹拌した後、室温で6時間静置して、ゲル中の溶媒および触媒をデカンテーションした。同様のデカンテーション処理を3回行うことにより、溶媒置換し、混合液Dを得た。次いで、混合液D中のゲル状ケイ素化合物を粉砕処理(高圧メディアレス粉砕)した。粉砕処理(高圧メディアレス粉砕)は、ホモジナイザー(エスエムテー社製、商品名「UH-50」)を使用し、5ccのスクリュー瓶に、混合液D中のゲル状化合物1.85gおよびIPAを1.15g秤量した後、50W、20kHzの条件で2分間の粉砕を行った。
 この粉砕処理によって、上記混合液D中のゲル状ケイ素化合物が粉砕されたことにより、該混合液D’は、粉砕物のゾル液となった。混合液D’に含まれる粉砕物の粒度バラツキを示す体積平均粒子径を、動的光散乱式ナノトラック粒度分析計(日機装社製、UPA-EX150型)にて確認したところ、0.50~0.70であった。さらに、このゾル液(混合液C’)0.75gに対し、光塩基発生剤(和光純薬工業株式会社:商品名WPBG266)の1.5質量%濃度MEK(メチルエチルケトン)溶液を0.062g、ビス(トリメトキシシリル)エタンの5%濃度MEK溶液を0.036gの比率で添加し、低屈折率層形成用塗工液(微細孔粒子含有液)を得た。
 [製造例3]
 ハードコート(HC)層塗工液の調製
 特開2011-237789号公報に記載の製造方法を参考にして製造した。具体的には以下の通りである。
 ウレタンアクリレートを主成分とする紫外線硬化型樹脂モノマーまたはオリゴマーが酢酸ブチルに溶解された樹脂溶液(DIC社製、商品名「ユニディック17-806」、固形分濃度80%)に、その溶液中の固形分100部当たり、光重合開始剤(BASF社製、製品名「IRGACURE906」)を5部、レベリング剤(DIC社製、製品名「GRANDIC PC4100」)を0.5部添加した。その後、上記溶液中の固形分濃度が75%となるように、上記溶液に酢酸ブチルを加えた。さらに、上記溶液中の固形分濃度が50%となるように、上記溶液にシクロペンタノンを加えた。このようにして、HC層を形成するためのHC層塗工液を調製した。
 [製造例4]
 接着剤A層の形成(接着剤層54)
 以下の手順により、接着剤A層を形成した。接着剤A層は、表面の凹部を埋めることなく接着できる。
(1)接着剤A溶液の調製
 攪拌羽根、温度計、窒素ガス導入管、冷却器を備えた4つ口フラスコに、n-ブチルアクリレート95.0質量部、アクリル酸5.0質量部、重合開始剤として2,2’-アゾビスイソブチロニトリル0.2質量部をモノマーの合計が40.0質量%になるように酢酸エチルと共にフラスコに仕込み、緩やかに攪拌しながら窒素ガスを導入して1時間窒素置換した後、フラスコ内の液温を63℃付近に保って6時間重合反応を行った。その後、固形分が40質量%になるよう、酢酸エチルを加え、アクリル系重合体を得た。得られたアクリル系重合体溶液に、重合体の固形分100質量部に対して、架橋剤として1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン(商品名「TETRAD-C」、三菱ガス化学株式会社製)6.0質量部を配合して接着剤A溶液を調製した。
(2)接着剤A層の形成
 接着剤A溶液を、シリコーン剥離処理した38μmのポリエチレンテレフタレート(PET)フィルム(商品名「MRF38」、三菱ケミカル株式会社製)の片面に、乾燥後の接着剤層の厚さが1μmとなるように塗布し、150℃で3分間乾燥して、接着剤A層を形成した。屈折率1.47であった。
 [製造例5]
 接着剤B層の形成(接着剤層52、56、58)
 特開2018-136401号公報に記載の方法を参考にして、接着剤B層を形成した。具体的には以下の通りである。
(1)アクリル系ポリマーの調製
 攪拌羽根、温度計、窒素ガス導入管、冷却器を備えた4つ口フラスコに、ブチルアクリレート82部、ベンジルアクリレート15部、4-ヒドロキシブチルアクリレート3部を含有するモノマー混合物を仕込んだ。さらに、前記モノマー混合物(固形分)100部に対して、重合開始剤として2,2’-アゾビスイソブチロニトリル0.1部を酢酸エチルと共に仕込み、緩やかに攪拌しながら窒素ガスを導入して窒素置換した後、フラスコ内の液温を60℃付近に保って7時間重合反応を行った。その後、得られた反応液に、酢酸エチルを加えて、固形分濃度30%に調整した、質量平均分子量100万のアクリル系ポリマーの溶液を調製した。
(2)接着剤B溶液の調製
 上記で得られたアクリル系ポリマー溶液の固形分100部に対して、リチウムビス(トリフルオロメタンスルホニル)イミド(日本カーリット社製)0.002部を配合し、さらに、トリメチロールプロパンキシリレンジイソシアネート(三井化学社製:タケネートD110N)0.1部と、ジベンゾイルパーオキサイド0.3部と、γ-グリシドキシプロピルメトキシシラン(信越化学工業社製:KBM-403)0.075部と、カネカ社製のサイリルSAT10(数平均分子量4000)0.5部を配合し、接着剤B溶液を調製した。
(3)接着剤B層の形成
 上記で得られた接着剤B溶液を、シリコーン系剥離剤で処理されたPETフィルムの剥離基材(三菱樹脂社製MRF38CK)の表面に、アプリケータで均一に塗工し、155℃の空気循環式恒温オーブンで2分間乾燥することにより、接着剤B層を形成した。接着剤B層の屈折率は1.47であり、厚さは10μmであった。
 実施例1
(1)導光部材の作製
 図12Aに示した導光部材200AD_aを作製した。
 製造例4で形成した接着剤A層を、製造例1の凹凸賦形フィルムの凹凸面にハンドローラーを用いて貼り合わせ、凹凸賦形フィルム/接着剤A層/PETフィルムの積層体を得た。次に、当該積層体のPETフィルムを剥がし、厚さ5mm、幅120mm、長さ700mmのアクリル板(三菱ケミカル社製:商品名アクリライト)にハンドローラーを用いて貼り合わせることで凹凸賦形フィルム/接着剤A層/導光層の積層体を得た。
 製造例3で準備したHC層塗工液を屈折率1.51、厚さ40μmのアクリルフィルム(基材層)の片面にワイヤーバーにて塗布し、80℃で1分間乾燥させた後、波長360nmの光を用いて300mJ/cmの光照射量(エネルギー)でUV照射し、HC層/アクリルフィルム積層体を得た。このときHC層の厚さは5μmであった。HC層の屈折率は1.52であった。
 HC層/アクリルフィルム積層体の、アクリルフィルム面に、製造例2で調製した低屈折率層塗工液を塗布し、温度100℃で1分処理して乾燥し、さらに、乾燥後の塗工層に、波長360nmの光を用いて300mJ/cmの光照射量(エネルギー)でUV照射し、HC層/アクリルフィルム/低屈折率層の積層体を得た。このとき、低屈折率層の屈折率は1.15であった(厚さ1μm)。
 以上のようにして準備したHC層/アクリルフィルム/低屈折率層の積層体の低屈折率層面に、製造例5で作製した接着剤B層を貼って、HC層/アクリルフィルム/低屈折率層/接着剤B層/PETフィルムの積層体を得た。これを2つ用意した。それぞれの積層体のPETフィルムを剥がして、上記で作製した凹凸賦形フィルム/接着剤A層/導光層の積層体の両面に貼り付けて、目的の導光部材を製造した。
(2)照明装置の作製
 導光部材の導光層の側部にLEDライン光源(日亜社製、0.4mm厚さ、サイドビューを搭載)を設置し、照明装置を作製した。なお、点灯は12Vにて試験を行った。
 実施例2
(1)導光部材の作製
 図13Aに示した導光部材220AD_aを作製した。
 屈折率1.51、厚さ40μmのアクリルフィルムの片面に、所定の領域に穴をあけたマスク板を設置し、製造例2の低屈折率層形成用塗工液を塗工した。この時、形成される光結合層80において、低屈折率領域80aが光源に近い側で密(ほぼ低屈折率領域80aが存在)にし、光源から遠ざかるにつれて疎(低屈折率領域800aがない領域が多い)になるようなマスク板を用いた。乾燥後の塗工層に、波長360nmの光を用いて300mJ/cmの光照射量(エネルギー)でUV照射し、マスク板を外すことで、低屈折率領域80aを形成した。形成される低屈折率領域80aの平面図を図16に示す。図中のドットは、低屈折率形成用塗工液が塗工された部分を示す(破線で囲われた部分にもパターン層部分は存在するが、図中では省略されている)。ドットのサイズは、例えば、1μm以上1000μm以下である。このような光結合層80を設けることによって、賦形フィルムの凹部(内部空間14A、64A)の占有面積率を全面にわたって均一にできる。
 当該パターン層に接着剤A溶液を適用し、アクリルフィルム/低屈折率材料のパターン層/接着剤A層の積層体を得た。さらに、当該積層体の接着剤A層に、凹凸賦形フィルムの凹凸面を貼り合わせ、アクリルフィルム/低屈折率材料のパターン層/接着剤A層/凹凸賦形フィルムの積層体を得た。
 アクリルフィルム/低屈折率材料のパターン層/接着剤A層/凹凸賦形フィルムの積層体の凹凸賦形フィルム面に、実施例1で製造されたHC層/アクリルフィルム/低屈折率層/接着剤B層の積層体の接着剤B層を張り合わせて、HC層/アクリルフィルム/低屈折率層/接着剤B層/凹凸賦形フィルム/接着剤A層/低屈折率材料のパターン層/アクリルフィルムの積層体を得た。
 さらに当該積層体と導光層とを、接着剤B層を介して導光層とアクリルフィルムとが対向するように貼り合わせ、HC層/アクリルフィルム/低屈折率層/接着剤B層/凹凸賦形フィルム/接着剤A層/低屈折率材料のパターン層/アクリルフィルム/接着剤B層/導光層の積層体を得た。当該積層体の導光層面に、実施例1で製造されたHC層/アクリルフィルム/低屈折率層/接着剤B層の積層体の接着剤B層を貼り合わせ、目的の導光部材を作製した。
(2)照明装置の作製
 実施例1(2)と同様にして、照明装置を作製した。
 比較例1
(1)導光部材の作製
 比較例1の導光部材910Aの模式図を図17に示す。
 製造例1の凹凸賦形フィルムの凹凸面とは反対側の面に製造例5の接着剤B層を貼りつけた。その後、接着剤B層のPETフィルムを剥がして、導光層と貼り合わせて目的の導光部材を作製した。
(2)照明装置の作製
 実施例1(2)と同様にして、照明装置を作製した。
 比較例2
(1)導光部材の作製
 比較例2の導光部材920Aの模式図を図18に示す。
 実施例1で作製した凹凸賦形フィルム/接着剤A層/導光層の積層体の凹凸賦形フィルム面と、HC層/アクリルフィルム/接着剤B層の積層体の接着剤B層とを貼り合わせて目的の導光部材を作製した。
(2)照明装置の作製
 実施例1(2)と同様にして、照明装置を作製した。
 比較例3
 実施例1で使用した凹凸賦形フィルムの代わりに、特許文献2の図10(B)に開示された凹凸賦形フィルムを用いた他は、実施例1と同様にして導光部材および照明装置を作製した。使用された凹凸賦形フィルム92の一部について凹凸面側から見た平面図を図19Aに示す。また、図19A中の19B-19B’に沿った断面図を図19Bに示す。凹凸賦形フィルム92を凹凸面側から見たときに、凹凸賦形フィルム92の面積全体に占める、凹部94の面積の割合は、61%であった。
[光漏れの確認]
 耐擦傷性試験の前後、および防汚性試験の前後で、実施例1および2、ならびに比較例1、2および3の照明装置について、目視にてキズや汚れ周辺の光漏れの確認をした。光漏れがない場合を〇、光漏れがある場合を×と評価した。
[光均一性の確認]
 導光部材の光出射面の中央部に、幅10mm、長さ120mmの黒テープ(日東電工社製ビニールテープ)を貼り、光源から30mmの位置の輝度、および光源から670mm離れた位置の輝度を測定した。輝度は2次元輝度計(TOPCOM社製:商品名SR-5000HS)にて測定した。光源から30mmの位置(近端部)の輝度を100%として、光源から670mm離れた位置(遠端部)の輝度の割合を測定した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 実施例1では導光層の両面に低屈折率層が存在するので、汚れの影響なく、光がロスなく導波していることがわかる。さらに、光を吸収する媒体が導波の途中に存在していても入り口と出口で光がロスなく伝搬していることがわかる。
 加えて、実施例2では低屈折率層がパターン化されることで、入り口と出口でより均一に光を取り出せていることがわかる。
 [建築部材]
 上述したシート状(またはフィルム状)の透明な照明装置は、建築部材に用いられる。照明装置そのものを建築部材として用いることもできるし、建築部材の一部としても用いることができる。建築部材は、外装用および内装用を含む。例えば、窓部材、壁部材、間仕切り、天井(天窓)部材、階段部材、手摺部材、床部材として用いることができる。この他、街路用、防犯用、非常用、庭用、プール・池(水中)用、倉庫内、工場内、軒下(屋外)の照明装置としても利用できる。いずれも、使用しないときには透明な板として利用される。
 また、照明の色を変える機能、および/または、点灯領域を変える機能を付加することもできる。色または点灯領域は、時間によって変化させてもよい。光源として利用されるLEDの種類(色)、数、およびその配置は、種々であり得る。もちろん、導光層の形状、大きさ、厚さも種々であり得る。
 また、複数のシート状照明装置をタイリングすることによって、より大きな照明装置として、より大きな建築部材として用いることができる。また、複数のシート状照明装置を積層して用いることもできる。
 本発明の実施形態による照明装置を用いることによって、意匠性または娯楽性に富んだ建築部材を提供することができる。
 本発明の実施形態によると、従来よりも透過率が高く、ヘイズ値が小さい照明装置および照明装置用導光部材が提供され、意匠性または娯楽性に富む照明が提供される。本発明の実施形態によると、意匠性または娯楽性に富む照明が可能な建築部材が提供される。
 10、10A、10B   :導光層
 14、14A、14B、64A、64B   :内部空間
 20A、20B   :低屈折率層
 30A、30B、30C   :基材層
 40A、40B:   ハードコート層
 52、54、56、58   接着剤層
 100A、100B、200A、200B   :導光部材
 100A_L、200A_L   :照明装置

Claims (20)

  1.  導光層であって、第1主面と、前記第1主面とは反対側の第2主面と、光源から出射された光を受ける受光側面とを有する導光層と、
     前記導光層の前記第1主面側に配置され、前記導光層の屈折率nGPよりも小さい屈折率nL1を有する第1低屈折率層と、
     前記導光層内を伝搬する光の一部を少なくとも前記第1低屈折率層側または前記第1低屈折率層とは反対側に向けることができる配光制御構造と、
    を有し、
     可視光透過率が60%以上であり、ヘイズ値が10%未満である、照明装置用導光部材。
  2.  前記配光制御構造は、前記導光層内を伝搬する光の一部を少なくとも前記第1低屈折率層側に向ける、請求項1に記載の照明装置用導光部材。
  3.  前記配光制御構造は、前記導光層内を伝搬する光の一部を少なくとも前記第1低屈折率層側とは反対側に向ける、請求項1に記載の照明装置用導光部材。
  4.  前記第1低屈折率層の前記導光層とは反対側に配置され、硬度が鉛筆硬度H以上の第1ハードコート層をさらに有する、請求項1から3のいずれか1項に記載の照明装置用導光部材。
  5.  前記第1低屈折率層の前記導光層とは反対側に第1基材層を有し、前記第1ハードコート層は、前記第1基材層の前記第1低屈折率層とは反対側に形成されている、請求項1から4のいずれか1項に記載の照明装置用導光部材。
  6.  前記配光制御構造は、内部全反射によって光を前記第1低屈折率層側または前記第1低屈折率層側とは反対側に向ける界面を形成する複数の内部空間を有する、請求項1から5のいずれか1項に記載の照明装置用導光部材。
  7.  前記配光制御構造は、前記複数の内部空間が前記導光層内に形成されている第1配光制御構造を含む、請求項6に記載の照明装置用導光部材。
  8.  前記配光制御構造は、前記複数の内部空間が前記導光層と前記第1低屈折率層との間に設けられた第1方向変換層に形成されている第2配光制御構造を含む、請求項6に記載の照明装置用導光部材。
  9.  前記導光層と前記第1方向変換層との間に設けられた第1光結合層をさらに有し、
     前記第1光結合層は、前記導光層の屈折率nGPよりも小さい屈折率nC1を有する複数の第1低屈折率領域を有する、請求項8に記載の照明装置用導光部材。
  10.  前記配光制御構造は、前記複数の内部空間が前記導光層の前記第2主面上に設けられた第2方向変換層に形成されている第3配光制御構造を含む、請求項6に記載の照明装置用導光部材。
  11.  前記複数の内部空間は、前記導光層を前記第1主面の法線方向から平面視したときに、前記導光層の面積に占める前記複数の内部空間の面積の割合は30%以下である、請求項6から10のいずれか1項に記載の照明装置用導光部材。
  12.  前記導光層の前記第2主面側に配置され、前記導光層の屈折率nGPよりも小さい屈折率nL2を有する第2低屈折率層をさらに有する、請求項1から11のいずれか1項に記載の照明装置用導光部材。
  13.  前記第2低屈折率層の前記導光層とは反対側に配置され、前記導光層の硬度HGPよりも高い硬度HH2を有する第2ハードコート層をさらに有する、請求項12に記載の照明装置用導光部材。
  14.  前記第2低屈折率層の前記導光層とは反対側に第2基材層を有し、前記第2ハードコート層は、前記第2基材層の前記第2低屈折率層とは反対側に形成されている、請求項13に記載の照明装置用導光部材。
  15.  前記導光層と前記第2方向変換層との間に設けられた第2光結合層をさらに有し、
     前記第2光結合層は、前記導光層の屈折率nGPよりも小さい屈折率nC2を有する、複数の第2低屈折率領域を有する、請求項10に記載の照明装置用導光部材。
  16.  前記第1ハードコート層のヘイズ値は、前記第2ハードコート層のヘイズ値よりも大きい、請求項4を間接的に引用する請求項13または14に記載の照明装置用導光部材。
  17.  撥水性および/または撥油性を有する防汚層を前記第1主面側または前記第2主面側の最外層としてさらに有する、請求項1から16のいずれか1項に記載の照明装置用導光部材。
  18.  前記防汚層の前記導光層側に設けられた反射防止層をさらに有する、請求項17に記載の照明装置用導光部材。
  19.  請求項1から18のいずれか1項に記載の照明装置用導光部材と、
     前記受光側面に向けて光を出射する光源と
    を備える、照明装置。
  20.  請求項1から18のいずれか1項に記載の照明装置用導光部材を備える建築部材。
PCT/JP2021/027768 2020-07-28 2021-07-27 照明装置用導光部材、照明装置および建築部材 WO2022025067A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2022539501A JP7560557B2 (ja) 2020-07-28 2021-07-27 照明装置用導光部材、照明装置および建築部材
US18/017,695 US20230280523A1 (en) 2020-07-28 2021-07-27 Lighting-device light guide member, lighting device, and building material
KR1020237003730A KR20230035069A (ko) 2020-07-28 2021-07-27 조명 장치용 도광부재, 조명 장치 및 건축부재
EP21850387.8A EP4191132A4 (en) 2020-07-28 2021-07-27 LIGHT GUIDE ELEMENT OF LIGHTING DEVICE, LIGHTING DEVICE AND BUILDING MATERIAL
CN202180059208.9A CN116134268A (zh) 2020-07-28 2021-07-27 照明装置用导光部件、照明装置及建筑部件

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020127530 2020-07-28
JP2020-127530 2020-07-28
JP2021084593 2021-05-19
JP2021-084593 2021-05-19

Publications (1)

Publication Number Publication Date
WO2022025067A1 true WO2022025067A1 (ja) 2022-02-03

Family

ID=80036645

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/027768 WO2022025067A1 (ja) 2020-07-28 2021-07-27 照明装置用導光部材、照明装置および建築部材

Country Status (7)

Country Link
US (1) US20230280523A1 (ja)
EP (1) EP4191132A4 (ja)
JP (1) JP7560557B2 (ja)
KR (1) KR20230035069A (ja)
CN (1) CN116134268A (ja)
TW (1) TW202213807A (ja)
WO (1) WO2022025067A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023189036A1 (ja) * 2022-03-31 2023-10-05 日東電工株式会社 光学部材の製造方法
WO2024067916A1 (de) 2022-10-01 2024-04-04 polyscale GmbH & Co. KG Optische einheit zum abstrahlen von licht und verfahren zur herstellung einer optischen einheit
WO2024203072A1 (ja) * 2023-03-31 2024-10-03 日東電工株式会社 Arデバイス

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4354014A1 (en) * 2021-06-09 2024-04-17 Nitto Denko Corporation Light guide member for illumination device, and illumination device

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000048617A (ja) * 1998-07-28 2000-02-18 Nitto Denko Corp 導光板、面光源装置及び反射型液晶表示装置
JP2001215312A (ja) 2000-02-02 2001-08-10 Nitto Denko Corp 光学フィルム
JP2004086221A (ja) * 2003-09-12 2004-03-18 Sharp Corp フロントライト及び表示装置
WO2004113966A1 (ja) 2003-06-18 2004-12-29 Asahi Kasei Kabushiki Kaisha 反射防止膜
JP2006011175A (ja) 2004-06-28 2006-01-12 Pentax Corp 反射防止膜を有する光学素子及びその製造方法
JP2008040171A (ja) 2006-08-07 2008-02-21 Pentax Corp セルフクリーニング効果を有する反射防止膜を設けた光学素子及びその製造方法
JP2010189212A (ja) 2009-02-17 2010-09-02 Shinshu Univ 多孔質シリカ膜およびその製造方法
WO2011127187A1 (en) 2010-04-06 2011-10-13 Modilis Holding Llc Internal cavity optics
WO2011124765A1 (en) 2010-04-06 2011-10-13 Kari Rinko Laminate structure with embedded cavities and related method of manufacture
JP2011237789A (ja) 2010-04-15 2011-11-24 Nitto Denko Corp ハードコートフィルム、偏光板、画像表示装置、及びハードコートフィルムの製造方法
JP2013178534A (ja) 2013-04-05 2013-09-09 Nitto Denko Corp 防眩性ハードコートフィルム、それを用いた偏光板および画像表示装置
JP2018044994A (ja) * 2016-09-12 2018-03-22 大日本印刷株式会社 表示装置
JP2018136401A (ja) 2017-02-21 2018-08-30 日東電工株式会社 液晶表示装置および光学部材
JP2018142530A (ja) * 2017-02-27 2018-09-13 大日本印刷株式会社 調光部材、それを備えた建材、及び、建材の製造方法
WO2019026865A1 (ja) 2017-08-04 2019-02-07 日東電工株式会社 光取り出し部材
WO2019087118A1 (en) 2017-11-01 2019-05-09 Nitto Denko Corporation Light distribution structure and element, related method and uses
WO2019102959A1 (ja) 2017-11-21 2019-05-31 富士フイルム株式会社 片面照明兼用窓
WO2019146628A1 (ja) 2018-01-26 2019-08-01 日東電工株式会社 Led照明器具用フィルム、led照明器具
WO2019180676A1 (en) * 2018-03-22 2019-09-26 Nitto Denko Corporation Optical device
JP2020052221A (ja) 2018-09-26 2020-04-02 日東電工株式会社 保護フィルム付き光学フィルム
JP2020067582A (ja) 2018-10-25 2020-04-30 日東電工株式会社 反射防止フィルム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69930025T2 (de) * 1998-04-17 2006-08-10 Nitto Denko Corp., Ibaraki Lichtleitende Platte, Oberfläche- Lichtquellenvorrichtung, und Reflexion-Type Flüssigkristall Anzeige
JP5617212B2 (ja) 2009-09-24 2014-11-05 日亜化学工業株式会社 導光板、導光板の製造方法及びバックライトユニット
EP2558775B1 (en) * 2010-04-16 2019-11-13 FLEx Lighting II, LLC Illumination device comprising a film-based lightguide
WO2012116215A1 (en) * 2011-02-25 2012-08-30 3M Innovative Properties Company Illumination article and device for front-lighting reflective scattering element
JP5954616B2 (ja) 2012-02-27 2016-07-20 朝日テクノ株式会社 導光板、面状発光装置及び面状表示装置の製造方法
JP6567252B2 (ja) 2013-06-17 2019-08-28 大日本印刷株式会社 導光板および照明装置

Patent Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000048617A (ja) * 1998-07-28 2000-02-18 Nitto Denko Corp 導光板、面光源装置及び反射型液晶表示装置
JP2001215312A (ja) 2000-02-02 2001-08-10 Nitto Denko Corp 光学フィルム
WO2004113966A1 (ja) 2003-06-18 2004-12-29 Asahi Kasei Kabushiki Kaisha 反射防止膜
JP2004086221A (ja) * 2003-09-12 2004-03-18 Sharp Corp フロントライト及び表示装置
JP2006011175A (ja) 2004-06-28 2006-01-12 Pentax Corp 反射防止膜を有する光学素子及びその製造方法
JP2008040171A (ja) 2006-08-07 2008-02-21 Pentax Corp セルフクリーニング効果を有する反射防止膜を設けた光学素子及びその製造方法
JP2010189212A (ja) 2009-02-17 2010-09-02 Shinshu Univ 多孔質シリカ膜およびその製造方法
WO2011127187A1 (en) 2010-04-06 2011-10-13 Modilis Holding Llc Internal cavity optics
WO2011124765A1 (en) 2010-04-06 2011-10-13 Kari Rinko Laminate structure with embedded cavities and related method of manufacture
JP2011237789A (ja) 2010-04-15 2011-11-24 Nitto Denko Corp ハードコートフィルム、偏光板、画像表示装置、及びハードコートフィルムの製造方法
JP2013178534A (ja) 2013-04-05 2013-09-09 Nitto Denko Corp 防眩性ハードコートフィルム、それを用いた偏光板および画像表示装置
JP2018044994A (ja) * 2016-09-12 2018-03-22 大日本印刷株式会社 表示装置
JP2018136401A (ja) 2017-02-21 2018-08-30 日東電工株式会社 液晶表示装置および光学部材
JP2018142530A (ja) * 2017-02-27 2018-09-13 大日本印刷株式会社 調光部材、それを備えた建材、及び、建材の製造方法
WO2019026865A1 (ja) 2017-08-04 2019-02-07 日東電工株式会社 光取り出し部材
WO2019087118A1 (en) 2017-11-01 2019-05-09 Nitto Denko Corporation Light distribution structure and element, related method and uses
WO2019102959A1 (ja) 2017-11-21 2019-05-31 富士フイルム株式会社 片面照明兼用窓
WO2019146628A1 (ja) 2018-01-26 2019-08-01 日東電工株式会社 Led照明器具用フィルム、led照明器具
WO2019180676A1 (en) * 2018-03-22 2019-09-26 Nitto Denko Corporation Optical device
WO2019182098A1 (ja) * 2018-03-22 2019-09-26 日東電工株式会社 光学デバイス
WO2019182091A1 (ja) 2018-03-22 2019-09-26 日東電工株式会社 光学デバイス
JP2020052221A (ja) 2018-09-26 2020-04-02 日東電工株式会社 保護フィルム付き光学フィルム
JP2020067582A (ja) 2018-10-25 2020-04-30 日東電工株式会社 反射防止フィルム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4191132A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023189036A1 (ja) * 2022-03-31 2023-10-05 日東電工株式会社 光学部材の製造方法
WO2024067916A1 (de) 2022-10-01 2024-04-04 polyscale GmbH & Co. KG Optische einheit zum abstrahlen von licht und verfahren zur herstellung einer optischen einheit
DE102022125441A1 (de) 2022-10-01 2024-04-04 polyscale GmbH & Co. KG Optische Einheit zum Abstrahlen von Licht und Verfahren zur Herstellung einer optischen Einheit
WO2024203072A1 (ja) * 2023-03-31 2024-10-03 日東電工株式会社 Arデバイス

Also Published As

Publication number Publication date
EP4191132A1 (en) 2023-06-07
KR20230035069A (ko) 2023-03-10
CN116134268A (zh) 2023-05-16
JPWO2022025067A1 (ja) 2022-02-03
TW202213807A (zh) 2022-04-01
EP4191132A4 (en) 2024-08-14
US20230280523A1 (en) 2023-09-07
JP7560557B2 (ja) 2024-10-02

Similar Documents

Publication Publication Date Title
WO2022025067A1 (ja) 照明装置用導光部材、照明装置および建築部材
KR100887913B1 (ko) 투명 도전성 필름 및 터치 패널
KR101755955B1 (ko) 적층체
CN114746775B (zh) 防反射薄膜及图像显示装置
CN103823259B (zh) 光学片
CN101052903A (zh) 增亮膜以及制备和使用所述增亮膜的方法
KR20150125704A (ko) 적층 구조체 및 그의 제조 방법과 물품
TWI435120B (zh) 複合光學膜
CN104797882A (zh) 可变折射率光提取层及其制备方法
JP6586805B2 (ja) エッジライト型バックライト及び液晶表示装置
JP7351385B2 (ja) 低反射部材、並びにそれを用いた表示装置及び物品
JP2014153524A (ja) 反射防止物品及び画像表示装置
JP5747928B2 (ja) 反射防止物品の製造方法
JP5397589B2 (ja) 積層体
KR101059656B1 (ko) 광확산기능 일체형 도광판, 그 제조방법 및 이를 이용한 엘이디 조명용 백라이트 유닛
WO2014189075A1 (ja) 積層体
JP2016049699A (ja) 防汚性構造体、これを有する積層体及び画像表示装置
JP2009198749A (ja) 光線制御部材
WO2022244474A1 (ja) 光学装置
WO2023276836A1 (ja) 照明装置用導光部材および照明装置
KR100650150B1 (ko) 투과율이 향상된 확산판
WO2022260080A1 (ja) 照明装置用導光部材および照明装置
WO2022264930A1 (ja) 照明装置用導光部材および照明装置
WO2023276705A1 (ja) 光学積層体および照明装置
WO2023276704A1 (ja) 発光装置用導光部材および発光装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21850387

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022539501

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237003730

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2021850387

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021850387

Country of ref document: EP

Effective date: 20230228

NENP Non-entry into the national phase

Ref country code: DE