CN101821879B - 锂二次电池的阴极活性材料 - Google Patents

锂二次电池的阴极活性材料 Download PDF

Info

Publication number
CN101821879B
CN101821879B CN200880111452.XA CN200880111452A CN101821879B CN 101821879 B CN101821879 B CN 101821879B CN 200880111452 A CN200880111452 A CN 200880111452A CN 101821879 B CN101821879 B CN 101821879B
Authority
CN
China
Prior art keywords
active material
cathode
lithium
nickel
transition metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN200880111452.XA
Other languages
English (en)
Other versions
CN101821879A (zh
Inventor
张诚均
申昊锡
朴洪奎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Energy Solution Ltd
Original Assignee
LG Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Chemical Co Ltd filed Critical LG Chemical Co Ltd
Publication of CN101821879A publication Critical patent/CN101821879A/zh
Application granted granted Critical
Publication of CN101821879B publication Critical patent/CN101821879B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/77Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by unit-cell parameters, atom positions or structure diagrams
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Abstract

本发明提供一种锂二次电池的阴极活性材料,包含一种由下式(1)表示的锂过渡金属复合氧化物,其含有过量锂,以在高速充电/放电条件下具有提高的速率特性:Li1+aNi’bNi”cMndCoeO2(1),其中a、b、c、d和e具有如说明书中所定义的含义。本发明的阴极活性材料包含过量锂,并且与常规技术不同的是,包含一种含有具有预定氧化数的镍元素的锂-过渡金属复合氧化物,以使活性材料在高速充电/放电条件下具有稳定的晶体结构和出色的速率特性。

Description

锂二次电池的阴极活性材料
技术领域
本发明涉及一种锂二次电池的阴极活性材料,更具体地涉及一种含有锂-过渡金属复合氧化物的阴极活性材料,所述锂-过渡金属复合氧化物具有特定的组成,含有过量锂以及作为一种构成元素的具有预定氧化数的镍,以在高速充电/放电条件下具有稳定的晶体结构和出色的速率特性。
背景技术
随着移动设备技术的发展以及对其需求越来越多,对作为移动设备的能量来源的二次电池的需求快速增加。具体而言,具有高能量密度和工作势、相对长寿命以及低自放电速率的锂二次电池是商业化的并在本领域中广泛使用。
此外,对环境问题的关注不断增加引发了对于可用来代替使用矿石燃料的市售车辆(如汽油发动机车辆、柴油发动机车辆等)的电动车辆和/或混合动力车辆的大量研究开发。这种混合动力车辆或电动车辆主要使用镍氢金属二次电池作为能源,近年来,正在对多种技术进行活跃地研究,以将具有高能量密度和放电电压的锂二次电池用于混合电动车辆,一些这样的电动车辆已市售可得。
通常使用含钴的锂氧化物(LiCoO2)作为锂二次电池的阴极活性材料。但是,也可考虑使用其它材料,例如含锰的锂氧化物如具有层状晶体结构的LiMnO2、具有针状结构的LiMn2O4等和/或含镍的锂氧化物(LiNiO)。
多种阴极活性材料中,通常使用具有出色寿命和优异的充电/放电效率的LiCoO2。但是,由于钴为一种有限资源,是非常昂贵的,因此该物质存在不具价格优势的严重问题。
虽然锂锰氧化物(如LiMnO2、LiMn2O4等)具有出色的热稳定性、低成本和易于合成的优点,这些化合物的缺点在于低容量、劣化的高温特性和低导电性。
此外,LiNiO2基的阴极活性材料相对便宜并且具有高放电容量。但是,当暴露于空气或水分中时,这些材料由于与充电/放电循环相关的体积变化而表现出明显的晶体结构相转变。
为克服这些缺陷,已对含相对量为1:1的镍和锰,或者相对量为1:1:1的镍、钴和锰的锂氧化物作为阴极活性材料进行了大量研究。通过将镍、钴和/或锰混合而制备的阴极活性材料比仅含有这些过渡金属中的任意一种的阴极活性材料具有更强的特性。但是,仍需要简化电池制备过程并提高电池的高速率特性。
为解决上文所述的常见问题,本发明提供一种包括锂-过渡金属复合氧化物的阴极活性材料,其中该复合氧化物的各构成元素具有预定的组成和氧化数。
有关本发明的技术概念,韩国专利公开文本No.2005-047291和PCT国际申请公开文本WO 2002-078105公开了一种由组成式Li1+xNi1/2Mn1/2O2(0<x<1)表示的氧化物,其含有等量的镍和锰以及过量锂,以减少过充时的结构改变。这种氧化物在组成范围上与本发明有部分重叠。但是,本发明的发明人发现,如果上述氧化物保持上述定义式而不考虑镍的可变氧化数,则与本发明的阴极活性材料相反,氧化物的速率特性在高速充电/放电条件下不会达到期望的水平。或者,更糟的是,锂副产物(例如LiOH、LiCO2等)可能引起pH值改变,导致电池中电解液的降解。
因此,迫切需要开发一种新的、在高速充电/放电条件下具有稳定的晶体结构和改进的速率特性的阴极活性材料。
发明内容
因此,作出本发明以解决上述问题和其它尚未解决的技术问题。
本发明的发明人进行了广泛的研究,发现含有过量锂和氧化数为至少2的镍的锂基复合氧化物可被用作阴极活性材料,以在保持稳定的晶体结构的同时改善物理性能,并在高速充电/放电条件下获得显著增强的速率特性。由此完成本发明。
基于此发现,本发明的一个目的是提供一种锂二次电池的阴极活性材料,其包括:一种由下式(1)表示的锂-过渡金属复合氧化物,其含有过量锂,以在高速充电/放电条件下具有提高的速率特性:
Li1+aNi’bNi”cMndCoeO2    (1)
其中a、b、c、d和e由式1.1≤(1+a)/(b+c+d+e)<1.3限定;
上文所述每种过渡金属元素的平均氧化数如下表示:
Ni’>2+,Ni”=3+,Mn=4+且Co=3+;
0≤e≤0.1;
0.2<b+c≤0.55,0.2<d≤0.55;且
︱(b+c)-d︱<0.1。
对于常规阴极活性材料,锂-过渡金属复合氧化物中含有过量锂,会导致在构成元素的比例和复合氧化物中每种过渡金属元素(如Ni)期望的氧化数方面,难以保持稳定的晶体结构。因此,在高速充电/放电条件下不能确保锂离子的移动路径,转而显著地使速率特性劣化,并可能引起锂副产物(LiOH、LiCO2等)的生成,这转而导致电池的pH值改变。
因此,本发明的发明人进行了广泛的研究和多种实验,并发现控制各种过渡金属元素的平均氧化数,例如Ni’>2+,Ni”=3+,Mn=4+且Co=3+,并且通过以上式保持所需的取决于过量锂的各构成元素的比例,阴极活性材料可具有稳定的晶体结构,从而可提高锂离子迁移率和速率特性。也即,对于本发明阴极活性材料中含有的锂-过渡金属复合氧化物,Ni’的平均氧化数可为至少2,而Ni”的平均氧化数可为至少3,它们均高于常规阴极活性材料中常用的Ni的平均氧化数。因此,可达到过渡金属元素和氧之间的稳定的键合结构和高的键合力。该结果是可预计的,因为电荷随着Ni氧化数的增加而增加,导致过渡金属元素和氧之间的库仑力增加。
因此,本发明的阴极活性材料可具有稳定的晶体结构,并确保在高速充电/放电条件下锂离子快速移动所需的期望路径,从而在维持晶体结构稳定性的同时显著提高速率特性。
附图说明
本发明的上述和其它目的、特征以及其它优点将由以下结合附图进行的详细描述更清楚地理解,附图中:
图1至4为示出实施例1-10的阴极活性材料与对比实施例1-9的阴极活性材料对比的速率特性的图;以及
图5至8是各自成对示出对实施例1-4、实施例5和6、实施例7和8以及实施例9和10的阴极活性材料测定的晶格常数(a和c)的图。
具体实施方式
本发明的阴极活性材料中所含的过量锂是指足以防止由过量锂引起的锂-过渡金属复合氧化物的结构稳定性劣化,同时足以提供其在高速充电/放电条件下提高的速率特性的量的锂。如上述复合物公式所定义的,由(阴极活性材料中所含的)锂的摩尔分数除以(阴极活性材料中所含的)所有过渡金属的摩尔分数所计算出的值可为至少1.1并小于1.3,并且优选地,可为1.1至1.2。
镍和锰的摩尔比可独立地在0.2至0.55范围内,且上述复合氧化物中的每种元素的摩尔比可根据过量锂灵活地调整。在一个优选的实施方案中,镍与锰的相对摩尔比可为1:0.7-1.3,这意味着锰的量可大于或小于镍的量。但是,镍和锰的摩尔比之间的差值的绝对值总是设定为小于0.1,以使阴极活性材料中镍和锰各自的出色的物理性能得以平衡。
与常规的含过渡金属(如镍、锰和/或钴)且其中镍的氧化数保持为2的三组分阴极活性材料相比,本发明的阴极活性材料中所含的复合氧化物中,镍的平均氧化数可根据复合氧化物中所含的过量锂的量而变。换言之,本发明的阴极活性材料中所含的复合氧化物可同时含有Ni2+和Ni3+
更具体地,对于镍的平均氧化数,如果镍的摩尔比(即b+c)大于锰的摩尔比(d),则Ni’大于2+,Ni”为3+,且在这种情况下,超过与锰的摩尔比相当的镍的摩尔比的过量镍可为Ni”。该Ni”常常取代位于氧化数为1的过量锂与氧结合的位点上的金属元素,从而其氧化数为3,以保持预定的总氧化数。此处,与锰的摩尔比相当的量的镍可为Ni’,并且由于Ni2+和Ni3+同时存在以及过量锂的影响,镍的平均氧化数可为至少2。此外,即使镍的摩尔比(b+c)小于锰的摩尔比(d),由于过量锂的影响,Ni’的平均氧化数也可为至少2,以保持预定的总氧化数。
钴的摩尔比通常不超过0.1,并且该元素可以以最低量包含在内,有时考虑到资源和材料成本等经济方面的原因也可不包含钴。
只要本发明的阴极活性材料中镍和锰以及过量锂的摩尔比保持在如上式(1)定义的范围内,则制备阴极活性材料的方法不受特别的限制。例如,阴极活性材料可通过镍-锰-(钴)氢氧化物前体与碳酸锂的反应而制备。更具体地,制备其构成足以在反应后制备含过量锂的氧化物的镍-锰-(钴)氢氧化物,所制备的氢氧化物与含锂前体混合以进行反应,并将反应形成的混合物在800-1200℃下煅烧8-24小时,以制备作为最终产物的阴极活性材料。
本发明还提供一种包含如上制备的阴极活性材料的锂二次电池。一般而言,锂二次电池包含一个阴极、一个阳极、一个隔膜和一种含锂盐的非水电解质。
所述阴极可通过将阴极活性材料、导电材料和粘合剂的混合物施用至阴极(电流)集电器上,使涂覆的集电器干燥并压制处理后的集电器而形成,如果需要,所述混合物还可包括填料。
所述阴极集电器的厚度可为3-500μm。这种阴极集电器不受特别的限制,只要其不会引起电池的化学变化并具有出色的导电性能即可。例如,阴极集电器可包含不锈钢、铝、镍、钛、煅烧的碳,或用碳、镍、钛、银等进行表面处理后的铝或不锈钢,等等。所述阴极集电器在其表面上可具有细微的凹凸,以增强阴极活性材料的粘附,此外,阴极集电器可以多种形式制备,如膜,片、箔、网、多孔材料、泡沫材料、无纺布材料等。
所述导电材料可以以基于含有阴极活性材料的混合物总重量计1-50重量%的量添加。这种导电材料不受特别的限制,只要其不会引起电池的化学变化同时具有期望的导电性即可。例如,导电材料可包括:石墨,如天然石墨或人造石墨;炭黑,如乙炔黑、Ketjen black、槽法炭黑、炉法炭黑、灯黑、热裂炭黑等;导电纤维,如碳纤维和金属纤维等;金属粉末,如氟化碳、铝粉、镍粉等;导电须晶,如氧化锌、钛酸钾等;导电金属氧化物,如二氧化钛;聚亚苯基衍生物,等等。
本发明中使用的粘合剂可包括一种用于支持活性材料与导电材料的结合和/或活性材料与集电器的粘合的组分,一般而言,活性材料可以以基于含有阴极活性材料的混合物的总重量计1至50重量%的量加入。所述粘合剂可包括,例如聚偏二氟乙烯、聚乙烯醇、羧甲基纤维素(CMC)、淀粉、羟丙基纤维素、再生纤维素、聚乙烯吡咯烷酮、四氟乙烯、聚乙烯、聚丙烯、乙烯-丙烯-二烯三元共聚物(EPDM)、磺化的EPDM、丁苯橡胶、氟橡胶、多种共聚物等。
本发明中使用的填料可任选地用于抑制阴极膨胀,其不受特别的限制,只要其为一种不引起电池的化学改变的纤维材料即可。例如,填料可包括烯烃基聚合物,如聚乙烯、聚丙烯等;或者一种纤维材料,如玻璃纤维、碳纤维等。
阳极通过将一种阳极活性材料涂覆至一种阳极集电器上并使涂覆的阳极集电器干燥而制成,并可任选地含有其它上述组分。
阳极集电器通常的厚度为3-500μm。这种阳极集电器不受特别的限制,只要其不会引起电池的化学变化并具有有利的导电性能即可。例如,阳极集电器可包括铜、不锈钢、铝、镍、钛、煅烧的碳,或用碳、镍、钛、银等进行表面处理的铝或不锈钢,铝镉合金等等。所述阳极集电器在其表面上可具有细微的凹凸,以增强阳极活性材料的粘附,阳极集电器可以多种形式制备,如膜,片、箔、网、多孔材料、泡沫材料、无纺布材料等。
阳极活性材料可包括,例如:碳,如非石墨化碳、石墨基碳等;金属复合氧化物,如LiyFe2O3(0≤y≤1)、LiyWO2(0≤y≤1)、SnxMe1-xMe’yOz(Me:Mn、Fe、Pb、Ge;Me’:Al、B、P、Si,1、2或3族元素;0≤x≤1;1≤y≤3;1≤z≤8);锂金属;锂合金;硅合金;锡合金;金属氧化物,如SnO、SnO2、PbO、PbO2、Pb2O3、Pb3O4、Sb2O3、Sb2O4、Sb2O5、GeO、GeO2、Bi2O3、Bi2O4、Bi2O5等;导电聚合物,如聚乙炔;Li-Co-Ni基材料,等等。
本发明中使用的隔膜被插入阴极和阳极之间,并可为一种具有高离子渗透性和出色机械强度和绝缘性的薄膜。隔膜可具有0.01-10μm的孔径以及5-300μm的厚度。隔膜的实例包括:烯烃基聚合物,如具有有利的化学抗性和疏水性的聚丙烯;一种由玻璃纤维或聚乙烯制备的片或无纺布等。如果电池含有一种固态电解质,如聚合物,则该固态电解质也可作为隔膜。
本发明中使用的含锂盐的非水电解质主要包括一种电解质和一种锂盐,且所述电解质可为非水有机溶剂、有机固体电解质、无机固体电解质等。
非水有机溶剂可包括,例如一种质子惰性有机溶剂,如N-甲基-2-吡咯烷酮、碳酸亚丙酯、碳酸亚乙酯、碳酸亚丁酯、碳酸二甲酯、碳酸二乙酯、碳酸乙基甲基酯、γ-丁内酯、1,2-二甲氧基乙烷、四氢呋喃、2-甲基四氢呋喃、二甲亚砜、1,3-二氧戊环、甲酰胺、二甲基甲酰胺、二氧戊环、乙腈、硝基甲烷、甲酸甲酯、乙酯甲酯、磷酸三酯、三甲氧基甲烷、二氧戊环衍生物、环丁砜、甲基环丁砜、1,3-二甲基-2-咪唑烷酮、碳酸亚丙酯衍生物、四氢呋喃衍生物、醚、丙酸甲酯、丙酸乙酯等。
有机固体电解质可包括,例如聚乙烯衍生物、聚环氧乙烷衍生物、聚环氧丙烷衍生物、磷酸酯聚合物、聚合的搅拌赖氨酸(poly agitationlysine)、硫化聚酯、聚乙烯醇、聚偏二氟乙烯、一种含有离子解离基团的聚合物等。
无机固体电解质可包括锂基氮化物、卤化物或硫酸盐,如Li3N、LiI、Li5NI2、Li3N-LiI-LiOH、LiSiO4、LiSiO4-LiI-LiOH、Li2SiS3、Li4SiO4、Li4SiO4-LiI-LiOH、Li3PO4-Li2S-SiS2等。
锂盐易溶于非水电解质中,并可包括例如LiCl、LiBr、LiI、LiClO4、LiBF4、LiB10Cl10、LiPF6、LiCF3SO3、LiCF3CO2、LiASF6、LiSbF6、LiAlCl4、CH4SO3Li、CF3SO3Li、LiSCN、LiC(CF3SO2)3、(CF3SO2)2NLi、氯硼烷锂、低级脂族羧酸锂、四苯基硼酸锂、酰亚胺等。
为改进充电/放电特性和/或阻燃性,电解质还可包括,例如吡啶、亚磷酸三乙酯、三乙醇胺、环醚、乙二胺、正甘醇二甲醚、六磷酰三胺、硝基苯衍生物、硫、醌亚胺染料、N-取代的噁唑烷酮、N,N-取代的咪唑烷、乙二醇二烷基醚、铵盐、吡咯、2-甲氧基乙醇、三氯化铝等。任选地,可加入含卤素的溶剂,如四氧化碳和三氟乙烯以获得阻燃性,或者可加入二氧化碳以增强高温保持性能。
实施例
现在,在说明书的以下部分参照本发明的示例性实施方案和实施例更具体地描述本发明,所述示例性实施方案和实施例仅用作示例的目的,不应被解读为是对本发明的实质和范围的限制。
[实施例1]
使用结合的氢氧化物M(OH)2(M=Ni0.452Mn0.450Co0.098)作为复合过渡金属前体。将结合的氢氧化物与Li2CO3以Li:M的化学计量比为1.14:1的比例混合,并将所述混合物在850-1000℃于大气中煅烧10小时,以制备含锂-过渡金属复合氧化物的阴极活性材料。
[实施例2]
通过与实施例1中描述相同的方法制备阴极活性材料,不同在于混合物中Li:M的化学计量比为1.2:1。
[实施例3]
通过与实施例1中描述相同的方法制备阴极活性材料,不同在于混合物中Li:M的化学计量比为1.24:1。
[实施例4]
通过与实施例1中描述相同的方法制备阴极活性材料,不同在于混合物中Li:M的化学计量比为1.34:1。
[对比实施例1]
通过与实施例1中描述相同的方法制备阴极活性材料,不同在于混合物中Li:M的化学计量比为1.0:1。
[对比实施例2]
通过与实施例1中描述相同的方法制备阴极活性材料,不同在于混合物中Li:M的化学计量比为1.03:1。
[对比实施例3]
通过与实施例1中描述相同的方法制备阴极活性材料,不同在于混合物中Li:M的化学计量比为1.05:1。
[实施例5]
通过与实施例1中描述相同的方法制备阴极活性材料,不同在于使用结合的氢氧化物M(OH)2(M=Ni0.499Mn0.501)作为复合过渡金属前体,并且混合物中Li:M的化学计量比为1.10:1。
[实施例6]
通过与实施例5中描述相同的方法制备阴极活性材料,不同在于混合物中Li:M的化学计量比为1.20:1。
[对比实施例4]
通过与实施例5中描述相同的方法制备阴极活性材料,不同在于混合物中Li:M的化学计量比为1.03:1。
[对比实施例5]
通过与实施例5中描述相同的方法制备阴极活性材料,不同在于混合物中Li:M的化学计量比为1.05:1。
[实施例7]
通过与实施例5中描述相同的方法制备阴极活性材料,不同在于使用结合的氢氧化物M(OH)2(M=Ni0.492Mn0.508)作为复合过渡金属前体。
[实施例8]
通过与实施例7中描述相同的方法制备阴极活性材料,不同在于混合物中Li:M的化学计量比为1.20:1。
[对比实施例6]
通过与实施例7中描述相同的方法制备阴极活性材料,不同在于混合物中Li:M的化学计量比为1.03:1。
[对比实施例7]
通过与实施例7中描述相同的方法制备阴极活性材料,不同在于混合物中Li:M的化学计量比为1.05:1。
[实施例9]
通过与实施例5中描述相同的方法制备阴极活性材料,不同在于使用结合的氢氧化物M(OH)2(M=Ni0.478Mn0.522)作为复合过渡金属前体。
[实施例10]
通过与实施例9中描述相同的方法制备阴极活性材料,不同在于混合物中Li:M的化学计量比为1.20:1。
[对比实施例8]
通过与实施例9中描述相同的方法制备阴极活性材料,不同在于混合物中Li:M的化学计量比为1.03:1。
[对比实施例9]
通过与实施例9中描述相同的方法制备阴极活性材料,不同在于混合物中Li:M的化学计量比为1.05:1。
[实验实施例1]速率特性的测定
将根据实施例1-10和对比实施例1-9制备的各种阴极活性材料分别与导电材料及粘合剂一起加入N-甲基吡咯烷酮(NMP)中,其中活性材料、导电材料和粘合剂的相对比例为95:2.5:2.5。所获得的浆料被施用至铝箔上形成电极,其随后被制成币状电池。金属Li被用作反电极,而电解质为包含溶于EC:EMC(1:1)中的1M LiPF6的液态电解质。
所制备的电池在第一循环中以0.1C充电并以0.1C放电,然后在第二循环中以0.1C充电并以0.2C放电。之后,在第三循环及之后的循环中以0.5C充电并分别以0.1C、0.2C、0.5C、1C、1.5C和2.0C放电。对于电池中的活性材料,测定速率特性。
对根据实施例1-4以及对比实施例1-3、实施例5和6以及对比实施例4和5、实施例7和8以及对比实施例6和7、和实施例9和10以及对比实施例8和9制备的所有阴极活性材料分别进行速率特性的测定。参照0.1C的放电(100%)条件,电池在其它放电条件下的放电容量相对于上述参照测定,结果示于图1-4中。
参照图1-4,发现随着放电速率的增加,放电容量通常倾向于降低。但是,在八(8)个循环后在至少1C的高速放电期间,含有根据实施例1-10制备的阴极活性材料的电池,与含有根据对比实施例1-9制备的阴极活性材料的电池相比,具有更高的放电容量,即具有至少70%的优异的高速放电特性。尤其是已测得随着放电速率的提高,放电容量的差异显著增大。结果,可看出本发明的阴极活性材料具有显著提高的速率特性。
[实验实施例2]活性材料的晶格常数测定
分别测定实施例1-4、实施例5和6、实施例7和8、以及实施例9和10的阴极活性材料的晶格常数(a和c),其结果示于图5-8中,各幅图描绘了一对示出所测定的晶格常数的图表。
参照图5-8,已发现当阴极活性材料中所含的锂的量增加时,晶格常数逐渐降低。产生该结果的原因被认为是氧和镍之间的库仑力作用随着镍的氧化数增加而增加,从而增强了它们之间的结合力。
因此,本发明的阴极活性材料具有改进的氧和镍之间的结合力以及增加的晶体结构稳定性,确保了锂离子运动的稳定路径,从而显示出显著提高的速率特性。
虽然本发明的实施例和对比实施例已出于示例的目的被公开,但本领域技术人员将理解,在不偏离如所附权利要求书中公开的本发明的范围和实质的前提下,可作出多种改进、添加和替换。
产业实用性
如上所述,本发明的阴极活性材料包含一种具有预定构成成分并含有过量锂的锂-过渡金属复合氧化物,其中各构成元素具有预定的氧化数,从而保持稳定的晶体结构并具有出色的速率特性。

Claims (5)

1.一种锂二次电池的阴极活性材料,包括:一种由下式(1)表示的锂-过渡金属复合氧化物,其含有过量锂,以在高速充电/放电条件下具有提高的速率特性:
Li1+aNi’bNi”cMndCoeO2    (1)
其中a、b、c、d和e由式1.1<(1+a)/(b+c+d+e)<1.3限定;
上文所述每种过渡金属元素的平均氧化数如下表示:
Ni’>2+,Ni”=3+,Mn=4+且Co=3+;
0≤e≤0.1;
0.2<b+c≤0.55,0.2<d≤0.55;b+c≠d;且
︱(b+c)-d︱<0.1。
2.权利要求1的阴极活性材料,其中所述复合氧化物中Li相对于所有过渡金属的摩尔分数大于1.10但不高于1.20。
3.权利要求1的阴极活性材料,其中(b+c):d的比例在1:0.7-1.3范围内。
4.权利要求1的阴极活性材料,其中所述复合氧化物通过将一种镍-锰氢氧化物前体与碳酸锂反应,或将镍-锰-钴氢氧化物前体与碳酸锂反应而制备。
5.一种锂二次电池,含有如权利要求1-4中任一项所限定的阴极活性材料。
CN200880111452.XA 2007-10-13 2008-10-08 锂二次电池的阴极活性材料 Active CN101821879B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2007-0103287 2007-10-13
KR1020070103287A KR100927244B1 (ko) 2007-10-13 2007-10-13 리튬 이차전지용 양극 활물질
PCT/KR2008/005912 WO2009048264A2 (en) 2007-10-13 2008-10-08 Cathode active material for lithium secondary battery

Publications (2)

Publication Number Publication Date
CN101821879A CN101821879A (zh) 2010-09-01
CN101821879B true CN101821879B (zh) 2014-12-10

Family

ID=40549740

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200880111452.XA Active CN101821879B (zh) 2007-10-13 2008-10-08 锂二次电池的阴极活性材料

Country Status (8)

Country Link
US (2) US20110168944A1 (zh)
EP (1) EP2206182B1 (zh)
KR (1) KR100927244B1 (zh)
CN (1) CN101821879B (zh)
BR (1) BRPI0818060B1 (zh)
PL (1) PL2206182T3 (zh)
RU (1) RU2430449C1 (zh)
WO (1) WO2009048264A2 (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2330664B1 (en) 2008-09-10 2017-12-13 LG Chem, Ltd. Positive electrode active substance for lithium secondary battery
CN102906909B (zh) * 2010-05-08 2015-11-25 株式会社Lg化学 二次电池用正电极活性材料
KR101239620B1 (ko) * 2011-06-30 2013-03-07 주식회사 엘지화학 향상된 레이트 특성의 이차전지용 양극 활물질
KR101446491B1 (ko) * 2012-03-16 2014-10-06 주식회사 엘지화학 리튬 복합 전이금속 산화물 제조용 전구체 및 그 제조방법
JP5668993B2 (ja) * 2012-10-22 2015-02-12 トヨタ自動車株式会社 密閉型非水電解質二次電池及びその製造方法
WO2014163357A1 (ko) * 2013-03-30 2014-10-09 (주)오렌지파워 리튬 과량 양극활물질 제조용 전구체 및 이에 의하여 제조된 리튬 과량 양극활물질
WO2014163359A1 (ko) * 2013-03-30 2014-10-09 (주)오렌지파워 리튬 과량 양극활물질 제조용 전구체 및 이에 의하여 제조된 리튬 과량 양극활물질
JP5963012B2 (ja) 2014-04-21 2016-08-03 トヨタ自動車株式会社 非水電解質二次電池
GB2566472B (en) 2017-09-14 2020-03-04 Dyson Technology Ltd Magnesium salts
GB2566473B (en) 2017-09-14 2020-03-04 Dyson Technology Ltd Magnesium salts
GB2569390A (en) 2017-12-18 2019-06-19 Dyson Technology Ltd Compound
GB2569388B (en) 2017-12-18 2022-02-02 Dyson Technology Ltd Compound
GB2569387B (en) 2017-12-18 2022-02-02 Dyson Technology Ltd Electrode
GB2569392B (en) 2017-12-18 2022-01-26 Dyson Technology Ltd Use of aluminium in a cathode material
JP6988502B2 (ja) * 2018-01-17 2022-01-05 トヨタ自動車株式会社 全固体電池用正極合剤、全固体電池用正極、全固体電池及びこれらの製造方法
RU2702785C1 (ru) * 2018-08-29 2019-10-14 Автономная некоммерческая образовательная организация высшего образования "Сколковский институт науки и технологий" Защитное шпинельное покрытие для ni-mn-co (nmc) катода с повышенным содержанием li для литий-ионных аккумуляторов, способ нанесения указанного покрытия на катод и катод с указанным покрытием
US20230047457A1 (en) * 2020-02-07 2023-02-16 The Regents Of The University Of California Cation-disordered rocksalt type high entropy cathode with reduced short-range order for li-ion batteries

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003031219A (ja) * 2001-07-13 2003-01-31 Yuasa Corp 正極活物質およびこれを用いた非水電解質二次電池
CN1430795A (zh) * 2001-03-22 2003-07-16 松下电器产业株式会社 正极活性物质及含该活性物质的非水电解质二次电池
CN1753235A (zh) * 2004-09-24 2006-03-29 三洋电机株式会社 锂二次电池

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3691279B2 (ja) * 1998-02-10 2005-09-07 三星エスディアイ株式会社 リチウム二次電池用正極活物質、その製造方法、及びリチウム二次電池
KR100277796B1 (ko) * 1998-02-10 2001-02-01 김순택 리튬 이차 전지용 양극 활물질 및 그 제조 방법
JPH11307094A (ja) 1998-04-20 1999-11-05 Chuo Denki Kogyo Co Ltd リチウム二次電池用正極活物質とリチウム二次電池
KR100814826B1 (ko) * 2006-11-20 2008-03-20 삼성에스디아이 주식회사 리튬 이차 전지

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1430795A (zh) * 2001-03-22 2003-07-16 松下电器产业株式会社 正极活性物质及含该活性物质的非水电解质二次电池
JP2003031219A (ja) * 2001-07-13 2003-01-31 Yuasa Corp 正極活物質およびこれを用いた非水電解質二次電池
CN1753235A (zh) * 2004-09-24 2006-03-29 三洋电机株式会社 锂二次电池

Also Published As

Publication number Publication date
WO2009048264A2 (en) 2009-04-16
EP2206182A2 (en) 2010-07-14
EP2206182A4 (en) 2011-10-05
US20110168944A1 (en) 2011-07-14
EP2206182B1 (en) 2019-04-24
RU2430449C1 (ru) 2011-09-27
WO2009048264A3 (en) 2009-06-04
BRPI0818060A2 (pt) 2015-03-31
US20120112125A1 (en) 2012-05-10
PL2206182T3 (pl) 2019-08-30
CN101821879A (zh) 2010-09-01
KR100927244B1 (ko) 2009-11-16
KR20090037770A (ko) 2009-04-16
BRPI0818060B1 (pt) 2020-10-06

Similar Documents

Publication Publication Date Title
CN101821879B (zh) 锂二次电池的阴极活性材料
EP3340348B1 (en) Positive electrode active material for lithium secondary battery, containing high-voltage lithium cobalt oxide having doping element, and method for preparing same
EP2869369B1 (en) Cathode active material for secondary battery and secondary battery comprising same
US8871117B2 (en) Cathode based upon two kinds of compounds and lithium secondary battery comprising the same
US10741841B2 (en) Electrode active material having improved energy density and lithium secondary battery including the same
CN103460457A (zh) 正极活性材料和包含所述正极活性材料的锂二次电池
CN104025346B (zh) 正极活性材料和含其的控制杂质或溶胀的锂二次电池及提高产率的制备正极活性材料的方法
CN102668178B (zh) 由两种组分的组合制成的阴极以及使用该阴极的锂二次电池
CN104137313A (zh) 制造锂二次电池用电极的方法和使用所述方法制造的电极
US9780370B2 (en) Lithium manganese-based oxide and cathode active material including the same
CN102714314B (zh) 正极活性材料和包含所述正极活性材料的锂二次电池
CN104969400A (zh) 新型二次电池
EP2802031A1 (en) Method for manufacturing electrode for lithium secondary battery and electrode manufactured by using same
CN102804458B (zh) 锂二次电池用正极活性材料
CN103797622B (zh) 具有提高的倍率性能的二次电池用正极活性材料
US10573880B2 (en) Cathode active material for secondary battery with enhanced lifespan characteristics and method of preparing the same
KR101547919B1 (ko) 수명특성이 향상된 이차전지용 양극 활물질 및 이의 제조방법
CN102870257B (zh) 二次电池用正极活性材料
KR100912786B1 (ko) 리튬 이차전지용 양극 활물질
KR101506317B1 (ko) 리튬 이차전지용 양극
CN103098267A (zh) 二次电池用正极活性材料
CN110199414B (zh) 锂二次电池用正极以及包含其的锂二次电池
KR101447484B1 (ko) 이차전지용 양극 활물질

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20211230

Address after: Seoul, South Kerean

Patentee after: LG Energy Solution,Ltd.

Address before: Seoul, South Kerean

Patentee before: LG CHEM, Ltd.

TR01 Transfer of patent right