CN102132382A - 表面处理的氮化铝挡板 - Google Patents

表面处理的氮化铝挡板 Download PDF

Info

Publication number
CN102132382A
CN102132382A CN2009801327094A CN200980132709A CN102132382A CN 102132382 A CN102132382 A CN 102132382A CN 2009801327094 A CN2009801327094 A CN 2009801327094A CN 200980132709 A CN200980132709 A CN 200980132709A CN 102132382 A CN102132382 A CN 102132382A
Authority
CN
China
Prior art keywords
baffle plate
gas
metal oxide
binding agent
main body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2009801327094A
Other languages
English (en)
Other versions
CN102132382B (zh
Inventor
穆罕默德·M·拉希德
德米特里·鲁博弥尔斯克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Materials Inc
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Publication of CN102132382A publication Critical patent/CN102132382A/zh
Application granted granted Critical
Publication of CN102132382B publication Critical patent/CN102132382B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45587Mechanical means for changing the gas flow
    • C23C16/45591Fixed means, e.g. wings, baffles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/0092Temporary binders, mortars or concrete, i.e. materials intended to be destroyed or removed after hardening, e.g. by acid dissolution
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4404Coatings or surface treatment on the inside of the reaction chamber or on parts thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45561Gas plumbing upstream of the reaction chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • H01J37/32449Gas control, e.g. control of the gas flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28556Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45565Shower nozzles

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Structural Engineering (AREA)
  • Chemical Vapour Deposition (AREA)
  • Ceramic Products (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

本文提供关于氮化铝挡板的方法与设备。在某些实施例中,一用在半导体处理腔室中的挡板可包括主体,其包含氮化铝和金属氧化物粘结剂,其中在主体表面上的氮化铝与金属氧化物粘合剂的比率大于或等于主体内部的比率。在某些实施例中,主体可具有中心杆和外部环形物,其耦合至中心杆下部并从此处向外径向延伸。在某些实施例中,挡板的制造方法可包含烧结铝、氮和金属氧化物粘结剂,以形成挡板的主体,主体具有过量的金属氧化物粘结剂配置在其表面上;及从主体表面移除大量的过量金属氧化物粘结剂。

Description

表面处理的氮化铝挡板
技术领域
本发明的实施例大体上关于半导体处理设备,更具体地,关于用来处理半导体基材的氮化铝挡板。
背景技术
在某些高密度等离子体化学气相沉积(HDP-CVD)处理腔室中,挡板在基材处理期间可用于气体的注入与分配。用于HDP-CVD腔室的挡板典型地由氧化铝(Al2O3)构成。不过,随着使用高射频功率HDP-CVD处理来存取较小的装置节点,升高的温度导致氧化铝和处理气体反应,此类处理气体的例子为可用作HDP-CVD腔室的清洁气体的三氟化氮(NF3)。因此,由于除其它因素外的改善的导热性,氮化铝(AlN)挡板已取代氧化铝挡板。
不幸的是,虽然氮化铝挡板具有某些有利的性质,其它问题却仍存在。举例来说,氮化铝挡板通常以包括金属氧化物粘结剂的烧结处理制造。金属氧化物粘结剂有助于烧结的氮化铝的高导热性。不过,在基材处理之前的挡板时效处理期间,这些在烧结后存在于挡板表面上的粘结剂不合意地干涉到氧化硅(SiO2)层的粘着。举例来说,时效处理可防止基材受到挡板材料的污染,并可在处理或清洁期间保护挡板免受反应气体影响。不过,不良粘着的氧化硅时效处理层可从挡板表面剥落,从而污染欲处理的基材,且亦可在基材处理或腔室清洁期间使挡板处于易受所供应的反应气体损坏的状态。虽然此问题可通过不使用金属氧化物粘结剂来排除,但这一类方法将不合意地降低挡板的导热性。
因此,在此技术中需要改善的氮化铝挡板及其制造方法。
发明内容
本文提供关于氮化铝挡板的方法与设备。在某些实施例中,用在半导体处理腔室中的挡板可包括主体,其包含氮化铝和金属氧化物粘结剂,其中在所述主体的表面上的氮化铝与所述金属氧化物粘合剂的比率大于或等于所述主体内部的比率。在某些实施例中,所述主体可具有中心杆和耦合至所述中心杆的下部并从此处向外径向延伸的外部环形物。
在某些实施例中,处理半导体基材的设备可包括处理腔室,其具有内容积和配置在其顶板中的第一气体入口;及挡板,其耦合至所述第一气体入口并装配为引导第一处理气体从所述第一气体入口流到所述内容积,所述挡板包括主体,其包含氮化铝和金属氧化物粘结剂,其中在所述主体的表面上的氮化铝与所述金属氧化物粘结剂的比率大于或等于所述主体内部的比率。
在某些实施例中,用在半导体处理腔室中的挡板可通过一理形成,所述处理包括烧结铝、氮和金属氧化物粘结剂,以形成所述挡板的主体,所述主体具有过量的金属氧化物粘结剂配置在其表面上;及从所述表面移除大量的所述过量金属氧化物粘结剂。
在本发明的某些方面中,提供用在半导体处理腔室中的挡板的制造方法。在某些实施例中,用在半导体处理腔室中的挡板的制造方法可包括烧结铝、氮和金属氧化物粘结剂,以形成所述挡板的主体,所述主体具有过量的金属氧化物粘结剂配置在其表面上;及从所述主体表面移除大量的所述过量金属氧化物粘结剂。
在本发明的某些方面中,提供处理半导体基材的方法。在某些实施例中,处理半导体基材的方法可包括以下步骤:将基材放置在处理腔室中的基材支撑上,所述处理腔室具有内容积和第一气体入口,第一气体入口相对所述支撑基座配置在所述处理腔室的顶板中;使第一处理气体流过耦合至所述第一气体入口的挡板并进入所述内容积,所述挡板包含氮化铝主体,其具有金属氧化物粘结剂,其中在所述主体的表面上的氮化铝与所述金属氧化物粘结剂的比率大于或等于所述主体内部的比率;及以用所述第一处理气体处理所述基材。本发明的其它及进一步的实施例在下文叙述。
附图说明
参照某些示出于附图中的实施例来提供于上文简要总结的本发明的更具体叙述,以详细了解本发明的上述的特征结构。不过,须注意附图仅示出此发明的典型实施例,且因此不应视为对本发明范围的限制,因为本发明可容许其它等效实施例。
图1示出根据本发明的某些实施例所用的示意处理腔室的示意图。
图2A-B示出根据本发明的某些实施例的挡板的示意图。
图3示出根据本发明的某些实施例的挡板制造方法的流程图。
图4示出根据本发明的某些实施例的基材处理方法的流程图。
图5A-B分别示出在不同放大率下的常用挡板的表面的视图。
为了帮助了解,已尽可能地使用相同附图标记来标明各图中共用的相同组件。图式未依比例绘制,并可为清楚起见而加以简化。在无需进一步详述的情况下,可预期一实施例中的组件及特征结构能有利地并入其它实施例中。
具体实施例
本文提供使用改善的氮化铝挡板处理半导体基材的方法与设备。在某些实施例中,用在半导体处理腔室中的挡板包括主体,其包含氮化铝和金属氧化物粘结剂。在该主体表面上的氮化铝与金属氧化物的比率大于该主体内部的比率。金属氧化物在该主体表面上的缩减量帮助改善氧化硅时效处理层粘着至挡板表面,其可进一步防止在处理期间基材受到可以其它方式从氮化铝挡板剥落的粒子的污染,并可进一步保护挡板免于受到反应处理气体的损坏。在某些实施例中,提供制造氮化铝挡板的方法。该制造方法可有利地帮助制造氮化铝挡板,其在该主体表面上所具有的氮化铝与金属氧化物的比率大于该主体内部的比率。
本发明的氮化铝挡板可用在适当的处理腔室中,例如,适于执行高密度等离子体化学气相沉积(HDP-CVD)的。该处理腔室可配置为单一腔室,或可替代地集成为群集工具的一部分。两个这类的适当系统为300mmHDP-CVD ULTIMA X和CENTURA
Figure BPA00001314569100031
ULTIMA HDP-CVD,两者皆可由应用材料公司购得。可预期HDP-CVD腔室仅为在其中可使用氮化铝挡板的示例腔室。具有一或多个气体入口且适于容纳氮化铝挡板的任何适当腔室可从本发明的实施例受惠。
图1示出根据本发明的某些实施例的具有挡板200的示例HDP-CVD腔室100的示意图。HDP-CVD腔室100可用于例如硅(Si)基材、砷化镓(GaAs)基材等基材的温度控制处理,同时产生并维持在其中处理基材的等离子体环境。等离子体在基材处理期间产生在邻近基材处,且基材温度使用不同技术控制,例如,通过供应传热流体至基材的背表面。
HDP-CVD腔室100包括处理腔室110,其具有含有基材支撑102的内容积101,以及具有配置在其中的挡板200。处理腔室100可进一步包括真空系统112、源等离子体系统114、偏压等离子体系统116、气体输送系统118和远程等离子体清洁系统(未显示)。
基材支撑102可配置在处理腔室110中,以支撑处理期间放置在其上的基材106。基材支撑102可包括不同部件,例如,静电吸盘108,其夹钳基材106至基材支撑102;或其它部件,如更详细于下文叙述者。当基材106配置在其上时,处理套组(未显示)可选择性地用来覆盖至少一部分未受基材106覆盖的基材支撑102。处理套组可装配为在处理期间提供基材106的表面降低的污染,并在腔室清洁处理期间减少清洁时间。
处理腔室110的上部可包括圆顶121,其可以例如氧化铝或氮化铝之类的介电材料制成。圆顶121定义等离子体处理区域120的上边界。等离子体处理区域120在底部由基材106和基材支撑102定界。
加热板122和冷板124装于圆顶121之上并热耦合至圆顶121。加热板122和冷板124允许将圆顶温度控制在约摄氏100至200度的范围间的约摄氏+/-10度内。这允许针对不同处理最佳化圆顶温度。举例来说,可需要维持圆顶为用于清洁或蚀刻处理比用于沉积处理更高的温度。准确控制圆顶温度亦减少处理腔室中的小片或粒子数,并改善介于沉积层和基材之间的粘着。
圆顶121可包括顶部喷嘴150和配置在其中且通过此处的顶部排气孔152,其可用于引入气体至处理腔室110,如进一步在下文关于气体输送系统118所讨论的。顶部喷嘴150在气体入口(例如,下文关于图2A所讨论的气体入口208)处耦合至挡板200,且顶部排气孔152对处理腔室110开启,并朝向挡板200的背侧(例如,下文关于图2A所讨论的背侧203),如下文关于图1和图2A至B所讨论的。
参照图2A至B,挡板200通常包括主体202,其具有用于在处理腔室内部依所需引导处理气体的形状。举例来说,挡板200可配置在气体入口(例如,图1示出的顶部喷嘴150)和基材支撑(例如,图1示出的基材支撑102)之间,并可包括背侧203,其与圆顶121(在图1中示出)分开且相对;及前侧201,其配置为相对基材106和基材支撑102(在图1中示出),以依所需来引导处理气体。挡板200通常包含氮化铝和金属氧化物粘结剂。挡板200在主体202的表面上所具有的氮化铝与金属氧化物的比率大于主体202内部的氮化铝与金属氧化物的比率。
下文关于图3所讨论的制造氮化铝挡板的方法包括金属氧化物粘结剂与氮化铝对金属氧化物的比率的讨论,图3示出流程图,其说明根据本发明的某些实施例的制造氮化铝挡板的方法300。
方法300始于310,其中挡板200(或主体202)可从铝、氮和金属氧化物粘结剂烧结而得。一般而言,烧结处理包括在压力下以低于熔点的温度加热粉末,直到粉末粘着在一起形成固体物(例如,主体202)。在某些实施例中,可烧结氮化铝粉末和金属氧化物粉末,以形成主体202。
金属氧化物粘结剂可用来帮助氮化铝粒子的粘着,并用来改善挡板200的导热性。在某些实施例中,金属氧化物粘结剂包括氧化钇或氧化铒两者中至少一个。金属氧化物粘结剂可添加至氮化铝粉末然后烧结,或替代地,氮化铝粉末可包含足量的金属氧化物杂质,以致在烧结前不需要额外的金属氧化物粘结剂。在某些实施例中,介于约0.1至约10重量百分比的金属氧化物可存在于挡板200中。
本发明者已观察到常用氮化铝挡板的数个问题。举例来说,本发明者已观察到不均匀的涂层,例如,氧化硅风干处理层,倾向于在常用的氮化铝挡板的表面上发展。这类不均匀的涂层可导致涂层剥落(举例来说,由于涂层的不均匀堆积或由于金属氧化物在挡板表面上的松散晶粒),以及后续可能的基材污染、挡板暴露至有害的处理气体等。研究此问题,本发明者已观察到使用常用的烧结技术,烧结处理导致挡板在其表面上被配置过量金属氧化物。举例来说,图5A示出以100倍放大率观看的氮化铝挡板的实际表面的示意图,其清楚显示存在于氮化铝502的表面上的过量金属氧化物504的区域。所看到的过量金属氧化物504的区域为发白或浅色区域,其位于更暗的氮化铝502顶上。图5B示出以500倍放大率观看的氮化铝挡板的实际表面的示意图,其清楚显示存在于氮化铝502的表面上的过量金属氧化物504的区域。如同在图5B的更为放大的图中更清楚看到的,过量金属氧化物504的晶粒结构和氮化铝502的晶粒结构非常不同。此外,和在氮化铝502内部更均匀地配置或集成的相比,可看到过量金属氧化物504在氮化铝502顶上的区域或“岛”中形成。配置在表面上的过量金属氧化物可比通常遍及主体的以更大的量存在,这是因为金属氧化物粘结剂在烧结处理期间挤出或迁移之故。本发明者相信在常用挡板中所观察到的问题可至少部分归因于过量金属氧化物存在于氮化铝挡板表面上。
因此,本发明者相信排除或减少挡板表面上的过量金属氧化物可提供优于常用氮化铝挡板的优点。因此,在某些实施例中,挡板200在主体202的表面上可具有氮化铝与金属氧化物的比率大于或等于主体202内部的比率。在某些实施例中,挡板200在主体202的表面上可具有本质上无过量的金属氧化物。
回到图3,在320,将大量(例如,大多数)的过量金属氧化物粘结剂从挡板200(例如,主体202)的表面移除。在某些实施例中,举例来说,大量的过量金属氧化物粘结剂可在大量去除步骤中通过喷砂、喷粒、湿性擦蚀、机械研磨、机械拋光等的至少一个,从挡板200或主体202的表面移除(如图3的322所示)。在某些实施例中,表面清洁或处理步骤可包括以腐蚀酸清洁(如图3的324所示)。适当的腐蚀酸可包括硝酸(HNO3)、盐酸(HCl)、硅烷(SiH4)等。腐蚀酸可在去离子(DI)水中稀释至适当强度。腐蚀酸和去离子水的清洁溶液可依所需为弱或侵蚀性,以提供最终的金属氧化物移除及/或挡板的氮化铝表面的处理。氮化铝的表面清洁和处理不仅可帮助移除挡板表面上或接近此处的任何过量的金属氧化物,亦可蚀刻或以其它方式修改氮化铝挡板表面,以促进形成在其上的层(例如,氧化硅风干处理层)的更大粘着。
从挡板200(或主体202)的表面移除过量的金属氧化物粘结剂帮助提供挡板,其在主体表面上所具有的氮化铝与金属氧化物的比率大于或等于主体内部的比率(例如,该表面为绝大多数与主体中的为氮化铝以及金属氧化物粘结剂的汞齐类似)。举例来说,和图5A至B所示的常用挡板表面的视图相比,以相同放大率观察挡板200的表面,显示在挡板200的表面上没有视觉上可侦测的金属氧化物。
一旦完成从挡板200的表面移除大量的过量金属氧化物,方法300大体上终止,且挡板200可进一步依需要处理或安装至处理腔室中,如上文关于图1所讨论般。
回到图2,在某些实施例中,挡板200可具有中心杆204和外部环形物206,尽管在其它腔室或应用中可使用其它几何形状。中心杆204包括气体入口208,其配置在中心杆204的上部,并用于将中心杆204耦合至顶部喷嘴150,如上文关于图1所叙述般。中心杆204可进一步包括多个气体出口210,其配置在中心杆204的下部,并经由槽道209流体耦合至气体入口208。多个气体出口210帮助气体从顶部喷嘴150经由气体入口208流到挡板200的前侧201。
如图2A所示出,相对挡板200的前侧201上的外部环形物206的表面,中心杆204的下部在前侧201上可具有凸起表面。在某些实施例中,凸起表面可用于引导来自每一气体出口210的气流,以致离开每一气体出口210的气体以相对挡板200的中心轴(或相对配置在该处下方的基材的中心轴)的角度流动。不过,中心杆204的下部在挡板200的前侧201上可替代地具有齐平、凹陷或其它的表面几何形状。此外,多个气体出口210的一或多个可定向为平行、垂直或介于其间的任何适当角度,以帮助气体流动至基材106的表面。
参照图2B,在某些实施例中,多个气体入口208在挡板200的前侧201上可以环形图案均匀地隔开。或者,多个气体出口210可以帮助气体流至基材106的表面所需要的任何适当图案隔开,如此则其组态不受限于均匀或圆形地隔开。
回到图2A,在某些实施例中,外部环形物206可包括多个配置穿过其中的孔212。多个孔212可帮助气体从背侧203流到挡板200的前侧201。进一步而言,外部环形物206可另外或在缺少多个孔212的情况下通过围绕外部环形物206边缘的气流帮助气体从背侧203流到前侧201。举例来说,如图1所示,经由顶部排气孔152供应给挡板200的背侧203的气体可部分转向围绕外部环形物206,并可部分流过形成在外部环形物206中的多个孔212,以在处理腔室内部提供所需的气体分配。
参照图2B,举例来说,多个孔212可以环形图案均匀安排。在某些实施例中,如所示出,每一孔212可配置在每一气体出口210之间。或者,每一孔212可对准每一气体出口210或以任何适当安排相对每一气体出口210定向,以帮助处理气体在处理腔室内部流动。
回到图1,处理腔室110的下部可包括主体构件126,其连接处理腔室110至真空系统112。基材支撑102可装配在主体构件126中。在基材支撑102内部或之上提供静电吸盘108或其它机构,以将基材106固定至基材支撑102。基材106可通过机器人叶片(未显示)通过处理腔室110内侧的插入/移除开口128移送进出处理腔室110。气动致动器(未显示)升起与降下举升销板(未显示),举升销板升起与降下举升销(未显示),举升销升起与降下基材106。一旦移送至处理腔室110中,基材106配置在升起的举升销上,然后降下至基材支撑102的表面上。
真空系统112包括节流阀主体130,其容纳多叶片的节流阀132,并附接至闸阀134与涡轮分子泵136。节流阀主体130可给气流提供最小阻碍,并允许对称的抽泵。闸阀134可隔离涡轮分子泵136与节流阀主体130,并进一步在节流阀132完全开启时,通过限制排气流量能力来控制处理腔室110的压力。节流阀132、闸阀134和涡轮分子泵136的安排允许准确并稳定地将处理腔室110的压力控制在从约1至100mTorr。
源等离子体系统114包括顶部线圈138和侧线圈140,其装配在圆顶121上。对称的接地屏蔽(未显示)减少顶部线圈138和侧线圈140之间的电耦合。顶部线圈138由顶部射频源产生器137提供动力,而侧线圈140由侧射频源产生器141提供动力,其允许每一线圈操作的独立的功率位准和频率。此双线圈系统允许控制处理腔室110中的径向离子密度,从而改善等离子体均匀性。侧线圈140和顶部线圈138电感耦合能量至处理腔室110中。顶部射频源产生器137可以额定的2MHz提供上达8000W的射频功率,且侧射频源产生器141可以额定的2MHz提供上达8000W的射频功率。顶部射频产生器137和侧射频产生器141的操作频率可从额定操作频率偏移(例如,分别至1.7-1.9MHz以及1.9-2.1MHz),以改善等离子体产生效率。
在某些实施例中,射频产生器137和141包括数字控制的合成器,并操作在从约1.7至约2.1MHz的频率范围间。如在此技术中具有一般技能者所了解,产生器137和141各自包括射频控制电路(未显示),其量测从处理腔室110和线圈138与140反射回到产生器的功率,并调整操作频率,以获得最低反射功率。射频产生器137和141典型设计为以具有50欧姆的特性阻抗的负载操作。射频功率可从负载反射,负载具有与产生器不同的特性阻抗。这可减少转移至负载的功率。此外,从负载反射回到产生器的功率可超载并损坏产生器。因为取决于除其它因素外的等离子体离子的密度,等离子体阻抗的范围可从小于5欧姆至超过900欧姆,且因为反射功率可为频率的函数,根据反射功率调整产生器频率增加了从射频产生器转移到等离子体的功率并保护产生器。另一种降低反射功率以及改善效率的方式为使用匹配网络。
匹配网络139和142分别将射频产生器137和141的输出阻抗与线圈138和140匹配。射频控制电路可通过改变匹配网络139和142内部的电容值来调谐匹配网络139和142,以在负载改变时匹配产生器与负载。当从负载反射回到产生器的功率超过某一限值时,射频控制电路可调谐匹配网络。一种提供固定匹配并有效禁止射频控制电路调谐匹配网络的方式是将反射功率限值设定为高出任何反射功率的期望值。这可通过使匹配网络保持固定在其最新近状态,以在某些条件下帮助稳定等离子体。
偏压等离子体系统116包括射频偏压产生器144和偏压匹配网络146。偏压等离子体系统116可将静电吸盘108电容耦合至主体构件126,其作用如互补电极。偏压等离子体系统116用于增强源等离子体系统114所产生的等离子体种类至基材106的表面的传输。在某些实施例中,射频偏压产生器144可以13.56MHz提供高达10000W的射频功率。
其它测量亦可帮助稳定等离子体。举例来说,射频控制电路可用于决定输送至负载(等离子体)的功率,并可增加或减少产生器的输出功率,以在层沉积期间保持输送功率本质上固定。
气体输送系统118可包括多个气源(未显示)。在某些实施例中,气源可包括硅烷、分子氧、氦、氩等。气体输送系统118经由气体输送线119(仅显示某些)从数个源提供气体给处理腔室110,以用于处理基材106。气体透过气体环148、顶部喷嘴150和顶部排气孔152引入处理腔室110。气源可经由流量控制器(未显示)与气体输送线119提供给气体环148、顶部喷嘴150和顶部排气孔152。气体输送线119可具有流量控制器(未显示),以控制处理气体的流速。顶部喷嘴150和顶部排气孔152允许独立控制顶部气流和侧气流,其改善薄膜均匀性并允许微调沉积层和掺杂参数。顶部排气孔152为环绕顶部喷嘴150的环形开口,气体可经此从气体输送系统118流入处理腔室110。
气体经由流量控制器和气体输送线119从气体输送系统118的一或多个气源提供给气体环148。气体环148具有多个气体喷嘴153和154(仅显示两个),其提供基材106上方的均匀气流。喷嘴长度和喷嘴角度可通过改变气体环148来改变。这允许针对处理腔室110内部的特定处理来调适均匀性轮廓和气体使用效率。在某些实施例中,气体喷嘴154(仅显示一个)与第二气体喷嘴153共面,且比气体喷嘴153短。
在本发明的某些实施例中,可使用可燃、有毒或腐蚀气体。在这些实例中,可能需要在沉积后排除余留在气体输送线119中的气体。这可进一步使用一或多个三向阀(未显示)来完成,以隔离处理腔室110和一或多个气体输送管线119,并使一或多个气体输送线119排气至真空前级(未显示)。三向阀在实行上可放置为尽可能接近处理腔室110,以最小化未排气的气体输送线的容积(介于三向阀和处理腔室之间)。此外,双向(开-关)阀(未显示)可放置在质量流量控制器(MFC)和处理腔室110之间或在气源和MFC之间。
HDP-CVD腔室100可进一步包括远程清洁射等离子体源(未显示),其用于提供清洁气体给处理腔室110的顶部喷嘴150。在某些实施例中,清洁气体(如果有使用)可在其它位置进入处理腔室110。
系统控制器160调节以等离子体为基础的基材处理系统100的操作,并包括处理器162和内存164。典型地,处理器162为单板计算机(SBC)的一部分,单板计算机包括模拟和数字输入/输出板、接口板与步进马达控制器板。以等离子体为基础的基材处理系统100的不同部件符合Versa Modular European(VME)标准,其定义板、卡片机架和连接器类型与尺寸。VME标准进一步将总线结构定义为具有16位的数据总线和24位的地址总线。处理器162执行系统控制软件,其可为储存在内存164中的计算机程序。可使用任何类型的内存164,例如,硬盘、软盘、插卡框架或其组合。系统控制软件包括指令组,其指定时序、气体混合、处理腔室压力、处理腔室温度、微波功率位准、基座位置和特定处理的其它参数。
在操作中,设备100可用于有利地以减少的粒子污染发生率和延长的挡板寿命来处理基材106。举例来说,根据此处提供的教导使用挡板处理基材的方法在下文关于图4讨论。图4为流程图,其说明根据本发明的某些实施例的基材处理方法400。图4的方法400进一步参照图1和图2A至B叙述。
方法400始于410,其中根据此处所揭示的教导,可提供基材给具有挡板配置在其中的处理腔室。举例来说,基材106可放置在位于挡板200下方的处理腔室110的基材支撑102上。在某些实施例中,处理腔室和挡板可在处理基材前进行时效处理,以帮助均匀处理基材,并在处理期间保护腔室部件免受处理环境影响。举例来说,在412,可提供具有挡板(例如,挡板200)配置在其中的处理腔室(例如,处理腔室110)。在414,时效处理层,例如,氧化硅(SiO2),可形成在挡板200上(例如,在挡板200的表面上)。时效处理层可以任何适当方法形成。不过,由于在其表面上减少金属氧化物的存在,及/或由于氮化铝的表面处理,更均匀的时效处理层可形成在挡板200上。
接下来,在420,处理气体可流过挡板200进入处理腔室110。举例来说,一或多个处理气体可从气体输送系统118至少通过挡板200提供给等离子体处理区域120(举例来说,经由图2A至B所示的入口208、槽道209和出口210)。一或多个处理气体可替代或组合地经由顶部排气孔152供应给等离子体处理区域120,以经由外部环形物206的边缘及/或通过孔212从背侧203流到前侧201。一或多个处理气体可在等离子体处理区域120中混合,并可通过施加射频功率至配置在基材支撑102、顶部线圈138或侧线圈140中之一或多个电极而点燃成为等离子体。
在430,层(未显示)可沉积在基材106上。由于配置在挡板200上的更均匀的时效处理层和时效处理层对此的改善的粘着,沉积在基材106上的层可有利地减少粒子缺陷。一旦完成在基材106上沉积层,方法400大体上终止。额外的基材处理可发在相同或不同的处理腔室中,以完成基材106上的结构制造。虽然已在示例处理腔室中示意地示出特定处理,其它处理亦可有利地在根据本教导(teaching)的具有挡板配置在其中的类似或不同的处理腔室中执行。举例来说,在例如无等离子体辅助CVD处理、原子层沉积(ALD)处理、或其它利用时效处理层保护挡板表面的情况下,挡板200可用于在不形成等离子体的情况下使一或多个处理气体流动。亦预期挡板200可用在其它处理中,例如,蚀刻等,其可如此处所述般有利地使用挡板。
因此,已在此处提供关于改善的氮化铝挡板的方法与设备。改善的氮化铝挡板在氮化铝挡板的表面上有利地具有减少的金属氧化物含量。改善的挡板可有利地帮助在氮化铝挡板的表面上形成更均匀的氧化硅时效处理层,并可进一步有利地促进时效处理层至挡板表面的更佳粘着,从而在欲处理的基材表面上改善处理均匀性并降低粒子缺陷。由于时效处理层的更均匀的覆盖,改善的氮化铝挡板可进一步具有较长的寿命期。
虽然以上内容已直指本发明的数个实施例,但可在不偏离本发明基本范围的情况下设计本发明的其它及进一步实施例。

Claims (15)

1.一种用在半导体处理腔室中的挡板,包含:
主体,包含氮化铝和金属氧化物粘结剂,其中,在所述主体的表面上的氮化铝与所述金属氧化物粘结剂的比率大于或等于所述主体内部的所述比率。
2.根据权利要求1所述的挡板,其中,所述金属氧化物粘结剂包含氧化钇或氧化铒的至少一个。
3.根据权利要求1所述的挡板,其中所述主体进一步包含:
中心杆;及
外部环形物,耦合至所述中心杆的下部,并从此处向外径向延伸。
4.根据权利要求1所述的挡板,进一步包含:
气体入口,配置在所述中心杆的上部中;及
多个气体出口,配置在所述中心杆的下部中,并流体耦合至所述气体入口。
5.根据权利要求1所述的挡板,进一步包含:
多个孔,配置通过所述外部环形物,以帮助处理气体从所述挡板的背侧流到所述挡板的前侧。
6.一种用于处理半导体基材的设备,包含:
处理腔室,具有内容积和配置在其顶板中的第一气体入口;及
如之前任一项权利要求所限定挡板,耦合至所述第一气体入口,并装配为引导第一处理气体从所述第一气体入口流到所述内容积。
7.一种制造用在半导体处理腔室中的挡板的方法,包含:
烧结铝、氮和金属氧化物粘结剂,以形成所述挡板的主体,所述主体具有配置在其表面上的过量的金属氧化物粘结剂;及
从所述表面移除大量的所述过量金属氧化物粘结剂。
8.根据权利要求7所述的方法,其中移除大量的所述过量金属氧化物粘结剂的步骤进一步包含以下步骤:
从所述表面移除大量的所述过量金属氧化物粘结剂,以致在所述主体的所述表面上的氮化铝与所述金属氧化物粘结剂的比率大于或等于所述主体内部的所述比率。
9.根据权利要求7所述的方法,其中移除大量的所述过量金属氧化物粘结剂的步骤进一步包含以下步骤:
通过喷砂、喷粒、湿性擦蚀、机械研磨或机械拋光所述主体的所述表面的至少一种方法来移除大量的所述过量金属氧化物粘结剂。
10.根据权利要求9所述的方法,其中移除大量的所述过量金属氧化物粘结剂的步骤进一步包含以下步骤:
在移除大量的所述金属氧化物粘结剂之后,将所述挡板的所述表面暴露至包含腐蚀酸的溶液。
11.根据权利要求7所述的方法,其中所述金属氧化物粘结剂包含氧化钇或氧化铒的至少一个。
12.由权利要求7-11描述的方法所形成的用在半导体处理腔室中的挡板。
13.一种处理半导体基材的方法,包含以下步骤:
将基材放置在处理腔室中的基材支撑上,所述处理腔室具有内容积和相对所述支撑基座配置在所述处理腔室的顶板中的第一气体入口;
使第一处理气体流过耦合至所述第一气体入口的挡板并进入所述内容积,所述挡板如权利要求1-5中任一项所限定;及
以所述第一处理气体处理所述基材。
14.根据权利要求13所述的方法,进一步包含:
在处理所述基材之前,在所述挡板的所述表面上沉积时效处理层。
15.根据权利要求13所述的方法,进一步包含:
由于所述第一和所述第二处理气体的所述流动而在所述基材表面上沉积材料层。
CN200980132709.4A 2008-08-20 2009-08-20 表面处理的氮化铝挡板 Expired - Fee Related CN102132382B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/195,127 2008-08-20
US12/195,127 US9222172B2 (en) 2008-08-20 2008-08-20 Surface treated aluminum nitride baffle
PCT/US2009/054416 WO2010022212A2 (en) 2008-08-20 2009-08-20 Surface treated aluminum nitride baffle

Publications (2)

Publication Number Publication Date
CN102132382A true CN102132382A (zh) 2011-07-20
CN102132382B CN102132382B (zh) 2014-04-02

Family

ID=41696788

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200980132709.4A Expired - Fee Related CN102132382B (zh) 2008-08-20 2009-08-20 表面处理的氮化铝挡板

Country Status (7)

Country Link
US (2) US9222172B2 (zh)
JP (2) JP5757869B2 (zh)
KR (1) KR20110053360A (zh)
CN (1) CN102132382B (zh)
SG (1) SG193208A1 (zh)
TW (1) TWI480922B (zh)
WO (1) WO2010022212A2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105088189A (zh) * 2014-05-05 2015-11-25 朗姆研究公司 具有多孔挡板的低体积喷淋头

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9222172B2 (en) * 2008-08-20 2015-12-29 Applied Materials, Inc. Surface treated aluminum nitride baffle
TW201123291A (en) * 2009-09-25 2011-07-01 Applied Materials Inc Method and apparatus for high efficiency gas dissociation in inductive coupled plasma reactor
US8968537B2 (en) 2011-02-09 2015-03-03 Applied Materials, Inc. PVD sputtering target with a protected backing plate
US9388494B2 (en) 2012-06-25 2016-07-12 Novellus Systems, Inc. Suppression of parasitic deposition in a substrate processing system by suppressing precursor flow and plasma outside of substrate region
KR101419515B1 (ko) * 2012-09-24 2014-07-15 피에스케이 주식회사 배플 및 배플의 표면처리장치, 그리고 기판 처리 장치 및 표면 처리 방법
US10316409B2 (en) * 2012-12-21 2019-06-11 Novellus Systems, Inc. Radical source design for remote plasma atomic layer deposition
US9399228B2 (en) * 2013-02-06 2016-07-26 Novellus Systems, Inc. Method and apparatus for purging and plasma suppression in a process chamber
US9745658B2 (en) 2013-11-25 2017-08-29 Lam Research Corporation Chamber undercoat preparation method for low temperature ALD films
US9551070B2 (en) * 2014-05-30 2017-01-24 Applied Materials, Inc. In-situ corrosion resistant substrate support coating
KR102339563B1 (ko) 2014-06-02 2021-12-16 주식회사 미코세라믹스 플라즈마 화학기상증착 장치용 배플 구조물 및 이의 제조 방법
KR20160002059A (ko) * 2014-06-30 2016-01-07 삼성전자주식회사 하드 마스크 제거 방법
US9966240B2 (en) 2014-10-14 2018-05-08 Applied Materials, Inc. Systems and methods for internal surface conditioning assessment in plasma processing equipment
US9355922B2 (en) 2014-10-14 2016-05-31 Applied Materials, Inc. Systems and methods for internal surface conditioning in plasma processing equipment
US10224210B2 (en) 2014-12-09 2019-03-05 Applied Materials, Inc. Plasma processing system with direct outlet toroidal plasma source
US10573496B2 (en) 2014-12-09 2020-02-25 Applied Materials, Inc. Direct outlet toroidal plasma source
US9951421B2 (en) * 2014-12-10 2018-04-24 Lam Research Corporation Inlet for effective mixing and purging
US9728437B2 (en) 2015-02-03 2017-08-08 Applied Materials, Inc. High temperature chuck for plasma processing systems
US9828672B2 (en) 2015-03-26 2017-11-28 Lam Research Corporation Minimizing radical recombination using ALD silicon oxide surface coating with intermittent restoration plasma
US10023956B2 (en) * 2015-04-09 2018-07-17 Lam Research Corporation Eliminating first wafer metal contamination effect in high density plasma chemical vapor deposition systems
US20160362782A1 (en) * 2015-06-15 2016-12-15 Taiwan Semiconductor Manufacturing Co., Ltd. Gas dispenser and deposition apparatus using the same
US9741593B2 (en) 2015-08-06 2017-08-22 Applied Materials, Inc. Thermal management systems and methods for wafer processing systems
US9691645B2 (en) 2015-08-06 2017-06-27 Applied Materials, Inc. Bolted wafer chuck thermal management systems and methods for wafer processing systems
US10504700B2 (en) 2015-08-27 2019-12-10 Applied Materials, Inc. Plasma etching systems and methods with secondary plasma injection
US10662529B2 (en) * 2016-01-05 2020-05-26 Applied Materials, Inc. Cooled gas feed block with baffle and nozzle for HDP-CVD
US9589846B1 (en) * 2016-01-25 2017-03-07 United Microelectronics Corp. Method of forming semiconductor device
US9758868B1 (en) 2016-03-10 2017-09-12 Lam Research Corporation Plasma suppression behind a showerhead through the use of increased pressure
US9850573B1 (en) 2016-06-23 2017-12-26 Applied Materials, Inc. Non-line of sight deposition of erbium based plasma resistant ceramic coating
US10604841B2 (en) 2016-12-14 2020-03-31 Lam Research Corporation Integrated showerhead with thermal control for delivering radical and precursor gas to a downstream chamber to enable remote plasma film deposition
US10211099B2 (en) 2016-12-19 2019-02-19 Lam Research Corporation Chamber conditioning for remote plasma process
US10409295B2 (en) * 2016-12-31 2019-09-10 Applied Materials, Inc. Methods and apparatus for enhanced flow detection repeatability of thermal-based mass flow controllers (MFCS)
US10975469B2 (en) 2017-03-17 2021-04-13 Applied Materials, Inc. Plasma resistant coating of porous body by atomic layer deposition
KR20180134182A (ko) * 2017-06-08 2018-12-18 삼성전자주식회사 플라즈마 처리 장치
US20190131112A1 (en) * 2017-10-30 2019-05-02 Mattson Technology, Inc. Inductively Coupled Plasma Wafer Bevel Strip Apparatus
KR20200086750A (ko) 2017-12-07 2020-07-17 램 리써치 코포레이션 챔버 내 산화 내성 보호 층 컨디셔닝
US10760158B2 (en) 2017-12-15 2020-09-01 Lam Research Corporation Ex situ coating of chamber components for semiconductor processing
US20220307129A1 (en) * 2021-03-23 2022-09-29 Applied Materials, Inc. Cleaning assemblies for substrate processing chambers

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6383964B1 (en) * 1998-11-27 2002-05-07 Kyocera Corporation Ceramic member resistant to halogen-plasma corrosion
CN1682339A (zh) * 2002-09-30 2005-10-12 东京毅力科创株式会社 用于等离子体工艺系统中的改进的挡板的方法和装置
JP2006086346A (ja) * 2004-09-16 2006-03-30 Murata Mfg Co Ltd 超音波接合装置
US20060118045A1 (en) * 2004-12-08 2006-06-08 Fink Steven T Method and apparatus for improved baffle plate

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3078671B2 (ja) * 1992-11-26 2000-08-21 日本碍子株式会社 耐蝕性部材、その使用方法およびその製造方法
JP3145519B2 (ja) * 1992-12-28 2001-03-12 京セラ株式会社 窒化アルミニウム質焼結体
JPH06219844A (ja) * 1993-01-27 1994-08-09 Showa Denko Kk AlN焼結体およびその製造方法
JPH10296610A (ja) * 1997-04-28 1998-11-10 Sony Corp 研磨方法
JP2000086346A (ja) * 1998-07-10 2000-03-28 Sumitomo Electric Ind Ltd セラミックス基材
JP2001233676A (ja) * 2000-02-23 2001-08-28 Taiheiyo Cement Corp プラズマ耐食部材及びその製造方法
JP2002031972A (ja) * 2000-05-10 2002-01-31 Sumitomo Electric Ind Ltd トナー定着器用セラミックスヒータ及びその製造方法
WO2002083596A1 (fr) * 2001-04-13 2002-10-24 Sumitomo Electric Industries, Ltd. Article ceramique assemble, structure de maintien de substrat et appareil permettant de traiter les substrats
JP3973872B2 (ja) 2001-10-17 2007-09-12 住友大阪セメント株式会社 電極内蔵型サセプタ及びその製造方法
US7722719B2 (en) * 2005-03-07 2010-05-25 Applied Materials, Inc. Gas baffle and distributor for semiconductor processing chamber
JP2007042672A (ja) * 2005-07-29 2007-02-15 Ibiden Co Ltd プラズマプロセス装置用チャンバー部材及びその製造方法
JP2008053390A (ja) * 2006-08-23 2008-03-06 Sumitomo Metal Electronics Devices Inc 窒化アルミニウム多層基板
US7740706B2 (en) * 2006-11-28 2010-06-22 Applied Materials, Inc. Gas baffle and distributor for semiconductor processing chamber
US9222172B2 (en) * 2008-08-20 2015-12-29 Applied Materials, Inc. Surface treated aluminum nitride baffle
US8890189B2 (en) * 2009-07-31 2014-11-18 Denki Kagaku Kogyo Kabushiki Kaisha Wafer for LED mounting, method for manufacturing same, and LED-mounted structure using the wafer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6383964B1 (en) * 1998-11-27 2002-05-07 Kyocera Corporation Ceramic member resistant to halogen-plasma corrosion
CN1682339A (zh) * 2002-09-30 2005-10-12 东京毅力科创株式会社 用于等离子体工艺系统中的改进的挡板的方法和装置
JP2006086346A (ja) * 2004-09-16 2006-03-30 Murata Mfg Co Ltd 超音波接合装置
US20060118045A1 (en) * 2004-12-08 2006-06-08 Fink Steven T Method and apparatus for improved baffle plate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105088189A (zh) * 2014-05-05 2015-11-25 朗姆研究公司 具有多孔挡板的低体积喷淋头

Also Published As

Publication number Publication date
CN102132382B (zh) 2014-04-02
US20100048028A1 (en) 2010-02-25
KR20110053360A (ko) 2011-05-20
US10214815B2 (en) 2019-02-26
TWI480922B (zh) 2015-04-11
US20160145743A1 (en) 2016-05-26
US9222172B2 (en) 2015-12-29
JP5757869B2 (ja) 2015-08-05
WO2010022212A3 (en) 2010-05-14
SG193208A1 (en) 2013-09-30
TW201017719A (en) 2010-05-01
WO2010022212A2 (en) 2010-02-25
JP2015146459A (ja) 2015-08-13
JP2012500505A (ja) 2012-01-05

Similar Documents

Publication Publication Date Title
CN102132382B (zh) 表面处理的氮化铝挡板
CN207705142U (zh) 电感耦合的等离子体源及包括其的半导体处理腔室
KR101439717B1 (ko) 에칭 방법, 에칭 장치 및 링 부재
CN101304630B (zh) 用于电感耦合高密度等离子体处理室的内部平衡线圈
TWI391034B (zh) 用於感應耦合室的減少污染襯墊
TW550117B (en) Directing a flow of gas in a substrate processing chamber
CN101765464B (zh) Hdp-cvd应用的高轮廓最小接触工艺套组
CN102017122B (zh) 低轮廓性的工艺套组
US20050124169A1 (en) Truncated dummy plate for process furnace
JPH1171680A (ja) 基板処理装置と共に用いるための改良型遠隔マイクロ波プラズマソース用装置
US11521830B2 (en) Ceramic coated quartz lid for processing chamber
KR102049146B1 (ko) 플라즈마 에칭 방법, 플라즈마 에칭 장치, 및 기판 탑재대
EP2080817B1 (en) Method and apparatus for chamber cleaning by in-situ plasma excitation
US10577689B2 (en) Sputtering showerhead
KR102216500B1 (ko) 웨이퍼 가스방출을 위한 플라즈마 강화 어닐링 챔버
US20090194237A1 (en) Plasma processing system
EP1071116A1 (en) Method and apparatus for removing material from the periphery of a substrate, using a remote plasma source
JP2001020076A (ja) 反応室のクリーニング方法及び装置
US12009178B2 (en) Ceramic coated quartz lid for processing chamber
CN117203749A (zh) 均匀的原位清洗和沉积
CN112514044A (zh) 用于衬底处理系统的具有介电窗的蜂窝式喷射器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140402

Termination date: 20210820