发明内容
本发明的目的是解决现有技术的离子交换容量与机械强度相对立的矛盾,提供一种带有磺酰氟及磺酸盐侧基的多元共聚全氟离子交换树脂及其合成方法。
发明概述
本发明的目的还在于解决短侧基磺酰氟烯醚单体在聚合过程中发生链转移反应,得到的树脂分子量不够高的问题。具体反应机理尚未研究清楚,从树脂结构的角度推测有两种作用,其一聚合过程中采用了两种具有不同侧基的磺酰氟烯醚单体,这两种单体相互协同作用;其二聚合体系中存在两种不同侧基的磺酸盐烯醚,即起到分散剂的作用,又参与聚合反应,这些少量金属离子的存在使得聚合反应协同向高分子量方向进行,并消除了链转移环化反应。
具体的说,本发明是四氟乙烯(TFE)与带有磺酰氟及磺酸盐侧基的功能单体进行多元共聚,得到高分子量功能性全氟离子交换树脂,这种多元共聚物具有高的化学稳定性,可以用于制备燃料电池质子膜和氯碱电解槽隔膜等装置中作为离子交换膜。应用这种树脂制备的膜材料具有高的电流效率、低的膜电阻、高的尺寸稳定性以及较高的机械强度,同时该膜具有有效的降低过氧化氢生成的能力,提高了膜的使用寿命。
发明详述
本发明提供一种带有磺酰氟及磺酸盐侧基的功能性全氟磺酸树脂,是由四氟乙烯、两种不同结构磺酰氟侧基烯醚单体、两种分别对应于不同结构磺酰氟侧基烯醚单体的磺酸盐侧基烯醚单体多元共聚合而成的功能性全氟树脂,聚合物链的分子式为:
其中r=2、3、4;M和M′分别选自Ce、Mn、La、Zn、W、Ti、V、Cr、Fe、Co、Ni、Cu、Zr、Nb、Mo、Ru、Rh、Pd、Ta、Re、Ir、Pt、H、Na或K;a、b、c、d=1~10的整数,且a’=b’=c’=d’=1;y/(x+y)=0.01~0.3%,x/(x+y)=99.7~99.99%。式中n、m表示金属M和M′离子的价态。
优选的,金属M及M’选自:钨(W)、铬(Cr)、钒(V)、锌(Zn)、镧(La)、钼(Mo)、铈(Ce)或锰(Mn);更优选的,金属M及M’选自:钨(W)、钼(Mo)、镧(La)、铈(Ce)或锰(Mn)。
聚合物中各种单体所占的摩尔含量百分数:四氟乙烯总体摩尔分数=50~90.9%,磺酰氟侧基烯醚单体总体摩尔分数=8.8~49.99%,磺酸盐侧基烯醚单体总体摩尔分数=0.01~0.3%;
优选的,聚合物中各种单体所占的摩尔含量百分数:四氟乙烯总体摩尔分数=75~85%,磺酰氟侧基烯醚单体总体摩尔分数=14.75~24.95%,磺酸盐侧基烯醚单体总体摩尔分数=0.05~0.25%。
本发明所述的功能性全氟树脂的分子量为10-60万;优选的,该类功能性全氟树脂的分子量为15-30万。本发明对分子量没有特别的限制,分子量10-60万范围内的功能性全氟树脂均能实现本发明的发明目的。分子量的测定可以使用任何公知的方法,如GPC等。
所述的两种不同结构磺酰氟侧基烯醚单体的结构式分别如下式(1)和(2)所示:
式中r=2、3或4;
所述的磺酸盐侧基烯醚单体的结构式分别如下式(1’)和(2’)所示:
式中r=2、3或4,n、m表示金属价态。
M及M’相同或者不同地选自:铈(Ce)、锰(Mn)、镧(La)、锌(Zn)、钨(W)、钛(Ti)、矾(V)、铬(Cr)、铁(Fe)、钴(Co)、镍(Ni)、铜(Cu)、锆(Zr)、铌(Nb)、钼(Mo)、钌(Ru)、铑(Rh)、钯(Pd)、钽(Ta)、铼(Re)、铱(Ir)、铂(Pt)、钠(Na)或钾(K)。优选的,金属M及M’选自:钨(W)、铬(Cr)、钒(V)、锌(Zn)、镧(La)、钼(Mo)、铈(Ce)或锰(Mn);更优选的,金属M及M’选自:钨(W)、钼(Mo)、镧(La)、铈(Ce)或锰(Mn)。
本发明所述的带有磺酰氟及磺酸盐侧基的功能性全氟树脂的制备方法,是通过四氟乙烯、两种不同结构磺酰氟侧基烯醚单体、两种分别对应于不同结构磺酰氟侧基烯醚单体的磺酸盐侧基烯醚单体在10~60℃、在引发剂的作用下进行共聚反应得到,反应时间为1~8小时,反应压力为2~10MPa。
引发剂可以使用本领域公知的引发剂,也可以使用自制的引发剂。
所述引发剂选自:N2F2、全氟烷基过氧化物或过硫酸盐。
优选的,所述全氟烷基过氧化物包括:过氧化全氟烷基酰基化合物、过氧化全氟烷氧基酰基化合物、过氧化部分含氟烷基酰基化合物、过氧化部分含氟烷氧基酰基化合物。优选全氟丙酰基过氧化物、3-氯氟丙酰过氧化物、全氟甲氧基乙酰过氧化物、
-H-全氟丁酰过氧化物、
-SO
2F-全氟-2,5,8-三甲基-3,6,9-三氧杂-十一烷基过氧化物、CF
3CF
2CF
2CO-OO-COCF
2CF
2CF
3、CF
3CF
2CF
2OCFCF
3CO-OO-COCFCF
3OCF
2CF
2CF
3、CF
3CF
2CH
2CO-OO-COCH
2CF
2CF
3或CF
3OCF
2CF
2CO-OO-COCF
2CF
2OCF
3。
优选的,所述过硫酸盐包括过硫酸铵盐、碱金属过硫化物或碱土金属过硫化物;优选过硫酸铵或过硫酸钾。
优选的,树脂中四氟乙烯、磺酰氟侧基烯醚单体和磺酸盐侧基烯醚的比例为:50~90.9∶8.8~49.99∶0.01~0.3;摩尔比。
两种不同结构磺酰氟侧基烯醚单体(1)和(2)的比例任意,根据设定离子交换容量的大小、力学性能的高低随意调节;两种分别对应于不同结构磺酰氟侧基烯醚单体的磺酸盐侧基烯醚单体(1’)和(2’)的比例为任意,不做刻意要求。本领域技术人员可根据公知常识和实际需要进行调节。
优选的,上述共聚反应在水相中进行乳液聚合,磺酸盐侧基烯醚既作为分散剂同时也作为反应单体,其相对于反应体系水质量的重量百分比为0.5~5%。
下面是聚合方法的详细说明。
乳液聚合法
所述的带有磺酰氟及磺酸盐侧基侧基的功能性全氟树脂的制备方法是在水相中进行的乳液聚合反应,其步骤为:
1)、将反应釜洗净后,加入纯水、磺酰氟侧基烯醚和磺酸盐侧基烯醚,两种磺酰氟侧基烯醚在水中的总体质量百分比浓度为5-50%,两种磺酸盐侧基烯醚在水中的总体质量百分比浓度为0.5~5%;
2)、通过气体计量槽向反应釜内充四氟乙烯单体至压力为2-10MPa;
3)、反应釜升温至10~60℃,通过计量泵向反应体系中加入引发剂引发反应进行,持续向反应釜补加四氟乙烯单体和引发剂,保持反应釜反应压力2-10MPa;反应时间为1~8小时;
4)、反应结束时,停止向反应釜内加入引发剂和四氟乙烯单体,通过反应釜放空管路及回收槽放空回收未反应的四氟乙烯单体;得到乳白色的聚合物浆料,将液体浆料通过放料系统进入后处理设备中,高速剪切,分离得到白色聚合物粉末,于100℃烘箱中烘干,得到带有磺酰氟及磺酸盐侧基的功能性全氟树脂。反应液体中的磺酰氟烯醚单体和磺酸盐侧基烯醚单体通过回收系统回收利用。
两种不同结构磺酰氟侧基烯醚单体(1)和(2)的比例任意,根据设定离子交换容量的大小、力学性能的高低随意调节;两种分别对应于不同结构磺酰氟侧基烯醚单体的磺酸盐侧基烯醚单体(1’)和(2’)的比例为任意,不做刻意要求。
所述引发剂选自:N2F2、全氟烷基过氧化物或过硫酸盐;本领域的技术人员可以根据本领域的公知常识选择引发剂的浓度。
所述全氟烷基过氧化物包括:过氧化全氟烷基酰基化合物、过氧化全氟烷氧基酰基化合物、过氧化部分含氟烷基酰基化合物或过氧化部分含氟烷氧基酰基化合物;
所述过硫酸盐包括过硫酸铵、碱金属过硫酸盐或碱土金属过硫酸盐;优选过硫酸铵或过硫酸钾。
本发明所述的带有磺酰氟及磺酸盐侧基的功能性全氟树脂的应用,可用于制造燃料电池或氯碱电解池的离子交换膜。
本发明所述的带有磺酰氟及磺酸盐侧基的功能性全氟树脂的应用,具体地说是用于质子膜燃料电池或氯碱电解槽等装置中作为离子交换膜。这类离子交换膜具有高的化学稳定性、高的电流效率、低的膜电阻以及较高的机械强度等。
本发明所述的带有磺酰氟及磺酸盐侧基的功能性全氟树脂的应用,该树脂可采用溶液浇注工艺制成合适厚度的全氟磺酸离子交换膜。制成的全氟离子交换膜不但具有耐各种化学介质性,还具有高的导电性和高机械强度,低的膜电阻,非常适合在燃料电池或氯碱电解池中使用。
本发明所述的带有磺酰氟及磺酸盐侧基的功能性全氟树脂在燃料电池中的应用,基于键合在树脂上的金属离子的抗氧化性能,有效提高膜材料的耐久性,并且金属离子的存在使得膜材料具有良好的尺寸稳定性,可以进一步提高离子交换容量、增大导电率。
本发明的有益效果是:
本发明所合成的全氟离子交换树脂的离子交换容量可高达2.6mmol/g干树脂、机械强度超过20MPa,并且由于金属离子是通过共聚的方式引入聚合物中的,其在聚合物分子链段上的分布是均匀的,制备的膜材料具有非常好的抗氧化性能,取5g干树脂在100ml芬顿试剂(30%双氧水、30ppm铁离子)内煮沸70小时后,采用离子色谱测定溶液内的氟离子含量,未检测出有游离的氟离子,证实该材料具备优异的抗氧化性能。
具体实施方式:
以下实施例是对本发明的进一步说明,但本发明并不局限于此。如无特别说明,各实施例中所用的反应釜均为10l不锈钢高压反应釜,并配有温度传感器、压力传感器、加热循环系统、冷却循环系统、搅拌电机、内部冷却水管、液体计量泵、气体进料阀门、液体进料阀门、反应釜内物料出料阀门。
本发明在合成过程中所采用的全氟烷基引发剂可以按照本领域公知技术制备,本发明推荐的制备方法参见J.Org.Chem.,1982,47(11):2009-2013。
本发明在合成过程中所采用的过硫酸钾、过硫酸铵、N2F2气体全部可以购买得到。
本发明在合成过程中所采用的共聚单体四氟乙烯、磺酰氟侧基烯醚单体、磺酸盐侧基烯醚单体可购买得到,也可按本领域公知方法制备,可供选用的制备方法本发明将通过实施例进行说明。
实施例1、(r=2)
将反应釜洗净并加入5.0L去离子水、500ml含有70g磺酸铈侧基烯醚单体(1’)((F2C=CF-O-CF2CF2-SO3 -)4Ce4+)及25g磺酸铈侧基烯醚单体(2’)((F2C=CF-O-CF2-CF(CF3)-O-CF2CF2-SO3 -)3Ce3+)的水溶液,开动搅拌装置,抽真空充高纯氮气置换三次,经测试反应釜内氧含量在1ppm以下后,抽真空,通过液体进料阀门向反应釜内加入500g磺酰氟侧基烯醚单体(1)(F2C=CF-O-CF2-CF2-SO2F)及500g磺酰氟侧基烯醚单体(2)(F2C=CF-O-CF2-CF(CF3)-O-CF2CF2-SO2F)后,向反应釜内充四氟乙烯单体至压力为2.3MPa,升温至25℃,用计量泵加入2.2g过氧化全氟丁酰基化合物(CF3CF2CF2CO-OO-CCF2CF2CF3)引发聚合反应,持续通入四氟乙烯(CF2=CF2)单体保持反应压力在2.3MPa,每隔15min向体系中加入引发剂0.65g,反应2h后,停止加入引发剂,让反应继续进行15min后,停止加入四氟乙烯单体。通过冷却循环系统给反应釜降温,同时通过回收系统回收未反应的四氟乙烯单体,将釜内的乳白色浆料通过下放料阀门放入后处理系统中,通过高速剪切后,分离得到白色聚合物粉末,于100℃烘箱中烘干,得到带有磺酰氟及磺酸铈侧基的功能性全氟树脂。反应液体中的磺酰氟烯醚单体和磺酸铈侧基烯醚单体通过回收系统回收后重复利用。
聚合物数据:经F19NMR、IR分析证实为多元共聚物,通过氟核磁积分值可知聚合物结构中含有四氟乙烯单体的摩尔百分数为62.75%,含有磺酰氟侧基烯醚单体(1)摩尔百分数为21.3%,含有磺酰氟侧基烯醚单体(2)摩尔百分数为15.5%,含有磺酸铈侧基烯醚单体(1’)摩尔百分数为0.2%,含有磺酸铈侧基烯醚单体(2’)摩尔百分数为0.07%,总体离子交换容量为:1.92mmol/g干树脂。TGA测试树脂氮气气氛下的分解温度(Td)为396℃;IR谱图:1468cm-1为磺酰氟中S=O振动吸收峰;1070cm-1为磺酸铈-(SO3 -)4Ce4+中S=O振动吸收峰;1200和1148cm-1两个最强吸收由CF振动引起;984cm-1为CF3振动引起的;720cm-1、641cm-1由TFE振动引起。
取粉末状树脂在x-射线荧光光谱仪上进行测试,测定结果显示树脂中金属铈离子摩尔含量在0.27%。
实施例2、(r=2)
将反应釜洗净并加入5.0L去离子水、500ml含有40g磺酸铈侧基烯醚单体(1’)((F2C=CF-O-CF2CF2-SO3 -)3Ce3+)及50g磺酸锰侧基烯醚单体(2’)((F2C=CF-O-CF2-CF(CF3)-O-CF2CF2-SO3 -)2Mn2+)的水溶液,开动搅拌装置,抽真空充高纯氮气置换三次,经测试反应釜内氧含量在1ppm以下后,抽真空,通过液体进料阀门向反应釜内加入300g磺酰氟侧基烯醚单体(1)(F2C=CF-O-CF2-CF2-SO2F)及500g磺酰氟侧基烯醚单体(2)(F2C=CF-O-CF2-CF(CF3)-O-CF2CF2-SO2F)后,向反应釜内充四氟乙烯单体至压力为2.5MPa,升温至35℃,用计量泵加入8.2g过氧化全氟丙氧基丙基化合物(CF3CF2CF2OCF(CF3)CO-OO-CCF(CF3)OCF2CF2CF3)引发聚合反应,持续通入四氟乙烯(CF2=CF2)单体保持反应压力在2.5MPa,每隔25min向体系中加入引发剂2.5g,反应2.5h后,停止加入引发剂,让反应继续进行25min后,停止加入四氟乙烯单体。通过冷却循环系统给反应釜降温,同时通过回收系统回收未反应的四氟乙烯单体,将釜内的乳白色浆料通过下放料阀门放入后处理系统中,通过高速剪切后,分离得到白色聚合物粉末,于100℃烘箱中烘干,得到带有磺酰氟、磺酸锰及磺酸铈侧基的功能性全氟树脂。反应液体中的磺酰氟烯醚单体和磺酸铈及磺酸锰侧基烯醚单体通过回收系统回收后重复利用。
聚合物数据:经F19NMR、IR分析证实为多元共聚物,通过氟核磁积分值可知聚合物结构中含有四氟乙烯单体的摩尔百分数为69%,含有磺酰氟侧基烯醚单体(1)摩尔百分数为16.5%,含有磺酰氟侧基烯醚单体(2)摩尔百分数为14.21%,含有磺酸铈侧基烯醚单体(1’)摩尔百分数为0.15%,含有磺酸锰侧基烯醚单体(2’)摩尔百分数为0.14%,总体离子交换容量为:1.71mmol/g干树脂。TGA测试树脂氮气气氛下的分解温度(Td)为394℃;IR谱图:1468cm-1为磺酰氟中S=O振动吸收峰;1070cm-1为磺酸铈-(SO3 -)3Ce3+及磺酸锰-(SO3 -)3Mn3+中S=O振动吸收峰;1200和1148cm-1两个最强吸收由CF振动引起;984cm-1为CF3振动引起的;720cm-1、641cm-1由TFE振动引起。
取粉末状树脂在x-射线荧光光谱仪上进行测试,测定结果显示树脂中金属铈离子摩尔含量在0.15%、金属锰离子摩尔含量在0.14%。
实施例3、(r=2)
将反应釜洗净并加入5.0L去离子水、500ml含有50g磺酸钼侧基烯醚单体(1’)((F2C=CF-O-CF2CF2-SO3 -)3Mo3+)及70g磺酸钨侧基烯醚单体(2’)((F2C=CF-O-CF2-CF(CF3)-O-CF2CF2-SO3)3W3+)的水溶液,开动搅拌装置,抽真空充高纯氮气置换三次,经测试反应釜内氧含量在1ppm以下后,抽真空,通过液体进料阀门向反应釜内加入250g磺酰氟侧基烯醚单体(1)(F2C=CF-O-CF2-CF2-SO2F)及450g磺酰氟侧基烯醚单体(2)(F2C=CF-O-CF2-CF(CF3)-O-CF2CF2-SO2F)后,向反应釜内充四氟乙烯单体至压力为2.8MPa,升温至60℃,用计量泵加入10%过硫酸铵水溶液280g引发聚合反应,持续通入四氟乙烯(CF2=CF2)单体保持反应压力在2.8MPa,反应3h后,停止加入四氟乙烯单体。通过冷却循环系统给反应釜降温,同时通过回收系统回收未反应的四氟乙烯单体,将釜内的乳白色浆料通过下放料阀门放入后处理系统中,通过高速剪切后,分离得到白色聚合物粉末,于100℃烘箱中烘干,得到带有磺酰氟、磺酸钼及磺酸钨侧基的功能性全氟树脂。反应液体中的磺酰氟烯醚单体和磺酸钼及磺酸钨侧基烯醚单体通过回收系统回收后重复利用。
聚合物数据:经F19NMR、IR分析证实为多元共聚物,通过氟核磁积分值可知聚合物结构中含有四氟乙烯单体的摩尔百分数为75%,含有磺酰氟侧基烯醚单体(1)摩尔百分数为12.71%,含有磺酰氟侧基烯醚单体(2)摩尔百分数为12.1%,含有磺酸钼侧基烯醚单体(1’)摩尔百分数为0.1%,含有磺酸钨侧基烯醚单体(2’)摩尔百分数为0.09%,总体离子交换容量为:1.5mmol/g干树脂。TGA测试树脂氮气气氛下的分解温度(Td)为389℃;IR谱图:1468cm-1为磺酰氟中S=O振动吸收峰;1070cm-1为磺酸钼-(SO3 -)3Mo3+及磺酸钨-(SO3 -)3W3+中S=O振动吸收峰;1200和1148cm-1两个最强吸收由CF振动引起;984cm-1为CF3振动引起的;720cm-1、641cm-1由TFE振动引起。
取粉末状树脂在x-射线荧光光谱仪上进行测试,测定结果显示树脂中金属钼离子摩尔含量在0.1%、金属钨离子摩尔含量在0.09%。
实施例4、(r=2)
将反应釜洗净并加入5.0L去离子水、500ml含有70g磺酸铈侧基烯醚单体(1’)((F2C=CF-O-CF2CF2-SO3 -)3Ce3+)及50g磺酸镧侧基烯醚单体(2’)((F2C=CF-O-CF2-CF(CF3)-O-CF2CF2-SO3 -)3La3+)的水溶液,开动搅拌装置,抽真空充高纯氮气置换三次,经测试反应釜内氧含量在1ppm以下后,抽真空,通过液体进料阀门向反应釜内加入300g磺酰氟侧基烯醚单体(1)(F2C=CF-O-CF2-CF2-SO2F)及500g磺酰氟侧基烯醚单体(2)(F2C=CF-O-CF2-CF(CF3)-O-CF2CF2-SO2F)后,向反应釜内充四氟乙烯单体至压力为2.6MPa,升温至15℃,用气体流量计控制流量向反应釜内引入由N2F2引发聚合反应,持续通入四氟乙烯(CF2=CF2)单体保持反应压力在2.6MPa,持续向体系中加入引发剂N2F2,反应2h后,停止加入引发剂,让反应继续进行1min后,停止加入四氟乙烯单体。通过冷却循环系统给反应釜降温,同时通过回收系统回收未反应的四氟乙烯单体,将釜内的乳白色浆料通过下放料阀门放入后处理系统中,通过高速剪切后,分离得到白色聚合物粉末,于100℃烘箱中烘干,得到带有磺酰氟、磺酸铈及磺酸镧侧基的功能性全氟树脂。反应液体中的磺酰氟烯醚单体和磺酸铈及磺酸镧侧基烯醚单体通过回收系统回收后重复利用。
聚合物数据:经F19NMR、IR分析证实为多元共聚物,通过氟核磁积分值可知聚合物结构中含有四氟乙烯单体的摩尔百分数为75%,含有磺酰氟侧基烯醚单体(1)摩尔百分数为13.5%,含有磺酰氟侧基烯醚单体(2)摩尔百分数为11.39%,含有磺酸铈侧基烯醚单体(1’)摩尔百分数为0.07%,含有磺酸镧侧基烯醚单体(2’)摩尔百分数为0.04%,总体离子交换容量为:1.52mmol/g干树脂。TGA测试树脂氮气气氛下的分解温度(Td)为389℃;IR谱图:1468cm-1为磺酰氟中S=O振动吸收峰;1070cm-1为磺酸铈-(SO3 -)3Ce3+及磺酸镧-(SO3 -)3La3+中S=O振动吸收峰;1200和1148cm-1两个最强吸收由CF振动引起;984cm-1为CF3振动引起的;720cm-1、641cm-1由TFE振动引起。
取粉末状树脂在x-射线荧光光谱仪上进行测试,测定结果显示树脂中金属铈离子摩尔含量在0.07%、金属镧离子摩尔含量在0.04%。
实施例5、(r=2)
将反应釜洗净并加入5.0L去离子水、500ml含有65g磺酸锰侧基烯醚单体(1’)((F2C=CF-O-CF2CF2-SO2 -)Mn2+)及60g磺酸镧侧基烯醚单体(2’)((F2C=CF-O-CF2-CF(CF3)-O-CF2CF2-SO3 -)3La3+)的水溶液,开动搅拌装置,抽真空充高纯氮气置换三次,经测试反应釜内氧含量在1ppm以下后,抽真空,通过液体进料阀门向反应釜内加入300g磺酰氟侧基烯醚单体(1)(F2C=CF-O-CF2-CF2-SO2F)及500g磺酰氟侧基烯醚单体(2)(F2C=CF-O-CF2-CF(CF3)-O-CF2CF2-SO2F)后,向反应釜内充四氟乙烯单体至压力为2.6MPa,升温至15℃,用气体流量计控制流量向反应釜内引入由N2F2引发聚合反应,持续通入四氟乙烯(CF2=CF2)单体保持反应压力在2.6MPa,持续向体系中加入引发剂N2F2,反应2h后,停止加入引发剂,让反应继续进行1min后,停止加入四氟乙烯单体。通过冷却循环系统给反应釜降温,同时通过回收系统回收未反应的四氟乙烯单体,将釜内的乳白色浆料通过下放料阀门放入后处理系统中,通过高速剪切后,分离得到白色聚合物粉末,于100℃烘箱中烘干,得到带有磺酰氟、磺酸锰及磺酸镧侧基的功能性全氟树脂。反应液体中的磺酰氟烯醚单体和磺酸锰及磺酸镧侧基烯醚单体通过回收系统回收后重复利用。
聚合物数据:经F19NMR、IR分析证实为多元共聚物,通过氟核磁积分值可知聚合物结构中含有四氟乙烯单体的摩尔百分数为77%,含有磺酰氟侧基烯醚单体(1)摩尔百分数为12.5%,含有磺酰氟侧基烯醚单体(2)摩尔百分数为10.36%,含有磺酸锰侧基烯醚单体(1’)摩尔百分数为0.09%,含有磺酸镧侧基烯醚单体(2’)摩尔百分数为0.05%,总体离子交换容量为:1.44mmol/g干树脂。TGA测试树脂氮气气氛下的分解温度(Td)为386℃;IR谱图:1468cm-1为磺酰氟中S=O振动吸收峰;1070cm-1为磺酸锰-(SO3 -)2Mn2+及磺酸镧-(SO3 -)3La3+中S=O振动吸收峰;1200和1148cm-1两个最强吸收由CF振动引起;984cm-1为CF3振动引起的;720cm-1、641cm-1由TFE振动引起。
取粉末状树脂在x-射线荧光光谱仪上进行测试,测定结果显示树脂中金属锰离子摩尔含量在0.09%、金属镧离子摩尔含量在0.05%。
实施例6、(r=2)
将反应釜洗净并加入5.0L去离子水、500ml含有50g磺酸铈侧基烯醚单体(1’)((F
2C=CF-O-CF
2CF
2-SO
3 -)
3Ce
3+)及50g磺酸镧侧基烯醚单体(2’)((F
2C=CF-O-CF
2-CF(CF
3)-O-CF
2CF
2-SO
3 -)
2Zn
2+)的水溶液,开动搅拌装置,抽真空充高纯氮气置换三次,经测试反应釜内氧含量在1ppm以下后,抽真空,通过液体进料阀门向反应釜内加入400g磺酰氟侧基烯醚单体(1)(F
2C=CF-O-CF
2-CF
2-SO
2F)及400g磺酰氟侧基烯醚单体(2)(F
2C=CF-O-CF
2-CF(CF
3)-O-CF
2CF
2-SO
2F)后,向反应釜内充四氟乙烯单体至压力为4MPa,升温至45℃,用计量泵加入20.2g
-SO2F-全氟-2,5,8-三甲基-3,6,9-三氧杂-十一烷基过氧化物引发聚合反应,持续通入四氟乙烯(CF
2=CF
2)单体保持反应压力在4MPa,每隔45min向体系中加入引发剂6g,反应2h后,停止加入引发剂,让反应继续进行45min后,停止加入四氟乙烯单体。通过冷却循环系统给反应釜降温,同时通过回收系统回收未反应的四氟乙烯单体,将釜内的乳白色浆料通过下放料阀门放入后处理系统中,通过高速剪切后,分离得到白色聚合物粉末,于100℃烘箱中烘干,得到带有磺酰氟、磺酸铈及磺酸锌侧基的功能性全氟树脂。反应液体中的磺酰氟烯醚单体和磺酸铈及磺酸锌侧基烯醚单体通过回收系统回收后重复利用。
聚合物数据:经F19NMR、IR分析证实为多元共聚物,通过氟核磁积分值可知聚合物结构中含有四氟乙烯单体的摩尔百分数为82%,含有磺酰氟侧基烯醚单体(1)摩尔百分数为9.8%,含有磺酰氟侧基烯醚单体(2)摩尔百分数为8.12%,含有磺酸铈侧基烯醚单体(1’)摩尔百分数为0.06%,含有磺酸锌侧基烯醚单体(2’)摩尔百分数为0.02%,总体离子交换容量为:1.23mmol/g干树脂。TGA测试树脂氮气气氛下的分解温度(Td)为385℃;IR谱图:1468cm-1为磺酰氟中S=O振动吸收峰;1070cm-1为磺酸铈-(SO3 -)3Ce3+及磺酸锌-(SO3 -)2Zn2+中S=O振动吸收峰;1200和1148cm-1两个最强吸收由CF振动引起;984cm-1为CF3振动引起的;720cm-1、641cm-1由TFE振动引起。
取粉末状树脂在x-射线荧光光谱仪上进行测试,测定结果显示树脂中金属铈离子摩尔含量在0.06%、金属锌离子摩尔含量在0.02%。
实施例7:(r=3)
将反应釜洗净并加入5.0L去离子水、500ml含有90g磺酸铈侧基烯醚单体(1’)((F2C=CF-O-CF2CF2CF2-SO3 -)4Ce4+)及15g磺酸铈侧基烯醚单体(2’)((F2C=CF-O-CF2-CF(CF3)-O-CF2CF2-SO3 -)3Ce3+)的水溶液,开动搅拌装置,抽真空充高纯氮气置换三次,经测试反应釜内氧含量在1ppm以下后,抽真空,通过液体进料阀门向反应釜内加入500g磺酰氟侧基烯醚单体(1)(F2C=CF-O-CF2-CF2-CF2-SO2F)及500g磺酰氟侧基烯醚单体(2)(F2C=CF-O-CF2-CF(CF3)-O-CF2CF2-SO2F)后,向反应釜内充四氟乙烯单体至压力为2.4MPa,升温至25℃,用计量泵加入2.5g过氧化全氟丁酰基化合物(CF3CF2CF2CO-OO-CCF2CF2CF3)引发聚合反应,持续通入四氟乙烯(CF2=CF2)单体保持反应压力在2.4MPa,每隔15min向体系中加入引发剂0.75g,反应2h后,停止加入引发剂,让反应继续进行15min后,停止加入四氟乙烯单体。通过冷却循环系统给反应釜降温,同时通过回收系统回收未反应的四氟乙烯单体,将釜内的乳白色浆料通过下放料阀门放入后处理系统中,通过高速剪切后,分离得到白色聚合物粉末,于100℃烘箱中烘干,得到带有磺酰氟及磺酸铈侧基的功能性全氟树脂。反应液体中的磺酰氟烯醚单体和磺酸铈侧基烯醚单体通过回收系统回收后重复利用。
聚合物数据:经F19NMR、IR分析证实为多元共聚物,通过氟核磁积分值可知聚合物结构中含有四氟乙烯单体的摩尔百分数为63%,含有磺酰氟侧基烯醚单体(1)摩尔百分数为21%,含有磺酰氟侧基烯醚单体(2)摩尔百分数为15.72%,含有磺酸铈侧基烯醚单体(1’)摩尔百分数为0.25%,含有磺酸铈侧基烯醚单体(2’)摩尔百分数为0.03%,总体离子交换容量为:1.81mmol/g干树脂。TGA测试树脂氮气气氛下的分解温度(Td)为386℃;IR谱图:1468cm-1为磺酰氟中S=O振动吸收峰;1070cm-1为磺酸铈-(SO3 -)4Ce4+中S=O振动吸收峰;1200和1148cm-1两个最强吸收由CF振动引起;984cm-1为CF3振动引起的;720cm-1、641cm-1由TFE振动引起。
取粉末状树脂在x-射线荧光光谱仪上进行测试,测定结果显示树脂中金属铈离子摩尔含量在0.28%。
实施例8:(r=3)
将反应釜洗净并加入5.0L去离子水、500ml含有50g磺酸铈侧基烯醚单体(1’)((F2C=CF-O-CF2CF2CF2-SO3 -)3Ce3+)及60g磺酸锰侧基烯醚单体(2’)((F2C=CF-O-CF2-CF(CF3)-O-CF2CF2-SO3 -)2Mn2+)的水溶液,开动搅拌装置,抽真空充高纯氮气置换三次,经测试反应釜内氧含量在1ppm以下后,抽真空,通过液体进料阀门向反应釜内加入300g磺酰氟侧基烯醚单体(1)(F2C=CF-O-CF2-CF2-CF2-SO2F)及500g磺酰氟侧基烯醚单体(2)(F2C=CF-O-CF2-CF(CF3)-O-CF2CF2-SO2F)后,向反应釜内充四氟乙烯单体至压力为2.8MPa,升温至35℃,用计量泵加入8.5g过氧化全氟丙氧基丙基化合物(CF3CF2CF2OCF(CF3)CO-OO-CCF(CF3)OCF2CF2CF3)引发聚合反应,持续通入四氟乙烯(CF2=CF2)单体保持反应压力在2.8MPa,每隔25min向体系中加入引发剂2.6g,反应2.5h后,停止加入引发剂,让反应继续进行25min后,停止加入四氟乙烯单体。通过冷却循环系统给反应釜降温,同时通过回收系统回收未反应的四氟乙烯单体,将釜内的乳白色浆料通过下放料阀门放入后处理系统中,通过高速剪切后,分离得到白色聚合物粉末,于100℃烘箱中烘干,得到带有磺酰氟、磺酸锰及磺酸铈侧基的功能性全氟树脂。反应液体中的磺酰氟烯醚单体和磺酸铈及磺酸锰侧基烯醚单体通过回收系统回收后重复利用。
聚合物数据:经F19NMR、IR分析证实为多元共聚物,通过氟核磁积分值可知聚合物结构中含有四氟乙烯单体的摩尔百分数为70%,含有磺酰氟侧基烯醚单体(1)摩尔百分数为15.48%,含有磺酰氟侧基烯醚单体(2)摩尔百分数为14.21%,含有磺酸铈侧基烯醚单体(1’)摩尔百分数为0.16%,含有磺酸锰侧基烯醚单体(2’)摩尔百分数为0.15%,总体离子交换容量为:1.6mmol/g干树脂。TGA测试树脂氮气气氛下的分解温度(Td)为390℃;IR谱图:1468cm-1为磺酰氟中S=O振动吸收峰;1070cm-1为磺酸铈-(SO3 -)3Ce3+及磺酸锰-(SO3 -)3Mn3+中S=O振动吸收峰;1200和1148cm-1两个最强吸收由CF振动引起;984cm-1为CF3振动引起的;720cm-1、641cm-1由TFE振动引起。
取粉末状树脂在x-射线荧光光谱仪上进行测试,测定结果显示树脂中金属铈离子摩尔含量在0.16%、金属锰离子摩尔含量在0.15%。
实施例9:(r=3)
将反应釜洗净并加入5.0L去离子水、500ml含有60g磺酸钼侧基烯醚单体(1’)((F2C=CF-O-CF2CF2CF2-SO3 -)3Mo3+)及90g磺酸钨侧基烯醚单体(2’)((F2C=CF-O-CF2-CF(CF3)-O-CF2CF2-SO3)3W3+)的水溶液,开动搅拌装置,抽真空充高纯氮气置换三次,经测试反应釜内氧含量在1ppm以下后,抽真空,通过液体进料阀门向反应釜内加入250g磺酰氟侧基烯醚单体(1)(F2C=CF-O-CF2-CF2-CF2-SO2F)及450g磺酰氟侧基烯醚单体(2)(F2C=CF-O-CF2-CF(CF3)-O-CF2CF2-SO2F)后,向反应釜内充四氟乙烯单体至压力为2.8MPa,升温至60℃,用计量泵加入10%过硫酸铵水溶液280g引发聚合反应,持续通入四氟乙烯(CF2=CF2)单体保持反应压力在2.8MPa,反应3h后,停止加入四氟乙烯单体。通过冷却循环系统给反应釜降温,同时通过回收系统回收未反应的四氟乙烯单体,将釜内的乳白色浆料通过下放料阀门放入后处理系统中,通过高速剪切后,分离得到白色聚合物粉末,于100℃烘箱中烘干,得到带有磺酰氟、磺酸钼及磺酸钨侧基的功能性全氟树脂。反应液体中的磺酰氟烯醚单体和磺酸钼及磺酸钨侧基烯醚单体通过回收系统回收后重复利用。
聚合物数据:经F19NMR、IR分析证实为多元共聚物,通过氟核磁积分值可知聚合物结构中含有四氟乙烯单体的摩尔百分数为75%,含有磺酰氟侧基烯醚单体(1)摩尔百分数为12.71%,含有磺酰氟侧基烯醚单体(2)摩尔百分数为12.1%,含有磺酸钼侧基烯醚单体(1’)摩尔百分数为0.1%,含有磺酸钨侧基烯醚单体(2’)摩尔百分数为0.09%,总体离子交换容量为:1.45mmol/g干树脂。TGA测试树脂氮气气氛下的分解温度(Td)为386℃;IR谱图:1468cm-1为磺酰氟中S=O振动吸收峰;1070cm-1为磺酸钼-(SO3 -)3Mo3+及磺酸钨-(SO3 -)3W3+中S=O振动吸收峰;1200和1148cm-1两个最强吸收由CF振动引起;984cm-1为CF3振动引起的;720cm-1、641cm-1由TFE振动引起。
取粉末状树脂在x-射线荧光光谱仪上进行测试,测定结果显示树脂中金属钼离子摩尔含量在0.1%、金属钨离子摩尔含量在0.09%。
实施例10、(r=3)
将反应釜洗净并加入5.0L去离子水、500ml含有70g磺酸铈侧基烯醚单体(1’)((F2C=CF-O-CF2CF2CF2-SO3 -)3Ce3+)及50g磺酸镧侧基烯醚单体(2’)((F2C=CF-O-CF2-CF(CF3)-O-CF2CF2-SO3 -)3La3+)的水溶液,开动搅拌装置,抽真空充高纯氮气置换三次,经测试反应釜内氧含量在1ppm以下后,抽真空,通过液体进料阀门向反应釜内加入300g磺酰氟侧基烯醚单体(1)(F2C=CF-O-CF2-CF2-CF2-SO2F)及500g磺酰氟侧基烯醚单体(2)(F2C=CF-O-CF2-CF(CF3)-O-CF2CF2-SO2F)后,向反应釜内充四氟乙烯单体至压力为2.6MPa,升温至15℃,用气体流量计控制流量向反应釜内引入由N2F2引发聚合反应,持续通入四氟乙烯(CF2=CF2)单体保持反应压力在2.6MPa,持续向体系中加入引发剂N2F2,反应2h后,停止加入引发剂,让反应继续进行1min后,停止加入四氟乙烯单体。通过冷却循环系统给反应釜降温,同时通过回收系统回收未反应的四氟乙烯单体,将釜内的乳白色浆料通过下放料阀门放入后处理系统中,通过高速剪切后,分离得到白色聚合物粉末,于100℃烘箱中烘干,得到带有磺酰氟、磺酸铈及磺酸镧侧基的功能性全氟树脂。反应液体中的磺酰氟烯醚单体和磺酸铈及磺酸镧侧基烯醚单体通过回收系统回收后重复利用。
聚合物数据:经F19NMR、IR分析证实为多元共聚物,通过氟核磁积分值可知聚合物结构中含有四氟乙烯单体的摩尔百分数为75%,含有磺酰氟侧基烯醚单体(1)摩尔百分数为13.4%,含有磺酰氟侧基烯醚单体(2)摩尔百分数为11.49%,含有磺酸铈侧基烯醚单体(1’)摩尔百分数为0.07%,含有磺酸镧侧基烯醚单体(2’)摩尔百分数为0.04%,总体离子交换容量为:1.46mmol/g干树脂。TGA测试树脂氮气气氛下的分解温度(Td)为389℃;IR谱图:1468cm-1为磺酰氟中S=O振动吸收峰;1070cm-1为磺酸铈-(SO3 -)3Ce3+及磺酸镧-(SO3 -)3La3+中S=O振动吸收峰;1200和1148cm-1两个最强吸收由CF振动引起;984cm-1为CF3振动引起的;720cm-1、641cm-1由TFE振动引起。
取粉末状树脂在x-射线荧光光谱仪上进行测试,测定结果显示树脂中金属铈离子摩尔含量在0.07%、金属镧离子摩尔含量在0.04%。
实施例11、(r=3)
将反应釜洗净并加入5.0L去离子水、500ml含有65g磺酸锰侧基烯醚单体(1’)((F2C=CF-O-CF2CF2CF2-SO2 -)Mn2+)及60g磺酸镧侧基烯醚单体(2’)((F2C=CF-O-CF2-CF(CF3)-O-CF2CF2-SO3 -)3La3+)的水溶液,开动搅拌装置,抽真空充高纯氮气置换三次,经测试反应釜内氧含量在1ppm以下后,抽真空,通过液体进料阀门向反应釜内加入300g磺酰氟侧基烯醚单体(1)(F2C=CF-O-CF2-CF2-CF2-SO2F)及500g磺酰氟侧基烯醚单体(2)(F2C=CF-O-CF2-CF(CF3)-O-CF2CF2-SO2F)后,向反应釜内充四氟乙烯单体至压力为2.6MPa,升温至15℃,用气体流量计控制流量向反应釜内引入由N2F2引发聚合反应,持续通入四氟乙烯(CF2=CF2)单体保持反应压力在2.6MPa,持续向体系中加入引发剂N2F2,反应2h后,停止加入引发剂,让反应继续进行1min后,停止加入四氟乙烯单体。通过冷却循环系统给反应釜降温,同时通过回收系统回收未反应的四氟乙烯单体,将釜内的乳白色浆料通过下放料阀门放入后处理系统中,通过高速剪切后,分离得到白色聚合物粉末,于100℃烘箱中烘干,得到带有磺酰氟、磺酸锰及磺酸镧侧基的功能性全氟树脂。反应液体中的磺酰氟烯醚单体和磺酸锰及磺酸镧侧基烯醚单体通过回收系统回收后重复利用。
聚合物数据:经F19NMR、IR分析证实为多元共聚物,通过氟核磁积分值可知聚合物结构中含有四氟乙烯单体的摩尔百分数为78%,含有磺酰氟侧基烯醚单体(1)摩尔百分数为11.5%,含有磺酰氟侧基烯醚单体(2)摩尔百分数为10.36%,含有磺酸锰侧基烯醚单体(1’)摩尔百分数为0.09%,含有磺酸镧侧基烯醚单体(2’)摩尔百分数为0.05%,总体离子交换容量为:1.348mmol/g干树脂。TGA测试树脂氮气气氛下的分解温度(Td)为385℃;IR谱图:1468cm-1为磺酰氟中S=O振动吸收峰;1070cm-1为磺酸锰-(SO3 -)2Mn2+及磺酸镧-(SO3 -)3La3+中S=O振动吸收峰;1200和1148cm-1两个最强吸收由CF振动引起;984cm-1为CF3振动引起的;720cm-1、641cm-1由TFE振动引起。
取粉末状树脂在x-射线荧光光谱仪上进行测试,测定结果显示树脂中金属锰离子摩尔含量在0.09%、金属镧离子摩尔含量在0.05%。
实施例12、(r=3)
将反应釜洗净并加入5.0L去离子水、500ml含有50g磺酸铈侧基烯醚单体(1’)((F
2C=CF-O-CF
2CF
2CF
2-SO
3 -)
3Ce
3+)及50g磺酸镧侧基烯醚单体(2’)((F
2C=CF-O-CF
2-CF(CF
3)-O-CF
2CF
2-SO
3 -)
2Zn
2+)的水溶液,开动搅拌装置,抽真空充高纯氮气置换三次,经测试反应釜内氧含量在1ppm以下后,抽真空,通过液体进料阀门向反应釜内加入400g磺酰氟侧基烯醚单体(1)(F
2C=CF-O-CF
2-CF
2-CF
2-SO
2F)及400g磺酰氟侧基烯醚单体(2)(F
2C=CF-O-CF
2-CF(CF
3)-O-CF
2CF
2-SO
2F)后,向反应釜内充四氟乙烯单体至压力为4MPa,升温至45℃,用计量泵加入20.2g
-SO2F-全氟-2,5,8-三甲基-3,6,9-三氧杂-十一烷基过氧化物引发聚合反应,持续通入四氟乙烯(CF
2=CF
2)单体保持反应压力在4MPa,每隔45min向体系中加入引发剂6g,反应2h后,停止加入引发剂,让反应继续进行45min后,停止加入四氟乙烯单体。通过冷却循环系统给反应釜降温,同时通过回收系统回收未反应的四氟乙烯单体,将釜内的乳白色浆料通过下放料阀门放入后处理系统中,通过高速剪切后,分离得到白色聚合物粉末,于100℃烘箱中烘干,得到带有磺酰氟、磺酸铈及磺酸锌侧基的功能性全氟树脂。反应液体中的磺酰氟烯醚单体和磺酸铈及磺酸锌侧基烯醚单体通过回收系统回收后重复利用。
聚合物数据:经F19NMR、IR分析证实为多元共聚物,通过氟核磁积分值可知聚合物结构中含有四氟乙烯单体的摩尔百分数为81%,含有磺酰氟侧基烯醚单体(1)摩尔百分数为10.3%,含有磺酰氟侧基烯醚单体(2)摩尔百分数为8.62%,含有磺酸铈侧基烯醚单体(1’)摩尔百分数为0.06%,含有磺酸锌侧基烯醚单体(2’)摩尔百分数为0.02%,总体离子交换容量为:1.233mmol/g干树脂。TGA测试树脂氮气气氛下的分解温度(Td)为385℃;IR谱图:1468cm-1为磺酰氟中S=O振动吸收峰;1070cm-1为磺酸铈-(SO3 -)3Ce3+及磺酸锌-(SO3 -)2Zn2+中S=O振动吸收峰;1200和1148cm-1两个最强吸收由CF振动引起;984cm-1为CF3振动引起的;720cm-1、641cm-1由TFE振动引起。
取粉末状树脂在x-射线荧光光谱仪上进行测试,测定结果显示树脂中金属铈离子摩尔含量在0.06%、金属锌离子摩尔含量在0.02%。
实施例13、(r=4)
将反应釜洗净并加入5.0L去离子水、500ml含有85g磺酸铈侧基烯醚单体(1’)((F2C=CF-O-CF2CF2CF2CF2-SO3 -)4Ce4+)及15g磺酸铈侧基烯醚单体(2’)((F2C=CF-O-CF2-CF(CF3)-O-CF2CF2-SO3 -)3Ce3+)的水溶液,开动搅拌装置,抽真空充高纯氮气置换三次,经测试反应釜内氧含量在1ppm以下后,抽真空,通过液体进料阀门向反应釜内加入500g磺酰氟侧基烯醚单体(1)(F2C=CF-O-CF2-CF2-CF2-CF2-SO2F)及500g磺酰氟侧基烯醚单体(2)(F2C=CF-O-CF2-CF(CF3)-O-CF2CF2-SO2F)后,向反应釜内充四氟乙烯单体至压力为2.5MPa,升温至25℃,用计量泵加入2.5g过氧化全氟丁酰基化合物(CF3CF2CF2CO-OO-CCF2CF2CF3)引发聚合反应,持续通入四氟乙烯(CF2=CF2)单体保持反应压力在2.5MPa,每隔15min向体系中加入引发剂0.75g,反应2h后,停止加入引发剂,让反应继续进行15min后,停止加入四氟乙烯单体。通过冷却循环系统给反应釜降温,同时通过回收系统回收未反应的四氟乙烯单体,将釜内的乳白色浆料通过下放料阀门放入后处理系统中,通过高速剪切后,分离得到白色聚合物粉末,于100℃烘箱中烘干,得到带有磺酰氟及磺酸铈侧基的功能性全氟树脂。反应液体中的磺酰氟烯醚单体和磺酸铈侧基烯醚单体通过回收系统回收后重复利用。
聚合物数据:经F19NMR、IR分析证实为多元共聚物,通过氟核磁积分值可知聚合物结构中含有四氟乙烯单体的摩尔百分数为64%,含有磺酰氟侧基烯醚单体(1)摩尔百分数为20%,含有磺酰氟侧基烯醚单体(2)摩尔百分数为15.7%,含有磺酸铈侧基烯醚单体(1’)摩尔百分数为0.27%,含有磺酸铈侧基烯醚单体(2’)摩尔百分数为0.03%,总体离子交换容量为:1.7mmol/g干树脂。TGA测试树脂氮气气氛下的分解温度(Td)为385℃;IR谱图:1468cm-1为磺酰氟中S=O振动吸收峰;1070cm-1为磺酸铈-(SO3 -)4Ce4+中S=O振动吸收峰;1200和1148cm-1两个最强吸收由CF振动引起;984cm-1为CF3振动引起的;720cm-1、641cm-1由TFE振动引起。
取粉末状树脂在x-射线荧光光谱仪上进行测试,测定结果显示树脂中金属铈离子摩尔含量在0.3%。
实施例14:(r=4)
将反应釜洗净并加入5.0L去离子水、500ml含有50g磺酸铈侧基烯醚单体(1’)((F2C=CF-O-CF2CF2CF2CF2-SO3 -)3Ce3+)及60g磺酸锰侧基烯醚单体(2’)((F2C=CF-O-CF2-CF(CF3)-O-CF2CF2-SO3 -)2Mn2+)的水溶液,开动搅拌装置,抽真空充高纯氮气置换三次,经测试反应釜内氧含量在1ppm以下后,抽真空,通过液体进料阀门向反应釜内加入300g磺酰氟侧基烯醚单体(1)(F2C=CF-O-CF2-CF2-CF2-CF2-SO2F)及500g磺酰氟侧基烯醚单体(2)(F2C=CF-O-CF2-CF(CF3)-O-CF2CF2-SO2F)后,向反应釜内充四氟乙烯单体至压力为2.8MPa,升温至35℃,用计量泵加入8.5g过氧化全氟丙氧基丙基化合物(CF3CF2CF2OCF(CF3)CO-OO-CCF(CF3)OCF2CF2CF3)引发聚合反应,持续通入四氟乙烯(CF2=CF2)单体保持反应压力在2.8MPa,每隔25min向体系中加入引发剂2.6g,反应2.5h后,停止加入引发剂,让反应继续进行25min后,停止加入四氟乙烯单体。通过冷却循环系统给反应釜降温,同时通过回收系统回收未反应的四氟乙烯单体,将釜内的乳白色浆料通过下放料阀门放入后处理系统中,通过高速剪切后,分离得到白色聚合物粉末,于100℃烘箱中烘干,得到带有磺酰氟、磺酸锰及磺酸铈侧基的功能性全氟树脂。反应液体中的磺酰氟烯醚单体和磺酸铈及磺酸锰侧基烯醚单体通过回收系统回收后重复利用。
聚合物数据:经F19NMR、IR分析证实为多元共聚物,通过氟核磁积分值可知聚合物结构中含有四氟乙烯单体的摩尔百分数为71%,含有磺酰氟侧基烯醚单体(1)摩尔百分数为15.48%,含有磺酰氟侧基烯醚单体(2)摩尔百分数为13.21%,含有磺酸铈侧基烯醚单体(1’)摩尔百分数为0.16%,含有磺酸锰侧基烯醚单体(2’)摩尔百分数为0.15%,总体离子交换容量为:1.52mmol/g干树脂。TGA测试树脂氮气气氛下的分解温度(Td)为390℃;IR谱图:1468cm-1为磺酰氟中S=O振动吸收峰;1070cm-1为磺酸铈-(SO3 -)3Ce3+及磺酸锰-(SO3 -)3Mn3+中S=O振动吸收峰;1200和1148cm-1两个最强吸收由CF振动引起;984cm-1为CF3振动引起的;720cm-1、641cm-1由TFE振动引起。
取粉末状树脂在x-射线荧光光谱仪上进行测试,测定结果显示树脂中金属铈离子摩尔含量在0.16%、金属锰离子摩尔含量在0.15%。
实施例15:(r=4)
将反应釜洗净并加入5.0L去离子水、500ml含有60g磺酸钼侧基烯醚单体(1’)((F2C=CF-O-CF2CF2CF2CF2-SO3 -)3Mo3+)及90g磺酸钨侧基烯醚单体(2’)((F2C=CF-O-CF2-CF(CF3)-O-CF2CF2-SO3)3W3+)的水溶液,开动搅拌装置,抽真空充高纯氮气置换三次,经测试反应釜内氧含量在1ppm以下后,抽真空,通过液体进料阀门向反应釜内加入250g磺酰氟侧基烯醚单体(1)(F2C=CF-O-CF2-CF2-CF2-CF2-SO2F)及450g磺酰氟侧基烯醚单体(2)(F2C=CF-O-CF2-CF(CF3)-O-CF2CF2-SO2F)后,向反应釜内充四氟乙烯单体至压力为2.9MPa,升温至60℃,用计量泵加入10%过硫酸铵水溶液280g引发聚合反应,
持续通入四氟乙烯(CF2=CF2)单体保持反应压力在2.9MPa,反应3h后,停止加入四氟乙烯单体。通过冷却循环系统给反应釜降温,同时通过回收系统回收未反应的四氟乙烯单体,将釜内的乳白色浆料通过下放料阀门放入后处理系统中,通过高速剪切后,分离得到白色聚合物粉末,于100℃烘箱中烘干,得到带有磺酰氟、磺酸钼及磺酸钨侧基的功能性全氟树脂。反应液体中的磺酰氟烯醚单体和磺酸钼及磺酸钨侧基烯醚单体通过回收系统回收后重复利用。
聚合物数据:经F19NMR、IR分析证实为多元共聚物,通过氟核磁积分值可知聚合物结构中含有四氟乙烯单体的摩尔百分数为74.5%,含有磺酰氟侧基烯醚单体(1)摩尔百分数为12.71%,含有磺酰氟侧基烯醚单体(2)摩尔百分数为12.6%,含有磺酸钼侧基烯醚单体(1’)摩尔百分数为0.1%,含有磺酸钨侧基烯醚单体(2’)摩尔百分数为0.09%,总体离子交换容量为:1.41mmol/g干树脂。TGA测试树脂氮气气氛下的分解温度(Td)为386℃;IR谱图:1468cm-1为磺酰氟中S=O振动吸收峰;1070cm-1为磺酸钼-(SO3 -)3Mo3+及磺酸钨-(SO3 -)3W3+中S=O振动吸收峰;1200和1148cm-1两个最强吸收由CF振动引起;984cm-1为CF3振动引起的;720cm-1、641cm-1由TFE振动引起。
取粉末状树脂在x-射线荧光光谱仪上进行测试,测定结果显示树脂中金属钼离子摩尔含量在0.1%、金属钨离子摩尔含量在0.09%。
实施例16、(r=4)、
将反应釜洗净并加入5.0L去离子水、500ml含有70g磺酸铈侧基烯醚单体(1’)((F2C=CF-O-CF2CF2CF2CF2-SO3 -)3Ce3+)及50g磺酸镧侧基烯醚单体(2’)((F2C=CF-O-CF2-CF(CF3)-O-CF2CF2-SO3 -)3La3+)的水溶液,开动搅拌装置,抽真空充高纯氮气置换三次,经测试反应釜内氧含量在1ppm以下后,抽真空,通过液体进料阀门向反应釜内加入300g磺酰氟侧基烯醚单体(1)(F2C=CF-O-CF2-CF2-CF2-CF2-SO2F)及500g磺酰氟侧基烯醚单体(2)(F2C=CF-O-CF2-CF(CF3)-O-CF2CF2-SO2F)后,向反应釜内充四氟乙烯单体至压力为2.6MPa,升温至15℃,用气体流量计控制流量向反应釜内引入由N2F2引发聚合反应,持续通入四氟乙烯(CF2=CF2)单体保持反应压力在2.6MPa,持续向体系中加入引发剂N2F2,反应2h后,停止加入引发剂,让反应继续进行1min后,停止加入四氟乙烯单体。通过冷却循环系统给反应釜降温,同时通过回收系统回收未反应的四氟乙烯单体,将釜内的乳白色浆料通过下放料阀门放入后处理系统中,通过高速剪切后,分离得到白色聚合物粉末,于100℃烘箱中烘干,得到带有磺酰氟、磺酸铈及磺酸镧侧基的功能性全氟树脂。反应液体中的磺酰氟烯醚单体和磺酸铈及磺酸镧侧基烯醚单体通过回收系统回收后重复利用。
聚合物数据:经F19NMR、IR分析证实为多元共聚物,通过氟核磁积分值可知聚合物结构中含有四氟乙烯单体的摩尔百分数为76%,含有磺酰氟侧基烯醚单体(1)摩尔百分数为13.4%,含有磺酰氟侧基烯醚单体(2)摩尔百分数为10.49%,含有磺酸铈侧基烯醚单体(1’)摩尔百分数为0.07%,含有磺酸镧侧基烯醚单体(2’)摩尔百分数为0.04%,总体离子交换容量为:1.37mmol/g干树脂。TGA测试树脂氮气气氛下的分解温度(Td)为389℃;IR谱图:1468cm-1为磺酰氟中S=O振动吸收峰;1070cm-1为磺酸铈-(SO3 -)3Ce3+及磺酸镧-(SO3 -)3La3+中S=O振动吸收峰;1200和1148cm-1两个最强吸收由CF振动引起;984cm-1为CF3振动引起的;720cm-1、641cm-1由TFE振动引起。
取粉末状树脂在x-射线荧光光谱仪上进行测试,测定结果显示树脂中金属铈离子摩尔含量在0.07%、金属镧离子摩尔含量在0.04%。
实施例17、(r=4)
将反应釜洗净并加入5.0L去离子水、500ml含有75g磺酸锰侧基烯醚单体(1’)((F2C=CF-O-CF2CF2CF2CF2-SO2 -)Mn2+)及50g磺酸镧侧基烯醚单体(2’)((F2C=CF-O-CF2-CF(CF3)-O-CF2CF2-SO3 -)3La3+)的水溶液,开动搅拌装置,抽真空充高纯氮气置换三次,经测试反应釜内氧含量在1ppm以下后,抽真空,通过液体进料阀门向反应釜内加入300g磺酰氟侧基烯醚单体(1)(F2C=CF-O-CF2-CF2-CF2-CF2-SO2F)及500g磺酰氟侧基烯醚单体(2)(F2C=CF-O-CF2-CF(CF3)-O-CF2CF2-SO2F)后,向反应釜内充四氟乙烯单体至压力为2.75MPa,升温至15℃,用气体流量计控制流量向反应釜内引入由N2F2引发聚合反应,持续通入四氟乙烯(CF2=CF2)单体保持反应压力在2.75MPa,持续向体系中加入引发剂N2F2,反应2h后,停止加入引发剂,让反应继续进行1min后,停止加入四氟乙烯单体。通过冷却循环系统给反应釜降温,同时通过回收系统回收未反应的四氟乙烯单体,将釜内的乳白色浆料通过下放料阀门放入后处理系统中,通过高速剪切后,分离得到白色聚合物粉末,于100℃烘箱中烘干,得到带有磺酰氟、磺酸锰及磺酸镧侧基的功能性全氟树脂。反应液体中的磺酰氟烯醚单体和磺酸锰及磺酸镧侧基烯醚单体通过回收系统回收后重复利用。
聚合物数据:经F19NMR、IR分析证实为多元共聚物,通过氟核磁积分值可知聚合物结构中含有四氟乙烯单体的摩尔百分数为77%,含有磺酰氟侧基烯醚单体(1)摩尔百分数为12.5%,含有磺酰氟侧基烯醚单体(2)摩尔百分数为10.36%,含有磺酸锰侧基烯醚单体(1’)摩尔百分数为0.09%,含有磺酸镧侧基烯醚单体(2’)摩尔百分数为0.05%,总体离子交换容量为:1.34mmol/g干树脂。TGA测试树脂氮气气氛下的分解温度(Td)为385℃;IR谱图:1468cm-1为磺酰氟中S=O振动吸收峰;1070cm-1为磺酸锰-(SO3 -)2Mn2+及磺酸镧-(SO3 -)3La3+中S=O振动吸收峰;1200和1148cm-1两个最强吸收由CF振动引起;984cm-1为CF3振动引起的;720cm-1、641cm-1由TFE振动引起。
取粉末状树脂在x-射线荧光光谱仪上进行测试,测定结果显示树脂中金属锰离子摩尔含量在0.09%、金属镧离子摩尔含量在0.05%。
实施例18、(r=4)
将反应釜洗净并加入5.0L去离子水、500ml含有60g磺酸铈侧基烯醚单体(1’)((F
2C=CF-O-CF
2CF
2CF
2CF
2-SO
3 -)
3Ce
3+)及60g磺酸镧侧基烯醚单体(2’)((F
2C=CF-O-CF
2-CF(CF
3)-O-CF
2CF
2-SO
3 -)
2Zn
2+)的水溶液,开动搅拌装置,抽真空充高纯氮气置换三次,经测试反应釜内氧含量在1ppm以下后,抽真空,通过液体进料阀门向反应釜内加入400g磺酰氟侧基烯醚单体(1)(F
2C=CF-O-CF
2-CF
2-CF
2-CF
2-SO
2F)及400g磺酰氟侧基烯醚单体(2)(F
2C=CF-O-CF
2-CF(CF
3)-O-CF
2CF
2-SO
2F)后,向反应釜内充四氟乙烯单体至压力为4MPa,升温至45℃,用计量泵加入20.2g
-SO2F-全氟-2,5,8-三甲基-3,6,9-三氧杂-十一烷基过氧化物引发聚合反应,持续通入四氟乙烯(CF
2=CF
2)单体保持反应压力在4MPa,每隔45min向体系中加入引发剂6g,反应2h后,停止加入引发剂,让反应继续进行45min后,停止加入四氟乙烯单体。通过冷却循环系统给反应釜降温,同时通过回收系统回收未反应的四氟乙烯单体,将釜内的乳白色浆料通过下放料阀门放入后处理系统中,通过高速剪切后,分离得到白色聚合物粉末,于100℃烘箱中烘干,得到带有磺酰氟、磺酸铈及磺酸锌侧基的功能性全氟树脂。反应液体中的磺酰氟烯醚单体和磺酸铈及磺酸锌侧基烯醚单体通过回收系统回收后重复利用。
聚合物数据:经F19NMR、IR分析证实为多元共聚物,通过氟核磁积分值可知聚合物结构中含有四氟乙烯单体的摩尔百分数为80%,含有磺酰氟侧基烯醚单体(1)摩尔百分数为10.3%,含有磺酰氟侧基烯醚单体(2)摩尔百分数为9.62%,含有磺酸铈侧基烯醚单体(1’)摩尔百分数为0.06%,含有磺酸锌侧基烯醚单体(2’)摩尔百分数为0.02%,总体离子交换容量为:1.41mmol/g干树脂。TGA测试树脂氮气气氛下的分解温度(Td)为380℃;IR谱图:1468cm-1为磺酰氟中S=O振动吸收峰;1070cm-1为磺酸铈-(SO3 -)3Ce3+及磺酸锌-(SO3 -)2Zn2+中S=O振动吸收峰;1200和1148cm-1两个最强吸收由CF振动引起;984cm-1为CF3振动引起的;720cm-1、641cm-1由TFE振动引起。
取粉末状树脂在x-射线荧光光谱仪上进行测试,测定结果显示树脂中金属铈离子摩尔含量在0.06%、金属锌离子摩尔含量在0.02%。